
AASL Language Reference Manual
Group Members:

 Vaishnav Janardhan, Rob Katz, Carlos Rene Perez, Albert Tsai

1. Introduction:
The purpose of AASL is to simplify the creation of original sounds by allowing users to easily generate
and combine the fundamental elements of sound composition - oscillators, mixers, and envelopes -
without needing to create their own data structures and methods to do so. In short, the goal is to
present those elements as atomic data types which are then manipulated by intuitive operators.

AASL programs require a basic structure. They are divided into the following sections:

Header - Specifies the configuration of the output sound file

Main function - The first function to be executed
 Declaration section
 Connection section

User-defined function(s) - Helper functions that the user sees fit to create.
 Declaration section
 Connection section

The composition of these sections will be described in more detail later on.

1.1 Document Conventions
The word "elements" in this document will hereafter refer to "oscillators, oscillator banks, mixers, and
envelopes."
Because AASL programs are structured, there are aspects of the language (statements, for one) which
are only applicable to certain sections of a valid AASL program. These will be identified with tags such
as [Declaration Section].

2. Lexical Conventions
A character stream first must be transformed into the valid "words" of a language; alternately stated,
the atomic units of a valid AASL program. These units are called tokens.

2.1 Tokens
There are seven classes of tokens: identifiers, keywords, string literals, constants, operators, and
grouping tokens (parentheses and curly braces). "White space", which includes spaces, tabs, newlines,
and comments, is ignored except in as much as they separate tokens.

2.2 Comments
The language allows for both single-line and multi-line comments. Single line comments are initiated
with a double-slash (//) and run until the next newline. Multi-line comments are initiated with a slash-
star (/*) and terminate with the first occurrence of star-slash(*/).

2.3 Identifiers
Identifiers are sequences of letters, digits and underscores that begin with a letter. The language is
case-sensitive, so 'word' and 'Word' represent two different identifiers. The maximum length of an
identifier is not defined by the language.

2.4 Keywords

The following are reserved keywords and may not be used as identifiers.

mixer start end header func connect env osc

def oscbank if else for int float TONELENGTH

SINE SQUARE SAW REVSAW OUTPUT SEGMENTS SEG

Keywords can be used for the following reasons:

• To define or create a data type (mixer, env, osc, oscbank, int, float)
• To declare a waveform (SINE, SQUARE, SAW, REVSAW)
• To define a statement or to be used as part of a statement (if, else, for)
• To define a function (func)
• To define a block (start, end, header, connect)
• To define language output parameters (TONELENGTH, OUTPUT, SEGMENTS, SEG)

2.5 String Literals
String literals are surround by double quotes, and are context limited to the header section as the
assignment r-value of the OUTPUT keyword.

2.6 Constants
There are two types of constants allowed in AASL, integer-constants and float-constants. Both are
numeric constants.
 2.6.1 Integers
Integers are decimal whole numbers represented as a sequence of digits.
 2.6.2 Floats
Floats in AASL are represented as a sequence of numbers with a single period. There is no support for
exponent notation.

2.7 Operators
By and large, all of the following have the same meaning as one would expect. The period operator is
similar to that found in most object oriented languages. In AASL, it is used in the context of an
oscillator bank, which represents a group of related oscillators, to distinguish one from the other. For
example, in a bank of called oscbank1 with two oscillators, they would be refered to as oscbank1[1] and
oscbank1[2]
The individual elements of oscbank are referenced as it is done in C-Programming language. The i-th
element is accessed by the operation <oscbank-obj>[i-1]

+ - * / % = ! < > <= >= == && || ++ -- []

1.8 Other Tokens
() { }

Parenthesis are used in the following contexts.
- In the definition of an envelope, surrounding each time/amplitude pair.
- In connection expressions.
- Surrounding the conditions of an if or for statement.

Braces are used in the following contexts.
- Surrounding the argument list in a function declaration or call to a function, following the function
name.
- To contain the bodies of code following conditionals.
- To contain a complete set of time/amplitude pairs in the definition of an envelope.

3. Meaning of Identifiers
Identifiers, or names, refer to functions and objects. Functions are the subroutines of a larger AASL

program; they exist for the user's convenience in organizing and programming AASL code and will be
discussed in Section 7, Functions. Objects are named regions of storage containing instances of
primitive data types such as integers and floats, or instances of the four fundamental data types of an
AASL program: oscillators, oscillator banks, envelopes, and mixers.

3.1 Data types
The standard integers and floats are available in AASL programs. Additionally:

1. Oscillators - Oscillators output a signal in the form of an array of audio samples (44.1k per second).
The size of this array is dependent on the declared length of the tone (44,100 * (length in seconds)
elements). An oscillator has three defining characteristics, namely, a wave shape, a frequency, and an
amplitude. The frequency and amplitude may be constant or controlled by another element.

2. Oscillator Banks - Oscillator banks are simply groups of oscillators. The intention is that the
oscillators are somehow related and will often have their characteristics defined in some sort of
conditional loop. Individual oscillators within an oscillator bank are referenced in C array notation. For
example, given an oscillator bank name ob1 with three oscillators, the individual oscillators may be
referenced as ob1[1], ob1[2], and ob1[3].

3. Envelopes - Envelopes consist of time-amplitude pairs that represent a graph over the entire tone.
Each member of a pair is a float between 0.0 and 1.0, inclusive. Envelopes are "connected" to an
oscillators frequency or amplitude, which then tracks the graph. For example:

We have an envelope with pairs (0.1, 0.0) , (0.5, 1.0) , (0.9, 0.5) connected to the amplitude input of
an oscillator. One-tenth of the way through the tone, the oscillators amplitude will be zero. Half way
through the tone, it will be at full volume. Nine-tenths of the way through the tone it will be back down
to half amplitude. If no amplitude value is provided for time zero, as in our example, we assume a
starting volume of zero with a linear increase to the first defined value. In our example, this value is
0.0, so the volume stays at zero for the first tenth of the tone. Between times 0.1 and 0.5, there is a
linear increase in volume from 0.0 to 1.0. After time 0.9, the volume holds steady at 0.5.

If an envelope is attached to the frequency input, a central frequency must be supplied. This will be the
oscillators output frequency when the envelope's value is 0.5. Similarly, if an oscillator is connected to
another oscillator's frequency input, a central frequency must be provided.

4. Mixers - A mixer takes the outputs from multiple oscillators and sums them, generating a new
output. The input oscillators may be mixed in unequal amounts, but the output of a mixer is never
greater than the maximum output of a single oscillator. A mixer must have at least two inputs.

4. Expressions

Expressions are combinations of values, objects and operators that are evaluated according to the
particular rules of precedence and association to return a value. Common locations of expressions in
an AASL program are in conditional blocks, envelope definitions, indexes of oscillator banks, and
connection statements.

The precedence of expression operators is organized in the following table as highest to lowest, top to
bottom. Within each level of precedence, left or right associativity is specified to define the order of
evaluation of operators with the same precedence.

Error handling such as overflow, divide by zero check, and other exceptions in expression evaluation is
not defined by the language.

Post-fix
Expression Description

Associativity

() Grouping Operator
left-to-right

++ --

!

Increment/Decrement by 1 limited to for stmt use expands to ID=ID+1.
The operand is an l-value and the result is an r-value, with the side-

effect of incrementing/decrementing ID by value of 1

Unary Negation is applicable to an arithmetic type only, the result is
boolean TRUE if the value of its operand compares equal to 0, and

FALSE otherwise

right-to-left

* / % Multiplication, division, modulus are only applicable to arithmetic types.
 The '/' symbol yields the quotient, and the '%' operator the remainder
of the division of the first operand by the second. If the second operand

to division or modulus is 0 the operation is undefined.

left-to-right

+ -
Addition and subtraction are only applicable to arithmetic types. The '+'

operator is the sum of the operands, while the '-' operator is the
difference of the operands.

left-to-right

< <= > >=

Relational Operators are only applicable to arithmetic types all yield
TRUE if the specified relation is mathematically correct, otherwise
FALSE. The symbol '<' represents less, '<=' less than or equal, '>'

greater than, '>=' greater than or equal'.

left-to-right

== !=
Equality Operators are only applicable to arithmetic types and produce a
boolean type of TRUE if the mathematical relation is correct, otherwise

FALSE. The '==' symbol is "equal to" while '!=' is "not equal to".
left-to-right

&&
Logical AND are only applicable to boolean types and also produce a
boolean type of TRUE if both of the operands are TRUE, otherwise

FALSE.
left-to-right

||
Logical OR are only applicable to boolean types and also produce a

boolean type of TRUE if one or both of the operands is TRUE, otherwise
FALSE.

left-to-right

=

Assignment requires a modifiable (not constant) l-value as left operand
and it cannot be a function or an oscillator block. The type of an

assignment expression is that of its left operand and the value is the
value stored in the left operand after the assignment has taken place.

right-to-left

, Comma operator is used to separate expressions, they are evaluated in
order from left-to-right.

left-to-right

5. Definitions
Definitions specify the interpretation given to identifiers.

5.1 Primitive data types

Integers and floats are declared in the following manner:

int identifier = integer ;

float identifier = float ;

There are four different types of definition statements, each pertaining to a different element.

5.2 Oscillator Definition
 There are two flavors of oscillator definition. One is for stand-alone oscillators, and the other is for
oscillators associated with an oscillator bank.
 osc identifier = waveshape ;
 oscbank[oscillator_index] = waveshape ;

waveshape is one of the following: SINE, SQUARE, SAW, REVSAW. These are the four possible waves
that an oscillator can output.

5.3 Oscillator Bank definition
 oscbank identifier = value

value is an integer representing the number of oscillators contained in the oscillator bank.

5.4 Envelope Definition
 env identifier = {(time1, value1) , (time2, value2), ... , (timen, valuen)} ;

(timek, valuek) is a time-value pair. Each must be between 0.0 and 1.0. See the description of

envelopes in the "Meaning of Identifiers" section. There must be at least one pair in each envelope
definition.

5.5 Mixer Definition

 mixer identifier = value

value is an integer representing the number of inputs into the mixer.

6. Statements
Statements are the smallest executable block of code in a programming language. They are logical
sequences primarily executed to alter the state of a program (as represented by the values of the
objects contained within it) and thus they define how a program behaves. In other words, statements
do more than simply return a value (like expressions), but are not full blown functions.

6.1 Conditionals [Definition Section, Connection Section]
For loops and if/else statements may be used in both the definition and connect sections. In the
definition section, the body of such loops may contain definitions or nested definition loops.

6.1.1 For loops:
for(assignment; bool_expression ; delta)
 {
 definitions | nested conditionals
 }

assignment - must be of the form: identifier = (int | float)
 The identifier represents a variable not yet defined in the program. It's scope lasts throughout the
body of the following loop.
bool_expression - an expression that evaluates to true or false. See the section on "Expressions".
delta - must be in one of the following three forms: identifier = expression identifier++
identifier--
 The for loop in AASL acts as one would imagine it to. The assignment initiates a condition. Delta is
performed at the end of each loop. Once delta has been performed, the condition_expression is
checked and, if it is false, the loop is exited.

6.1.2 If/Else statements:
if(bool_expression)
 {
 definitions | nested conditionals
 }
[else
 {
 definitions | nested conditionals
 }]opt

NOTE: The braces denote an optional section and are not ever present in an actual if/else block.

6.2 Connection Statements [Connection Section]
There are two kinds of connection statements. One kind involves oscillators. The other involves
mixers.

6.2.1 Oscillator Connections:

oscillator(value1, value2) ;
assigns constant values to frequency and
amplitude

oscillator(value1, {oscillator | envelope |
function_call}) ;

assigns a constant value to frequency and assigns
an element/function to control amplitude

oscillator({oscillator | envelope |
function_call}(central_frequency), value2) ;

assigns an element/function to control frequency
and a constant value to amplitude

oscillator({oscillator | envelope |
function_call}(central_frequency), {oscillator |
envelope | function_call}) ;

assigns elements/functions to control both
frequency and amplitude.

NOTE: In the above descriptions, curly braces are used for grouping and would not appear in an actual
connection statement. All parentheses shown, however, would appear.

oscillator - is either of the form identifier representing a stand-along oscillator or of the form
identifier[integer | identifier] representing an oscillator element from a given oscillator bank.
value1 - is an integer or a float equal to the assigned frequency in Hz.

value 2 - is a float between 0.0 and 1.0 equal to the assigned amplitude relative to maximum volume
of 1.0.
central_frequency - is an integer or float equal to the central frequency around which the attached
element modulates the frequency. The maximum range of variation is a single octave, which
corresponds to a minimum of half the central_frequency and a maximum of double the central
frequency. As an example, if an oscillator o1 putting out a 1Hz SINE wave at full amplitude is attached
to the frequency input of an oscillator o2 and a central frequency of 440 Hz is assigned, then the output
of o2 will shift smoothly between 220 Hz and 880 Hz. The instantaneous frequency of the output of o2
will be 440Hz at every zero crossing of o1's sine wave.
function_call - as explained in the "Functions" section, all functions may be thought of as returning
complex oscillators. That is, a function call may be used in the "connect" section wherever an oscillator
could appear.

6.2.2 Mixer Connections:
 mixer = term + term + ... + term ;

mixer - an identifier representing a mixer defined in the "def" section
term - of the form factor * output where factor is an integer or float and output is an oscillator or a
function call.
The number of terms in the statement must equal the number of inputs assigned to the mixer in the
"def" section. Each term represents an input. The inputs are mixed in ratios proportional to their
factors.

Connection conditionals
These are identical to the "def" section conditionals described in section 3.2.1.2 with the exception that
the bodies must be composed of connection statements and connection conditionals.

6.3 Output Equation:
OUTPUT = mixer_connection ;

mixer_connection - identical to the mixer connections described in 3.2.2.1.

7. Functions
Functions are smaller, self-contained portions of programs that perform specific tasks. When using real
synthesis modules, elements are first designed then connected to one another in various ways. AASL
functions reflect this practice by having a definition section and a connections section, followed by an
OUTPUT assignment statement. Again, within each section, different kinds of statements are
allowed. See Section 6, Statements, for more information.

start func identifier
 definition section
 connection section
 output statement
end func identifier

7.1 The Definition section
The definition section is where the synthesizer's elements are declared.

start def
 (definitions | definition conditionals)*
end def

7.2 The Connection section
The second section is the "connect" section, which contains details about the element's characteristics
and how elements are interconnected.

start connect
 (connection statement | connection conditional)*

end connect

7.3 Return Value
The return value from any user defined function is a wave form, which can replace an oscillator. The
output is defined as:

OUTPUT = expression ;

The expression must evaluate to a valid oscillator.

8. Scope

8.1 Blocks:

A block is a section of code surrounded by braces { }. Block defines the scope, visibility, of any declared
variable.

8.2 Scope:

The scope of an identifier is the range of the program in which the declared identifier has
meaning. Scope is determined by the location of the identifier's declaration.

8.2.1 Block Scope:

An identifier appearing within a block has block scope and is visible within the block, unless hidden by
an inner block declaration. Block scope begins at the opening brace ({) and ends at the closing brace
(}) completing the block. If there is an identifier with the same variable name in a block above the
defined block. Then the identifier with in the innermost block takes precedence.

8.2.2 Function Scope:

An identifier declared within a function has function scope and it should be unique throughout the
function in which it is declared.

9. Anatomy of an AASL Program
Every AASL program consists of a header section and a main function followed by optional user-defined
functions.

9.1 Header Section
An AASL program begins with a short header section. Every header begins with "start header" and
ends with "end header." Within the section, one assigns the name of the output file, the length in
seconds of the tone to be generated, and optional assignment of the number of segments the tone is to
broken up into. This segmentation is used to alter the tone as time progresses through the use of
conditionals.

-Output Assignment
 OUTPUT =" filename";
filename is the name of the file to which the generated tone will be written.

-Tonelength Assignment
 TONELENTGH = value;
value is an integer of float that gives the desired length of the tone in seconds

-Segment Assignment (optional)
 SEGMENTS = value;
value is an integer representing the number of equal-length time slices into which the tone will be split.
Associated with the number of segments is a keyword SEG which evaluates to an integer representing
whichever segment the tone is currently in. The idea of segments is used in writing conditional
statements. This is best understood through an example.
Assume our header contains the following lines:

TONELENGTH = 10;
SEGMENTS = 5;

We may now view our tone as being divided into 5 two-second sections. If we want an oscillator, o1, to
vary between SINE and SQUARE wave output, alternating every two seconds. We could write the
following in our "def" section:

if(SEG % 2 == 0)
 {o1 = SINE;}
else
 {o1 = SQUARE;}

9.2 Main Function
All AASL programs must have a main function, which simply follows the form of all functions, except
that it has the identifier "main". It must follow the Header section.

9.3 User Defined Functions
User defined functions can have any valid identifier, and they must follow the main function.

10. Sample Program
 /* Header Section */
 start header
 OUTPUT = "testsound.wav"
 TONELENGTH = 10 //10 second sound
 SEGMENTS = 5
 end header

 /* Main Function */
 start func main()

 /* Definition section */
 start def

 mixer S1 = 2; //defines a mixer for 2 oscillators to attach to
 mixer S2 = 2;

 osc o1 = SINE; //defines a sine wave oscillator, o1
 osc o2 = SQUARE;
 oscbank ob1 = 3; //bank of three oscillators
 if(SEG % 2 == 0) //set waveform of oscbank elements depending on which
 {
 //time segment you're in
 ob1[1] = SQUARE;

 ob1[2] = SINE;
 }
 else
 {
 ob1[1] = SINE;
 ob1[2] = SAW;
 }

 ob1[3] = SINE; //third osc in the bank does not depend on SEGMENT

 env e1 = { (0.0,0.3) (0.2,0.2) (0.4,0.2) (0.8,0.8) (1.0,0) };
 //defines envelope w/ (time, amp)
 env e2 = { (0.0,0.0) (0.3,0.0) (1.0, 1.0) };

 end def //end definitions

 /* Connection Section *
 start connect

 o1(440, e1);
 o2(e2(1000), ob1[2]); //second oscillator in oscbank controls amplitude
 for(x=1; x<ob1.size; x++) //for loop featuring .size feature (returns # of osc in
 {
 //oscbank
 if(x==1 || SEG==2 || SEG==5)
 {
 ob1[x](440, 0.5); //apostrophes differentiate variables
 }
 else
 {
 ob1[x](220*x, ob1[x-1]);
 }
 }

 S1 = 0.4*o1 + 0.6*o2;
 S2 = 2*S1 + ob1[1] + 0.5*ob1[2] + 0.25ob1[3] + 0.25*o2o{1000};
 //note one of the ouput signals is function call

 end connect

 /* Output Section */
 OUTPUT = S1 + o5;

 end func main

 /* User defined funtion...takes one integer as argument */
 start func o2o (int x)

 start def
 osc o1(SAW);
 osc o2(SINE);
 end def

 start connect
 o1(x, o2);
 o2(0.5*SEG, .75);
 end connect

 OUTPUT = o1;

 end func o2o

 /* End of Sample Program */

/*Notes, questions*/

