LRM
BELL

Columbia University
COMS W4115 Programming ILanguages and Translators

Fall 2007
Professor Stephen Edwards

Alicia Boyzk amb2129@columbia.edu
Yousty ElMallah yae2103@columbia.edu
Robert Lin tcl2106(@columbia.edu

Carlene Liriano cl2294(@columbia.edu

CONTENTS
B VoY o Yo ¥ ot o o TP SRR 3
R o [or- | I oY 1Y/<T] 4 To] o L PP UURTU P 3
P T ©0e] 0 0 0 1 1=T 0 L £ UPPPPUPRN 3
2.0, 1deNTIfiers (NAMES) ...vieiiiieciie ettt ettt e et e e s te e et e e bb e e s tteeebeeesbaeesaseesntaesnsaeesnseesnraeans 3
B o =AY AT e T o LSRR 3
P o B o] 1 =1] YU UUR N 4
T o 1 ¥ = £ RS 4
D T 0 1 o 1T ol o =T o L3S 4
D 1 - 14V o =TSP PP PPPPTU PP 5
I TR = To Yo [T o NP USRS 5
N o TR 12 SRR 5
K ol o [| S 5
o T o Y-SR 5
T o - V2P PUUURPRURPN 5
78 0 L SRS 5
cFUNCHIONS e ———————————aaaaaaaaaaaaaas 5
o T W o Totf o) o T 1= 1 o SRR 5
4.b. User-Defined FUNCLIONSuiiiiiiie ettt ettt ettt e e e tre e e e saaa e e e e e e e e s aaaee e ssnsaeeeenraeesennens 5
4.c. Internal (BUilt=in) FUNCTIONS ..vvviiiiiiiieiiee ettt e e eeesabrae e e e e e esenasaaeseeeeeeennns 6
B P ESSIONS ettt ——————————————————aaaeaeeeaeaees 6
L3 TR U1 ot o o [| | F ST 6
Lo o W o Y Y ot o] ST Lo o TSP 6
5.c. Relational/CompariSon EXPreSSIONS......cuciieieeiierieitieieeceeeeeereereeebeeteebeesreesbeesteestaesaaesanesens 7
3o I o =4 ot | I Y AV B TR @ 1 SR 7
5.6, ASSIENMENT EXPIESSION .ttt et et reeeeeeeeeeeeeeeteeeeeseseseseseseseseseeeees 8
Y =1 (=T =T | O TOP PP POTU PR 8
6.2. OPENING/ClOSING TAES cvveeereeeeteeeetee et e eeteeeeteeeete e et eeeteeeeteeeeteeebeeeeteeeeseeessseesseeesesensseesnreeereeans 8
6.0. ASSIZNMENT STATEMENTiiiiiii e e e e e e et rre e e e e e e e nbrea e e e e e e e arnreees 8
6.C. SEIECLION STALEMENT e e e e e e e et re e e e e e e e e anbraaeeae e e e nrnreees 9
6.d. [terative StAtEMENTSeiiiieee e e e e e e e e e e e e et r e e e e e e e e nrnreees 9
B.€. JUMP STALEMENTS ..uueiiiiiiiiiiiit e e e e e e eereeeeeeeeeeeeeeeaeeaaaaeeaeaearaseeaeeeeseeeeenens 10
B STy | Y X<y ol U1 Vot o o [P USRI 11
2 T\, =Y o T U ot o] o TSP UPPRRN 11
/8 T 1 (o] 11 o o 1SR 11
T.Co HTIMIL ettt ettt ettt e e sttt e e st e e s et ee e e sabteeesabtaeesaabaeeesanbaeessabtaee seaeesnnn 12

o B € =T o Y[oX3 USSR 12

1. Introduction

BELL is an interpreted language that is designed to simplify the creation of web pages. It will include
the following features:

e HTML Generation

e Math Functions

e Algorithms

e Graphics Management

The BELL language allows developers to easily create HTML with rich content. It can easily create
HTML code that is tedious to produce by hand, such as generating tables and page layouts. BELL also
includes practical functions that are commonly used, such as sorting algorithms and complex
mathematical functions.

The utility of BELL can be found in the powerful packages that are standard to the language. The
functionality BELL provides allows developers to produce high quality code with minimal effort.

2. Lexical Conventions

A program consists of tokens grouped together to form declarations and statements. In BELL, each
instruction begins with an opening bracket followed by a colon “(:” and ends with a colon followed
by a closing bracket “:)”. Or, instructions may be grouped inside a single (: :) pair and separated by ;
characters. Variables are indicated by preceding the variable name with a @. Similar to the C
programming language, BELL consists of six different types of tokens: identifiers, keywords,
constants, strings, operators, and other separators. White space, tabs, and comments are used to
separate tokens and are ignored otherwise.

a. Comments

Comments are supported in BELL. A comment is introduced by a “:(“ and is terminated by a “):".
They can be placed anywhere within the (: :) block.

b. Identifiers (Names)

Identifiers are sequences of letters, digits, and/or underscores where the first character can only
be a letter or an underscore. Identifiers are case sensitive.

c. Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int boolean if
char string else

float array while
double NULL for
Constants

There are several kinds of constants, as follows:
i. Integer constants

An integer constant is a sequence of digits. An integer is always taken to be decimal. The
associated keyword is int.

iii. Floating constants

A floating constant consists of an integer part, a decimal point, and a fraction part. The
integer and fraction parts both consist of a sequence of digits. Either the integer part or
the fraction part (not both) may be missing. Every floating constant is taken to be
double precision. The associated keyword is float.

Strings

A string is a sequence of characters surrounded by double quotes “" ”. Strings may consist of
any characters except for the double quote, which must be escaped using a back slash (\").
Strings are associated with the keyword string.

Other Tokens

There are a set of single characters that must be used correctly according to BELL's syntax. They
include:

! % | \ ,

These are also a set of character pairs which must be used correctly according to BELL's syntax.
They include:

&& || = <= >= =

3. Datatypes

a. boolean - A Boolean expresses a truth value. It can be either TRUE or FALSE.

b. int-Anintisanumberofthesetz={..,-2,-1,0,1, 2, ..}.

c. float - float numbers are 4 bytes long.

d. string - A string is a series of characters. In BELL, a character is the same as a byte, that is, there
are exactly 256 different characters possible.

e. array - An array in BELL is like a Java array that is created given a fixed size.

f. NULL - NULL value represents that a variable has no value. A variable is considered to be NULL if
it has been assigned the constant NULL or it has not been set to any value yet.

4. Functions

a. Function Definition
A BELL function can be defined with the following syntax:
return type function name (parameter type parameter name) {

(: Any BELL code can be inserted here :)

return value;

b. User-Defined Functions

BELL allows users to create their own functions to implement any functionally desired by the user.
These functions can be defined using the syntax above. A function that is contained on one file can
be used in another file by including it in defined in one file can be used in another file by simply
including the file with the function definition in the file where it needs to be used.

use filename;

c. Internal (Built-In) Functions

BELL comes standard with many functions and constructs, providing a lot of flexibility to the
developer. Every function will have a manual page that describes function parameters, behaviors,
and return values. The following are some examples of some basic BELL functions:

e Print() (prints a string)

e D.print() (printsastring)

e Print_r() (printsthe contents of an array)

e Unique() (determines if the values in a data structure are unique)
e Substr() (returns a substring given a string)

Count() (returns the # of elements in any data structure)

e Include()

e Import() (imports data from an external source)
e Popup()

o Isset() (checks if a values is set)

5. Expressions

In BELL, expressions are essentially anything that gets assigned a value. Expressions in BELL may be
anything from a simple assignment to function calls or relational expressions. Specific examples of those
expressions that are supported by BELL follow.

a. Function Call

A function call in BELL takes the form:
Function_identifier(argl, arg2, .);

The function call contains the function name followed by parentheses that may or may not include
function arguments, depending on the function definition. When arguments are passed, as in the
above example, they are passed as a comma-separated list of expressions.

b. Unary Expressions
Unary expressions in BELL are those that employ the following operators i: !, ++, --, and (type).

These operators are described below.

Svariable= ++expression
Prefix incrementation operators in BELL assign a value of the expression after the value has been
incremented. In the above example, the value of Svariable would be (expression + 1).

Svariable= --expression
Prefix decrementation operators in BELL assign a value of the expression after the value has
been incremented. In the above example, the value of Svariable would be (expression - 1).

Svariable = expression++

Post-fix incrementation operators in BELL assign a value to the variable and then increments the
expression. In the above example, the value of Svariable would be expression. After the assignment
is made, expression is incremented by 1.

Svariable = expression--

Post-fix decrementation operators in BELL assign a value to the variable and then decrements
the expression. In the above example, the value of Svariable would be expression. After the
assignment is made, expression is incremented by 1.

lexpression
The above example is a logical negation expression. Expression must either returna 0 or 1. If
expression has a value of 0, the result is 1. If expression has a value of 1, the result is a 0.

c. Relational/Comparison Expressions

The following table summarizes the relational operators supported in BELL.

Example Expression Result

Sa<Sb TRUE if $a is strictly less than $b.
Sa>Sb TRUE if Sa is strictly greater than Sb.
Sa<=5Sb TRUE if Sa is less than or equal to Sb.
Sa>=5Sb TRUE if $a is greater than or equal to Sb.
Sa==5Sb TRUE if Sa is equal to $Sb.

Sal=Sb TRUE if Sa is not equal to Sb.

Relational operators group from left-to-right. Relational expressions that evaluate to true,
return a result of type int with a value of 1. Similarly, those that evaluate to false, return a result
also of type int with a value of 0.

The equality operators == and != follow the same rules as the relational operators. However,
they have lower precedence than the other relational operators.

d. Logical And/Or Expressions
The table below summarizes the functionality of the logical operators in BELL.
Example expression Result

Sa && Sh TRUE, False otherwise
Sal|ls$ TRUE if either $a or $b is TRUE.

In BELL, the logical-and operator takes precedence over the logical-or operator. These logical
expressions are typically applied to other logical expressions or relational/comparison
expressions. They return either true or false, where true is denoted by 1, and false by 0.

e. Assignment Expressions

Assignment expressions in BELL group right-to-left. Assignment expressions take the form of:
Identifier —assignment operator- expression;

Assignment operators may be any of those listed in the Operators section. After this assignment
expression executes, identifier will contain the value returned by expression.

For arithmetic assignment expressions, either both operands can be of the same type or the
operand on the right side of the equation is converted to the type of the operand on the left.

6. Statements

Statements in BELL are executed in sequence. A statement in BELL is simply a line of code representing
an instruction to the compiler. Much like some of the more popular programming languages that exist
today, statements in BELL must be terminated with a ‘;’. Also, because BELL is geared at web-based
functionality, a standard BELL program will have html code interspersed throughout. In order to tell the
compiler when to start interpreting the code and when to skip over HTML, statements must be
surrounded by opening and closing brackets similar to those found in PHP.

There are several types of statements, including assignment, function call, and return statements. BELL
also features iterative and selection statements made up of the standard control-flow structures.

a. Opening/Closing tags

Opening and closing tags will delimit where BELL code begins and where BELL code ends and is
followed by HTML code. A standard BELL enclosed statement resembles the following:

(: BELL code goes here; :)
<p> HTML stuff can follow </p>

(: More BELL stuff to come :)

b. Assignment Statement

Assignment statements are simply Assignment expressions terminated by a semi-colon and enclosed
in BELL brackets. Please se the Assignment Expression example in the previous section.

c. Selection Statements

Selection statements are simply conditionals (if/else) that select whether or not a particular
statement gets executed. The if-statement may take two forms:

(1) if (expr)

statement
_or-
(2) if (expr)
statement
else
statement
or

(3) if (expr)
statement
else if
statement
else
statement

In example 1, if the expression evaluates to true then the statement will get executed, otherwise the
compiler will ignore it and move on with the rest of the program.

If-statements may be followed by an else statement, as shown in example 2. Here if the expression
evaluates to true the statement directly following the if is executed. Otherwise, the statement
following the else is executing and then the program returns to a normal flow of control.

Finally, if-statements may also take the form shown in example 3. If the expression in the if-
statement evaluates to true the statement following it is executed, otherwise, control flow is
propagated downwards. If the else-if expression is true then that statement is executed and the
program returns to its normal flow. Finally, the else will execute if none of the previous statements
were executed.

It is important to note that an “else” will always be matched to the nearest if-statement to handle
the “dangling else problem.”

d. Iterative Statements

The simplest iterative statement in BELL is the while loop. It functions pretty much the same as it
does in other common programming languages such as C and Java. A while loop in BELL looks like
the following:

While(Boolean expr)

Statement

10

The while loop executes until the Boolean expression is no longer true. Multiple statements can be
inside a while loop by enclosing in the scope of the loop (delimited by brackets).

Note also, like any other block of BELL code, iterative statements must be enclosed in the BELL tags.

BELL also makes use of the do-while control structure. The syntax is the following:

do {
do something
} while (Boolean expr);

Unlike a while loop, the truth condition is check at the end of each iteration so a do-while loop will
always execute at least once.

Another control structure is the for loop

for (exprl; expr2; expr3)
statement

In this example, exprl is an initialization for the loop. Expr2 is a testing condition for the loop to
determine whether or not the loop should terminate. This condition is checked before each
iteration. Finally, expr3 alters the value of exprl to eventually cause the loop to reach a termination
condition. A programmer may drop any or all of the expressions in the for loop, i.e. a programmer
may use a for loop of the form:

for (53)
statement

This, however, is an infinite loop.

e. Jump statement

BELL only supports one kind of jump statement - the return statement. The return statement will
unconditionally transfer control flow. Typically, return statements will appear at the end of a
function definition, so that after a method has executed, the program will to return to its caller
along with the value of the expression it is returning. A return-statement should be used when a
function returns some value after its completion to its caller. Otherwise, it should be left out.

A return-statement will take the form:

return expr;

11

7. Bell-Specific Functions

The BELL language possesses unique functionalities that consolidate oft-called functions in typical web
design. With simple, single-line functions, users are able to incorporate a rich variety of features and
popular mechanics into the page they build.

a. Math Functions

convert_measurements(Svalue, Ssrc_format, Sdes_format)
Returns a float. Converts degrees Celsius and Fahrenheit; centimeters and inches; meters and feet;
kilometers and miles; kilograms and pounds; milliliters to ounces.

generate_prime(Slower_bound, Supper_bound)
Returns an array of prime numbers between given range, inclusive.

generate_fib(Slower_bound, S upper_bound)
Returns an array of Fibonacci numbers between given range, inclusive.

convert_bases(Svalue, Ssrc_base, Sdes_base)
Returns a float of the new base from the old base.

random_hour(Slower_bound, S upper_bound)
Returns a string of the hour between the lower and upper bound.

calculate_gcd(Snumberl, Snumber2)

Returns an int of the greatest common denominator of numberl and number2.

b. Algorithms

sort(Sarray)
Returns an int of the greatest common denominator of Snumberl and Snumber2.

md5_encode(Sstring)
Returns an md5-encoded string of Sstring.

validate_email(Semail_address)
Returns a Boolean of true if Semail_address is a valid email address.

add_slashes(Sstring)
Returns a string with all control characters, single quotes, and double quotes escaped.

time_left(Sdatetime_string)

Returns a datetime string of tune time remaining to $datetime_string.

c. HTML

generate_quote()
Returns a string of one of Robert’s favorite quotes from a remote database.

array_box(Sarray)
Accepts an array and generates the html code for a select box.

oo_table([Stitle, Sstyle, Sxml_src])

Accepts an array and generates the html code for a table. The table has a CSS style of Sstyle and is
populated with the data from Sxml_src which also determines the number of rows and columns in the
table.

url_link(Surl, Slink_name, Starget)
Returns a hyperlink pointing to Surl. The title of the hyperlink is Slink_name and the target is Starget.

play_mp3(Smp3_path)
Embeds a Flash audio player in the outputted html file that plays the designated mp3 file at Smp3_path.

insert_ad()
Inserts a banner advertisement from a remote source.

d. Graphics

img_gallery(Sdir_path)
Automatically generates an HTML page containing re-sized thumbnails of all of the image files in
Sdir_path. Clicking on the thumbnails will also open up the image in its original size.

web_counter()
Creates a web counter in the HTML code that counts the number of unique visitors that visit the page.

