
Programming Languages and Translators
COMS W4115

Stephen A. Edwards
Fall 2007

Orange White Green Animation Language

Final Report

Meenakshi Sripal
December 18, 2007

2

Table of Contents:
1. Introduction……………………………………………………………………...…3
2. Language Manual…………………………………………………………………..5
3. Architectural Design………………………………………………………………13
4. Test Plan…………………………………………………………………………..14
5. Lessons Learned…………………………………………………………………..16
6. Appendix …………………………………………………………………………17

3

Introduction
Since 1996, flash technology is well known for its capability to transport graphic animations
or movies to the web. Animations/movies can be delivered via Shockwave flash files, .swf,
the exported Flash file format. Thousands of end-users have adopted Flash technology to
generate animations. However, Adobe (formerly Macromedia) flash files can be difficult to
develop due to the complexity of the design.

Therefore, I propose to develop a new programming language called Orange White Green
Animation Language (OWGAL). The goal of the OWGAL programming language is to
provide an easy to use Object-Oriented interface to allow for quick, comprehensive
development of complex animations with additional nifty features. The generated
Shockwave files can then be easily viewed by the web. OWGAL will be designed in a way
that it is easy to understand with user-friendly syntax aiming users with little programming
skills.

Properties of OWGAL
OWGAL language will follow the objected oriented design. Part of the animation library
will be reused, such as open source codes that generate Flash animation files. Ming is
planned to be used to compile the animation files turning them into .swf files. OWGAL
language only allows users to load images as objects to the animation file. It will not have
the drawing capability like Adobe Flash. The input images, by default, will be placed at the
origin of the x-y scale at the upper left corner of the screen.

OWGAL features
-import()
-set background/foreground
-xmove/ymove
-xposition/yposition
-loop()

Program Structure
ROUTINE myFlash

#width = xx
#height = xx
#frames = xx

{
!!Comments
statements

}

Sample Code
ROUTINE looptest
#width = 200
#height = 200
#frames = 50

4

{
!This is comment
!!This is also a comment

img Meena = import (Meena.jpg, 30, 30)

Meena x.position = 150
Meena y.position = 150

loop(3) {
Meena.xmove += 5
Meena.ymove -= 5
Meena.xmove -= 5
Meena.ymove +=5

}

}

5

Language Reference Manual

1.1. Introduction
OWGAL language is a programming language that allows users to develop animations
through the generation of shockwave flash files. This manual describes in details about
the rules, conventions, and built-in features.

1.2. Grammar Notation
This manual introduces lexical and syntactic aspects of OWGAL’s grammar. A set of
productions are defined consisting of both non-terminals and terminals. The lexical
grammar has undefined terminals such as if keyword, symbols like ()[], else keyword;
terminals are given in arial font. Examples of non-terminals are expression or identifier;
non-terminals are given in italic font. A non-terminal are always defined on the left side
of the colon whereas a mix of terminals and non-terminals are defined on the right side of
the same colon. The syntactic grammar describes how sequences of tokens can form
syntactically correct programs.

The input sequence of characters of the program are scanned and grouped into tokens, in
which white space and comments discarded. If the sequence of characters is in the form
a?, it denotes that the symbol a is optional. a* denotes that the symbol a may occur zero
or more times. a+ denotes that the symbol a will occur one or more times. (a|b) denotes a
choice between the symbols a and b.

1.3. Lexical Conventions
In order for the OWGAL program to run, an object, mainly an image, can be imported
into the code. Compiling the animation file will generate a syntactically correct program,
which in turn can be used by the Java compiler. The goal of the lexical grammar is to
simplify the job of the parser, which sees the animation file prior the Java compiler.

1.3.1. Tokens
There are six classes of tokens: identifiers, keywords, constants, string literals,
operators, and other separators. White space, such as blanks, tabs, newlines, and
comments, are ignored except as they are used to separate tokens. Some white space
is required to separate otherwise adjacent identifiers, keywords, and constants.

1.3.2. Comments
There are two kinds of comments:

! text !

The character ! introduces a comment, which terminates with the character !.

!! text

6

Single-line comments introduced by “!!” (double exclamation point) cause the
compiler to ignore the remainder of that line.

Comments do not nest, and they do not occur within string or character literals.

1.3.3. Identifiers
An identifier is a sequence of letters and digits. It must begin with a letter.
Identifiers are case sensitive and can have any length. The underscore character (_)
can be part of an identifier.

1.3.4. Keywords
The following identifiers are reserved for use and cannot be used as otherwise:

text width if ROUTINE
for length else return
import img xposition yposition
background foreground set put
while xmove up down
left right xaxis yaxis
ymove

1.3.5. Constants
There are several kinds of constants.

constant: integer-constant
character-constant

1.3.5.1. Integer Constants
An integer constant consists of a sequence of decimal digits ranging from 0 to 9.
It is unsigned and always positive. The maximum value for the integer constant is
232.

1.3.5.2. Character Constants
A character constant is a sequence of one or more characters enclosed in double
quotes (“…”). Character constants do not contain the “ character or newlines; in
order to represent them, the following escape sequences may be used.

Newline \n Form feed \f
Carriage return \r question mark (?) \?
Horizontal tab \t double quote (“) \”
Backslash (\) \\

7

1.4. Meaning of Identifiers
Identifiers, or names, can refer to a variety of things: functions and objects. An object,
sometimes called a variable, is a location in storage and its interpretation depends on its
type.

1.4.1. Basic Data Types
Objects declared as text contain a sequence of characters. Objects declared as img
contains special file format and attributes that are recognizable by the compiler.

1.5. Expressions
The precedence of expression operators is the same as the order of the major subsections
of this section, the highest precedence first. Within each subsection, the operators have
the same precedence. Left- or right-associative is specified in each subsection for the
operators discussed therein.

1.5.1. Primary Expressions
Primary expressions are identifiers, constants, strings, or expressions in parentheses.

primary-expression: identifier
| constant
| (assignment-expression)

An identifier is a primary expression. Its type is specified by its declaration.
A constant is a primary expression, with either form of the following types:

text, img, length and width.
A parenthesized expression is a primary expression containing a mix of

nonterminals and terminals.

1.5.2. Additive Operators
The additive operators + and – are operated from left to right. If the operands have
arithmetic type, the usual arithmetic conversions are performed.

additive-expression: integer-expression + atom
| integer-expression – atom
| atom ;

atom: NUMBER ;

The result of the + operator is the sum of the operators. The result of – operator is the
difference of the operands.

1.5.3. Relational Operators
The relational operators are operated from left to right.

relational-expression: relational-expression < additive-expression
| relational-expression > additive-expression
| relational-expression <= additive-expression

8

| relational-expression >= additive-expression

1.5.4. Equality Operators
equality-expression: relational-expression

| equality-expression == relational-expression
| equality-expression != relational-expression

The == (equal to) and the != (not equal to) operators are analogous to the relational
operators except for their lower precedence.

1.5.5. Assignment Expressions
assignment-expression: primary-expression

| identifier = assignment-expression

The result for the first operand must be a variable, or a compile time error occurs.
This operand must be a named variable. The type of the assignment-expression is the
type of the variable. In the assignment, with =, the value of the expression replaces
that of the object referred to by the identifier.

1.6. Declarations
declaration: TypeSpecifier InitIdentifierList ;
type-specifier: text

| img
init-identifier-list: init-identifier

| init-identifer-list, init-identifier
init-identifer: identifer

| identifier = string-expression ;

A declaration consists of a type-specifier, followed by an identifier, and possibly
followed by an equal sign and a string-expression or an integer-expression (if the user
chooses to declare and initialize).

1.6.1. Function Declarations and Definitions
Functions are declared and defined outside of the ROUTINE block. They are type-
specified by a text. Following the type-specifier is the identifier, and following the
identifier is the parameter list surrounded by parentheses.
The syntax of the parameters is
parameter-type-list: parameter-list

| parameter-list,…
parameter-list: parameter-declaration

| parameter-list, parameter-declaration
parameter-declaration: text identifier

| img identifier

9

The function is then defined within a pair of braces. At the end of function definition,
the function returns a string.

1.7. Statements
Except as indicated, statements are executed in sequence. Statements are executed for
their effect, and do not have values. They fall into several groups.

statement: expression-statement
| compound-statement
| conditional-statement
| iteration-statement

1.7.1. Expression Statement
Most statements are expression statements, which have the form:

expression-statement: (expression)* ;

Most expression statements are assignments.

1.7.2. Compound Statement
So that several statements can be used where one is expected, the compound
statement is provided:

compound-statement: { (declaration-list)* (statement-list)* }

declaration-list: declaration
 | declaration-list declaration

statement-list: statement
| statement statement-list

An identifier within the declaration-list may be declared only once in the same block.

1.7.3. Conditional Statements
Conditional statements choose one of several flows of control.

conditional-statement: if (expression) statement
| if (expression) statement else statement

In both forms of the if statements, the expression is evaluated and the first sub-
statement is executed only if the expression is not equal to zero. In the second form,
the second sub-statement is executed only if the expression is zero. The else
ambiguity is resolved by connecting an else with the last encountered else-less if at
the same block nesting level.

1.7.4. Iteration Statements
Iteration statements specify looping:

iteration-statement: while (expression) statement

10

| for (expression ; expression ; expression)
 statement
| loop (IntExpression) statement

In the while statement, the sub-statement is executed repeatedly so long as the value
of the expression is not equal to zero; the expression must have arithmetic. With
while, the test occurs before each execution of the statement.

In the for statement, the first expression is evaluated once, and thus specifies
initialization for the loop. There is no restriction on its type. The second expression
must have arithmetic; it is evaluated before each iteration, and if it becomes equal to
zero, the for is terminated. The third expression is evaluated after each iteration, and
thus specifies a re-initialization for the loop. There is no restriction on its type.

In the loop statement, the IntExpression, a positive integer, represents number of
times to repeat the statements specified within the loop body.

1.8. OWGAL Source File Specifications
This section describes the format of an OWGAL source file.

1.8.1. ROUTINE Block Definition
Routine: ROUTINE identifier

HeaderDeclaration
{ CompoundStatement }

CompoundStatement: DeclarationList StatementList

StatementList: Statement
| StatementList Statement

DeclarationList: Declaration
| DeclarationList Declaration

Declaration: ImageDeclaration
| (PrimitiveTypeDeclaration)*

ImageDeclaration: (ImportDeclaration)+

PrimitiveTypeDeclaration: text IdentifierList
| img IdentifierList

IdentifierList: Identifier
| IdentifierList, Identifier

11

The ROUTINE block definition is similar to the “main” routine declaration in a C
program. The declarations, except for header declaration, and statements must be
made within the ROUTINE block, and nothing should follow after the closing curly
brace.

1.8.2. Header Declaration Statements
HeaderDeclaration: #width = IntegerExpression

#height = IntegerExpression
#frames = IntegerExpression

The header declaration allows users to specify the width and height of the animation
or movie in pixels. #frames defines the number of frames for the entire animation.
All must be non-negative integers. The header declaration is optional. If no header
declaration is found, then the width, the height, and the frames will default to 500,
500, 100 respectively.

1.8.3. Image Declaration Statements
ImageDeclaration: img identifier = ImportStatement

The image declaration allows users to set up the primary objects that will be used
throughout the animation. There must be at least 1 image declaration statement
within the ROUTINE block in order to run. It must be declared within the ROUTINE
block.

img defines a special file format that needs to be recognized by the compiler.

1.8.4. Import Statement
ImportStatement: import (FilenameExpression, IntegerExpression,

 IntegerExpression)

The import statement tells the compiler to prepare a data structure based upon
another program for use by the current program and load the image onto the screen
during the execution. At least one import statement must always be specified at the
very beginning of the program. The 2nd parameter represents the width size of the
input image. The 3rd parameter represents the height size of the input image.

The import feature provides users with ease of use and flexibility by permitting users
to input the already made images, with file extensions .jpeg or .gif, into the program
to work with. Images can be photos or graphics. Checks will verify that the
imported image file meets the file requirements.

1.8.5. Put Declaration
PutDeclaration: put [identifier, IntegerExpression, IntegerExpression]

The put parameters are: object name, x coordinate, y coordinate.

12

The put declaration is used to place objects (images) at the specified location
permanently. The object name must be taken from the identifier in the
ImageDeclaration. The integers must be positive. There must be at least one image
declaration before the put declaration can be specified. The put declaration must be
declared within the ROUTINE block.

1.8.6. Set Statement
SetDeclaration: set identifier BackFrontExpression
BackFrontExpression: background

| foreground

The set parameters are: object name, background/foreground option.

The background option is used to place the specified object (image) behind other
objects, if any. The foreground option is used to place the specified object in front of
any images that are in the background layer. If set is not declared, then the images
will default to the front layer and images may overlap. There must be at least one
image declaration before the set statement can be specified. The set statement must
be declared within the ROUTINE block.

1.8.7. Move Statement
MoveDeclaration: identifier‘.’ (xmove|ymove) AddExpression

IntegerExpression
AddExpression: “+=” | “-=”
IntegerExpression: number

The xmove and ymove keywords lets the user to dictate how the object (image) to
be moved in a certain way. xmove corresponds to the x-axis or horizontal line from
the graphical point of view. ymove corresponds to the y-axis or vertical line from
the graphical point of view. “+=” indicates the object to be moved in the right
direction. “-=” indicates the object to be moved in the left direction. Integers must be
positive. There must be at least one image declaration before specifying the move
statement. The move statement must be declared within the ROUTINE block.

1.8.8. Position Statement
PositionDeclaration: identifier‘.’ (xposition|yposition) = IntegerExpression
IntegerExpression: number

The xposition and yposition keywords let the user to place the object (image) at a
certain point on the screen with respect to x-axis and y-axis. xposition corresponds
to the x-axis or horizontal line from the graphical point of view. yposition
corresponds to the y-axis or vertical line from the graphical point of view. Integers
must be positive. There must be at least one image declaration before specifying the
position statement. The position statement must be declared within the ROUTINE
block. If neither of them are declared, then the default position would be at 0,0.

13

Architectural Design
In this project, the OWGAL compiler is divided into separate parts: lexer, parser, tree walker,
runtime environment, and code generator.

OWGAL
Source
Program

→ tokens→ AST →

Front-End
The front-end is composed of lexer, parser, and tree walker. Libraries from antlr.jar

are used. Lexer and parser codes are written in Antlr and reside in grammar.g file. The
compilation of grammar.g generates OWGALLexer.java and OWGALParser.java. The tree
walker resides in walker.g file, which generates OWGALWalker.java.

The lexer reads and scans the input source program, which has the extension .owgal.
The lexer generates tokens, which are then passed to the parser to produce abstract syntax
tree.

Back-End

The back-end was undetermined, unfortunately.

Lexer Parser Tree Walker

14

Test Plan
Since my project is partially-complete due to time constraint and lack of understanding and
knowledge, unit testing could not be done to test the implementation of OWGAL language.
However, several test cases are written below as part of the testing plan to ensure that
OWGAL is a working language in terms of valid syntax and semantics. looptest program
tests the loop statement to ensure that it produces the correct animation file. setTest program
should fail as a result, since set statement was specified before the image declaration.
imgTest program tests to ensure that it fails since no image declaration was made. The test
cases should not limit to those 3, as more test cases should be written to test every logic path,
and every statement in the OWGAL language.

ROUTINE looptest
#width = 200
#height = 200
#frames = 50
{

!This is comment
!!This is also a comment

img Meena = import (Meena.jpg, 30, 30)

Meena x.position = 150
Meena y.position = 150

loop(3) {
Meena.xmove += 5
Meena.ymove -= 5
Meena.xmove -= 5
Meena.ymove +=5

}

}

ROUTINE setTest
#width = 200
#height = 500
#frames = 50
{

!This is comment
!!This is also a comment

set Meena foreground;
img Meena = import (Meena.jpg, 30, 30)

}

ROUTINE imgTest

15

{
!This is comment
!!This is also a comment

Meena x.position = 150
Meena y.position = 150

loop(3) {
Meena.xmove += 5
Meena.ymove -= 5
Meena.xmove -= 5
Meena.ymove +=5

}

}

16

Lessons Learned
Working on this project alone has been a challenging experience. Since I’m new to Antler
and rusty in Java, it took tremendous amount of time for me to learn and understand the
concepts behind both of these languages, especially the tree walker and java code. I should
have hit the Java book at the beginning of the semester, even on the first day of classes. I
feel that working with a team could have been better for me as I would be more motivated
and have more resources than working alone. However, on the other hand, by working
alone, it allowed me to look closely in every part (front-end and back-end) that makes up the
compiler. I learned that a full, clear understanding of how the compiler works differently
than the interpreter must be grasped before writing the proposal or even LRM. I should have
read and understand the whole process of how graphic animations work more carefully. The
design of the compiler should have taken a full consideration of the resources that are
available for this project. A lesson learned here is that a better understanding of the resource
requirement at the beginning would have been helpful to avoid non-realistic design.
Identifying the project milestones earlier and constant visit to the milestones should be
performed to stay on track. A better project documentation or log should have been kept to
keep track of updates, issues, and the progress.

17

Appendix
/*
 * OWGAL.g : The main entry
 * Author : Meenakshi Sripal
 *
 */

import java.io.*;
import antlr.CommonAST;
import antlr.collections.AST;
import antlr.debug.misc.ASTFrame;
import antlr.RecognitionException;
import antlr.TokenStreamException;
import antlr.TokenStreamIOException;

//Invokes the ANTLR generated lexer, parser, and walker on the
//input stream

class OWGAL {
 public static void main(String[] args) {
 if(args.length != 1)
 {
 System.out.println("Usage: java OWGAL <filename>\n");
 System.exit(1);
 }

 FileInputStream input = null;

 // Get the file from input stream
 try
 {
 input = new FileInputStream(args[0]);
 }
 catch(FileNotFoundException e)
 {
 System.out.println("The specified filename '" + args[0] + "' was
not found.\n");
 System.exit(1);
 }

 try {

 // Create the lexer and parser and feed them the input
 OWGALLexer lexer = new OWGALLexer(input);
 OWGALParser parser = new OWGALParser(lexer);
 parser.startRule(); // "startRule" is the main rule in the
parser

 // Get the AST from the parser
 CommonAST parseTree = (CommonAST)parser.getAST();

 OWGALWalker w = new OWGALWalker();
 w.routine((CommonAST)parser.getAST());

 // Print the AST in a human-readable format

18

 //System.out.println(parseTree.toStringList());

 // Open a window in which the AST is displayed graphically
 //ASTFrame frame = new ASTFrame("AST from the OWGAL parser",
parseTree);
 //frame.setVisible(true);

 } catch(Exception e) {System.err.println("Exception: "+e);}
 }
}

/*
 * grammar.g : The lexer and parser in ANTLR grammar
 * Author : Meenakshi Sripal
 *
 */

//Lexer & Parser
class OWGALLexer extends Lexer;

options {
k = 2;
charVocabulary = '\3'..'\377';
testLiterals = false;
exportVocab = OWGAL;

}

protected
LETTER : 'A'..'Z' | 'a'..'z' ;

protected
DIGIT : '0'..'9' ;

NUMBER : (DIGIT)+ ;

COLON : ':';
COMMA : ',';
SEMI : ';';
PERIOD : '.';
US : '_';
POUND : '#';

PLUS : '+';
PLUSEQ: "+=";
SUB : '-';
SUBEQ : "-=";
MULT : '*';
DIV : '/';
EQUAL : '=';
EQ : "==";
NE : "!=";
GT : '>';
LT : '<';
GE : ">=";
LE : "<=";
AND : "&&";
OR : "||";

19

LP : '(';
RP : ')';
LB : '{';
RB : '}';

WS : (' ' | '\t')+ { $setType(Token.SKIP); }
 ;

NL : ('\n' | ('\r' '\n') => '\r' '\n' | '\r')
 { $setType(Token.SKIP); newline(); }

 ;

COMMENT : (('!') => '!'
 (options {greedy=false;} :

(NL)
| ~('\n' | '\r' | '=')

)* '!'
| "!!" (~('\n' | '\r'))* (NL)

) { $setType(Token.SKIP); }
;

ID options { testLiterals = true; }
 : LETTER (LETTER|DIGIT|US)*
 ;

class OWGALParser extends Parser;

options {
k = 2;
buildAST = true; //Enable AST building
exportVocab = OWGAL;

}

tokens {
HEADER;
BLOCK;
STATEMENT;
UMINUS;

}

startRule : routine EOF!
 ;

routine : "ROUTINE"^ ID
 (header_stmt)?
 code_block
;

header_stmt : POUND! "width" EQUAL! expr
 POUND! "height" EQUAL! expr
 POUND! "frames" EQUAL! expr
 { #header_stmt = #([HEADER, "HEADER"], header_stmt); }

 ;

20

code_block : LB!
 (decl | stmts)*

 RB!
 { #code_block = #([BLOCK, "BLOCK"], code_block); }

 ;

decl : "img"^ ID EQUAL! import_stmt
 ;

import_stmt : "import"^ LP! ID COMMA! expr COMMA! expr RP!
;

stmts : coord_stmt
 | loop_stmt
 | set_stmt

 | if_stmt
 | break_stmt
 | continue_stmt
 ;

coord_stmt : ID PERIOD! xy_stmt
 ;

xy_stmt : ("xposition"^ | "yposition"^) EQUAL! expr
 | ("xmove"^ | "ymove"^) (PLUSEQ^ | SUBEQ^) expr
 ;

loop_stmt! : "loop"^ expr code_block
 ;

set_stmt : "set"^ ID expr
 ;

break_stmt : "break"^
 ;

continue_stmt : "continue"^

 ;

if_stmt : "if"^ LP! expr RP!
 code_block
 ("else"!
 code_block
)?
 ;

expr : and_expr (OR^ and_expr)*
 ;

and_expr : not_expr (AND^ not_expr)*
 ;

not_expr : ("not"^)? comp_expr
 ;

comp_expr : add_expr ((EQ^ | NE^ | GT^ | LT^ | GE^ | LE^) add_expr)?
 ;

21

add_expr : mult_expr ((PLUS^ | SUB^) mult_expr)*
 ;

mult_expr : unary_expr ((MOD^ | MULT^ | DIV^) unary_expr)*
 ;

unary_expr : (SUB! NUMBER)
 { #unary_expr = #([UMINUS,"UMINUS"], unary_expr); }

 | atom
 ;

atom : LP! expr RP!
 | NUMBER
 | ID^
 | ("background" | "foreground")
 ;

/*
 * walker.g : The AST walker
 * Author : Meenakshi Sripal
 *
 */

{
import java.io.*;
import java.util.*;
}

class OWGALWalker extends TreeParser;

options{
 importVocab = OWGAL;
}

{
java.util.Vector words; //lookup table for identifiers
OWGALTree tr;
boolean prog = false;
boolean error = false;

//search the input string in the words vector
boolean IDfound(String s) {

boolean result=false;
for (int i=0; i<words.size(); i++){

if (s.equals((String) words.elementAt(i))){
result=true;

}
}
return result;

}

//add reserved words to the words vector
void init() {

words = new java.util.Vector();
words.addElement(w); w = "img";

22

words.addElement(w); w = "import";
words.addElement(w); w = "xmove";
words.addElement(w); w = "ymove";
words.addElement(w); w = "xposition";
words.addElement(w); w = "yposition";
words.addElement(w); w = "loop";
words.addElement(w); w = "set";
words.addElement(w); w = "background";
words.addElement(w); w = "foreground";
tr = new OWGALTree();

}

}

routine returns [Stmt s]
{

s = null;
Stmt s1;

}
: #("ROUTINE" progname:ID header s=stmts

 {
 if(!prog)
 {
 init();
 prog = true;
 }
 else {
 System.out.println("ERROR! Program already defined!");
 error = true;
 }
 }
)

;

header
{

int s1,s2,s3,t1,t2,t3;
Type p1 = null;
Type p2 = null;
Type p3 = null;

}
: #(HEADER p1=spec s1=expr { t1 =

Integer.parseInt(s1.getText()); }
 p2=spec s2=expr { t2 =

Integer.parseInt(s2.getText()); }
 p3=spec s3=expr { t3 =

Integer.parseInt(s3.getText()); }
 { tr.createPNode(t1,t2,t3); }

)
;

spec returns [OwgalType t]
{

t = null;
}

: ("width" { t = OwgalType.Width; }
| "height" { t = OwgalType.Height;}

23

| "frames" { t = OwgalType.Frame; }
)
;

//integer type parameters used for frames and sizes
num returns [int i]
{

i = 0;
}

: j:INT { i = Integer.parseInt(j.getText()); }
;

stmts returns [Stmt s]
{

int p1,p2;
s = null;
String s2 = null;
Stmt p, p1, p2;
OwgalType e;

if (!prog)
{

System.out.println("Error! ROUTINE not defined first!");
System.exit(1);

}

}
: #("import" #("img" imgname:ID) impname:ID p1:NUMBER p2:NUMBER)

{
//add image file to image table...
//load image or check if the impname is valid file

name??
img imgobj = getimg(#impname.getText());

if (imgobj == NULL) {
System.out.println("Error: no image file

"+#impname.getText()+" found");
error = true;

}
else {

//open the image file and load it here...
}

if (!IDfound(#imgname.getText())) //check if img
identifier already exists

{
//test the filename format...
//what's the default size of the screen
//ensure that width and length of image are <=

default screen size and > 0 otherwise fail
if (p1 <= 0 || p2 <=0)
{

System.out.println("Error: can not have
negative or 0 width or length value ");

System.out.println("for image
"+#imgname.getText());

24

error = true;
}
words.addElement(#imgname.getText());
tr.addObject(new Object(count, p1, p2));
count++;
}

else
{ System.out.println("ERROR - "+#imgname.getText()+" is

already an identifier"); error = true;}
}

| #("xposition" xposid:ID xposnum:NUMBER)
{

//check if id exists
s = xposid.getText();
if (IDfound(#xposid.getText())) //check if img

identifier already exists
{

//do the positioning of the image code here....
int a = Integer.parseInt(xposnum.getText());
if (a > 500) a = 500;
if (a < 0) a = 0;
new Xpos(s,a);

}
else
{ System.out.println("ERROR - "+#xposid.getText()+" is

not an identifier"); error = true;}

}
| #("yposition" yposid:ID yposnum:NUMBER)

{
//check if id exists
s = yposid.getText();
if (IDfound(#yposid.getText())) //check if img

identifier already exists
{

//do the positioning of the image code here....
int a = Integer.parseInt(yposnum.getText());
if (a > 500) a = 500;
if (a < 0) a = 0;
new Ypos(s,a);

}
else
{ System.out.println("ERROR - "+#yposid.getText()+" is

not an identifier"); error = true;}

}
| #(PLUSEQ xypmov:ID xypmovid:ID xypnum:NUMBER)

{
//check if id exists
s = xypmovid.getText();
if (IDfound(#xpmovid.getText())) //check if img

identifier already exists
{

//do the move of the image code here....
//ensure specified number is within the screen

limit (500,500)

25

int a = Integer.parseInt(xpnum.getText());
if (a > 500) a = 500;
if (a < 0) a = 0;
tr.addPLUSEQ(new Xmove(s,a));

}
else
{ System.out.println("ERROR - "+#xposid.getText()+" is

not an identifier"); error = true;}

}
| #(SUBEQ xysmov:ID xysmovid:ID xysnum:NUMBER)

{
//check if id exists
s = xysmovid.getText();
if (IDfound(#xsmovid.getText())) //check if img

identifier already exists
{

//do the move of the image code here....
//ensure specified number is within the screen

limit (500,500)
int a = Integer.parseInt(xsnum.getText());
if (a > 500) a = 500;
if (a < 0) a = 0;
tr.addSUBEQ(new Xmove(s,a));

}
else
{ System.out.println("ERROR - "+#xposid.getText()+" is

not an identifier"); error = true;}

}
| #("loop" loopnum:NUMBER p:stmts)

{
int a = Integer.parseInt(loopnum.getText());
new Loop(a, p)

}
| #("set" bid:ID s:expr)

{
s2 = bid.getText();
if (IDfound(#bid.getText())) //check if img identifier

already exists
{

//if previous status is set to background and
specified status is background then notify

//same for foreground
//ensure specified status is either "background"

or "foreground"
tr.addTrans(new Set(s2, status));

}
else
{ System.out.println("ERROR - "+#bid.getText()+" is not

an identifier"); error = true;}

}
| #("break" { p = new Break(); })
| #("continue" { p = new Continue(); })

26

| #("if" e=expr p=stmts
 (p1=stmts { s = new Else(e,p,p1); }))

;

expr returns [OwgalType r]
{

OwgalType a,b;
r = 0;

}
: #(OR a=expr b=expr { r = new Or(a, b); })
| #(AND a=expr b=expr { r = new And(a, b); })
| #("not" a=expr { r = new Not(a); })
| #(EQ a=expr b=expr { r = new Compare("==", a, b); })
| #(NE a=expr b=expr { r = new Compare("!=", a, b); })
| #(GT a=expr b=expr { r = new Compare(">", a, b); })
| #(LT a=expr b=expr { r = new Compare("<", a, b); })
| #(GE a=expr b=expr { r = new Compare(">=", a, b); })
| #(LE a=expr b=expr { r = new Compare("<=", a, b); })
| #(PLUS a=expr b=expr { r = new Compute("+", a, b); })
| #(SUB a=expr b=expr { r = new Compute("-", a, b); })
| #(MOD a=expr b=expr { r = new Compute("%", a, b); })
| #(MULT a=expr b=expr { r = new Compute("*", a, b); })
| #(DIV a=expr b=expr { r = new Compute("/", a, b); })
| #(UMINUS a=expr { r = new Unary("-", a); })
| NUMBER { r = new getNum(#NUMBER.getText(),

Type.Int); }
| #(ID

{ Id i = top.get(#ID.getText());
 if (i == null)

System.out.println(#ID.getText() + "is not
declared.\n");

r = i;
}

)

//creates intermediate representation
//writeToIR defined in OWGALTree class
file {int ble;}

: ble=routine (ble=stmts)+
{

if (!error)
{

tr.writeToIR();
}
else {

System.out.println("Errors found - aborting");
System.exit(1);

}
}
;

