COMS 4115 Programming Languages and Translators Final Project

TLFKAC (BNKAB)

The Language Formerly Known As
CRAWL (But Now Known As BRAWL)

Language Manual and Project Report

Rajesh Venkataraman Amoghavarsha Ramappa
(rv2187@columbia.edu) (ar2645@columbia.edu)

Harish JP
(harishjp@gmail.com)

Page 1 of 51



COMS 4115 Programming Languages and Translators

Table of Contents

Table 0f CONENLS ....cccveeeiieiieeiieieeee et
L. INtrodUCtion .......coc.coviiiiiiiiiiiee e
L1, MOtIVATION ...ttt
1.1.2. DeSCTIPHION ..ot
113, EXamPle....oooiiiiiiiieiieeeeee e
2. Language Tutorial .........ccccceeeviiieiiieiiieeieeeee e
3. Language Manual..........ccccooviiiiiiiiiiniieieeeeee e
3.1, Lexical Conventions.........ccceeeeveeerveeerveeeseeesseeenineeenneens
3.2 TYPCS ettt
33 Control Structures .........coceevueeiieiiieiiceeneeee e
4. Project Plan ..o
4.1 PrOCESS...oiiiiieeee
4.2 Programming Style........cccooouiriiiiiiiiniiieeieee e
4.3 Project TIMEINE ........coovveeriieeiieeeecee e
4.4  Roles and Responsibilities ..........cceeeeereeerienieenieenieenee.
4.5 Development Environment ............ccccoeeveeveieeniieenneeennne.
4.6 Project LOZ ..ccooiieiieiieeeee e
5. Architectural DeSign ........ccocvveeiiiiiiiieeiie e
5.1 Block Diagram of Translator............cccceeeveenernieneencnnne.
_ 52 Description of Architecture........cooovvveveveeeiieenciieeeiieeee,
6.  Testing Plan........ccoooiiiiiiiiiiiiee e
6.1 Source and target language programs ..........ccceeeveeeneenns
6.2 TSt SUILES ..eveeeieeiiieiieeie ettt
6.3 Test AUtOMALION......ccccuiieriieeeiie e eiee e
7. Lessons Learned.........ccccovuieiiiiniieiiienieeiiesee et
8. APPENAIX .eiiiiiiiiiie ettt
8.1 SoUrce Code ......covevviiiiiiiiiiieiiceeeee e

Page 2 of 51

Final Project



COMS 4115 Programming Languages and Translators Final Project

1.

Introduction

1.1.1. Motivation

Graphs play an important role in many applications in Computer Science. The
theory of graphs has been successfully exploited in many practical applications,
with the most significant ones related to networks. It is important to emphasize
the computational and algorithmic aspects of graphs. This emphasis arises from
the conviction that whenever graph theory is applied to solving any practical
problem, it almost always leads to large graphs — graphs that are virtually
impossible to analyze without the aid of a computer. The high-speed digital
computer is one of the reasons for the growth of interest in graph theory.

In spite of such widespread interest in Graphs and their properties, all attempts at
solving problems in Graph Theory computationally have almost always led to the
creation of a new library which can perform certain operations on Graphs. We, as
students of Computer Science, believe that there are umpteen advantages to
having a language dedicated to describing and manipulating Graphs. Hence we
want to create a language which can be used by Graph Theoreticians,
Mathematicians and Computer Scientists to solve computational Graph problems.

1.1.2. Description

BRAWL is a language which manipulates Graphs and Nodes as first order
primitives. By this, we mean that operations on Graphs and Nodes in BRAWL are
treated as fundamental as say C or C++ treats integer and string operations. By
this, we hope that people can express their ideas about Graphs and operations on
them succinctly and clearly and take advantage of a computer's inherent power in
analyzing Graphs.

The BRAWL language is terse and the syntax closely follows the popular
pseudocode formats found in algorithms. This makes the language not only easy
to develop in but also easy to understand. The BRAWL language has been
implemented in the functional programming language OCAML. OCAML is a
beautiful language to program in and offers various features which make it more
compelling to use OCAML.

We chose to implement the compiler in the OCAML as an experiment. This will
help us learn the different facets of a functional programming language.

Page 3 of 51



COMS 4115 Programming Languages and Translators

1.1.3. Example

Final Project

As an example program, we provide the following program which implements the

Depth First Search algorithm:

int visited[5];

edge e al0];

int w = 0;

int print (int a) {
return 0;

}

int print string(string a) {
return 0;

int print endline () {
return 0O;

int callback(edge e) {
print (<-e);
print endline();
e a+t e;
w += sizeof e;
return 0;

int dfs(graph g, int v){

foreach (e in g->v where visited[<-e]

visited[<-e] = 1;
callback (e) ;
dfs (g, <-e);

int main () {

string t = "\t";

int i = 0;

while (i < sizeof visited) {
visited[i] = 0;
i +=1;

}

graph g = $5
+ [1, 3, 7]
dfs (g, 0);
foreach (e in e a) {

, [0, 1, 218 + [1, 2,
+ [2, 4, 11];

== 0) {

print (->e), print string(t), print(<-e),

print string(t), print(sizeof e);

print endline();

}

print string("The weight of the dfs tree is: ");
print (w) ;
print endline();}

Page 4 of 51



COMS 4115 Programming Languages and Translators Final Project

2. Language Tutorial

This chapter represents a tutorial for a novice to get started with BRAWL . The BRAWL
compiler runs on Linux and can be obtained by emailing the authors of the language.

The language source file has an extension .bwl.
The basic types defined by the language are : int, float, edge, graph, string.

The description of each type is specified in detail in the Language Reference manual in
section 3.

The following is a simple program written in the BRAWL programming language.
int main () {

graph g = $5, (o0, 1, 21, (1, 2, 3], [0, 2, 3], [1, 3, 31,
(2, 4, 7]$;

foreach (e in g->1){
print (sizeof e);
}
}

A user can compile the program using the steps shown below:
$> ./brawlc test.bwl

The above command generates a C++ target program file. Users can use the g++
compiler to compile this file and run the program:

$>g++ test.cpp
$>./a.out

Page 5 of 51



COMS 4115 Programming Languages and Translators Final Project

3. Language Manual

3.1. Lexical Conventions

A BRAWL program is consists of a single translation unit stored in a file. The file
is written using the ASCII character set.

3.1.1. Comments

BRAWL comments begin with a # character at the beginning of the line and are
terminated at the end of the line.

3.1.2.  White space

BRAWL is a free form language. White space is ignored unless bounded by
quotes (“) on either side.

3.1.3. Tokens

Tokens fall into five major categories: identifiers, keywords, constants, operators
and separators.

3.1.3.1. Identifiers

Identifiers begin with a letter or an underscore (_) and are followed by any
sequence of letters, digits or underscores. Two characters are considered equal
if their ASCII values are equal. Two identifiers are considered equal if all
their characters match.

3.1.3.2. Keywords

The following identifiers are reserved as keywords and using them in any
BRAWL program as a regular identifier will result in an error:

int float edge graph
string while if else
foreach in sizeof where

Page 6 of 51



COMS 4115 Programming Languages and Translators Final Project

3.1.3.3. Constants

Constants provide the BRAWL programmer to conveniently initialize each of
the supported primitives.

3.1.3.3.1. Integer Constants

An Integer constant consists of an optional plus ('+') sign or minus ('-')
sign followed by a string of decimal digits [0-9].

3.1.3.3.2. Floating point Constants

A floating point constant is defined similar to the definition in the 'C'
language, that is, it consists of an optional plus ('+') sign or minus ('-') sign
followed by an integer part of one or more digits. This has to be followed
by a decimal point or an exponent sign. The decimal point might be
followed by more digits. The exponent is always followed by a positive or
negative integer.

3.1.3.3.3. String Constants

String constants consist of a sequence of characters surrounded by double
quotes. The quotes are not considered part of the string and the "\' character
is used to generate escape sequences. If the constant has to contain the '\'
character literally, one has to use the "\\' sequence. The following escape
sequences are recognized by BRAWL:

\n newline

\t The horizontal tab

3.1.3.4. Operators

3.1.3.4.1. Arithmetic operators

The following arithmetic operators are supported by BRAWL: '+, '-', '*' /!
and '%'. Their meanings are respectively those of addition, subtraction,
multiplication, division and remainder after division. The '-' operator can
also be used as a unary operator to indicate the negativity of a number.
The binary operators' operands must have have the same type. +=', '-=',
*='"'/="and '%="are used to mean the same thing as they do in the 'C’'
language. The associativities of these operators also follow those of the 'C'
language.

Page 7 of 51



COMS 4115 Programming Languages and Translators Final Project

3.1.3.4.2. Collection operators

BRAWL supports the '<>' operator to define collections. The '<' sign
followed by a sequence of comma (',') separated values, terminated by a ™'
sign is construed to be a collection. The '[]' operator is also supported to
randomly access collection's elements.

Hence, in order to access the im element of a collection C, one might use
C[i]. Boolean operators The following boolean operations are supported
in BRAWL: <, <=, > >=  ==| which respectively mean _less than ,
less than or equal to_, grea ter than , greater than or equal to ,
equal to_ and the negation of the boolean operation. In addition BRAWL
supports the && and || operators to mean boolean and and boolean or.

3.1.3.4.3. Sizeof

The sizeof operator, when used with strings returns their length and with
integers and floats returns the value. Behavior of this operator when
applied to Edges, Graphs and Collections is explained later. Precedence
The precedence and associativities of the operators in BRAWL are
identical to their counterparts in 'C '. To override this, one might use
parentheses ( () ).

3.1.3.5 Separators

, and ; are used as separators in BRAWL. The ; separator indicates end of
executable statement.

3.1.3.6 Scope

The scope of an identifier begins at immediately after its definition and ends at the
end of the block. Blocks are delimited using the '{' and '}' separators.

Page 8 of 51



COMS 4115 Programming Languages and Translators Final Project

3.2 Types

3.2.1 Integers, Floats and Strings

Integers and Double precision floating point numbers are the only two numeric
types supported by BRAWL. Strings are sequences of ASCII characters.

3.2.2 Collections

BRAWL supports a basic collection type, not very different from the array type in
'C". It provides random access of elements and the elements are ordered in the
collection according to the order that they were inserted. While creating
collections, the size of the collection has to be specified. Collections support the +
operator which allows the programmer to add a new element to the collection.
The sizeof operator can be used to get the number of elements in the collection.

3.2.3 Edges

In order to describe the connections in a graph, BRAWL supports the edge data
type. An edge is composed of three parameters, namely, the 2 nodes that it
connects and a weight associated with the two edges. Edges literals are defined as
a comma separated list of these 3 elements delimited by parentheses. For
example, (1, 2, “red”) defines an edge between nodes 1 and 2 with weight red .
The > operator applied to an edge returns the node that it is incident on and the
<returns the node that it is incident from. On applying the sizeof operator to an
edge, the weight is returned.

3.2.4 Graphs

Graphs in BRAWL are defined just as a pair, namely that of the number of nodes
and a collection of edges. Graph literals are of the form ((num_of_nodes,
edge_collection)) .

Graphs also support the binary > operator, which returns a collection of edges
going out from the given node. For example, g>3 returns a collection of edges
going out from node number 3. Nodes are numbered from O to n — 1, where n is
the number of nodes in the Graph. They also support the <operator which returns
a collection of edges incident on the specified node. Using the sizeof keyword,
one can get the number of nodes in the Graph.

Page 9 of 51



COMS 4115 Programming Languages and Translators Final Project

3.3 Control Structures

3.4

3.3.1 foreach — in where

foreach 1s a keyword used to iterate over a collection. Used in conjunction with
the in operator, it allows for obtaining the next element from the collection being
iterated over. The where keyword can be used to further limit the execution of
this loop. For example, to find the sum of the elements in an integer collection
where the value is greater than or equal to 2, one might write:

int num = 0;
int coll[10] =<1, 2, 3>;

foreach ( num in coll where num >= 2)
sum += num;

3.3.2 while

while is a looping construct. It tests a condition at the beginning of each iteration
and executes the statements in the loop if the condition evaluates to be true. The
statements associated with the loop must be enclosed in braces.

3.3.3 if

if is a keyword used for conditional execution. The statements associated with the
if conditional are executed once if the condition evaluates to be true.

3.3.4 else

When used in conjunction with the if conditional, the else block is executed
whenever the condition in the if conditional evaluates to false.

Grammar

The yacc listing of the grammar is as shown below:

program:
stat list
| EOF

4

toplevel stat:

stat

| LBRACE stat list RBRACE
| LBRACE RBRACE

Page 10 of 51



COMS 4115 Programming Languages and Translators Final Project
| SEMICOLON

4

stat list:
stat
| stat stat list

.
14

stat:

function definition

| return statement

| if statement

| while statement

| foreach statement

| foreachw statement

| variable declaration
| expr statement

4

expr statement:
expr list SEMICOLON

4

function definition:
tid LPAREN tid_list RPAREN LBRACE Stat_list RBRACE
| tid LPAREN RPAREN LBRACE Stat_list RBRACE

’

return_ statement:
RETURN exp SEMICOLON

14

if statement:
IF LPAREN exp RPAREN toplevel stat %$prec LOWER THAN ELSE
| IF LPAREN exp RPAREN toplevel stat ELSE toplevel stat

’

while statement:
WHILE LPAREN exp RPAREN toplevel_stat

’

foreach statement:
FOREACH LPAREN ID IN exp RPAREN toplevel stat

14

foreachw statement:
FOREACH LPAREN ID IN exp WHERE exp RPAREN toplevel stat

14

variable declaration:

tid SEMICOLON

| tid ASSIGNMENT exp SEMICOLON

| tid LBRACKET exp RBRACKET SEMICOLON

Page 11 of 51



COMS 4115 Programming Languages and Translators

4

tid list:

Final Project

tid LBRACKET exp RBRACKET ASSIGNMENT exp SEMICOLON

tid

.
14

tid COMMA tid list

tid:
type name ID

4

type name:
INTK

4

FLOATK
STRINGK

EDGEK

GRAPHK

expr list:
exp

exp COMMA expr list

FLOAT
STRING
lvalue
ID LPAREN expr list RPAREN
ID LPAREN RPAREN
edge expression
graph expression
PLUS exp
MINUS exp
MULTIPLY exp
DIVIDE exp
MODULO exp

exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp
exp

EQ
GT
LT
GE
LE

LOGICALAND exp

exp
exp
exp
exp
exp

LOGICALOR exp
MINUS exp %prec UMINUS
NEGATE exp
LPAREN exp
LARROW exp
RARROW exp
exp LARROW

$prec UNOT

RPAREN

sprec ULARROW
sprec URARROW

exp

Page 12 of 51



COMS 4115 Programming Languages and Translators Final Project

| exp RARROW exp

| SIZEOF exp

| assignment expression
| collection expression

14

lvalue:
ID
| ID LBRACKET exp RBRACKET

4

edge expression:
LBRACKET exp COMMA exp COMMA exp RBRACKET

’

graph expression:
DOLLAR exp COMMA expr list DOLLAR

14

collection expression:
LBRACE expr list RBRACE

’

assignment expression:
lvalue ASSIGNMENT exp
| lvalue ADDAS exp

’

Page 13 of 51



COMS 4115 Programming Languages and Translators Final Project

4.Project Plan

In this chapter we will describe the project plan and implementation

4.1

4.2

Process

The team used to meet twice a week to discuss project goals for the coming week
and discuss problems faced by team members while working on the project. The
first meeting of a week was solely focussed on brainstorming work which was
completed and finding solutions for any issues which came up over the weeks
work. The second meeting was focussed on planning new work and setting strict
deadlines for each team member.

The primary goal was to get a basic working compiler program, test it thoroughly
and incrementally build the remaining features on top of it.

Programming Style

The time spent writing a program is negligible compared to the time spent
reading/understanding it. The main intention of the programming style used to
write the translator is to keep the code concise, simple and readable.

The following is an example of the coding style used in the project:

(** String table: uses a global hash function to give each
string a unique integer identifier ¥*)

module StringHash = Hashtbl.Make (struct
type t = string
let equal x vy = x =y
let hash = Hashtbl.hash

end)

(* The types of the symbol in the system *)
type data type = Undefined | SymInt | SymFloat |
SymString | SymEdge | SymGraph | SymFunction
| SymIntArray | SymFloatArray | SymStringArray |
SymEdgeArray | SymGraphArray

(* Damned global variable for the symbol table *)
let symboltable = ref [StringHash.create 128] ;;

(* Returns type of the symbol, Undefined if symbol is
not found ¥*)

Page 14 of 51



COMS 4115 Programming Languages and Translators Final Project

let typeof name =

let rec rec typeof tbl =

match tbl with

[] -> Undefined

| hd :: tl1 ->
try StringHash.find hd name
with Not found -> rec typeof tl

in rec_typeof !symboltable ;;

(* Add a new symbol to symbol table. Returns false if
symbol exists *)
let addSymbol name dType =
let head = List.hd !symboltable in
if StringHash.mem head name then
false
else
(StringHash.add head name dType; true);;

(* Adds a new hash, representing the local scope *)
let rec start scope dummy =
symboltable := (StringHash.create 128) :: !symboltable

rs

(* Deletes the local scope *)
let rec end scope dummy =
match !symboltable with
[] —> false
| hd :: tl -> symboltable := tl; true ;;

let sym to array sym =
match sym with
SymInt -> SymIntArray
| SymFloat -> SymFloatArray
| SymString -> SymStringArray
| SymEdge -> SymEdgeArray
| SymGraph -> SymGraphArray
|  -> Undefined

r s

let array to sym a =
match a with
SymIntArray -> SymInt
| SymFloatArray -> SymFloat
| SymStringArray -> SymString
| SymEdgeArray -> SymEdge
| SymGraphArray -> SymGraph
|  -> Undefined

rrs

(* vim: set ts=4 sw=4 noet: *)

Page 15 of 51



COMS 4115 Programming Languages and Translators

4.3 Project Timeline

Final Project

09/25/2007 Language Proposal
10/18/2007 Language Reference Manual
10/30/2007 SVN Running
11/10/2007 Lexer completed
11/30/2007 Parser Completed
12/02/2007 Simple test suites created
12/9/2007 Static Semantic Analysis and Code gen
completed
12/12/2007 Added test suites
12/15/2007 Project Report created
12/16/07 All tests passed and demo prepared

4.4 Roles and Responsibilities

Grammar, Parser, Symbol Table, Code
Generation, Demo Programs

Rajesh Venkataraman, Harish JP

Lexer, Symbol Table, Code Generation,
Test Suites

Amoghavarsha Ramappa

C++ Library Rajesh Venkataraman, Amoghavarsha
Ramappa
Project Report Amoghavarsha Ramappa, Rajesh

Venkataraman

4.5 Development Environment

BRAWL was developed on Linux. The code is implemented using the functional
programming language OCAML. The lexer has been implemented using OCAML
Lex and the parser using the OCAML Yacc tools. The Unix Makefile is used to

build the source code.

The source code management was accomplished using Assembla. Assembla
provides tools and services for building software in a global development

environment.

Page 16 of 51




COMS 4115 Programming Languages and Translators Final Project

4.6 Project Log

Language Proposal initial draft 9/19/07

Language Proposal final draft 9/25/07

Language Reference Manual initial draft 10/14/07

Language Reference Manual final draft 10/18/07

Lexer 11/10/07

Parser for BRAWL specific statements 11/15/07

Parser for control flow statements 11/25/07

Completed Parser 11/28/07

Tree Walker and Code Generation 11/30/07
(versionl)

Tree Walker and Code Generation 12/05/07
(version2)

Tree Walker and Code Generation 12/05/07
(version3)

Static-Semantic Analysis 12/12/06

Comprehensive test-suites written 12/13/07

Comprehensive Testing 12/15/07

Freeze Source Code and Present 12/18/07

Page 17 of 51




COMS 4115 Programming Languages and Translators Final Project

5. Architectural Design

5.1 Block Diagram of Translator

BRAWL Source File
v

Lexer

Token Stream

\ 4

Parser

Error

AST Handling

A 4

AST Parser

C++ Statements

A 4

C++ File

The BRAWL translator — Flow of information from one component to the next

Page 18 of 51



COMS 4115 Programming Languages and Translators Final Project

5.2 Description of Architecture

BRAWL has mainly four components : Lexer, Parser, Symbol Table, and AST Walker (
performs Static Semantic Analysis and the Code generation). The flow of information
between the components is shown in the block diagram above. The lexical analyzer or the
scanner reads the input characters and produces an output a sequence of token streams
that the parser uses for syntax analysis. The parser performs syntax analysis by analyzing
the sequence of input token streams to determine the grammatical structure with respect
to the BRAWL grammar. The parser transforms the input token stream into an abstract
syntax tree data structure. Each interior node of the syntax tree represent a BRAWL
programming language construct and each of the nodes represents a component of the
construct . The interior nodes in the syntax tree are operators supported by the BRAWL
language and the leaf nodes represent the operands of these operators. The AST written
for BRAWL also implements the static semantic analyzer and the code generator.

Page 19 of 51



COMS 4115 Programming Languages and Translators Final Project

6. Testing Plan

6.1 Source and target language programs

The following section shows three source language programs along with the generated
C++ target code:

Source Language Listing #1:

Simple BRAWL program for conditional checking:

O .

int a ;
1;

int b

int main () {
if((a < b))

a=a + b;

Target Language Listing #1:
The following listing shows the C++ code generated for the program shown above:

#include "graph.hpp"

O .

int a ;
1;

int b

int main () {

if(((a < b) !'= 0))
{
(a = (a + b))
}
else
{
(b = (b - a));

Page 20 of 51



COMS 4115 Programming Languages and Translators Final Project

Source Language Listing #2:

The following listing shows a more complex program which uses the foreach and the
foreach where looping constructs:

int 1 = 0;
int A(int a) {
return a;

}

int main () {

eA + [1, 2, ’
eA + [0, 1, 21;
int w = 0;

foreach (e in eAh) {
W = w + sizeof e;

}

graph g = $3/ (1, 2, 31, (1, O, 218;
w = 0;

foreach (e in g->2 where sizeof e > 2){
w = w + sizeof e;
A(w) ;
}
Target Language Listing #2:

The following listing shows the C++ code generated for the program shown above:

#include "graph.hpp"
int 1 = 0;

int A(int a) {

return a;

}

int main () {
while (((1 <= 10) != 0)){

Page 21 of 51



COMS 4115 Programming Languages and Translators Final Project

(1= (1 +1));
}

vector<kEdge> eA(0);
(eA.push back((Edge(1,2,3))));
(eA.push back((Edge(0,1,2))));

int w = 6;

for(int x = 0; x < eA.size(); ++_ x){
Edge e = eA[ x];
(w = (w + e. weight));

}
Graph g =
Graph (3) .addEdge ( (Edge (1,2, 3))) .addEdge ( (Edge (1,0,2)))
p(w=0);
for(int _ x = 0;  x < g.outlIncidence(2).size();
++  x){

Edge e = g.outIncidence (2)[ x];

if(((e. _weight > 2) != 0)){
(w = (w + e. weight));
A(w) ;

The foreach and foreach where looping constructs are allow users to write concise looping
constructs. A separate test suite is added for the two constructs since they are an important feature
that BRAWL provides.

6.2 Test Suites

Test suite #1 (negative test case)

The following test suite tests some of the basic types in the BRAWL language. As shown
below this is a negative test case, and should print errors because of type mismatches
and variable redeclarations. These test suite regress the basic types commonly used by
users.

int a = 0;
edge a = [0, 0, 0];
int a = 0.0;

Page 22 of 51



COMS 4115 Programming Languages and Translators Final Project

Test suite #2 (negative test case)

The following test suite tests a function foe which accepts a string but is passed an
integer value. The test suite was added to test function calls and also test the type
checking of arguments passed to functions.

int foo(string a) {
return O;

}
foo (10);

Test suite #3

The following test suite will throw an error because of the undefined function call to
undefined. The test suite is added as a negative test and expects an error to be thrown.
The test is required to effectively test calls to functions which have not yet been defined.

int print (int a) {
return 0;

}

undefined("abed");

Test suite #4

The following test suite tests the foreach construct of the language. The foreach is an
important construct both in terms of its usage and also the elegant way it is implemented
by the language. The construct has to be tested because loops are important contructs of
any programming language.

int main () {

graph g = $5, [0, 1, 21, [1, 2, 31, [0, 2, 31, [1, 3, 31,
[2, 4, 718;

foreach (e in g->1){

print (sizeof e);

}

Page 23 of 51



COMS 4115 Programming Languages and Translators

6.3 Test Automation

Final Project

The following shell script invokes the brawl compiler on all the test programs and diffs the
outputof the executed programs with the expected logs. The shell script redirects the errors to an
error file with the error message and the file name where the error was detected.

#!/bin/sh
for £ in “1ls *.bwl"
do

../brawlc.sh "Sf";

fname="basename "S$f" .bwl .cpp;
expected="expected/"S$fname;
diff S$fname Sexpected | grep
in $fname"
rm $fname -f
done
echo "All passed"

-1

"<"  && echo "Difference found

Page 24 of 51



COMS 4115 Programming Languages and Translators Final Project

7. Lessons Learned

Rajesh Venkataraman

Design the type system well. Understand the semantics of the target
language before deciding on one! (We wanted to generate OCaml
code, but, being novices, ran into problems).

Amoghavarsha Ramappa

Learn language of implementation in the first month, not in the last
month! Every team needs a dictator in it to delegate work. Make sure you
have a dictator in your team. The project effectively meets deadlines and
implements most of the features initially proposed.

Page 25 of 51



COMS 4115 Programming Languages and Translators Final Project
8. Appendix

8.1 Source Code

(* file: main.ml
Author: Rajesh Venkataraman
*)

let main () =
try
let lexbuf = Lexing.from channel stdin in
while true do
let prog = BRAWLparse.program BRAWLlex.token lexbuf
in BRAWLcodegen.cg prog prog
done
with End of file -> exit 0
| Parsing.Parse error -> exit 1
| BRAWLcodegen.SemanticError -> (
print endline !BRAWLcodegen.s error;
exit 1

let = Printexc.print main ()

(** hkkhkkhkkkkhkkhkkhkhkkkhkkhkkhkhkkhkkhkhkkhkhkkhkkhkhkkkhkhkkhkhkkkhkhkkkhkkkkhkkx ***)

(* Author: Harish JP ¥*)

type location = BRAWLlocation.t
type data type = BRAWLsymbol.data type
type id = string
type t id = data type * id
type arg list =
ArglistO
| Arglistl of t id
| Arglist2 of t id * arg list

type expression = expression detail * location

and expression detail =
NullExpr
| Int of int
| Float of float
| String of string
| Variable of id
| Edge of expression * expression * expression

Page 26 of 51



Graph of expression

COMS 4115 Programming Languages and Translators

* exp list

Add of expression expression
Sub of expression * expression
Mul of expression * expression
Div of expression * expression
Mod of expression * expression

Or of expression * expression

And of expression * expression
Equal of expression * expression
Less of expression * expression
Greater of expression * expression
Neq of expression * expression

Leg of expression * expression

Geqg of expression * expression
Assignment of expression * expression

AddAssign of expression * expression
SubAssign of expression * expression
MulAssign of expression * expression
DivAssign of expression * expression
ModAssign of expression * expression

FunCall of id * exp list

Array of id * expression

Collection of exp list

Uminus of expression

Not of expression

InIncidence of expression

OutIncidence of expression

GInIncidence of expression * expression
GOutIncidence of expression * expression
Sizeof of expression

and exp list =

ExplistO
Explistl of expression
Explist2 of expression * exp list

type statement =
Function of data type * id * arg list * statements

Return of expression

If of expression * statements * statements

While of expression * statements
Foreach of id * expression * statements

Final Project

Foreachw of id * expression * expression * statements

ExpressionList of exp list

Declaration of data type * id * expression
ArrDeclaration of data type * id * expression *

expression

and statements =

StatementO
Statementl of statement
Statement?2 of statement * statements

Page 27 of 51



COMS 4115 Programming Languages and Translators Final Project

type prog = Program of statements

(** hkhkkhkkkhkhkkhkkhkhkkhkkhkkkhkhkkhkkhkhkkhkhkhkkkhkhkkkhkkhkkhkhkkkhkhkkkhkkkkhkkkx ***)

(*code generator
Authors : Harish JP, Rajesh Venkataraman, Amoghavarsha

Ramappa
*)

open BRAWLast
open BRAWLsymbol
open Random

exception SemanticError
let mainStatements = ref ""

let s error = ref ""
let fn table = Hashtbl.create 64

let raise error msg =
S_error := msg;
raise SemanticError

let expr to bool (estr, etype)
match etype with
SymInt -> "(" ~ estr ~ " != Q)"
| SymFloat -> "(" »~ estr ~ " != 0.)"
| -> raise error "Cannot convert to boolean"

let string of type a =
match a with
SymInt -> "int"
| SymFloat -> "float"
| SymString -> "string"
| SymEdge -> "Edge"
| SymGraph -> "Graph"
|  -> raise error "Invalid type"
let list reduce 1lst fxn startValue =
let rec do reduce 1lst currValue =
match lst with
[l => currValue
| hd :: tl -> do reduce tl (fxn hd currValue)
in do reduce lst startValue

let unify exprlist exprl =
let elist = List.map (fun (estr, etype) -> estr) exprl
in let rec reduce type (nstr, newType) currType =
if currType = newType && currType != Undefined then
currType
else match (currType, newType) with

Page 28 of 51



COMS 4115 Programming Languages and Translators Final Project

(SymInt, SymFloat) -> SymFloat

| (SymFloat, SymInt) -> SymFloat

| (Undefined, Undefined) -> raise error "Expr
cannot have undefined type"

| (Undefined, ) -> newType
| (, ) -> raise error "Expr is not of uniform
type"

in let etype = list reduce exprl (reduce type) Undefined

in (elist, etype)
type parser state = int
(* utility functions *)

let output string str = (
print string str

)

let output line str = (
print endline str

)

let begin block (blockCount) =
start scope blockCount;
output line "{";
blockCount + 1

let end block (blockCount) =
if blockCount != 0 then
output line "}";
if not (end scope blockCount) then
raise error "Unknown error"

(* Code generation routines *)

let rec cg prog ast =
match ast with Program(statements) -> print string
"#include \"graph.hpp\"\n"; cg statements 0 statements

and cg statements state ast =
match ast with
Statement0 -> ()

| Statementl(a) -> cg statement state a
| Statement2(a,b) -> (cg statement state a; cg statements
state Db)

and cg statement state ast =
match ast with
Function(a, b, ¢, d) -> (
let arglist = cg arg list c in (
let rec gen argnames lst =
match 1lst with
(r=> (", 1, 1l

Page 29 of 51



COMS 4115 Programming Languages and Translators Final Project

| (atype, astr) :: [] -> ((string of type
atype) &~ " " 7~ astr, [atype], [(astr,
atype) ])

| (atype, astr) :: tl ->

match gen argnames tl with
(m, n, o) —-> ((string of type atype) *

w2 agstr 2", " %~ m, atype :: n, (astr,
atype) :: 0)

in let (estr, etypes, slist) = gen argnames
arglist in

(if (addSymbol b SymFunction) = false then
raise error (b *~ " already defined"));
output string ((string of type a) ~ " " "~ Db

AT
Hashtbl.add fn table b (a, etypes);
output string estr;
output string ")";
let state = begin block state
in let rec add list 1lst =
match 1lst with [] -> ()
| (astr, atype) :: tl ->
if false = (addSymbol astr
atype) then
raise error "argument
repeated"”
else add list tl
in add list slist;
cg statements state d;
end block state
)
)

| Return(a) ->
let (estr, etype) = cg expression a in
output line ("return " ~ estr ~ ";") (* TODO:

type check with function type required *)
| While(a, b) -> (

output string ("while(" "~ (expr to bool

(cg _expression a)) ~ ")");

let state = begin block state in

cg statements state b;

end block state
)

| Foreach(a, b, c) -> (

let (estr, etype) = cg expression b in (
output string ("for(int x = 0; x <" * estr ©
".size(); ++ x)");

let state = begin block state in

output line ((string of type
(array to sym etype)) ~ " " ~a " =" " estr ©
"l x]i")
(1f (addSymbol a (array to sym etype)) = true
then cg statements state c¢);

Page 30 of 51



COMS 4115 Programming Languages and Translators Final Project

end block state
)
)

| Foreachw(a, b, c, d) -> (

let (estr, etype) = cg expression b in (
output string ("for(int x =0; x < " * estr ©
".size(); ++_x)");
let state = begin block state in
output line ((string of type (array to sym
etype)) ~ " " ~a " =" "estr © "[_ x];");
(1f (addSymbol a (array to sym etype)) = true
then
output line ("if ("™ * (expr_ to bool
(cg _expression c)) ~ "){");

cg statements state d;
output line "}");
end block state
)

)

| If(a, b, ¢c) => (
output line ("if (" ~ (expr_to bool
(cg _expression a)) ~ ")");
(let state = begin block state in
cg statements state b;
end block state

if ¢ != Statement0 then (
output string "else ";
let state = begin block state in
Cg_statements state c;
end block state

)
)
| ExpressionlList(a) -> (
let elist = cg exp list a
in let rec p expl 1lst =
match lst with

(1 -> 0
| (x, y) :: []l -> output string x
| (%, y) :: t1 ->

output string (x ~ ", ");

p _expl tl

in p expl elist;
output line ";"
)
| Declaration(a, b, c) —->(
if (addSymbol b a) == true then (
output string ((string of type a)
") ;
(match ¢ with
(NullExpr, ) =>

let def value = match a with

A n n A b A " p—

Page 31 of 51



COMS 4115 Programming Languages and Translators Final Project

SymInt -> "0O"
SymFloat -> "0.0"
SymString -> "\"\""
SymEdge -> "Edge ()"

|
|
|
| SymGraph -> "Graph()"

| => "
in output string def value
| (expr, ) ->
let (estr, etype) = cg expression detail
expr in
if a == etype then
output string estr
else

match (a, etype) with
(SymFloat, SymInt) -> output string
("(float) ( "™ ~ estr ~ ")™M)
| (_, ) -> raise error "Type

conversion error"
)
output line ";"
) else raise error ("Variable already
defined: " * D)

)

| ArrDeclaration(a, b, c, d) -> (

let typestr = string of type a

in let (indexStr, indexType) = cg expression c

in if indexType != SymInt then raise error ("Index

type has to be int, got: " » indexStr)

else

(if false = addSymbol b (sym to array a) then

raise error ("symbol redefined " ~ Db));
output line ("vector<" ~ typestr ~ "> " ~ b ~ "("
~ indexStr ~ ");")

(* cg expression d; *)

)

and cg exp list ast =
match ast with
Explist0 -> []

| Explistl(a) -> (cg_expression a) :: []
| Explist2(a, b) -> (cg expression a) :: (cg exp list Db)
and cg id ast = (* string *)

0

and cg arg list ast =
match ast with
Arglist0 -> []
| Arglistl(a) -> [a]
| Arglist2(a, b) -> a :: cg arg list b

and cg expression ast =

Page 32 of 51



COMS 4115 Programming Languages and Translators Final Project

match ast with
(a, b) -> cg expression detail a

and cg_expression detail ast =
match ast with

NullExpr -> ("", Undefined)
Int(a) -> ((string of int a), SymInt)
Float (a) -> ((string of float a), SymFloat)
String(a) -> ("\"" ~ a &~ "\"", SymString)
Variable(a) -> (

let atype = typeof a in

if atype = Undefined then

raise error ("Undefined variable: " % a)
else
(a, atype)
)
(*
| Edge(a, b, c) -> ("", Undefined)
| Graph(a, b) -> ("", Undefined)

| Edge(a, b, c) -> (

let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
and (cstring, ctype) = cg expression c
in match (atype, btype, ctype) with
(SymInt, SymInt, SymInt) -> (" (Edge(" ”~ astring *
"," ~ bstring ~ "," ”~ cstring ~ "))", SymEdge)
| (, , ) —-> raise error "All edge properties must be
integers";

)
| Graph(a, b) -> (
let (astring, atype) = cg_expression a
and graphString = ref ""
and elist = cg exp list b
in match atype with
SymInt ->
let rec p expl 1lst =
match 1lst with

(1 -> 0
| (x, y) ::: [] —>
graphString := !graphString ~ ".addEdge(" * x ~ ™)";
| (x, y) :: tl1 ->
graphString := !graphString *
".addEdge (" ~ x ~ ")";
p_expl tl
in p expl elist;
("Graph (" * astring ~ ")" ~ !graphString,

SymGraph)
|  -> raise error "The number of vertices must
be integral"
)
| Add(a, b) -> (

Page 33 of 51



COMS 4115 Programming Languages and Translators Final Project

let (astring, atype) = cg expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with
(SymInt, SymInt) -> ("(" * astring ~ " + " *
bstring ~ ")", SymInt)
| (SymInt, SymFloat) -> (" ((float " »~ astring *
"y + " ~ bstring ©~ ")", SymFloat)
| (SymFloat, SymInt) -> ("(" ~ astring ~ " +
(float " » bstring ~ "))", SymFloat)
| (SymFloat, SymFloat) -> ("(" »~ astring ~ " + "
~ bstring ~ ")", SymFloat)
| (SymGraph, SymEdge) -> (" (" ~ astring *
".addEdge (" * bstring ~ "))", SymGraph)
| (SymIntArray, SymInt) -> (" (" »~ astring "
".push back(" * bstring ~ "))",SymIntArray)
| (SymFloatArray, SymFloat) -> ("(" »~ astring *
".push back(" * bstring ~ "))",SymFloatArray)
| (SymStringArray, SymString) -> (" (" * astring *
".push back(" * bstring ~ "))",SymStringArray)
| (SymEdgeArray, SymEdge) -> (" (" * astring *
".push back(" * bstring * "))",SymEdgeArray)
| (SymGraphArray, SymGraph) -> (" (" ~ astring *
".push back(" * bstring ~ "))",SymGraphArray)
| (, ) -> raise error "Invalid type for
addition"

| Sub(a, b) -> (
let (astring, atype)

Cg _expression a

and (bstring, btype) = cg expression b
in match (atype, btype) with
(SymInt, SymInt) -> ("(" ~ astring ~ " - "
~ bstring ~ ")", SymInt)
| (SymInt, SymFloat) -> (" ((float " »~ astring *
"y - " ~ bstring *~ ")", SymFloat)
| (SymFloat, SymInt) -> (" (" ~ astring ~ " -
(float " » bstring ~ "))", SymFloat)
| (SymFloat, SymFloat) -> ("(" »~ astring ~ " - "
~ bstring ~ ")", SymFloat)
| (, ) -> raise error "Invalid type for
subtraction"
)
| Mul(a, b) -> (
let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with
(SymInt, SymInt) -> (" (" ”~ astring ~ " * " %~ bstring "
")", SymInt)
| (SymInt, SymFloat) -> (" ((float "™ »~ astring ~ ") * "
~ bstring ~ ")", SymFloat)
| (SymFloat, SymInt) -> ("(" ~ astring ~ " * (float "
~ bstring ~ "))", SymFloat)

Page 34 of 51



COMS 4115 Programming Languages and Translators Final Project

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " * " 7
bstring ~ ")", SymFloat)

| (, ) -> raise error "Invalid type for
multiplication"

)

| Div(a, b) -> (

let (astring, atype) = cg_expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

(SymInt, SymInt) -> (" ("™ ~ astring ~ " / "™ ~ bstring *
")y", SymInt)

| (SymInt, SymFloat) -> (" ((float " ~ astring ~ ") / "
~ bstring ~ ")", SymFloat)

| (SymFloat, SymInt) -> (" ("™ ~ astring ~ " / (float "
~ bstring *~ "))", SymFloat)

| (SymFloat, SymFloat) -> ("(" ”~ astring ~ " / " *
bstring ~ ")", SymFloat)

| (_, ) -> raise error "Invalid type for division"

)

| Mod(a, b) -> (

let (astring, atype) = cg expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

(SymInt, SymInt) -> (" (" »~ astring ~ " % " » bstring *
")", SymInt)

| (, ) -> raise error "Invalid type for modulo"

)

| Or(a, b) -> (
let (astring, atype) = cg_expression a
and (bstring, btype) cg expression b
in match (atype, btype) with

(SymInt, SymInt) -> (" ("™ ”~ astring ~ " || " ~ bstring
A mM)y", SymInt)

| (SymFloat, SymInt) -> (" (" ~ astring ~ " || " 7
bstring ~ ")", SymInt)

| (SymInt, SymFloat) -> (" (" ~ astring ~ " || " *
bstring ~ ")", SymInt)

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " || " ~©
bstring ~ ")", SymInt)

| (, ) —-> raise error "Invalid type for logical or"

)

| And(a, b) -> (

let (astring, atype) = cg expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

(SymInt, SymInt) -> (" (" ”~ astring ~ " && " © bstring
A My, SymInt)

Page 35 of 51



COMS 4115 Programming Languages and Translators

)

)

)

| (SymFloat, SymInt) -> ("(" »~ astring ~ " && " *
bstring ~ ")", SymInt)

| (SymInt, SymFloat) -> ("(" »~ astring ~ " && " *
bstring ~ ")", SymInt)

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " && " *
bstring ~ ")", SymInt)

| (_, ) -> raise error "Invalid type for logical and"

Equal(a, b) -> (

let (astring, atype) = cg expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

(SymInt, SymInt) -> (" (" ”~ astring ~ " == " » bstring
A~ my", SymInt)

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " == "~
bstring ~ ")", SymInt)

| (SymFloat, SymInt) -> ("(" ~ astring * " ==
((float) (" ~ bstring ~ "™)))", SymInt)

| (SymInt, SymFloat) -> (" (((float) ("™ ~ astring ~ "))
== " % bstring ~ ")", SymInt)

| (_, ) -> raise error "Invalid type for equals"

Neg(a, b) -> (

let (astring, atype) = cg expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

| (SymInt, SymInt) -> ("(" ~ astring ~ " != " ~»
bstring ~ ")", SymInt)

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " != " *
bstring ~ ")", SymInt)

| (SymFloat, SymInt) -> ("(" »~ astring ~ " !=
(float) (" »~ bstring ~ ™))", SymInt)

| (SymInt, SymFloat) -> (" ((float) (" ~ astring ~ ")
" ~ bstring ~ ")", SymInt)

| (, ) -> raise error "Invalid type for not equals"

Less(a, b) -> (
let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with
| (SymInt, SymInt) -> (" (" ”~ astring
" %~ bstring ~ ")", SymInt)
| (SymFloat, SymFloat) -> ("(" ~ astring ~ " < " 7
bstring ~ ")", SymInt)

A "

| (SymFloat, SymInt) -> ("(" ® astring *~ " < (float) ("

~ bstring ~ "))", SymInt)

| (SymInt, SymFloat) -> (" ((float) ("™ ~ astring ~ ")
" "~ bstring ~ ")", SymInt)

| (, ) -> raise error "Invalid type for Less"

Page 36 of 51

Final Project



COMS 4115 Programming Languages and Translators Final Project

| Greater(a, b) -> (
let (astring, atype) = cg expression a
and (bstring, btype) cg _expression b
in match (atype, btype) with

| (SymInt, SymInt) -> (" (" * astring ~ " >
" ~ bstring * ")", SymInt)
| (SymFloat, SymFloat) -> ("(" »~ astring ~ " > " ~»
bstring ~ ")", SymInt)
| (SymFloat, SymInt) -> ("(" ~ astring *~ " > (float) ("
~ bstring *~ "))", SymInt)
| (SymInt, SymFloat) -> (" ((float) (" »~ astring ~ ") >
" ~ bstring ~ ")", SymInt)
| (, ) -> raise error "Invalid type for Greater"
)
| Leg(a, b) -> (
let (astring, atype) = cg_expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with
| (SymInt, SymInt) -> ("(" »~ astring ~ " <= " *
bstring ~ ")", SymInt)
| (SymFloat, SymFloat) -> ("(" »~ astring ~ " <= " ~
bstring ~ ")", SymInt)
| (SymFloat, SymInt) -> ("(" ~ astring *~ " <=
(float) (" »~ bstring ~ "))", SymInt)
| (SymInt, SymFloat) -> (" ((float) ("™ ~ astring ~ ") <=
" ~ bstring ~ ")", SymInt)
| (, ) -> raise error "Invalid type for Less or
equal"
)
| Geg(a, b) -> (
let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with
| (SymInt, SymInt) -> (" (" ”~ astring ~ " >= " *
bstring ~ ")", SymInt)
| (SymFloat, SymFloat) -> ("(" »~ astring ~ " >= " ~
bstring ~ ")", SymInt)
| (SymFloat, SymInt) -> (" (" ~ astring ~ " >=
(float) (" » bstring ~ ™))", SymInt)
| (SymInt, SymFloat) -> (" ((float) (" » astring ~ ") >=
" %~ bstring ~ ")", SymInt)
| (, ) —-> raise error "Invalid type for Greater or

equgl"_
)

| Assignment (a, b) -> (

let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
in if atype = btype then
(Il (Il AN astring AN " — Al N bstring N ") ", atype)

else match (atype, btype) with

Page 37 of 51



COMS 4115 Programming Languages and Translators Final Project
| (SymFloat, SymInt) -> (" (" ~ astring ~ " =
(float) (™ »~ bstring ~ "))", SymFloat)
| (, ) -> raise error "type mismatch for assignment”

)
| AddAssign(a, b) -> (

let (astring, atype) = cg_expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

| (SymInt, SymInt) -> (" (" ”~ astring ~ " += " *
bstring ~ ")", SymInt)

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " += " *
bstring ~ ")", SymInt)

| (SymFloat, SymInt) -> ("(" ~ astring ~ " +=
(float) (" »~ bstring ~ "))", SymInt)

| (, ) -> raise error "type mismatch for +="

)
| SubAssign(a, b) -> (

let (astring, atype) = cg_expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

| (SymInt, SymInt) -> (" (" ”~ astring ~ " += " 7%
bstring ~ ")", SymInt)

| (SymFloat, SymFloat) -> ("(" »~ astring ~ " += " ~
bstring ~ ")", SymInt)

| (SymFloat, SymInt) -> (" (" ~ astring ~ " +=
(float) (" »~ bstring ~ "))", SymInt)

| (, ) -> raise error "type mismatch for +="

)

| MulAssign(a, b) -> (
let (astring, atype) = cg_expression a
and (bstring, btype) Ccg_expression b
in match (atype, btype) with

| (SymInt, SymInt) -> (" (" ”~ astring ~ " *= " 7
bstring ~ ")", SymInt)

| (SymFloat, SymFloat) -> (" (" »~ astring ~ " *= " *
bstring ~ ")", SymInt)

| (SymFloat, SymInt) -> (" (" ~ astring ~ " *=

(float) (" »~ bstring ~ "))", SymInt)

| (, ) -> raise error "type mismatch for *="

)
| DivAssign(a, b) -> (

let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with

| (SymInt, SymInt) -> (" (" ~ astring ~ " /=" "
bstring ~ ")", SymInt)
| (SymFloat, SymFloat) -> ("(" ~ astring ~ " /="
bstring ~ ")", SymInt)
| (SymFloat, SymInt) -> (" ("™ »~ astring ~ " /=
(float) (" »~ bstring ~ "))", SymInt)
| (, ) -> raise error "type mismatch for /="

)
| ModAssign(a, b) -> (

Page 38 of 51



COMS 4115 Programming Languages and Translators Final Project

let (astring, atype) = cg expression a

and (bstring, btype) = cg expression b

in match (atype, btype) with

| (SymInt, SymInt) -> ("(" ”~ astring ~ " %= " *
bstring ~ ")", SymInt)

| (, ) -> raise error "type mismatch for %="

)

| Uminus (a) -> (
let (astring, atype) = cg_expression a
in match atype with
SymInt -> (" (=" ~ astring ~ ")", atype)
| SymFloat -> (" (=" »~ astring ~ ")", atype)

| -> raise error "Cannot apply unary minus"

)
| Not(a) —-> (

let (astring, atype) = cg expression a

in match atype with

SymInt -> (" (!"™ ~ astring *~ ")", atype)

| SymFloat -> (" (!" »~ astring ~ ")", atype)

|  -> raise error "Cannot apply not"
)
| FunCall(a, b) -> (
(1f (typeof a) != SymFunction then raise error (a ~ "
is not a function"));
let exps = cg _exp list b
in let (atype, aparams) = Hashtbl.find fn table a
in let check compat str typel type2 =
if typel = type2 then str
else match (typel, type2) with
(SymInt, SymFloat) -> str
| (_, ) -> raise error "Type mismatch in
arguments"
in let rec param string params argtypes =
match (params, argtypes) with

((pstr, ptype) :: [], argtype :: []) —->
check compat pstr ptype argtype
| ((pstr, ptype) :: ptail, argtype

argtail) ->
(check compat pstr ptype argtype) ~ ",
" 7~ (param string ptail argtail)

L1, 1) ->""
| (:: , []) -> raise error ("Too many
arguments passed to function: " "~ a)
| ([1, :: ) -> raise error ("Too less
arguments passed to function: " "~ a)
in (a ~ "(" © (param string exps aparams) *
")", atype)
)
| Array(a, b) -> (
let (index, indexType) = cg expression b
in if indexType != SymInt then raise error "Array

index has to be an integer"
else let retType = array to sym (typeof a)

Page 39 of 51



COMS 4115 Programming Languages and Translators Final Project
in (a ~ "[" » index ~ "]", retType)
)
( *
| Collection(a) -> unify exprlist (cg exp list a)
)
| InIncidence(a) -> (

let (astring, atype) = cg_expression a
in match atype with
SymEdge -> (astring ~ ". target", SymInt)

A

|  -> raise error (astring " is not an edge")

)
| OutIncidence(a) —-> (
let (astring, atype) = cg expression a
in match atype with
SymEdge -> (astring
| -> raise error (astring

~ ". source", SymInt)
A~ "™ is not an edge")

)

| GInIncidence(a, b) -> (

let (astring, atype) = cg_expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with
(SymGraph, SymInt) -> (astring ”~ ".inIncidence ("
~ bstring ~ ")", SymEdgeArray)
| (, ) -> raise error "Invalid types for in-
incidence on this graph"
)
| GOutIncidence(a, b) -> (
let (astring, atype) = cg expression a
and (bstring, btype) = cg expression b
in match (atype, btype) with
(SymGraph, SymInt) -> (astring ~ ".outIncidence ("
~ bstring ~ ")", SymEdgeArray)
| (_, ) -> raise error "Invalid types for out-
incidence on this graph"
)
| Sizeof (a) -> (
let (astring, atype) = cg expression a
in match(atype) with
SymEdge -> (astring ~ ". weight", SymInt)
| SymGraph -> (astring ~ ". nVertices", SymInt)
| SymIntArray -> (astring ©~ ".size ()", SymInt)
| SymFloatArray -> (astring ©~ ".size()", SymInt)
| SymStringArray -> (astring ©~ ".size()", SymInt)
| SymEdgeArray -> (astring ©~ ".size()", SymInt)
| SymGraphArray -> (astring ©~ ".size()", SymInt)
|

-> raise error "Invalid type for sizeof"

(** hkkhkkhkkkhkkhkkhkhkkkhkkhkkhkhkkkhkkkhkkkkhkkkhkkhkkhkkkkhkkkhkkhkkkkhkkkkkk ***)

Page 40 of 51



COMS 4115 Programming Languages and Translators Final Project

(* Lexer
Authors : Rajesh Venkataraman, Amoghavarsha Ramappa
*)
{
let strConstant = ref ""
open BRAWLparse

}

let digit = ['0'-"9"]
let id: [lal_lzl ’A’ —_ ’Z’ v ’] [’a’_lzl IAI — IZI 101_19’ v ’]*

rule token = parse
| digit+ as inum
{ INT (int of string inum)
| dﬁéit+ '.'" digit* as fnum
{ FLOAT (float of string fnum)
}

| Ty

{
strConstant = "";
stringToken lexbuf
}

| [" " "\t'] { token lexbuf } (* eat up whitespace *)
| '"\n' {

let pos = lexbuf.Lexing.lex curr p in

lexbuf.Lexing.lex curr p <- { pos with
Lexing.pos lnum = pos.Lexing.pos lnum + 1;
Lexing.pos bol = pos.Lexing.pos_cnum;
bi
token lexbuf
}

| "if" { IF }
| "else" { ELSE }
| "while" { WHILE }
| "foreach" { FOREACH }
| "in" { IN }
| "sizeof" { SIZEOF }
| "where" { WHERE }
| "return" { RETURN }
| "int" { INTK }
| "float" { FLOATK }
| "string"™ { STRINGK }
| "edge" { EDGEK }
| "graph" { GRAPHK }
| 1d as text { ID text }
| '"+' { PLUS }
| '-' { MINUS }
| '"*'" { MULTIPLY }

Page 41 of 51



COMS 4115 Programming Languages and Translators Final Project
'/'" { DIVIDE }

|

| '$'" { MODULO }

| '('" { LPAREN }

| '")'" { RPAREN }

| '['" { LBRACKET }

| ']'" { RBRACKET }

| '"{'" { LBRACE }

| '}'" { RBRACE }

| '"=' { ASSIGNMENT }

| "+=" { ADDAS }

| "—-=" { SUBAS }

| "x=" { MULAS }

| "/=" { DIVAS }

| "&=" { MODAS '}

| "> { GT }

| <! { LT }

| "==" { EQ }

| ">:" { GE }

| "<:" { LE }

| "!:" { NE }

| "1 { NEGATE }
| "&&" { LOGICALAND }

[ " " { LOGICALOR }

| ;! { SEMICOLON }
[ { coMMA }
| 'S { DOLLAR }
| "=>" { RARROW }

| "<=" { LARROW }

| eof { EOF }

and stringToken = parse

{
STRING !'strConstant
}
"\
{
escape lexbuf
}
| as ch
{
strConstant := !strConstant ~ (String.make 1 ch);
stringToken lexbuf
}
and escape = parse
| lnl
{
strConstant := !strConstant ~ "\n";
stringToken lexbuf

strConstant := !strConstant ~ "\t";

Page 42 of 51



COMS 4115 Programming Languages and Translators Final Project
stringToken lexbuf
}

{
strConstant := !strConstant ~ "\"";
stringToken lexbuf

(** hkhkkhkkhkhkkhkkhkkhkhkkhkkhkhkkhkhkkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkxk ***)

(** Location 1n a source file -- an annotation for AST nodes

Authors : Harish JP, Rajesh Venkataraman
*)

type t = {
loc start : Lexing.position;
loc_end : Lexing.position

}

let string of {loc start = pl; loc end = p2 } =
"File \"" ~ pl.Lexing.pos fname ~ "\" line " %
string of int pl.Lexing.pos lnum *
" characters " ” string of int (pl.Lexing.pos cnum -
pl.Lexing.pos bol) *
"-" ~ string of int (p2.Lexing.pos cnum - pl.Lexing.pos bol)

let of symbol () = {
loc start = Parsing.symbol start pos ();
loc_end = Parsing.symbol end pos ()

}

let current lexbuf = {
loc start = Lexing.lexeme start p lexbuf;
loc _end = Lexing.lexeme end p lexbuf

}

let nowhere = {
loc start = Lexing.dummy pos;

loc _end = Lexing.dummy pos

}

(** hkhkkhkkkkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhkhkkhkkhkhkhkhkkhkkhkkhkhkkhkkhkkkxk ***)

(* Parser

Authors : Harish JP, Rajesh Venkataraman

o°
—~—

Page 43 of 51



COMS 4115 Programming Languages and Translators Final Project
open BRAWLast

let parse error s = (* Called by the parser function on
error *)
print endline (s ~ ": " ~ (BRAWLlocation.string of
(BRAWLlocation.of symbol () )));
flush stdout

let addloc detail = (detail, BRAWLlocation.of symbol ())
let debug str = () (*print endline str¥)

%}

%$token IF

$token ELSE
$token WHILE
$token FOREACH
$token IN
$token WHERE
$token RETURN

$token <int> INT
$token <float> FLOAT
%token <string> STRING
%$token <char> CHAR
%token <string> ID

$token INTK FLOATK STRINGK EDGEK GRAPHK

%token PLUS MINUS MULTIPLY DIVIDE MODULO
$token GT LT EQ GE LE NE
%token NEGATE LOGICALAND LOGICALOR

Stoken ASSIGNMENT
$token ADDAS SUBAS MULAS DIVAS MODAS

$token LBRACKET RBRACKET
$token LBRACE RBRACE
$token LPAREN RPAREN
%$token SEMICOLON

$token COMMA

$token DOLLAR

$token LARROW

$token RARROW

$token EOF
$token SIZEOF

$left ASSIGNMENT
$left ADDAS SUBAS MULAS DIVAS MODAS
$left LOGICALOR
$left LOGICALAND

Page 44 of 51



COMS 4115 Programming Languages and Translators Final Project
sleft EQ

%$left LT GT LE GE

%$left PLUS MINUS

%$left MULTIPLY DIVIDE MODULO

%left LARROW RARROW

%left SIZEOF

%$nonassoc UMINUS
%$nonassoc UNOT
$nonassoc ULARROW
$nonassoc URARROW

snonassoc LOWER THAN ELSE
$nonassoc ELSE

%start program
Stype <BRAWLast.prog> program

o©
o°

program:
stat _list {debug "parsed program"; Program($1l)}
| EOF { raise End of file }

toplevel stat:
stat {Statementl ($1)}
| LBRACE Stat_list RBRACE {$2}
| LBRACE RBRACE { StatementO }
| SEMICOLON { StatementO }

.
4

stat list:
stat {Statementl ($1)}
| stat stat list {Statement2($1, $2) }

stat:
function definition { debug "parsed function"; $1}
| return statement { debug "parsed return statement"; S1}
| if statement { debug "parsed if statement"; $1}
| while statement { debug "parsed while statment"; $1}
| foreach statement { debug "parsed foreach statment"; $1}
| foreachw statement { debug "parsed foreachw statment";
$1}
| variable declaration { debug "parsed variable
declaration"; $1}
| expr statement { debug "parsed expression statement"; S1

expr statement:
expr list SEMICOLON { ExpressionList ($1) }

Page 45 of 51



COMS 4115 Programming Languages and Translators Final Project

4

function definition:

tid LPAREN tid_list RPAREN LBRACE Stat_list RBRACE {
match $1 with
(a, b) -> Function(a, b, $3, $6)

}

| tid LPAREN RPAREN LBRACE Stat_list RBRACE {
match $1 with
(a, b) -> Function(a, b, Arglist0, $5)

return_ statement:
RETURN exp SEMICOLON { Return($2) }

’

if statement:

IF LPAREN exp RPAREN toplevel stat $prec LOWER THAN ELSE {
If($3, $5, Statement0) }

| IF LPAREN exp RPAREN toplevel stat ELSE toplevel stat ({
I£(83, $5, $7) }

’

while statement:
WHILE LPAREN exp RPAREN toplevel_stat { While ($3, $5) }

foreach statement:
FOREACH LPAREN ID IN exp RPAREN toplevel_stat { Foreach($3,
$5, $7) 1}

.
14

foreachw statement:
FOREACH LPAREN ID IN exp WHERE exp RPAREN toplevel stat {
Foreachw ($3, $5, $7, $9) }

’

variable declaration:
tid SEMICOLON { match $1 with (a, b) -> Declaration(a, b,
(NullExpr, BRAWLlocation.nowhere)) 1}
| tid ASSIGNMENT exp SEMICOLON { match $1 with (a, b) ->
Declaration(a, b, $3) }
| tid LBRACKET exp RBRACKET SEMICOLON { match $1 with (a,
b) -> ArrDeclaration(a, b, $3, (NullExpr,
BRAWLlocation.nowhere)) }
| tid LBRACKET exp RBRACKET ASSIGNMENT exp SEMICOLON {
match $1 with (a, b) -> ArrDeclaration(a, b, $3, $6) }

tid list:

tid { Arglistl($1l) }
| tid COMMA tid list { Arglist2($1l, $3) }

Page 46 of 51



COMS 4115 Programming Languages and Translators Final Project

4

tid:
type name ID { ($1, $2) }

.
14

type name:
INTK { BRAWLsymbol.SymInt }
| FLOATK { BRAWLsymbol.SymFloat }
| STRINGK { BRAWLsymbol.SymString }
| EDGEK { BRAWLsymbol.SymEdge }
| GRAPHK { BRAWLsymbol.SymGraph }

’

expr list:
exp {Explistl($1)}
| exp COMMA expr list {Explist2($1,$3)}

exp:

INT { addloc (Int($1)) }

FLOAT { addloc (Float ($1)) }

STRING { addloc (String($1)) }

lvalue { $1 }

ID LPAREN expr list RPAREN { addloc(FunCall($1l, $3))

| ID LPAREN RPAREN { addloc(FunCall($1, Explist0)) }
| edge expression { $1 }

| graph expression { $1 }

| exp PLUS exp { addloc (Add($1, $3)) }

| exp MINUS exp { addloc(Sub($1, $3)) }

| exp MULTIPLY exp { addloc(Mul ($1, $3)) }

| exp DIVIDE exp { addloc(Div($1, $3)) }

| exp MODULO exp { addloc (Mod(S$1, $3)) }

| exp EQ exp { addloc(Equal($1, $3)) }

| exp GT exp { addloc(Greater($1, $3)) 1}

| exp LT exp { addloc(Less($1, $3)) }

| exp GE exp { addloc(Geqg($1l, $3)) }

| exp LE exp { addloc(Leg($1l, $3)) }

| exp LOGICALAND exp { addloc(And($1, $3)) 1}

| exp LOGICALOR exp { addloc(Or($1l, $3)) 1}

| MINUS exp $%$prec UMINUS { addloc (Uminus ($2)) }
| NEGATE exp $%$prec UNOT { addloc (Not($2)) 1}

| LPAREN exp RPAREN { $2 }

| LARROW exp %prec ULARROW { debug "parsed in
incidence"; addloc (InIncidence($2)) }

| RARROW exp %$prec URARROW { addloc (OutIncidence ($2))

| exp LARROW exp { addloc(GInIncidence($1, $3)) }
| exp RARROW exp { addloc (GOutIncidence($1, $3)) 1}
| SIZEOF exp { debug "parsed sizeof";

addloc (Sizeof ($2)) }

| assignment expression { $1 }

Page 47 of 51



COMS 4115 Programming Languages and Translators Final Project
| collection expression { $1 }

lvalue:
ID { addloc (Variable ($1)) }
| ID LBRACKET exp RBRACKET { addloc (Array($1, $3)) }

.
14

edge expression:
LBRACKET exp COMMA exp COMMA exp RBRACKET { addloc (Edge($2,
$4, $6)) }

’

graph expression:
DOLLAR exp COMMA expr list DOLLAR { addloc(Graph($2, $4)) }

’

collection expression:
LBRACE expr_ list RBRACE { debug "parsed collection
expression"; addloc(Collection($2)) }

.
14

assignment expression:
lvalue ASSIGNMENT exp { addloc(Assignment ($1, $3)) }
| lvalue ADDAS exp { addloc (AddAssign($1, $3)) 1}

~e

o°
o°

(* vim:set ts=4 sw=4 noet: *)

(** khkkhkkhkkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkkxk ***)

(** Symbol table: uses a global hash function to give each string
a unigque integer identifier

Authors : Harish JP, Amoghavarsha Ramappa
*)

module StringHash = Hashtbl.Make (struct
type t = string
let equal x vy = x =y
let hash = Hashtbl.hash

end)

(* The types of the symbol in the system *)

type data type = Undefined | SymInt | SymFloat | SymString |
SymEdge | SymGraph | SymFunction| SymIntArray | SymFloatArray |
SymStringArray | SymEdgeArray | SymGraphArray

(* Damned global variable for the symbol table *)
let symboltable = ref [StringHash.create 128] ;;

Page 48 of 51



COMS 4115 Programming Languages and Translators Final Project

(* Returns type of the symbol, Undefined if symbol is not found
*)
let typeof name =
let rec rec typeof tbl =
match tbl with
[] -> Undefined
| hd :: tl1 ->
try StringHash.find hd name
with Not found -> rec typeof tl
in rec typeof !symboltable ;;

(* Add a new symbol to symbol table. Returns false if symbol
exists *)
let addSymbol name dType =
let head = List.hd !symboltable in
if StringHash.mem head name then
false
else

(StringHash.add head name dType; true);;

(* Adds a new hash, representing the local scope *)
let rec start scope dummy =

symboltable := (StringHash.create 128) :: !symboltable ;;
(* Deletes the local scope *)
let rec end scope dummy =

match !symboltable with

[l => false

| hd :: tl -> symboltable := tl; true ;;
let sym to array sym =

match sym with

SymInt -> SymIntArray

| SymFloat -> SymFloatArray

| SymString -> SymStringArray

| SymEdge -> SymEdgeArray

| SymGraph -> SymGraphArray

|  -> Undefined

let array to sym a =
match a with
SymIntArray -> SymInt
| SymFloatArray -> SymFloat
| SymStringArray -> SymString
| SymEdgeArray -> SymEdge
| SymGraphArray -> SymGraph
|  -> Undefined

rrs

(* vim: set ts=4 sw=4 noet: *)

Page 49 of 51



COMS 4115 Programming Languages and Translators Final Project

(** kkhkkkkkhkkkkhkkkhkkhkkhkkhkkkhkkhkkhkkkkkkkhkkhkkhkkkkkkkhkkkkkkkkkkx ***)

/* C++ Library
Authors : Rajesh Venkataraman, Amoghavarsha Ramappa

*/

#ifndef  GRAPH HPP
#define _ GRAPH HPP_
#include <vector>
finclude <string>
#include <algorithm>

using std::vector;
using std::string;

class Exception {
string message;
public:
Exception (const stringé& message = ""): message (message) {
}
string getMsg () {
return message;
}
string setMsg(const stringé& message) {
_message = message;
}
}i

struct Edge {
unsigned source, _target;
int weight;

bool operator == (const Edgeé& e) {

return source == e. source && target == e. target;
}
Edge (const unsigned& source = 0, const unsignedé& target =
0, const unsigned& weight = 0): source(source),

_target (target), weight(weight) { }

Edge (const Edgeé& e): source(e. source), target(e. target),
_weight (e. weight) {
}

}i

struct Graph {
unsigned nVertices;
vector<Edge> edges;
Graph (const unsigned& nVertices = 0, const vector<Edge>&
edges = vector<kEdge>()): nVertices(nVertices),

_edges (edges) {}

Graphé& addEdge (Edge e) {

Page 50 of 51



COMS 4115 Programming Languages and Translators Final Project
if(e. source < 0 || e. source > ( nVertices - 1) ||
e. target < 0 || e. target > ( nVertices - 1) )
throw new Exception("Invalid source / target");
vector<Edge>::iterator iter;
if((iter = find( edges.begin(), _edges.end(), e))
== edges.end()) _edges.push back(e);
else (*iter). weight = e. weight;
return *this;

}

vector<kEdge> outIncidence (const unsigned vertex) const/{
if (vertex < 0 || vertex > ( nVertices - 1))
throw new Exception ("Vertex not in graph");
vector<Edge> retval;

int sz = edges.size();
for(int i = 0; 1 < sz; ++1)
if(_edges[i]. source == vertex)

retVal.push back(Edge( edges[i]));
return retval;

}

vector<Edge> inIncidence (const unsigned vertex) const{
if (vertex < 0 || vertex > ( nVertices - 1))
throw new Exception ("Vertex not in graph");
vector<Edge> retval;

int sz = edges.size();
for(int i = 0; 1 < sz; ++1)
if( edges[i]. target == vertex)

retVal.push back(Edge( edges[i]));
return retval;
}
}i
#endif

(** khkkhkkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkkxk ***)

Page 51 of 51



