

COMS W4115

Programming Languages and Translators

Event Driven State Language (EDSL)

Language Reference Manual (LRM)

Christopher D. Sargent

cds2131@columbia.edu

October 17, 2007

3. Language Manual

This manual is intended to be chapter 3 of the final report and as such, the

numbering convention starts at 3. It is assumed that the user has read and

understands the proposal white paper and therefore this chapter needs no

introduction.

3.1 Token

A token can be whitespace, a comment, an identifier, a keyword, a literal, or an

operator.

3.1.1 Whitespace

Whitespace:

 „ „

 „\t‟

 „\n‟

 „\r\n‟

Whitespace consists of blanks or spaces, horizontal tabs, and newlines,

or a concatenation of one or several of these. For purposes of

compatibility with UNIX and Windows platforms, a newline may be

either a linefeed character or a carriage return followed by a linefeed.

Whitespace serves no other purpose than to separate other tokens.

3.1.2 Comment

Comment:

 Traditional-Comment

 End-of-Line-Comment

Traditional-Comment:

 /* Comment-End

Comment-End:

* Comment-End-Star

[^*] Comment-End

Comment-End-Star:

 /

* Comment-End-Star

 [^/*] Comment-End

End-of-Line-Comment:

 // Characters-in-End-of-Line-Comment

Characters-in-End-of-Line-Comment:

[^ „\n‟ „\r\n‟]

Characters-in-End-of-Line-Comment [^ „\n‟ „\r\n‟]

The traditional comment begins with the characters /* and ends with

the characters */. It can span multiple lines, but it does not nest with

other comments.

The end-of-line comment begins with the characters//, and ends with

the newline character or characters.

3.1.3 Identifier

Identifier:

 Characters-in-Identifier

Characters-in-Identifier:

 ([A-Z] | [a-z]) ([A-Z] | [a-z] | [0-9])*

An identifier begins with at least one letter and follows with a

sequence of zero or more letters and digits. Identifiers are case

sensitive and may have any length, subject to platform specific

limitations.

3.1.3.1 Keyword

A keyword is an identifier that has special meaning within the

language. Keywords should not be used except for their intended

purpose. Keywords are identified within the following sections of

this document by their courier font.

3.1.4 Literal

Literal:

 Boolean-Literal

 Integer-Literal

 Real-Literal

Boolean-Literal:
 true

 false

Integer-Literal:

 Decimal-Literal

 Hexadecimal-Literal

 Binary-Literal

Decimal-Literal:

 [0-9]+

Hexadecimal-Literal:

 0 (x|X) ([A-F] | [a-f] | [0-9])*

Binary-Literal:

 0 (y|Y) [0-1]*

Real-Literal:

 „.‟ [0-9]+ Exponent?

 [0-9]+ („.‟ [0-9]+ Exponent? | Exponent)

Exponent:

 (e|E) („+‟ | „-„)? [0-9]+

A Boolean literal has one of two values, either true or false.

An integer literal can be a decimal, hexadecimal, or binary number.

The prefix is necessary for an LL(2) parser to be able to distinguish the

three different kinds of integer.

A real literal “consists of an integer part, a decimal point, a fraction

part, an e or E, an optionally signed integer exponent. … The integer

and fraction parts both consist of a sequence of digits. Either the

integer part or the fraction part (not both) may be missing; either the

decimal point or the e and the exponent (not both) may be missing.”
1

3.1.5 Operator

The function of the operators may depend on their operands. See

section 3.2 for their usage within expressions.

3.2 Type and Type Conversion

There are four basic types. The first three types are simple value storage types.

The last is unique in that it stores a value, but it also operates on that value.

Like the Boolean literal, a Boolean variable takes either the true or false

value.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language Second Edition (Murray Hill:

Prentice-Hall, 1988) 194.

The integer variable takes a 32-bit signed integer. The minimum value of an

integer is -2147483648 and the maximum is 2147483647.

The real variable takes a 64-bit double-precision real. Its size and

representation are governed by ANSI/IEEE Std. 754-1985.

A timer has the same size and representation as a positive real, but it is

constantly decremented until its value reaches zero. Its units are seconds

relative to wall-clock time.

Automatic type conversion may occur as a result of certain operators and their

required operands. Automatic or implicit conversion is the only allowed type

conversion mechanism.

3.2.1 Boolean and Integer

A bool may be converted to an int without loss. If its value is

false, then its integer representation will be 0. If its value is true,

then its integer representation will be 1.

An int may be converted to a bool with data loss. If its value is 0,

then its Boolean representation will be false. If its value is not 0

(either a positive or negative value), then its Boolean representation

will be true.

3.2.2 Integer and Real

An int may be converted to a real without loss. Its value is exactly

the same, with the exception that it has a fractional component equal to

zero.

A real may be converted to an int with data loss. Not only will its

fractional component be truncated towards zero, but if the magnitude

of its whole number component exceeds the minimum or maximum

for an integer, it will be reduced to that value.

3.2.3 Real and Timer

A timer may not take a value that is not an acceptable real value.

In addition, a timer may not store a negative value. If a timer is

assigned a negative value, its sign will be inverted.

The value that a timer currently has may be converted to a real

without loss.

3.3 Expression

The precedence of the expressions is in order that the expressions are in, in

this section.

3.3.1 Primary Expression

primary-expression:

 Identifier

Literal

 (expression)

The primary expressions consist of identifiers, literals, and expressions

in parentheses.

Identifier

See section 3.1.3.

Literal

See section 3.1.4.

(expression)

A parenthesized expression is equivalent to the same expression

without the parentheses.

3.3.2 Unary Expression

unary-expression:

 primary-expression

 -unary-expression

!unary-expression

The unary operators: - and ! evaluate from right-to-left.

-unary-expression

For the „-„ or „negative‟ operator, the result of the evaluation is the

negative of the operand.

!unary-expression

For the „!‟ or logical „negation‟ operator, the result of the evaluation is

true if the operand is false and false if the operand is true.

3.3.3 Multiplication, Division, or Remainder Expression

multiplication-expression:

unary-expression

multiplication-expression * unary-expression

multiplication-expression / unary-expression

multiplication-expression % unary-expression

The multiplication, division, and remainder operators: *, /, and %

evaluate from left-to-right.

multiplication-expression * unary-expression

For the „*‟ or „multiplication‟ operator, the result of the first operand is

multiplied by the result of the second operand.

multiplication-expression / unary-expression

For the „/‟ or „division‟ operator, the result of the first operand is

divided by the result of the second operand. If the second operand is

zero, the result is undefined.

multiplication-expression % unary-expression

For the „%‟ or „remainder‟ operator, the result is the integer remainder

of the division of the first operand by the second operand. “If both

operands are non-negative, then the remainder is non-negative and

smaller than the divisor; if not, it is guaranteed only that the absolute

value of the remainder is smaller than the absolute value of the

divisor.”
2

3.3.3.1 expression * expression

The * operator indicates multiplication. The result is an int if

both operands are int data objects. If one is an int and the other

a real, then the former is converted to a real, and the result is a

real. The timer is treated as a real for this operator. No other

combinations are permitted.

3.3.3.2 expression / expression

The / operator indicates division. The result is an int if both

operands are int data objects. If one is an int and the other a

real, then the former is converted to a real, and the result is a

2 Kernighan and Ritchie 205.

real. The timer is treated as a real for this operator. No other

combinations are permitted.

3.3.3.3 expression % expression

The % operator results in the remainder of the division of the first

operand by the second. Both operands must be int types and the

result is an int. The result has the same sign as the dividend.

3.3.4 Addition or Subtraction Expression

addition-expression:

 multiplication-expression

 addition-expression + multiplication-expression

addition-expression - multiplication-expression

The addition and subtraction operators: + and – group from left-to-

right.

addition-expression + multiplication-expression

For the „+‟ or „addition‟ operator, the result of the first operand is

added to the result of the second operand.

addition-expression - multiplication-expression

For the „-‟ or „subtraction‟ operator, the result of the second operand is

subtracted from the result of the first operand.

3.3.5 Shift Expression

shift-expression:

 addition-expression

 shift-expression << addition-expression

shift-expression >> addition-expression

The two shift operators: << and >> group from left-to-right.

shift-expression << addition-expression

For the „<<‟ or „shift left‟ operator, the result of the first operand is

left-shifted by the number of bits given in the result of the second

operand. Its operands must evaluate to int or bool values. Values

that are not are automatically cast to the int type.

shift-expression >> addition-expression

For the „>>‟ or „shift right‟ operator, the result of the first operand is

right-shifted by the number of bits given in the result of the second

operand. Its operands must evaluate to int or bool values. Values

that are not are automatically cast to the int type.

3.3.6 Inequality Expression

inequality-expression:

 shift-expression

 inequality-expression < shift-expression

inequality-expression > shift-expression

inequality-expression <= shift-expression

inequality-expression >= shift-expression

The four inequality operators: <, >, <=, >= group from left-to-right.

inequality-expression < shift-expression

For the „<‟ or „less than‟ operator, if the first operand is less than the

second operand, then the expression yields true, if not, it yields

false.

inequality-expression > shift-expression

For the „>‟ or „greater than‟ operator, if the first operand is greater than

the second operand, then the expression yields true, if not, it yields

false.

inequality-expression <= shift-expression

For the „<=‟ or „less than or equal to‟ operator, if the first operand is

less than or equal to the second operand, then the expression yields

true, if not, it yields false.

inequality-expression >= shift-expression

For the „>=‟ or „greater than or equal to‟ operator, if the first operand

is greater than or equal to the second operand, then the expression

yields true, if not, it yields false.

3.3.7 Equality Expression

equality-expression:

 inequality-expression

 equality-expression == inequality-expression

 equality-expression != inequality-expression

The two equality operators: == and != group from left-to-right.

equality-expression == inequality-expression

For the „==‟ or „equal to‟ operator, if the first operand is equal to the

second operand, then the expression yields true, if not, it yields

false.

equality-expression != inequality-expression

For the „!=‟ or „not equal to‟ operator, if the first operand is not equal

to the second operand, then the expression yields true, if not, it

yields false.

3.3.8 Bitwise AND Expression

bitwise-AND-expression:

 equality-expression

 bitwise-AND-expression & equality-expression

The bitwise „and‟ operator evaluates from left-to-right. The result is a

bitwise and function of the operands. Its operands must evaluate to

int or bool values. Values that are not are automatically cast to the

int type.

3.3.9 Bitwise XOR Expression

bitwise-XOR-expression:

 bitwise-AND-expression

 bitwise-XOR-expression ^ bitwise-AND-expression

The bitwise „exclusive or‟ operator evaluates from left-to-right. The

result is a bitwise exclusive or function of the operands. Its operands

must evaluate to int or bool values. Values that are not are

automatically cast to the int type.

3.3.10 Bitwise OR Expression

bitwise-OR-expression:

 bitwise-XOR-expression

 bitwise-OR-expression | bitwise-XOR-expression

The bitwise „inclusive or‟ operator evaluates from left-to-right. The

result is a bitwise inclusive or function of the operands. Its operands

must evaluate to int or bool values. Values that are not are

automatically cast to the int type.

3.3.11 Logical AND Expression

logical-AND-expression:

bitwise-OR-expression

logical-AND-expression && bitwise-OR-expression

The logical „and‟ operator evaluates from left-to-right. The first

operand is evaluated completely, and then the second operand is

evaluated completely. If the result of the first evaluation is true and

the second evaluation is true, then the result of the expression is

true. Otherwise, the result of the expression is false.

3.3.12 Logical XOR Expression

logical-XOR-expression:

logical-AND-expression

logical-XOR-expression ^^ logical-AND-expression

The logical „exclusive or‟ operator evaluates from left-to-right. The

first operand is evaluated completely, and then the second operand is

evaluated completely. If the result of the first evaluation is true and

the second evaluation is false, or the first evaluation is false and

the second evaluation is true; then the result of the expression is

true. Otherwise, the result of the expression is false.

3.3.13 Logical OR Expression

conditional-expression:

 logical-XOR-expression

 conditional-expression || logical-XOR-expression

The logical „inclusive or‟ operator evaluates from left-to-right. The

first operand is evaluated, and if the result of its first evaluation is

true, then the value of the expression is true. If the result is false,

the second operand is evaluated and the expression is equal to its

result.

3.3.14 Assignment Expression

expression:

 conditional-expression

identifier = expression

The assignment operator evaluates from right-to-left and requires a

modifiable variable as its left operand. The value of expression

replaces the value of the variable referred to by the variable.

3.4 Variable Declaration

declaration:

 Linkage Type Identifier

Linkage:
 internal

 input

 output

 inout

Type:
 bool

 int

 real

 timer

The scope of a variable begins at the end of its declaration and persists to the

end of the program in which it appears. Variables have the same lifetime as

the running program. A variable declaration is associated with an identifier

and has two configurable attributes: linkage and type.

There are two types of linkage: internal and external and three types of

external linkage: input, output, and inout. The inout linkage is the

only bi-directional external linkage type.

There are four variable types. See section 3.2.

3.5 Statement

statement:

 labeled-statement

 expression-statement

 compound-statement

 selection-statement

 jump-statement

Unlike expressions, statements do not have values.

3.5.1 Labeled Statement

labeled-statement:

 Identifier : statement

A label with an identifier declares that identifier. This identifier then

becomes the target of a goto.

3.5.2 Expression Statement

expression-statement:

 expressionopt ;

Each expression statement is followed by a semi-colon. For more

information on expressions, see section 3.3.

3.5.3 Compound Statement

compound-statement:

 { statement-listopt }

statement-list

 statement

 statement-list statement

The compound statement is a list of zero or more statements of any

kind.

3.5.4 Selection Statement

selection-statement:

 if (expression) statement

 if (expression) statement else statement

In both forms of the if statement, the expression, which must have

arithmetic type, is evaluated …. If it is true, the first substatement is

executed. In the second form, the second substatement is executed if

the expression is false. “The else ambiguity is resolved by

connecting an else with the last encountered else-less if at the

same block nesting level.”
3

3.5.5 Jump Statement

jump-statement:

 goto Identifier ;

3 Kernighan and Ritchie 223.

The identifier must be a label. Control transfers to the labeled

statement.

3.6 Program Declaration

program-declaration:

 declaration-listopt compound-statement

declaration-list:

 declaration

 declaration-list declaration

The entire program consists of an optional list of variable declarations

followed by a compound statement, which is a list of statements surrounded

by braces.

3.7 Grammar

The grammar is a concatenated listing of the entire grammar from the

previous sections. The grammar listing progresses from lower precedence to

higher precedence.

program-declaration:

 declaration-listopt compound-statement

declaration-list:

 declaration

 declaration-list declaration

declaration:

 Linkage Type Identifier

Linkage:
 internal

 input

 output

 inout

Type:
 bool

 int

 real

 timer

statement:

 labeled-statement

 expression-statement

 compound-statement

 selection-statement

 jump-statement

labeled-statement:

Identifier : statement

expression-statement:

 expressionopt ;

compound-statement:

{ statement-listopt }

statement-list:

statement

statement-list statement

selection-statement:

if (expression) statement

if (expression) statement else statement

jump-statement:

 goto Identifier ;

expression:

conditional-expression

identifier = expression

conditional-expression:

 logical-XOR-expression

conditional-expression || logical-XOR-expression

logical-XOR-expression:

logical-AND-expression

logical-XOR-expression ^^ logical-AND-expression

logical-AND-expression:

bitwise-OR-expression

logical-AND-expression && bitwise-OR-expression

bitwise-OR-expression:

bitwise-XOR-expression

bitwise-OR-expression | bitwise-XOR-expression

bitwise-XOR-expression:

bitwise-AND-expression

bitwise-XOR-expression ^ bitwise-AND-expression

bitwise-AND-expression:

equality-expression

bitwise-AND-expression & equality-expression

equality-expression:

inequality-expression

equality-expression == inequality-expression

equality-expression != inequality-expression

inequality-expression:

shift-expression

inequality-expression < shift-expression

inequality-expression > shift-expression

inequality-expression <= shift-expression

inequality-expression >= shift-expression

shift-expression:

addition-expression

shift-expression << addition-expression

shift-expression >> addition-expression

addition-expression:

multiplication-expression

addition-expression + multiplication-expression

addition-expression - multiplication-expression

multiplication-expression:

unary-expression

multiplication-expression * unary-expression

multiplication-expression / unary-expression

multiplication-expression % unary-expression

unary-expression:

primary-expression

 -unary-expression

!unary-expression

primary-expression:

Identifier

Literal

(expression)

Literal:

Boolean-Literal

Integer-Literal

Real-Literal

Boolean-Literal:
true

false

Integer-Literal:

Decimal-Literal

Hexadecimal-Literal

Binary-Literal

Decimal-Literal:

[0-9]+

Hexadecimal-Literal:

0 (x|X) ([A-F] | [a-f] | [0-9])*

Binary-Literal:

0 (y|Y) [0-1]*

Real-Literal:

„.‟ [0-9]+ Exponent?

[0-9]+ („.‟ [0-9]+ Exponent? | Exponent)

Exponent:

(e|E) („+‟ | „-„)? [0-9]+

Identifier:

Characters-in-Identifier

Characters-in-Identifier:

([A-Z] | [a-z]) ([A-Z] | [a-z] | [0-9])*

Comment:

Traditional-Comment

End-of-Line-Comment

Traditional-Comment:

/* Comment-End

Comment-End:

* Comment-End-Star

[^*] Comment-End

Comment-End-Star:

/

* Comment-End-Star

 [^/*] Comment-End

End-of-Line-Comment:

// Characters-in-End-of-Line-Comment

Characters-in-End-of-Line-Comment:

[^ „\n‟ „\r\n‟]

Characters-in-End-of-Line-Comment [^ „\n‟ „\r\n‟]

Whitespace:

„ „

„\t‟

„\n‟

„\r\n‟

3.8 Bibliography

The bibliography is not included within this chapter. It will be included within

the final report. For now, the foot notes should serve as the bibliography for

this chapter.

