
Sprite
an animation manipulation language

Language Reference Manual

Team Leader
Dave Smith

Team Members
Dan Benamy
John Morales

Monica Ranadive

Table of Contents
A. Introduction...3
B. Lexical Conventions..3

B1. Tokens..3
B2. White Space...3
B3. Comments..3
B4. Identifiers...4

B4.1 Primitive Data Types...4
B4.2 Objects...4
B4.3 Arrays..4

B5. Keywords...4
B6. String Literals...5
B7. Separators...5
B8. Constants..5
B9. Type casting...5
B10. Scope..5
B11. Garbage Collection...5

C. Expressions..5
C1. Primary Expressions..6
C2. Arithmetic Expressions..6

C2.1 Unary Expressions...6
C2.2 Multiplicative Expressions ...6
C2.3 Additive Expressions...6
C2.4 Comparison Expressions...7

C3. Assignment Expressions..7
Primitives are assigned by value. Objects and Arrays are assigned by reference.......................7

Example 1..7
Example 2..7

C3.1 Left-Value Expressions...8
C3.2 Right-Value Expressions...8

D. Sprite Program..8
D1. Programs..8
D2. Statements..9

D2.1 Functions...9
D2.2 Selection Statements ..9
D2.3 Add Statements...9
D2.4 Count Statements..10
D2.5 Iteration Statements...10
D2.6 Function Statements..10
D2.7 Object Statements...10
D2.8 Print Statements..10
D2.9 Sprite Statements...11
D2.10 Return Statements...11

E. Code Sample..12

A. Introduction
This language reference manual outlines the Sprite programming language. We used regular

expression notation to describe the language. This manual will use the following notation within the
regular expressions:

() – the enclosed terminals and nonterminals are a group
'a' – the symbol 'a' is a terminal
a? – the symbol 'a' is optional
a* – the symbol 'a' will occur, zero, one, or more times
a+ – the symbol 'a' will occur, one or more times
a | b – a choice between the symbols 'a' and 'b'

Syntactic categories are in italic type, and literal words and characters are in typewriter style.

B. Lexical Conventions
A program consists of one Sprite specification stored in a file. Programs are in the ASCII

character set.

B1. Tokens
The language contains five classes of tokens: identifiers, keywords, constants, string literals,

and operators. Blank space, any type of tab, and comments are classified as “white space” and are
ignored by the parser.

B2. White Space
A line break denotes the end of a statement. Lines of programming may not wrap. Spaces,

horizontal tabs, and carriage return characters are whitespace. Comments are ignored by the tokenizer.
Sprite occasionally requires whitespace to separate adjacent tokens that would otherwise be a single
token. For example, identifiers and keywords must have separating whitespace. The newline character
at the end of a file is optional.

B3. Comments
Single line comments start with << and end at a carriage return (the only line terminator

available) or at the end of file. No special characters denote multiple line comments.

B4. Identifiers
An identifier is a sequence of letters or digits, the first of which much be a letter. Letters are

considered any letter of the alphabet (upper and lower case) as well as '_'. Upper and lower case letters
are different. Two identifiers are the same if they have the same ASCII character for every letter and
digit.

Identifier ➝ letter (letter | digit)*

B4.1 Primitive Data Types
The primitive data types for identifiers are strings, numbers, and boolean values (true/false).

Sprite does not require type declarations. Sprite implicitly casts to strings in certain situations, see §B9.

B4.2 Objects
Objects may contain other objects and primitive data types. Objects specify defaults for all

primitive data types. Objects will not contain constructors or subroutines.
obj foo
{

bar = 1
rab = true
arb = “Hello world”

}

B4.3 Arrays
The add(array_identifier, identifier) function may append any primitive or object to an

array. The count() function returns the number of elements in an array. Access the nth element of
an array using array_identifier[n – 1]. Arrays manage their own memory, and allocate space as more
elements are added.

Array out of bounds errors will return one of two special values: undefined and NaN (not a
number). These error occur at runtime. Array out of bounds errors return undefined unless it is part of
a multiplicative/additive expression, and will return NaN.

B5. Keywords
Sprite reserves the following identifies as keywords; all keywords are lower case and use only

letters.
add elseif print

array false sprite

callevery for ret

count func true

if new

else obj

B6. String Literals
A string literal, or string constant, is a sequence of characters surrounded by double quotes, like

“ ... “. The addition operator concatenates strings. String literals may not contain double quotes or span
multiple lines.

B7. Separators
The following characters are separators:

{ } , . []

Curly brackets {} must be on their own line and cannot accompany any other code on the line on which
they appear. Sprite does not allow arbitrarily placed separators. See §D.

NOTE: This document, in order to save space, places curly brackets on the same line as code. This will
not compile correctly, as curly brackets must be on their own line.

B8. Constants
Constants are a sequence of digits representing an integer or real. If an arithmetic expression

between two integers evaluates to a real, the output will be automatically cast as a real.
Number ➝ digit+ (. digit+)?

B9. Type casting
Addition of a String with any primitive non-String implicitly type casts the non-String to a

String. The print(expression) function implicitly type casts any non-String argument as a String.

B10. Scope
Static scoping rules in Sprite are as follows:

1. Identifiers are valid from where they are initialized and are no longer valid after the end of the
block within which they were made.

2. Identifiers accessible where a new block starts are valid inside that block.
3. A file that does not contain any {}'s is considered one block for scoping purposes.

B11. Garbage Collection
Sprite has built-in garbage collection. Dynamically allocated instances are automatically freed at some
point after the last reference to them is destroyed.

C. Expressions
The precedence of expression operators is identical to the order in which they are documented

below. Within each subsection, the operators have the same precedence. Each subsection is left-
associative unless otherwise specified. The order of evaluation of expressions is left to right.
Expressions are the building blocks of statements and programs in the Sprite Language.

C1. Primary Expressions
factor:

| (expression)
| left-value
| number
| boolean
| string

C2. Arithmetic Expressions
Arithmetic expressions take the primary expressions as their operands. While the productions of

the expressions appear to create right associative rules, when implemented in ANTLR, the language is
left-associative.

C2.1 Unary Expressions
unary:

| - unary
| ! unary
| factor

A unary expression is an operation with at most one operand ('-' or '!'). The prefix notation binary
operators '-' and '!' represent negative and not.

C2.2 Multiplicative Expressions
mult-expression:

| unary (* unary)*
| unary (/ unary)*

The binary operators '*' and '/' represent multiplication and division.

C2.3 Additive Expressions
add-expression:

| mult-expression (+ mult-expression)*
| mult-expression (- mult-expression)*

The binary operators '+' and '-' indicate addition and subtraction.

C2.4 Comparison Expressions
comp-expression:

| add-expression (> add-expression)*
| add-expression (< add-expression)*
| add-expression (>= add-expression)*
| add-expression (<= add-expression)*

equal-expression:
| comp-expression (== comp-expression)*
| comp-expression (!= comp-expression)*

join-expression:
| equal-expression (&& equal-expression)*

expression:
| join-expression (|| join-expression)*

Comparison expressions can intuitively compare primary expressions. Using the Kleene close an
expression can evaluate to any combination of comparisons and mathematical expressions or to a
simple terminal such as a number of string.

C3. Assignment Expressions
To assign an argument to a value, a declaration must be made as detailed below:

assignment:
| left-value = right-value

Primitives are assigned by value. Objects and Arrays are assigned by reference.

Example 1
a = new array
b = a
add(b,5)
In this example at the end, both a and b still have the same value. There is only one array, both a and b
point to it.

Example 2
func foo(arg)
{

<< arg = new array
add (arg, 2)

}
a = new array
add (a, 5)
foo(a)

With the comment left in, the above code will evaluate to the left figure. If the line is uncommented,
arg will point to a new Array, as shown in the right figure.

C3.1 Left-Value Expressions
left-value:

| identifier | array | member
array:

| identifier ([expression])+
member:

| identifier (. identifier)+
A left-value expression describes all valid syntax that may appear on the left hand side of an
assignment. This is used for declaring/accessing identifiers, arrays, and characteristics of identifiers.

C3.2 Right-Value Expressions
right-value:

| new array
| new identifier
| expression
| function

A right-value expression describes all valid syntax that may appear on the right hand size of an
assignment. This is used for declaring and accessing arrays, identifies, expressions, and functions.

D. Sprite Program

D1. Programs
Sprite programs are a sequence of one or more statements.

program:
| statement +

Certain types of statements may contain blocks of code made up of more statements which will be
formatted as follows:

block:
| { statement * }

D2. Statements
Statements are executed in sequence. Statements can fall into several groups.

statement:
| function
| selection-statement
| add-statement
| count-statement
| iteration-statement
| func-statement
| object-statement
| print-statement
| sprite-statement
| ret-statement

D2.1 Functions
Functions are created using a function-statement, with a name (their identifier) as well as a list

of parameters (expressions) which the function will take upon declaration. Function may except zero or
more parameters, each separated with a comma. The function statement refers to the correct grammar
for calling a function which has been previously declared.

function:
| identifier ((expression (, expression)*)?)

D2.2 Selection Statements
Selection statements must be formatted as follows.

selection-statement:
| if (expression)

block
(elseif (expression)

block)*
(else

block)?

In both forms of the if statement, the expression is evaluated and if it evaluates to true the
block on the following line is executed. In the second form, the second block is executed if the
expression evaluates to false. There is no else ambiguity because of the rule that { }'s must surround a
block.

D2.3 Add Statements
Add statements allow elements to be added to arrays.

add-statement:
| add (identifier , expression)

An add statement consists of an identifier representing an array and an expression representing
the element to be added to the array. Arrays are heterogeneous so it does not matter what type
expression evaluates to.

D2.4 Count Statements
Count statements will evaluate the number of elements in a given array.

count-statement:
| count (identifier)

The identifier represents an array and the statement will evaluate to the number of elements held in the
array specified.

D2.5 Iteration Statements
Iteration statements specify looping.

iteration-statement:
| for (assignment ; expression ; assignment)

block
Unlike other languages, the arguments within the for statement are required for the loop to

compile correctly. In the for statement, the first assignment is evaluated once, and specifies the
initialization for the loop. The block must start on a new line of code, comments are the only thing
allowed on the same row as a for statement.

D2.6 Function Statements
func-statement:

| func function callEvery-exp?
block

callEvery-exp:
| callevery (number | left-value)

Functions executes a block of sprite code with optional arguments, passed by reference. A
function may include a callevery option. The callevery(int-n) option causes the function to be
repeatedly executed every int-n milliseconds.

D2.7 Object Statements
There is only one way to write an object statement. Object statements are object declarations in

Sprite.
object-statement:

| obj identifier { (assignment \n) + }

D2.8 Print Statements
The print statement displays data.

print-statement:
| print (expression)

If the statement is passed something other than a string, the terminal of expression will be cast to a
String.

D2.9 Sprite Statements
Sprite statements are obvious a particularly important section of the language.

sprite-statement:
| sprite (string|member , constant|member ,

 constant|member , constant|member)
A sprite statement accepts a string/member (the name of the .jpg file) as well as three additional
parameters that evaluate to numbers. The numbers refer to the coordinates where the image file will be
displayed.

D2.10 Return Statements
A return statement is used within a function to return a particular right-value.

ret-statement:
| ret r-value

E. Code Sample
The sample of code describes a single sprite, ball, bouncing around the screen of a browser window.
obj Ball
{

left = 50
top = 50
downDirection = 3
rightDirection = 3
id = 0

}

newBall = new Ball
newBall.id = 1
func MoveBall () callevery(10)
{

newBall.top = newBall.top + newBall.downDirection
newBall.left = newBall.left + newBall.rightDirection
if (newBall.top <= 0 || newBall.top >= 400)
{

newBall.downDirection = -1 * newBall.downDirection
}
if (newBall.left <= 0 || newBall.left >= 700)
{

newBall.rightDirection = -1 * newBall.rightDirection
}
sprite("Ball.jpg", newBall.id, newBall.top, newBall.left)

}

	A. Introduction
	B. Lexical Conventions
	B1. Tokens
	B2. White Space
	B3. Comments
	B4. Identifiers
	B4.1 Primitive Data Types
	B4.2 Objects
	B4.3 Arrays

	B5. Keywords
	B6. String Literals
	B7. Separators
	B8. Constants
	B9. Type casting
	B10. Scope
	B11. Garbage Collection

	C. Expressions
	C1. Primary Expressions
	C2. Arithmetic Expressions
	C2.1 Unary Expressions
	C2.2 Multiplicative Expressions
	C2.3 Additive Expressions
	C2.4 Comparison Expressions

	C3. Assignment Expressions
	Primitives are assigned by value. Objects and Arrays are assigned by reference.
	Example 1
	Example 2

	C3.1 Left-Value Expressions
	C3.2 Right-Value Expressions

	D. Sprite Program
	D1. Programs
	D2. Statements
	D2.1 Functions
	D2.2 Selection Statements
	D2.3 Add Statements
	D2.4 Count Statements
	D2.5 Iteration Statements
	D2.6 Function Statements
	D2.7 Object Statements
	D2.8 Print Statements
	D2.9 Sprite Statements
	D2.10 Return Statements

	E. Code Sample

