Sprite

Project Proposal

Dave Smith, Dan Benamy, John Morales, Monica Ranadive

Table of Contents

IIETOAUCTION. ...ttt e e et e e et e et e esabeeesbeeesbeessaeesssseesasaeesasseeassaeeansaeeassaeensssreeseenns 3
IMLOBIVATION ¢ttt ettt et sttt e a e e bt et e et e sbe e bt es e eb e et e e atesb e embeesteeb e et e entesbe et e entennste s eane s 3
SEIUCTULE. ...ttt ettt ettt e et e e e a e e a bt e bt e e bt e e e bt e e eab e e e eabeeeeabeeeambeeebbeeseessanebeeas 3
WY JAVASCTIPL?. ..ttt ettt ettt et e st e et esab e e bt esabeeabeaesbeenseesnseenseeesseseenssbeseenneeeennnneas 4
0 01RO 4
Primitive Data TYPeS....ceeueieiuiieiieiie ettt ettt et et e bt et e et e st e e bt e s sbeebeesabeenbee s eanebeen eaneee 4
O DS, .ttt etee ettt ettt et e et e et e et e et e e s st e et e e etaeesbeeaab e e s e e eabeenb e et b e en s e e eaaeenbe e st e et e e eabeenbeeesbeenseeenteennebeens 4
F N § ;) USSP 4
CASE SEINSTEIVIEY ...t eutieeiieeiieeiteetieeteeteeeteeteeeateeteeesteesseessseenseessseenseeasseenseessseanseassseensaessseenseassseensaesnsesannsnns 4
FUNCHIONS. ..ttt st e bt e e a bt e bt e st e e bt e e st e e bt e sab e e bt e eabeebe e e eaneae 5
BUilt-In FUNCHIOMNS. ..ottt ettt sttt ettt sbe b eanes 5
CONLIOL STALEIMENIES.eeutiiiitiiiie ettt b e et e bt et e bt e e st e e sbe e st e e nbeeeabeenbeesateseen saneee 5
) 2 (Y § i 2 TSSOt 5
B OT ettt ettt ettt e ettt e e bt e st teen s bt beete e e et 5
R (TS 01510) 1 TSP SPSP 6
L0013 21 (0] £ OO O O RPPRPRTPSPPP 6
IMPIICTE TYPE CASTING..ceiieeiiieeiieeeiieecite ettt e etee et e et e et eeeateesabeesssaeesasaeesssaeessseeennseeennseeenssnsneseens 6
Example Program: The Bouncing Ball.............cocooiiiiiiiiiii ettt e e 7
FOIMATINE.iiiiicieee et ettt et e e tb e et e essbeesseesabeesseeesseenseeessaenseeassaenseesnsaensseansnesennns 8
L0704 (S0 27 (o Te] PP SRUR 8
LUNE BIEAKS...c.tiuteiietieecitee ettt bt et sttt h et et sbe b eaees 8
COMUMICIIES. ...ttt ettt et e et et e e ab e e bt e sa bt e bt e eh bt et e e e ab e e bt e eabeembeesab e e bt e saeeeabeesnseenbeesnnen s 8
INAENEATION. ¢...ettitiiteit ettt et et b e ae ettt b et b ettt e ittt natens 8
MEMOTY MANAQZEIMENL.........eiiiiiieiiieeeiieeeieeeeiee et ee et e estteeeseteeetteesnsaeeanseeeassaeeasseeensseeenssesensseean snssnseeseenes 8
Future Updates fOr SPIite.........oouiiiiiiiieie et ettt ettt e et e et e eate e e e ee 8
RESEIVEA WOTES ...ttt a ettt sa ettt e bt et e it e e be s ete e ensbe e eaee s 9
SUIMIMATY ...ttt e e ettt e e ettt eeeeaatteeeeaneaeeee e nsaeeeeanssaeesannsseeesan sann sansannsnssnnsennnes 9

\Introduction I

Sprite is a language designed for the purpose of rendering two dimensional images and animations
within a web browser. In the computer graphics field, these images and animations are called sprites
(hence our language's creative name). Typically, computer graphics programs consume numerous lines
of code and require unnecessarily idiosyncratic programming from the developer in order to create a
finished product. Our language offers a streamlined and more efficient way of displaying and
manipulating sprites without programming in JavaScript or Action-Script.

\Motivation I

The most basic graphics can be incredibly intimidating to program from a beginner's point of view. We
don't want potential programmers to be dissuaded because the code looks too complicated. Sprite is a
minimal, and more intuitive graphics programming language. The driving force behind Sprite is to
make sprites reachable for users who may not have a degree in computer science yet are interested in
graphics. A Sprite program can be written, compiled, and the end result viewed within minutes.

\Structu re I

Our project will compile users' Sprite files to cross-browser compatible HTML files containing the
necessary Javascript to display the Sprites. Our compiler is going to generate both HTML and
JavaScript from the user's Sprite file. This will not only save the user from having to learn HTML in
addition to JavaScript but also allow them to concentrate on the most important part — the actual coding
needed to manipulate the sprites.

ANTLR

<html>
<head>
<script>

A user's Ol Coripilar L, Generated
.sprite file P il Javascript

4

Boilerplate
Javascript

</script>
</head>
</html>

Why Javascript?

Flash MX is a popular way to create/view graphics and play animated video games. The reason that we
chose Javascript instead of Flash is because this will allow all browsers and operating systems to run a
compiled Sprite program. Unlike Flash files, our compiled programs won't need an additional plug-in
to run — just a browser window! In addition, you would be able to double-click a .htm file on your hard
drive and see what the sprites do while not too many systems will allow flash files to be displayed in
this manner.

\Types I

Primitive Data Types

e Integer
e String
e Boolean
True or False. There is no Null boolean value.

Objects

Objects may contain other objects and primitive data types. Objects specify defaults for all primitive
data types. Objects will not contain constructors or subroutines.

Obj Foo </

bar = 1

rab = True

arb = "Hello World!"
/>
Arrays

Two sprites are better than one, and ten are much better than two — so our language will be able to
accommodate multiple sprites with a built in array object. Any primitive or object may be added to an
array. We created an Add function for the Array object to make adding objects to an array more
intuitive. Arrays are still indexed using [integer]. Arrays manage their own memory and grow as
needed. The built in function Count returns the number of items in an array. Count only accepts
Arrays.

testing = New Array

Add (testing, 1)

Add (testing, 2)

For (i = 0; 1 < Count(testing); i ++) </
Print (testing[i])

/>

Case Sensitivity I

Similar to JavaScript, Sprite is case sensitive. This consistency not only gives the compiler an easier
job, it makes the program more understandable to the user(s). All identifiers must be spelled with the
same capitalization to be properly recognized.

\Funcﬁons I

The functions in the Sprite programming language expect parameters by both value as well as by
reference. Primitive data types such as ints and strings are passed by value while more complex
parameters such as objects and array are passed to the function by reference. The parameter type does
not have to be specified in the function declaration.

If the function must be run on a regular basis (such as displaying a graphic over and over again in
different locations on the screen), the keyword CallEvery may be used. This keyword functions
similarly to a while loop and takes in one parameter, the time in milliseconds for the delay between
each successive call. CallEvery accepts any statement that evaluates to an Integer.

Functions may return a single value using the Ret keyword.

Func DoSomething (parameterl) CallEvery(10) </
Print ("Hello World!")
Ret 1

/>

Built-In Functions

<- Prints the string Hello World to the page ->
Print ("Hello World!"™)

<- Shows the given image at the given top and left position. If you call
PrintSprite multiple times with the same id, rather than printing out
several different sprites, the same sprite is simply updated.
Generically, observe PrintSprite (imagePath, id, top, left) ->
PrintSprite("Ball.jpg", 1, 75, 150)

<- Add the number 1 to the array myArray ->
Add (myArray, 1)

<- Count returns the number of items in an array ->
Print (Count (myArray))

Control Statements I

If, Else If, Else

If (True) </
DoSomething ()

/> ElseIf (True) </
DoSomething ()

/> Else </
DoSomething ()

/>

For

For (1 = 0; i < 10; 1 ++) </
Print (1)

/>

Exceptions I

Sprite provides no native exception object or exception handling. We expect the user to check the
return codes of calls that can fail.

Operators I

All operators are infix operators.

+ Addition of Integers

+ Concatenation of any 2 primitive types if either is
not an Integer

- Subtraction of Integers

* Multiplication of Integers

/ Division of Integers
% Modulo of Integers
&& Logical And of Booleans

I Logical Or of Booleans

Implicit Type Casting I

At this time these are the only places where implicit type casting occurs:

e When the + operator is used and either operand is not an integer, both operands are cast to
strings.

e The Print function casts primitive types to strings.

Example Program: The Bouncing Ball

In this program we'll start with a picture of a ball saved in the file Ball.jpg.

We'll define an object to represent the ball, and print out the ball. Finally, every 10 milliseconds we'll
update the position of the ball.

Obj Ball </
left = 50
top = 50
downDirection = 3
rightDirection = 3
id = 0

/>

newBall = New Ball
newBall->id = 1

Func MoveBall () CallEvery(10) </
newBall->top = newBall->top + newBall->downDirection
newBall->left = newBall->left + newBall->rightDirection

if (newBall->top <= 0 || newBall->top >= 400) </
newBall->downDirection = - 1 * newBall->downDirection

/>

if (newBall->left <= 0 || newBall->left >= 700) </
newBall->rightDirection = - 1 * newBall->rightDirection

/>

PrintSprite("Ball.jpg", newBall->id, newBall->top, newBall->left)
/>

You can see an example of what the BouncingBall program may compile to at

http://plt.john-morales.com:81.

http://plt.john-morales.com:81/
http://plt.john-morales.com:81/
http://plt.john-morales.com:81/

\Formatting I

Code Blocks
Code blocks are delimited with </ and />. For example,
Func Foo() </

PrintSprite("Ball.jpg", 1, 20, 20)

/>

Line Breaks

A line break denotes the end of a statement. Programming lines may not wrap.

Comments
Comments start at <- and end at the first ->
For example,

<-This is a comment->

Indentation

While indentation is not required for the program to compile and run, it is recommended for readability.

\Memory Management I

Users will not have to even think about memory management because Sprite compiles to Javascript.
Javascript has built in garbage collection in all browsers, so the user is not required to worry about
memory management.

\Future Updates for Sprite I

In the future we can build user input and other output right into the language. Eventually, you should be
able to build whole cross-browser-compatible, sprite based games! Specifically, we can provide built in
functions for the following:

e Creating and referencing libraries

e Knowing when users click on sprites

e Knowing where users clicked the page, especially when they click the background
e Capturing user keystrokes

e Playing sounds for the user

e Image Scaling, Rotating, and Flipping

e Image Generating and libraries

\Reserved Words I

All reserved words are capitalized and use only letters.

Summary
Add
Array
CallEvery
Count

If

Else
Elself
False

For

Func

New

Obj

Print
PrintSprite
Ret

True

Conclusion I

Sprite is a simple, yet expandable, language for manipulating sprites. We plan to implement basic
functionality for our language, and depending on time constraints, we will attempt to add new features
to the language.

	Introduction
	Motivation
	Structure
	Why Javascript?

	Types
	Primitive Data Types
	Objects
	Arrays

	Case Sensitivity
	Functions
	Built-In Functions

	Control Statements
	If, Else If, Else
	For

	Exceptions
	Operators
	Implicit Type Casting
	Example Program: The Bouncing Ball
	Formatting
	Code Blocks
	Line Breaks
	Comments
	Indentation

	Memory Management
	Future Updates for Sprite
	Reserved Words
	Summary

	Conclusion

