
Nathan Steinmann
nsteinma@gmail.com

Programming Languages and Translators

Language Proposal

I. Introduction

This paper describes a language for identifying communication protocols and
extracting fields and values, referred to as metadata, from a set of packets in a capture
file. To simplify the language runtime, we shall restrict the input to packets beginning
with an IPv4 header. This eliminates the need to identify data-link layer protocols, which
typically require finding chains of packets that exhibit similar values at specific byte
offsets in each packet. For the purposes of this project, such chaining serves only to
complicate the runtime and does not enrich the language itself.

The output of a program written in the language will be a set of events, one for each

packet that matches the identification algorithms contained in the program. An event
may be thought of as a simplified textual representation of a packet. More formally, an
event is defined as containing exactly one protocol identifier string, such as POP3 or
SMTP, and zero or more key/value fields, such as HASH_ALGORITHM=SHA-256, or
USERNAME=ALICE. Keys are always strings, but values may be any data type
supported by the language.

II. Language Description

Structurally, the language is similar to awk in that the runtime is responsible for
reading and iterating over packets from a capture file without requiring explicit
instructions in the program. This enables the language to concentrate on protocol
identification and metadata extraction instead of file management.

a. Organization

The language is logically separated into four sections. The first section contains zero

or more global variable declarations, as described by the grammar:

declaration → type identifier;
type → int | string
identifier → [A-Za-z][A-Za-z0-9_]*

Following the global variables are one or more packet tests of the form:

packet-test → test-ident : condition

test-ident → identifer
condition → packet-reference relop literal
relop → < | <= | = | != | >= | >
literal → [0-9]* | [A-Za-z]*

where

 packet-reference refers to a subset of the current packet through one of three
system variables: bytes, byte, or string. The packet-reference non-terminal is further
described in section II.b.

 literal is either a numeric or string literal depending on whether the value returned
from packet-reference is numeric or a string.

 The next section is a series of one or more conformance rules that combine packet
tests using boolean operators. Rules are expressed as:

 rule → rule-ident ? conformance-rule
 rule-ident → identifier
 conformance-rule → test-ident logicop conformance-rule
 conformance-rule → test-ident
 logicop → && | ‘||’

Note: conformance-rule may also include parentheses to override logicop
precedence or associativity.

 Conformance rules are executed in the order in which they appear. Once a
successful rule is found, any remaining rules will be skipped.

 The final section of a program is zero or more functions used to extract metadata
from the current packet. Functions are comprised of local variable declarations, metadata
extraction/assignment statements, and calls to other functions.

Functions are categorized into one of three types:

1) Built-in: Built-in functions have a special significance to the
language runtime. Only one built-in function is currently
defined: init(), which is called immediately after a successful
conformance test is executed and before any other functions are
called.

2) Entry-point: An entry-point function is one that has the same

name as a rule-ident. An entry-point function is called if the
conformance test identified by the matching rule-ident is
successful.

3) Utility: Utility functions are any function other than those
defined in (1) and (2). Utility functions may be called by built-
in, entry-point, or by other utility functions.

b. Accessing Packet Data

Packet data may be referenced through the reserved system variables bytes, byte, or

string. All three variables may be thought of as an array, and are accessed using an
array-like syntax. A brief description of each variable follows:

1) bytes[x, y]: returns a numeric value starting at offset x from the beginning of

the packet and including y bytes. Offsets start at zero, and multi-byte words
are interpreted in big-endian order. To eliminate the need for multi-precision
arithmetic, we shall assume that programs written in the language will be
executed on 32-bit processors and therefore restrict 1 <= y <= 4.

2) byte[x]: returns the byte at offset x. Synonymous with bytes[x, 1].

3) string[x, y]: returns y characters starting at offset x as a string.

c. Data Types

Two data types are supported – strings and integers. An integer is a four byte

signed numeric type and is declared using the int keyword. A string is an arbitrarily long
sequence of contiguous characters and is declared using the string keyword.

d. Arithmetic

The language supports basic arithmetic calculations, such as addition, subtraction,

multiplication, division, and fundamental bitwise operations, including AND, OR, XOR,
and NOT. The grammar, although not defined here, is expected to be similar to C
language.

e. Events

If a packet matches any of the conformance rules, then an event is generated with a

protocol identifier string equal to the rule-ident of the matching conformance rule. Any
subsequent function may then add additional key/value fields to the event by using the
event system variable as follows:

event.key = value;

 The key field need not be declared, and takes the data type of the value being
assigned to it. Subsequent assignments to the same field name overwrite previously
assigned values.

f. Other System Variables

In addition to the three packet-referencing and event variables, the system also

defines two additional variables, EOP (END OF PACKET) and SPACE. EOP is an
integer variable that contains the offset of the last byte of the current packet. SPACE is
also an integer, but is somewhat more complicated than EOP. The first time SPACE is
referenced for a given packet, its value is the offset of the first space character in that
packet. Subsequent references to SPACE on the same packet return the offset of the
second space character, followed by the third, and so on. If SPACE is called and no
space characters exist or remain in the current packet, -1 is returned.

g. Comments

Both single and multi-line comments are supported with syntax identical to that used

in the C language.

III. Sample Program

The following program identifies POP3 traffic from a client to server by detecting
any TCP traffic destined to port 110. If the packet contains a USER or PASS command,
denoted by the string “USER” or “PASS” in the first four characters, then the username
or password is extracted and stored in an event. For any other command, an event is
created with the command string stored in the command field.

/*
Global variable declaration. Initialize with a calculation
to determine the length of the IP header.
*/
int ipLength = (byte[0] & 0xf) * 4;

/*
Another global variable declaration. Possibly used later
in the program by multiple functions.
*/
int space;

// Next protocol TCP?
tcp : byte[9] = 6;

// Client to server POP3?
dstport110 : bytes[ipLength, 2] = 110;

// Does the packet contain the user command?
user : string[0, 3] = "user";
USER : string[0, 3] = "USER";

// Does the packet contain the password command?
pass : string[0, 3] = "pass";
PASS : string[0, 3] = "PASS";

/*
Conformance rule – Is this a TCP packet going to the POP3
well-known port that contains a user command, either in all
uppercase or lowercase?
*/
pop3_user ? tcp & dstport110 && (user || USER);

/*
Similar to previous conformance rule, except looks for the
pass command.
/*
pop3_pass ? tcp & dstport110 && (pass || PASS);

// POP3 client-to-server catch-all conformance rule
pop3 ? tcp & dstport;

init()
{
 space = SPACE;
 event.command = string[0, space-1];
}

pop3_user()
{
 event.username = string[space+1, EOP];
}

pop3_pass()
{
 event.password = string[space+1, EOP];
}

