HMPerm
Language Reference Manual
By: Gregory Kip

COMS W4115 Programming Languages and Translators
Fall 2007

Prof. Stephen Edwards

1T LeXICAl ELEIMEIIES .. eevee et e e et e e e e e e e e eeae e e e eaaeeeeeeenaaeaeen 3

1.1 (O 1 ¢ 1o 1 <) AU P S PUPRPP 3
L2 LEEEIALS toeeeiiiiee ettt e ettt e e ettt e e e et e e e et e e e e e ennbaeeeeenbaaeens 3
1.2.1 B001ean LIteralS.......ccuuviiiiiiiiiiieiiiiie ettt e 3
1.2.2 NUMETIC LILETALSvviiieiiiiiieeeiie e ettt e e e itree e e eneaaee s 3
1.2.3 SEENG LALETALS ..eeeeiiiiiieeeiiiee ettt e et 3
1.2.4 St LIEETALS.....eiiieeiiiie ettt e et e e et e e e e e e etbe e e e e ennneeeens 3
1.2.5 Permutation LIterals.........cccouiiiiiiiiiiiiiiiiie et 3
1.2.6 TACNEITICTS. ..ottt e ettt e e ettt e e e e et eeeenntbeeeeenneees 3

1.2.7 RESETVEA WOTAS...ccoiiiiiiiieiiiie ettt et e e etbae e e e 3
1.2.8 L0315 110) ¢TSRS PTT PP PPP 4

1.2.9 [0707111111S) 1 L1 F PRSP PSP RRRPPP 4

g 1 PP PPUUTR R RRPPP 5
2.1 PrIMIEIVE LY P @S: vtteeeeiiiiie ettt e ettt e ettt e e ettt e e ettt e e e e bt eeeeesbbaeeeenbaaeeeessbaeeeensnaeaaeanes 5
2.1.1 BOOICAN ...t e e et e e e e 5
2.1.2 INEE@ET ...ttt e e e e ettt e e e e e e et aneeee s 5
2.1.3 SEIITIE ..ttt ettt e e et e e e et e e e e et e e e e tb e e e et e e e e entbeeeeentaaaeans 5
2.14 N 1S PSPPSR OP PR PPRR 6
2.1.5 PermULALION.eviiiieeiiiiee ettt et e et e e et e e et e e e enees 7

2.2 COMPOSIEE TYPLS -evvrieeeiiiiieeeiiiieeeeiiiee e e ettt e e ettt eee e tteeeeessbaeeeeessaeeesensssaeesannssaeaeannssaeens 7
2.2.1 AATTAYS 1.ttt ettt ettt e e e e e ettt e e e e e e e e b bttt e e e e e e e e e abbttaeeaeeeeananae 7

2.3 RETETONCES ...ttt ettt e e ettt e e e et ee e e s tbe e e e e ntbeeeeenanbeeaeeenes 7

3 EXPIESSIONS Leeeeuiiiiieeeiiiieeeeiitee e e ettt e e e ettt e e e eibaeeeeetbaeee e e abaeee e e nbbeae e e nbbeee e e nbaeeeeanraeae e ennaeaans 8
3.1 B001an EXPIeSSIONS.ccciuiiiiieiiiiieeeiiieeeeiite e e et ee e e ettt e e e eiieeeeesebeeeeeesbeeeeensaeeeeennnns 8
3.2 INEEEI EXPIESSIONS. .. .uuiiiieiiiiiiieeiiiiiee e et ee e ettt e e eeiieeeeestbeeeeenbbeeeeenssbeeeeassaeeeeanssaeeeannes 8
3.3 Array IndeXing EXPIESSIONSccceruuiiieeiiiiieeeiiiiieeeeiiieeeeeiteeeeesiteeeeesnbteeeeennnaeeeesnnsaeeeennes 8
3.4 SN EXPIESSIONS .oeeuiviiiieiiiiieeeiiiiteeeeitiee e ettt e e eettteeeeibbeeesenbaeeeeeassaeeeeassaeeeennssaeesannes 8
3.5 St EXPIESSIONS.ivviiieeiiiiieeeiiitee e ettt e e ettt e e e ettt eeeesabteeeeetbteeeeanssaeeeeassseeeessseeeeeennsees 8
3.6 Permutation EXPIeSSIONS.......uuiiiiiiiiiieeiiiiieeeeiieee e ettt e e ettt e e e e sibeeeeeseabeeeeennsbaeeeennsaeeaeenns 8
3.7 SEIMANTICSvviieeeiiiiee ettt e ettt e e ettt e e e sttt e e e e e abteeeessbaeeeeenssbeeesesssaeeesnnsseeeeennnees 8

N 1 1< 10 1<) 11 SO TP UUT PSPPI 9
4.1 Assignment and Declaration Statementseeeerrviiieeriiiiieeeniiiiee e e eiree e 9
O §] 71753 111<) 111 OSSR URRURTI 9
4.3 LOOP SEALEIMEILSiieeeeee e ettt e e e e et e e e e e e ettt e e e e e e e e s nanbaaaeeeeeeeas 9

5 SUDPIOZIAMSeviiieeeiiiiee ettt e ettt e ettt e e e et e e e e e et teeeeeatbteeeesaebteeeesssseeeeesnsseeesensseaesenssaeeens 11
5.1 BIOCKS ..ttt et e e et e e ettt e e e e e baeeeeearaeeeenns 11
5.2 FUNCHONS ...eiiiieiitie ettt ettt e e ettt e e ettt e e e eatbaeeeeesntaeeeeennsbeeeeennsseaeeenseeeas 11
53 PrOCEAUIES ...ttt e e e e ettt e e e et tee e e tbeeeeennbeeaenns 11
54 Value-Passing SemMAantiCscooouiieiiiiiiiieeiiiiiieeeiiiteeeeiteeeeeieeeeeesiaeeesennereeeeennsaeeeens 11

LY 2 5 (o) ¢ U OO PP PR P PP PPPRPPP 12

1 Lexical Elements

1.1 Character Set

MPerm understands the regular ASCII character set, including predefined language strings for tabs
and various newline formats (#Perm does not provide escape characters). #/Perm is insensitive to

casc.

1.2 Literals

1.2.1 Boolean Literals
The Boolean literals are true and false.

1.2.2 Numeric Literals
Integer literals take the form of an optional negative sign followed by one or more digits.

1.2.3 String Literals

String

No escape characters. Instead we provide reserved strings CR, FF, NL, QT, TB.

1.2.4 Set Literals

Literal syntax is a comma separated list between curly braces: {1, 4, 5, 9}. The null set is

denoted {}.

1.2.5 Permutation Literals
Permutation literals are white-space separated integer lists containing at least two integers, enclosed
in parentheses: (1 5 7 3). Also, we can specify permutations using the image format, a
backslash-delimited white-space separated list of integers: \1 4 5 3\. Use of the backslash
differentiates from the division operator /.

1.2.6 ldentifiers

Identifiers have typical lexical style, a letter followed by one or more numbers and underscores.

1.2.7 Reserved Words

MPerm’s reserved words are:

and

mod

cr

in

if

begin
loop
function

or

£ff

subset
then

end
break
procedure

Xor

nl
sizeof
else
print
continue
return

not

qt tb
elsif

for while

1.2.8 Operators

MPerm’s operators are:

+ - * /
& | ~ ..
= <= >

+= -= *= /=

Also, permutations may be composed by juxtaposition.

1.2.9 Comments
Comments begin with -- and continue to the end of the line.

2 Types

2.1 Primitive types:

The primitive types are Boolean, Integer, String, Set, and Permutation. Their semantics are
described below. #Perm manipulates values of each type internally using a Java class that
implements the semantics of the type. The type of a uPerm object is determined statically upon
declaration and first assignment, which must coincide. Coercion between types may be allowable
and is decided at runtime according to the rules described herein.

2.1.1 Boolean
The Boolean operators are:

= And and
= Or or
= Xor xXor
= Unary negation not

Boolean values are represented internally using Java’s Boolean class.
Boolean values may be coerced to integer values with true mapping to 1 and false mapping to
0, or to upper-case strings.

2.1.2 Integer

The integer operators are
= Addition +
= Subtraction -
= Multiplication
= Division
* Modulus mod
= Equality =
= Inequality I=
= Negation -
= Exponentiation **
Integers are represented internally using Java's bigint package.
Integer values may be coerced to Boolean values with 0 mapping to false and all other values
mapping to true. Integers may also be coerced to strings and singleton sets.

2.1.3 String

String operations are:
= Concatenation +
= Assignment =
= Equality =
= Inequality I=

Strings are represented as Java Strings.
The empty string is denoted “”. Characters are strings of length 1.

Strings also admit to array-style indexing, and the built-in functions 1length () and print ().
To wit:

s := "Hello, uPerm!";

print s[2]; -- prints e.

a = length(s); -- a is now 13.
2.1.4 Set

A variable of set type represents a set of positive integer values.

Sets admit to the following operations:

= Assignment :=
» Union |
= Intersection &
= Complement ~
* Integer addition to +

= Integer removal from -
= Equality testing =
= FElement testing in
= Subset testing subset

The sizeof built-in function returns an integer representing the cardinality of the set.

A pPerm programmer can iterate a set using the in keyword, viz:

for i in {1,2,5,6,9} loop
visit(i);
end loop;
Also, the in keyword can help with element testing:

if 1 in {3,4,5,9} then
print "We have unity.";
end if

The reserved word subset can be used for subset testing:

if {5,6} subset {5,6,7} then
print "Good enough.";
end if;

Two sets are equal if they have exactly the same elements.

A range of values may be assigned to a set using the range operator . ., viz
S = {1 .. 10};
Looping is thusly accomplished.

An integer value can be coerced into a singleton set by enclosing it in curly braces, viz. {1}, hence

S + iisasugarys | {i}.

2.1.5 Permutation

Permutations admit to
= Assignment
= Equality testing
= Composition
= Inversion ~

*

(or juxtaposition)

Permutations also admit to a function invocation, which reflects the action of the permutation on a
member of its underlying set. Permutation invocation returns an integer value. Hence:

p := (1 25 8 3);
p(5);

returns 8, the action of p on 5

2.2 Composite Types
uPerm provides a single composite type, Array.

2.2.1 Arrays

MPerm provides very simple array semantics. Arrays may be declared by specifying an identifier
for the array, and the array size.

id[10];

Apart from subprogram invocations, array declaration is the only #Perm statement that does not
include an operator of some sort.

Arrays hold references to primitive types, hence

p := (1 4 35 2);
i = 10;

al2];

all] = p;

al2] = 1i;

is a valid program. Notice that arrays are indexed from 1, not 0.

2.3 References

The underlying representation of all #Perm objects of primitive type is an object of underlying Java
type Reference. Reference has a subtype for each primitive type, determined and instantiated during
parsing by variable declaration and assignment. Coercions are performed upon assignment only.
Assignment to an array index coerces every reference subtype to Reference.

3 Expressions

3.1 Boolean Expressions

Boolean expressions consist of identifiers or literals related together using the Boolean operator
keywords: and, or, xor, not. Order of operations and grouping are typical of the Boolean
domain.

3.2 Integer Expressions

Integer expressions consist of identifiers or literals related together using unary and binary integer
operators and the modulus operator, expressed with the reserved word mod. The modulus operator
has multiplicative precedence.

3.3 Array Indexing Expressions

Array indexing expressions consist of an identifier followed by a bracket-enclosed integer
expression. All array (index) expressions resolve to integer type.

3.4 String Expressions

String expressions consist of identifiers or string literals related together using the concatenation,
equality, and inequality operators.

3.5 Set Expressions

Set expressions consist of identifiers or set literals related together using the operators = (equality),
! = (inequality), | (union), & (intersection), in (element evaluation), and subset (subset
evaluation).

3.6 Permutation Expressions

Permutations expressions consist of identifiers or literals related together using composition
(whitespace or *), equality, or inequality. Permutation identifiers also admit to a built-in functional
notation wherein the identifier is followed by a parenthetical single integer; these expressions are
called permutation evaluations, and have integer type.

3.7 Semantics

Each expression has a type. It denotes the final computational type of the evaluated expression. See
the Types section.

4 Statements

uPerm provides simple statement syntax and semantics.

4.1 Assignment and Declaration Statements
Assignment statements take the form

lhs := rhs;

Upon reading an assignment statement, ¢Perm evaluates the type and value of the right hand side
rhs. It then locates the left hand side variable lhs in the symbol table, creating a new symbol and
assigning rhs if one does not already exist. If 1hs exists and is of the same type as rhs, the
assignment is completed (if rhs also has an entry in the symbol table, a full copy is completed, not
a reference copy). A coercion is required if 1hs and rhs are not of identical type. If the coercion is
illegal, #Perm halts execution, frees all memory allocated for the evaluation of rhs, outputs an
error message. If the coercion is permitted, ¢Perm performs it and completes the assignment. If
1hs is an array index expression, then the Reference to rhs is assigned.

4.2 If Statements
If statements have the general form:

if expression; then
--sequence of statements
elsif expression, then
--sequence of statements
else
--sequence of statements
end if.

The expression; must evaluate or be coerced to a Boolean value. The elseif and else
portions are not required. The if, then, and end if portions are.

4.3 Loop Statements
Loop statements may take one of three forms:

loop
-- sequence of statements
end loop

for <identifier> <iteration-scheme> loop
-- sequence of statements;
end loop;

while expression loop
-- sequence of statements
end loop

The first form produces an infinite loop.

The second form iterates identifier through certain integer values according to the iteration-scheme,
such as that provided by sets and permutations. To visit the values 1 through 10, we might write:

for 1 in {1 .. 10} loop
visit 1;
end loop;

The third form is a typical while loop.

Upon execution of a break statement, #Perm exits the innermost loop of execution. Upon
execution of a continue statement, (/Perm jumps immediately to the next iteration of the loop.

5 Subprograms

5.1 Blocks

A pPerm block is a sequence of statements enclose by the begin and end keywords. A block
causes a stack push and has its own lexical scope.

5.2 Functions
A function is a subprogram that returns a value of a primitive type. The syntax for declaring a
function is:

function identifier (argument-1ist)
begin

-- sequence of statements, with return statement
end

The return statement must specify a value of local scope to be returned (by value) to the calling
statement.

5.3 Procedures
A procedure is a subprogram that does not return a value.

function identifier (argument-1ist)
begin

-- sequence of statements, with return statement
end

The return statement must not specify a value.

5.4 Value-Passing Semantics
All values are passed into functions and procedures using their Reference.

6 Errors

Lexical, syntactical, and semantic errors will result in the termination of execution, immediate
return from any function or procedure, and the output of an error message. Where possible, the
error message will contain a reference to the appropriate section of this manual to assist the
programmer in debugging.

