
NPSL-2D : A 2D Newtonian Physics Simulation Language
Glenn Barney

gb2174@columbia.edu

0) Introduction
Physical simulations of basic Newtonian physics are relatively tedious to run in a
typical programming language. Simple physical laws require modeling objects,
collision rules and detection, basic geometric arithmetic, time monitoring, and
linear equation processing. The goal of NPSL-2D is to provide the constructs to
quickly and simply simulate basic 2D physical interactions. Students studying
physics, artists wanted to create animations, and scientists/engineers wanting to
run simulations for data purposes can use the language for a quick and easy way
to model Newtonian mechanics.

1) Deployment
NPSL-2D code will be interpreted into Java code which will take advantage of the
Swing and Java2D APIs to generate a graphical simulation that is animated in
front of the user. This way the code can be run anywhere a virtual machine is
installed, and since it uses the core JAVA API, no additional Jar files should be
needed. There will be a lot of Java code generation to model hit detection, time
monitoring and the overall world and the objects contained.

2) Scope of Physics Model

Abilities and Limitations
NPSL-2D supports the modeling of basic forces represented through vectors
acting on object of basic geometric shapes such as rectangles, triangles, and
circles. That is velocity, acceleration, and force all will have a vector that includes
a value and a direction. Each simulation has a timeline, starting at t=0 and
simulating until a defined stop time. External forces affecting the entire world,
called global forces (such as gravity), and specific forces acting on a single
object, called object event forces (such as an initial velocity on a ball with a set
mass), can be modeled. Besides these types, forces can be normal or contact
forces, which act when an object is in contact (collision, sliding) on another. All
forces can be conditional, set as a global or object event force that is applied
under certain rules. A Normal force has a reference to the object it is acting on,
and contact forces have a reference to the object it is acting on plus all objects
it is in contact with. For example, air resistance is a normal global force
proportional to an object’s up/down (y direction) velocity. Another example:
friction is a contact global force applied to all objects that is dependent on a
predefined force (gravity) and a force from object interaction. Friction acts if
there is a gravitational force on an object that is touching a second object and a
component of force perpendicular to gravity acting on it from the second object.

Basic elastic and inelastic collisions can be modeled. Inelastic collisions can be
modeled through a loss of energy due to kinetic energy transfer proportional to a
basic coefficient of restitution based on a property set on each object. Complex
forces such as buoyant forces of liquids lift of airplanes, and elastic or spring
objects will not be supported1. Every object will be treated as unbreakable and
intractable. Objects can be attached at a specific point by string, and string can
be broken through a specific command at a certain time in the animation.

Finally, in order to run a simulation beyond simple global force interaction (say
dropping a ball under the force of gravity), the programmer is able to introduce
object event forces into the system at a given set time or as a reactive
response. For example, two identical balls sitting on a table two lengths apart to
collide after an object event force pushes one of them into the other with an
initial momentum. Another use of an object event force could be a special
“pushing ball” force defined on a unique object that activates on collision. When
something comes in contact with the “pushing ball”, it releases an additional
force besides the natural equal and opposite force on collision.

Lastly, NPSL-2D I does not support full interactions between triangles and
rectangles as objects. Instead these objects are placed as Walls and are
automatically treated as grounded. Future releases of the code can support
triangle and rectangle objects, which are much harder to implement as they can
rotate (torque) and stack.

Interactivity, Events, logging2:
The entire simulation will be non-interactive, the programmer defines the
environment, including objects and forces, then runs the simulation. The
simulation will display on the screen and also allow for logging. Logging can be
set on every object defined, and is output in table format, outputting the time,
each logged object’s name, location, acting forces, velocity, momentum, and
location. The user can set full or partial logging, and the logging interval in
seconds, deepening on which of these she wishes to log.

3) Simulation Running
The programmer will define the setup of his simulation, first with objects and
their placement in the world. Forces are added (global, and object event), and
then a call to animate the entire system is executed. In this way, NPSL-2D is a
very procedural language. Although there are objects with properties in NPSL-
2D, the built in runtime animation algorithm will largely execute the functionality
of object interaction.

1 Well, spring forces have basic force equations proportional to a constant, so this may be doable by the end
of the semester. The tricky part would probably be animating the spring, so I will declare them out of
scope for now.
2 Logging can possibly be a todo that will be implemented in a future release.

The world is defined in terms of Cartesian coordinates, and will display a default
view of pixels set by the user. There will be a normal Cartesian grid with an x and
y axis. Objects in motion outside of the animation window will continue to exist
and interact with the environment, although hidden to the user’s view. Each tick
on the grid will represent one meter. In fact, all units will be metric, with mass in
kilograms. The default bottom left corner of the view window is (0,0).

Declaring and Defining a Simulation
Objects are given a location and shape, which must be of type rectangle,
triangle, or circle. Properties of the object can be set at any time on the object
such as friction coefficient and elasticity coefficient for inelastic collisions.
Objects also are grounded if they are immobile under any circumstances.

Object event and global forces are effects defined and applied to each object
they act on at each interval in time. Forces can depend on certain other forces
(friction depends on gravity), which must be defined or the complier will throw
and error.

4) Language Syntax
(eserved Words are bolded below in all charts and sections)

The language is strongly typed and declaration order matters such that objects
and forces that depend on others must be declared after the ones they depend on
(although this could change depending on how much time I have to code a
declaration order independent system).

define is used to define object references to complex data and primitive data.
Examples :
define num as Number;
num = 123.456;
define myBall as Circle {

mass = 5;
radius = 2;
centerX = 400;
centerY = 300;

}

<reference> instanceof <type> returns true if reference is of the specific type.
Example :

myBall instanceof Circle returns Boolean true.

Dot notation access object’s fields or functions. All fields and functions are public
sharable data.

Data Types
Complex Data Types

Name Base
Type

Required Fields Functions

Object Object id setElasticityCoef(object,
ratio)
setStaticFrictionCoef(Object
, ratio)
setKineticFrictionCoef(Obje
ct, ratio)
getElasticityCoef(object)
getStaticFrictionCoef(Object
)
getStaticFrictionCoef(Object
)
attach(Object)
detach(Object)

Circle Movable
Object

mass (Number)
radius (Number)
centerX (Number)
centerY (Number)
velocity (Number)
direction(Number)

Rectangle Fixed
Object

length (Number)
width (Number)
centerX (Number)
centerY (Number)

Triangle Fixed
Object

pt1X (Number)
pt1Y (Number)
pt2X (Number)
pt2Y (Number)
pt3X (Number)
pt3Y (Number)

GlobalForce Force direction (Number)
acceleration (Number)
target(Object)

GlobalColForce Force direction (Number)
acceleration (Number)
target(Object)
touchingMe(Object
List)

ObjEventForce Force direction (Number)
acceleration (Number)
target(Object)

applyForce(Object, time)

ObjEventColForce Force direction (Number) applyForce(Object)

acceleration (Number)
target(Object)
touchingMe(Object
List)

isTouching(Object)

Note ObjEventForce is a one time force that is applied to an object at a certain
time, while ObjEventColForce is applied to an object whenever it collides with
another.

Defining forces can use the dependsOn keyword. Forces can also access target,
which represents the target Object this force is acting on. Each global force is
calculated once for every Object in the world (with target having a reference to
the Object the force is currently acting on). Here’s an example :

define gravity as GlobalForce {
direction = DOWN;
acceleration = 9.8;

log target.id;
}

foreach is a special keyword that acts on a touchingMe list. Inside a force
declaration is the only place a touchingMe list (or any list for that matter) is used
and therefore foreach is valid only in this scope. touchingMe is kept up to date
internally as the simulated.

//define a static function intersect that calculates the points
//of intersection between two objects

//define a static function calcAngle that finds the angle of a certain
//point in radians

define friction as GlobalColForce dependsOn gravity {
direction =0;
acceleration = 0;

foreach X in touchingMe
If (x instanceof Wall)

define xIntersect as Int;
define yIntersect as Int;
xIntersect = calcXIntersect(target, x);
yIntersect = calcYIntersect(target, y);
define angle as Number;
angle = calcAngle(xIntersect, YIntersect);
direction = direction + gravity.direction * cos(angle);
If (target.velocity > 0)

acceleration = acceleration + gravity.acceleration *
getStaticFrictionCoef(X);

Else
acceleration = acceleration + gravity.acceleration *
getKineticFrictionCoef(X);

End

Else
//do nothing

End
End

}

Primitive Data Types
Name Base Type Built in Functions

Number double asInt() (eturns new Int
with the same value)

Int int asNumber (returns new
Number with the same
value)

Boolean boolean

Constants
Name Type Value
PI Number 3.14159265
LEFT Number 0
UP Number PI / 2
RIGHT Number PI
DOWN Number 3* PI / 2

Special constant:
World – Sets the view of the world for the user using setBounds(Number,
Number). Has an animate() function to let the compiler know you are done
defining your objects.

Operators
Math (operates on Number and Int)

+ Addition
- Minus
* Multiplication
/ Division
(Open Parenthesis

) Close Parenthesis
Relational

< Less than
> Greater than
= Assign
== Equal to

Logical Operator
& Logical And
| Logical OR

Control Flow
Note: Whitespace is ignored.
If (test)
 Statement
Else
 Statement
End

While (test)
Statement

End

For (init;test;statement)
Statement

End

Functions
Utility functions are supported to allow users to do mathematical manipulations
for defining force rules and the attributes they depend on. User defined functions
are all “static”. That is they are utility and are not associated with any object.

To declare a function:
ret_type Function foo (param_type 1, pram_type 2) {

<statement>;
<statement>;
return variable; //optional if returning void.

}

Functions can return void for no return value

To call a function, just call one. Example

Int Function integerPlus (Int first, Int second) {
define int as Int;
int = first + second;
return (int)

}

define anInt as Int;
define firstParam as Int;
define secondParam as Int;
firstParam = 1;
secondParam = 2;
anINt = integetPlus(firstParam, secondParam);

Comments, delimeters
-Whitespace is ignored.
-Comments are line only and begin with //
-; is used as a end of statement token

Built in functions
Math basic built in functions will exist such as
Number cos Function (Number radian) ; //returns cosine of radian
Number sin Function (Number radian) ; //returns sin of radian

5)Code/Syntax example
To demonstrate the NPSL-2’s modeling abilities, I’ll walk through modeling two
classic physics examples. Direction is a number in radians.

Example 1: Drop a ball

World.setBounds(800,600);

define gravity as GlobalForce {
direction = DOWN;
acceleration = 9.8;

}

define myBall as Circle {
mass = 5;
grounded = false;
radius = 2;
centerX = 400;
centerY = 300;

}

define groundBar as Rectangle {
mass = 100;
centerX = 400;
centerY = 50;
width = 200;

height = 100;
}

myBall.setElasticityCoef(groundBar, .85);
myBall.setStaticFrictionCoef(groundBar, .2);
myBall.setKineticFrictionCoef(groundBar, .15);
//if elasticity, friction coefficients are not set, they default to 0 (no friction,
//purely elastic collision)

World.simulate();

 One can model a classic “swinging balls” example, which features several
polished steel balls hung in a straight line in contact with each other. Momentum
of the lifted ball will carry to the last one upon impact, and it will swing back
causing the first one to lift and swing up. The user of the language can decided to
run the simulation elastically with no air resistance for a animation that runs in
perpetuity, or run it inelastically so that the simulation eventually comes to rest.
Note the attach code attaches, through string, from one object’s center to
another.

World.setBounds(800,600);

define gravity as GlobalForce {
direction = DOWN;
acceleration = 9.8;

}

define anchor1 as Rectangle {
mass = 100;
centerX = 400;
centerY = 50;
width = 200;
height = 100;

}

define myBall as Circle {
mass = 5;
grounded = false;
radius = 2;
centerX = 400;
centerY = 300;

}

anchor1.attach(myBall1);

define anchor2 as Rectangle {
mass = 100;
centerX = 450;
centerY = 50;
width = 200;
height = 100;

}

define myBall2 as Circle {
mass = 5;
grounded = false;
radius = 2;
centerX = 450;
centerY = 300;

}
anchor2.attach(myBall2);

define push as ObjectEventForce (myball1, 5) {
direction = LEFT;
acceleration = 10;

}

//elastic coefficients default to 1 if not set
//friction coefficients deftault to 0 if not set
World.simulate();

