
Programming Languages and Translators
COMS W4115

Stephen A. Edwards
Fall 2007

Orange White Green Animation Language

Reference Manual

Meenakshi Sripal
October 18, 2007



Language Reference Manual 

1.1. Introduction
OWGAL language is a programming language that allows users to develop 
animations through the generation of shockwave flash files. This manual describes in 
details about the rules, conventions, and built-in features.  

1.2. Grammar Notation
This manual introduces lexical and syntactic aspects of OWGAL’s grammar. A set of 
productions are defined consisting of both non-terminals and terminals.  The lexical 
grammar has undefined terminals such as if keyword, symbols like ( )[ ], else
keyword; terminals are given in arial font. Examples of non-terminals are expression
or identifier; non-terminals are given in italic font.  A non-terminal are always 
defined on the left side of the colon whereas a mix of terminals and non-terminals are 
defined on the right side of the same colon.  The syntactic grammar describes how 
sequences of tokens can form syntactically correct programs.  

The input sequence of characters of the program are scanned and grouped into tokens, 
in which white space and comments discarded. If the sequence of characters is in the 
form a?, it denotes that the symbol a is optional. a* denotes that the symbol a may 
occur zero or more times. a+ denotes that the symbol a will occur one or more times. 
(a|b) denotes a choice between the symbols a and b.

1.3. Lexical Conventions
In order for the OWGAL program to run, an object, mainly an image, can be 
imported into the code.  Compiling the animation file will generate a syntactically
correct program, which in turn can be used by the Java compiler.  The goal of the 
lexical grammar is to simplify the job of the parser, which sees the animation file 
prior the Java compiler.  
     

1.3.1. Tokens
There are six classes of tokens: identifiers, keywords, constants, string literals, 
operators, and other separators.  White space, such as blanks, tabs, newlines, and 
comments, are ignored except as they are used to separate tokens.  Some white 
space is required to separate otherwise adjacent identifiers, keywords, and 
constants.  

1.3.2. Comments
There are two kinds of comments: 

! text ! 

The characters ! introduce a comment, which terminates with the character !.  



!! text 

Single-line comments introduced by !! (double exclamation point) cause the 
compiler to ignore the remainder of that line.  

Comments do not nest, and they do not occur within string or character literals.  

1.3.3. Identifiers
An identifier is a sequence of letters and digits.  It must begin with a letter.  
Identifiers are case sensitive and can have any length.  The underscore character 
(_) is interpreted as a letter.  

1.3.4. Keywords
The following identifiers are reserved for use and cannot be used as otherwise: 

text width if ROUTINE
for length else return
import img xposition yposition
background foreground set put
while move up down
left right xaxis yaxis

1.3.5. Constants
There are several kinds of constants.  

constant: integer-constant
character-constant

1.3.5.1. Integer Constants
An integer constant consists of a sequence of decimal digits ranging from 0 to 
9.  It is unsigned and always positive. The maximum value for the integer
constant is 232.

1.3.5.2. Character Constants
A character constant is a sequence of one or more characters enclosed in 
double quotes (“…”).  Character constants do not contain the “ character or 
newlines; in order to represent them, the following escape sequences may be 
used.

Newline \n Form feed \f
Carriage return \r question mark (?) \?
Horizontal tab \t double quote (“) \”
Backslash (\) \\



1.4. Meaning of Identifiers
Identifiers, or names, can refer to a variety of things: functions and objects.  An 
object, sometimes called a variable, is a location in storage and its interpretation 
depends on its type.  

1.4.1.  Basic Data Types 
Objects declared as text contain a sequence of characters.  Objects declared as 
img contains special file format and attributes that are recognizable by the 
compiler.  

1.5. Expressions
The precedence of expression operators is the same as the order of the major 
subsections of this section, the highest precedence first.  Within each subsection, the 
operators have the same precedence. Left- or right-associative is specified in each 
subsection for the operators discussed therein.

1.5.1.   Primary Expressions
Primary expressions are identifiers, constants, strings, or expressions in 
parentheses.  

primary-expression: identifier
| constant
| (assignment-expression) 

An identifier is a primary expression.  Its type is specified by its 
declaration.  

A constant is a primary expression, with either form of the following
types: text, img, length and width.  

A parenthesized expression is a primary expression containing a mix of 
nonterminals and terminals.  

1.5.2.   Additive Operators
The additive operators + and – are operated from left to right.  If the operands 
have arithmetic type, the usual arithmetic conversions are performed.  

additive-expression: integer-expression + atom
| integer-expression – atom
| atom ;

atom: NUMBER ; 

The result of the + operator is the sum of the operators.  The result of – operator is 
the difference of the operands.  

1.5.3.   Relational Operators
The relational operators are operated from left to right.  



relational-expression: relational-expression < additive-expression
| relational-expression > additive-expression
| relational-expression <= additive-expression
| relational-expression >= additive-expression

1.5.4.   Equality Operators
equality-expression: relational-expression

| equality-expression == relational-expression
| equality-expression != relational-expression

The == (equal to) and the != (not equal to) operators are analogous to the 
relational operators except for their lower precedence.  

1.5.5. Assignment Expressions
assignment-expression: primary-expression

| identifier = assignment-expression

The result for the first operand must be a variable, or a compile time error occurs. 
This operand must be a named variable. The type of the assignment-expression is 
the type of the variable.  In the assignment, with =, the value of the expression 
replaces that of the object referred to by the identifier.

1.6. Declarations
declaration: TypeSpecifier InitIdentifierList ; 
type-specifier: text

| img
init-identifier-list: init-identifier

| init-identifer-list, init-identifier
init-identifer: identifer

| identifier = string-expression ; 

A declaration consists of  a type-specifier, followed by an identifier, and possibly 
followed by an equal sign and a string-expression or an integer-expression (if the user 
chooses to declare and initialize).  

1.6.1. Function Declarations and Definitions
Functions are declared and defined outside of the ROUTINE block.  They are 
type-specified by a text.  Following the type-specifier is the identifier, and 
following the identifier is the parameter list surrounded by parentheses.  
The syntax of the parameters is
parameter-type-list: parameter-list

| parameter-list,…
parameter-list: parameter-declaration



| parameter-list, parameter-declaration
parameter-declaration: text identifier 

| img identifier 

The function is then defined within a pair of braces.  At the end of function 
definition, the function returns a string.  

1.7. Statements
Except as indicated, statements are executed in sequence.  Statements are executed 
for their effect, and do not have values.  They fall into several groups.

statement: expression-statement
| compound-statement
| conditional-statement
| iteration-statement

1.7.1.  Expression Statement  
Most statements are expression statements, which have the form: 

expression-statement: (expression)* ;

Most expression statements are assignments.  

1.7.2. Compound Statement
So that several statements can be used where one is expected, the compound 
statement is provided: 

compound-statement: { (declaration-list)* (statement-list)* } 

declaration-list: declaration
  | declaration-list declaration

statement-list: statement
| statement statement-list 

An identifier within the declaration-list may be declared only once in the same 
block.  

1.7.3. Conditional Statements
Conditional statements choose one of several flows of control.

conditional-statement: if ( expression ) statement
| if ( expression ) statement else statement

In both forms of the if statements, the expression is evaluated and the first sub-
statement is executed only if the expression is not equal to zero.  In the second 
form, the second sub-statement is executed only if the expression is zero.  The 
else ambiguity is resolved by connecting an else with the last encountered else-
less if at the same block nesting level.  



1.7.4. Iteration Statements
Iteration statements specify looping: 

iteration-statement: while ( expression ) statement
| for ( expression ; expression ; expression ) 
  statement

In the while statement, the sub-statement is executed repeatedly so long as the 
value of the expression is not equal to zero; the expression must have arithmetic.  
With while, the test occurs before each execution of the statement.  

In the for statement, the first expression is evaluated once, and thus specifies 
initialization for the loop.  There is no restriction on its type.  The second 
expression must have arithmetic; it is evaluated before each iteration, and if it 
becomes equal to zero, the for is terminated.  The third expression is evaluated 
after each iteration, and thus specifies a re-initialization for the loop.  There is no 
restriction on its type.  

1.8. OWGAL Source File Specifications
This section describes the format of an OWGAL source file.  

1.8.1. ROUTINE Block Definition
Routine: ROUTINE { CompoundStatement } 

CompoundStatement: DeclarationList StatementList 

StatementList: Statement 
| StatementList Statement

DeclarationList: Declaration 
| DeclarationList Declaration 

Declaration: ImageDeclaration
| (PrimitiveTypeDeclaration)*

ImageDeclaration: (ImportDeclaration)+

PrimitiveTypeDeclaration: text IdentifierList ; 
| img IdentifierList ; 

IdentifierList: Identifier 
| IdentifierList, Identifier



The ROUTINE block definition is similar to the “main” routine declaration in a C
program.  The declarations and statements must be made within the ROUTINE 
block, and nothing should follow after the closing curly brace.    

1.8.2. Image Declaration Statements
ImageDeclaration: img identifier = ImportDeclaration ;

ImageLengthDeclaration: identifier.length = IntegerExpression ;

ImageWidthDeclaration: identifier.width = IntegerExpression ;

The image declaration statements allow users to set up the primary objects that 
will be used throughout the animation.  ImageDeclaration should be declared 
before declaring the image’s length and width.  There must be at least 1 image 
declaration statement within the ROUTINE block.  The length and the width 
declarations are optional.  If both of these are not declared, then the image’s 
length and width will default to 50, 50, respectively.  They all must be declared 
within the ROUTINE block.  

img defines a special file format that needs to be recognized by the compiler.
length defines the length of the image in pixels.  The length value must be a 
positive integer.  
width defines the width of the image in pixels.  The width value must be a 
positive integer.  

    
1.8.3. Import Statement 
ImportDeclaration: import[ FilenameExpression ];

The import statement tells the compiler to prepare a data structure based upon 
another program for use by the current program and load the image onto the 
screen during the execution.  At least one import statement must always be 
specified at the very beginning of the program.  

The import feature provides users with ease of use and flexibility by permitting
users to input the already made images, with file extensions .jpeg or .gif, into the 
program to work with.  Images can be photos or graphics.  Checks will verify that 
the imported image file meets the file requirements.

1.8.4. Put Declaration
PutDeclaration: put [ identifier, IntegerExpression, IntegerExpression ];

The put parameters are: object name, x coordinate, y coordinate.  

The put declaration is used to place objects (images) at the specified location 
permanently.  The object name must be taken from the identifier in the



ImageDeclaration.  The integers must be positive.  There must be at least one 
image declaration before the put declaration can be specified.  The put declaration 
must be declared within the ROUTINE block.  

1.8.5. Set Declaration
SetDeclaration: set identifier BackFrontExpression ; 
BackFrontExpression: background 

| foreground ; 

The set parameters are: object name, background/foreground option.  

The background option is used to place the specified object (image) behind other 
objects, if any.  The foreground option is used to place the specified object in 
front of any images that are set to the background layer.  If set is not declared, 
then the images will default to the front layer and images may overlay.  There 
must be at least one image declaration before the set declaration can be specified.  
The set declaration must be declared within the ROUTINE block.  

1.8.6. Move Declaration
MoveDeclaration: move ( identifer, XYExpression, IntegerExpression, 

DirectionExpression) ; 
XYExpression: xaxis | yaxis
DirectionExpression: up | down | left | right

The move parameters are: object name, x/y axis, number of times, direction for 
the object to move. 

The move declaration lets the user to dictate how the object (image) to be moved 
in a certain way.  Integers must be positive.  There must be at least one image 
declaration before the move declaration can be specified.  The move declaration 
must be declared within the ROUTINE block. 


