
CRAWL Language Reference Manual

 Rajesh Venkataraman Amoghavarsha Ramappa

 rv2187@columbia.edu ar2645@columbia.edu

 Carter Adams

carteradams@gmail.com

mailto:rv2187@columbia.edu
mailto:carteradams@gmail.com
mailto:ar2645@columbia.edu

 1 Lexical Conventions

A CRAWL program is consists of a single translation unit stored in a file. The file is written

using the ASCII character set.

1.1. Comments

CRAWL comments begin with a # character at the beginning of the line and are terminated at

the end of the line.

1.2. Whitespace

CRAWL is a free form language. Whitespace is ignored unless bounded by quotes (“) on

either side.

1.3. Tokens

Tokens fall into five major categories: identifiers, keywords, constants, operators and

separators.

 1.3.1 Identifiers

Identifiers begin with a letter or an underscore (_) and are followed by any sequence of

letters, digits or underscores. Two characters are considered equal if their ASCII values are

equal. Two identifiers are considered equal if all their characters match.

 1.3.2 Keywords

The following identifiers are reserved as keywords and using them in any CRAWL program

as a regular identifier will result in an error:

int float edge graph

string while if else

foreach in sizeof where

 1.3.3 Constants

Constants provide the CRAWL programmer to conveniently initialise each of the supported

primitives.

Integer Constants An Integer constant consists of an optional plus ('+') sign or minus ('-')

sign followed by a string of decimal digits [0-9].

Floating point Constants A floating point constant is defined similar to the definition in the

'C' language, that is, it consists of an optional plus ('+') sign or minus ('-') sign followed by an

integer part of one or more digits. This has to be followed by a decimal point or an exponent

sign. The decimal point might be followed by more digits. The exponent is always followed by

a positive or negative integer.

String Constants String constants consist of a sequence of characters surrounded by double

quotes. The quotes are not considered part of the string and the '\' character is used to generate

escape sequences. If the constant has to contain the '\' character literally, one has to use the '\\'

sequence. The following escape sequences are recognised by CRAWL:

\n newline

\t The horizontal tab

 1.3.4 Operators

Arithmetic operators The following arithmetic operators are supported by CRAWL: '+', '-',

'*', '/' and '%'. Their meanings are respectively those of addition, subtraction, multiplication,

division and remainder after division. The '-' operator can also be used as a unary operator to

indicate the negativity of a number. The binary operators' operands must have have the same

type. '+=', '-=', '*=', '/=' and '%=' are used to mean the same thing as they do in the 'C'

language. The associativities of these operators also follow those of the 'C' language.

Collection operators CRAWL supports the '<>' operator to define collections. The '<' sign

followed by a sequence of comma (',') separated values, terminated by a '>' sign is construed

to be a collection. The '[]' operator is also supported to randomly access collection's elements.

Hence, in order to access the ith element of a collection C, one might use C[i].

Boolean operators The following boolean operations are supported in CRAWL: <, <=,

>, >=, ==, ! which respectively mean � less than� , � less than or equal to� , � greater

than� , � greater than or equal to� , � equal to� and the negation of the boolean operation. In

addition CRAWL supports the && and || operators to mean boolean and and boolean or.

Sizeof The sizeof operator, when used with strings returns their length and with

integers and floats returns the value. Behaviour of this operator when applied to Edges,

Graphs and Collections is explained later.

Precedence The precedence and associativities of the operators in CRAWL are identical to

their counterparts in 'C '. To override this, one might use parentheses (()).

 1.3.5 Separators

, and ; are used as separators in CRAWL. The ; separator indicates end of executable

statement.

 1.3.6 Scope

The scope of an identifier begins at immediately after its definition and ends at the end of the

block. Blocks are delimited using the '{' and '}' separators.

 2 Types

2.1. Integers, Floats and Strings

Integers and Double precision floating point numbers are the only two numeric types

supported by CRAWL. Strings are sequences of ASCII characters.

2.2. Collections

CRAWL supports a basic collection type, not very different from the array type in 'C'. It

provides random access of elements and the elements are ordered in the collection according

to the order that they were inserted. While creating collections, the size of the collection has

to be specified. Collections support the + operator which allows the programmer to add a new

element to the collection. The sizeof operator can be used to get the number of elements in

the collection.

2.3. Edges

In order to describe the connections in a graph, CRAWL supports the edge data type. An edge

is composed of three parameters, namely, the 2 nodes that it connects and a weight associated

with the two edges. Edges literals are defined as a comma separated list of these 3 elements

delimited by parentheses. For example, (1, 2, “red”) defines an edge between nodes 1

and 2 with weight � red� . The ­> operator applied to an edge returns the node that it is

incident on and the <­ returns the node that it is incident from. On applying the sizeof

operator to an edge, the weight is returned.

2.4. Graphs

Graphs in CRAWL are defined just as a pair, namely that of the number of nodes and a

collection of edges. Graph literals are of the form ((num_of_nodes,

edge_collection)) . Graphs also support the binary ­> operator, which returns a

collection of edges going out from the given node. For example, g­>3 returns a collection of

edges going out from node number 3. Nodes are numbered from 0 to n – 1, where n is the

number of nodes in the Graph. They also support the <­ operator which returns a collection

of edges incident on the specified node. Using the sizeof keyword, one can get the number

of nodes in the Graph.

 3 Control Structures � Loops and branching constructs

foreach – in ­ where

foreach is a keyword used to iterate over a collection. Used in conjunction with the in

operator, it allows for obtaining the next element from the collection being iterated over. The

where keyword can be used to further limit the execution of this loop. For example, to find the

sum of the elements in an integer collection where the value is greater than or equal to 2, one

might write:

int num = 0;

int coll[10] = <1, 2, 3>;

foreach (num in coll where num >= 2)

sum += num;

while

while is a looping construct. It tests a condition at the beginning of each iteration and executes

the statements in the loop if the condition evaluates to be true. The statements associated with

the loop must be enclosed in braces.

if

if is a keyword used for conditional execution. The statements associated with the if

conditional are executed once if the condition evaluates to be true.

else

When used in conjunction with the if conditional, the else block is executed whenever the

condition in the if conditional evaluates to false.

 4 Grammar

Program toplevel-stmts→

toplevel-stmts toplevel-stmt toplevel-stmts | toplevel-stmt→

toplevel-stmt function-definition | stmts | → ε

stmts stmt stmts | stmt→

stmt definition | executable-stmt | expression | → ε

executable-stmt non-semi-stmt | semi-stmt→

semi-stmt expression ';' | return-stmt ';' | ';'→ ε

return-stmt → return expression

non-semi-stmt if-stmt | while-stmt | foreach-stmt→

if-stmt → if '(' expression ')' '{' stmts '}' | if '(' expression ')' '{' stmts '}' else '{' stmts '}'

while-stmt → while '(' expression ')' '{' stmts '}'

foreach-stmt → foreach '(' <id> in expression ')' '{' stmts '}'

| foreach '(' <id> in expression where expression ')' '{' stmts '}'

expression → '(' expression ')' | assignment-expression | expression binop expression |

unop-prefix expression | expression unop-postfix | function-call |

graph-expression | edge-expression | collection-expression | access-expression |

<id> | <constant>

binop '+' | '-' | '*' | '/' | '%' | '->' | '<-' | '==' | '<=' | '>=' | '<' | '>' | '!=' | '&&' | '||'→

assignment-expression lvalue assignment-op expression→

lvalue <id>→

assignment-op '=' | '+=' | '-=' | '*=' | '/=' | '%=' →

unop-prefix '!' | '-' | → sizeof

unop-postfix '->' | '<-' →

definition → type <id> '=' expression ';' | type <id> '[' expression ']' = expression ';' |

type <id> '[]' = expression ';'

function-definition type <id> '(' parameters ')' '{' stmts '}'→

parameters parameter-list | → ε

parameter-list type <id> ',' parameter-list | type <id>→

function-call <id> '(' call-parameters ')'→

expressions | expression-list→ ε

expression-list expression ',' expression-list | expression→

graph-expression '((' expression, expression '))'→

edge-expression '(' expression, expression, expression ')' | '(' expression, expression ')'→

collection-expression '<' expressions '>'→

access-expression <id> '[' expression-list ']'→

type → int | float | string | edge | graph

