
Binary Data Processing Language

Reference Manual

Aditi Rajoriya (ar2630@columbia.edu)

Akshay Pundle (ap2503@columbia.edu)

Bharadwaj Vellore (vrb2102@columbia.edu)

Preethi Narayan (pn2156@columbia.edu)

1

mailto:pn2156@columbia.edu
mailto:ar2630@columbia.edu
mailto:vrb2102@columbia.edu
mailto:ap2503@columbia.edu

Table of Contents
1 Introduction...5
2 Lexical conventions..5

 2.1 Comments..5
 2.2 Identifiers..5
 2.3 Keywords...6
 2.4 Reserved Words..6
 2.5 Constants...6

 2.5.1 Decimal constants...6
 2.5.2 Hexadecimal constants...6
 2.5.3 Binary constants...6
 2.5.4 Floating constants...6
 2.5.5 String constants..6

3 Types..7
 3.1 Basic Types...7
 3.2 Arrays..7
 3.3 Structures..8
 3.4 Files...9

4 Lvalues..10
5 Conversions..10
6 Expressions...13

 6.1 Primary Expressions...13
 6.1.1 Identifier..13
 6.1.2 Numeric Constant..13
 6.1.3 Parenthesized Expressions..13
 6.1.4 Array expression..13
 6.1.5 Dot Operator..14

 6.2 Range Operator..14
 6.3 Unary Operators..14

 6.3.1 Negation operators...14
 6.3.2 Offset Operator...14

 6.4 Multiplicative Operators..15
 6.5 Additive Operators...15
 6.6 Shift Operators...16

 6.6.1 Bitwise shift Operators..16
 6.6.2 Arithmetic Shift Operators..16
 6.6.3 Rotation Operators...16

 6.7 Comparison Operators..17
 6.7.1 Greater than..17
 6.7.2 Less than...17
 6.7.3 Greater than or equal to..17
 6.7.4 Less than or equal to..17

 6.8 Equality Operators...17
 6.8.1 Equal to..17

2

 6.8.2 Not Equal to...17
 6.9 Bitwise AND Operator...18
 6.10 Bitwise XOR Operator..18
 6.11 Bitwise OR Operator...18
 6.12 Logical AND Operator..18
 6.13 Logical OR Operator..18
 6.14 Assignment Operator...19
 6.15 Push Operator...19

7 Declarations..19
 7.1 Type Specifiers...20
 7.2 Array Types..20
 7.3 Identifier Properties...21
 7.4 Valid Value Checks...21
 7.5 Optional Field Checks...21

8 Statements...22
 8.1 Expressions..22
 8.2 Statement Blocks..22
 8.3 Conditional Statements...22
 8.4 For Loop...22
 8.5 Continue...23
 8.6 Break...23
 8.7 Set..23
 8.8 Read..23
 8.9 Print..23
 8.10 Exit...24
 8.11 Write..24

9 Scope and lifetime..24
10 Examples..24

 10.1 MPEG Files...24
 10.2 TIFF files...25

11 Appendix..27
 11.1 Appendix A – Operators, precedence..27
 11.2 Appendix B – Antlr Grammar..28

3

1 Introduction
BDPL is a programming language for processing and manipulating binary files. Specifically, the language is

designed to enable a programmer to model binary file formats, read, process and write data with efficacy. In

other words, the language empowers a programmer to specify a file format as one or more data structures

and use these user-defined data types to parse the contents of a file.

Programming languages normally deal with files in only the ASCII or UNICODE formats. Each file is treated

as a sequence of characters alpha-numeric and non-printable characters. However, binary files are not

normally processed with ease by such languages. Existing languages that provide support to use system

functions to read and write binary files typically require the programmer to process raw data from memory

buffers into which data is read from the file.

Increasingly, with the proliferation of multimedia in multiple formats, the need is felt for tools that will

enable format interchange and multi-format data packaging for distribution through various media. This

provides an excellent case for a language that allows the representation of binary file formats in a manner

that allows ease of reading and writing files without the programmer having to get into the nitty-gritties of

bit-level operations. The objective of BDPL is exactly this – to provide a high-level language scheme to

describe the layout of, access and modify binary data elements. In fact, BDPL hopes to go a step further. The

BDPL programmer will have the ability to incorporate entire parsing algorithms in data types.

2 Lexical conventions
BDPL comprises the following types of tokens – keywords, identifiers, constants, operators and separators.

The language is a free-form language; spaces, tabs and newlines only serve to separate tokens of the

language. If the input stream has been parsed into tokens up to a certain character, the next token is taken to

include the longest string of characters that could possibly constitute a token.

2.1 Comments
Comments are always single-line only. The characters // begin a comment which terminates at the end of

the line.

2.2 Identifiers
An identifier is a sequence of letters, digits and the underscore character, with the first character being

either a letter or an underscore('_'). Letters are case sensitive; an upper case character counts as different

from a lower case character. Only the first eight characters of identifiers are significant.

4

2.3 Keywords
The following identifiers are reserved for use as keywords and may not be used otherwise:

bit byte else exit fieldsize for if
nok ok on optional print read set
struct this type valid write

2.4 Reserved Words
The following strings are not identifiers in BDPL. However, they are reserved for future use as keywords

and therefore, should not be used as identifiers in the language.

uimsbf imsbf uilsbf ilsbf

2.5 Constants
The different types of constants in BDPL are :

2.5.1 Decimal constants
A decimal constant is any sequence of digits.

2.5.2 Hexadecimal constants
A hexadecimal constant begins with the character sequences '0' 'x' or '0' 'X', and comprises any sequence of

digits, lower case letters 'a' to 'f' and upper case letters 'A' to 'F' thereafter.

2.5.3 Binary constants
A binary constant begins with the character sequences '0' 'b' or '0' 'B', and comprises any sequence of the

binary digits '1' and '0' thereafter.

2.5.4 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an optionally

signed integer exponent. The integer and fraction parts both consist of a sequence of digits. Either the integer

part or the fraction part (not both) may be missing; either the decimal point or the e and the exponent (not

both) may be missing.

2.5.5 String constants
A string is a sequence of characters surrounded by double quotes. Double quotes within strings should be

preceded by an additional double quote. Two escape sequences are defined for non-alphanumeric printable

5

characters. They are \n and \t , representing the newline and the tab ASCII characters respectively. The

character back-slash is represented as \\ .

3 Types
Every BDPL identifier has a 'type' which determines the meaning of the value stored in the identifier's

storage.

3.1 Basic Types
There are these basic types in BDPL:

bit is a single bit of data

byte is a sequence of 8 bits

int is a 32 bit integer represented in a 2's complement form

float is a single precision floating quantity having a magnitude in the range approximately 10+38 or 0.

Their precision is 24 bits or about 7 decimal digits.

double is a double precision floating quantity having the same range as floats and a precision of 56 bits

or about 17 decimal digits.

More types can be derived from these basic types using the following constructs:

arrays, which are sequences of elements of the same type

structures, which contain elements of various types

3.2 Arrays
An array is a sequence of elements of the same type. Arrays can be formed from basic types or from

structures (defined later). Individual elements of an array can be addressed by specifying the “index” of the

element. An index of an element is the position of the element from the start.

Suppose A is an array, then A[i] addresses the element at a distance of i elements from the start of the

array. Thus, A[0] denotes the first element of the array (or equivalently, an element at a distance 0 from the

start of the array). The type of the elements of A determines whether all elements are of the same size. This

may not be the case if the array is of structures. Structures of the same type can have variable sizes (as we

will see in the next section), and thus, each array element may be of a different size.

The concept of arrays in BDPL is illustrated by the following example of an array declaration:

byte[10] ar1,ar2;
This declaration defines two arrays, a1 and a2, each of which comprises 10 bytes. The expression ar1[3]

6

refers to the fourth element of ar1 (or equivalently, an element at a distance of 3 elements form the start of

ar1).

BDPL allows addressing elements at multiple offsets from the array at once. This is possible if the index

element of the array is one of a comma-separated list of indices, a range of indices or a comma-separated list

of ranges of indices. When the index is specified as above, the expression represents a bit-sequence which is

the concatenation of all the indexed elements taken in the listed order. Essentially, this allows the application

to access disjointed bit-sequences as a contiguous set of bits. The examples below illustrate this clearly.

The statement

b=A[3,5,7];
assigns to b the bit-sequence formed from the concatenation of the bit-sequences of array elements

A[3], A[5] and A[7].

A[1,3..5,2,9..8] represents the bit-sequence A[1]A[3]A[4]A[5]A[2]A[9]A[8].

The size of an array need not be specified at the time of declaration. BDPL provides a special notation to

indicate that the number of elements in the array is not known as compile time and that it will be determined

at run time. The declaration:

byte[*] ar1;
defines the array ar1 whose size will be determined at run time.

When an array appears without an index (or a set of indices), it is assumed that the complete bit-sequence

of the array is addressed. For instance, A = 0 sets the numerical value represented by the entire array of

elements taken together to 0. Only one dimensional arrays are permitted

3.3 Structures
Structures (or structs) in BDPL are defined using the “struct “ keyword. Structs are the basic facility that

BDPL provides in modeling the structure of a file. A struct represents an abstract entity that defines the

layout of a new type which comprises basic types, arrays of defined types(basic types as well as structs) and

structs, and models the fields in the file being processed. When the contents of a file are read into a struct of

a defined type, the number of bytes corresponding to the size of the struct is read from the file and

interpreted as per the types of the contained fields or members. Once a struct is defined, it is reckoned a

new type and can be used in operations exactly like a basic type.

The definition of a struct is done thus:

struct a
{ }x;

This defines a struct named “a”, which means “a” is a new type which can be used in the remainder of the

BDPL program. The body of the struct, comprising valid declarations, appears between the curly braces.

7

The struct represents a sequence of elements of possibly heterogeneous types. The order of declarations

that occur in the structure is very important. Therefore,

struct A
{

int a;
byte[10] b;

}_A;
is different from

struct A
{

byte[10] b;
int a;

}_A;
Every element of the struct is addressable by name. Elements of a structure are referenced using the '.'

operator. For instance, the expression _A.b references the element named b in the structure named _A. The

left operand of the '.' operator identifies the container, and the right operand identifies the contained. The

name of the struct itself is used in conjunction with “type struct” to denote the type defined by the

structure.

The bit sequence associated with the struct in memory is the concatenation of the bit-sequences of its

individual elements.

3.4 Files
Files are special types in BDPL, and a file instance is created by a declaration comprising the keyword

file. For each file that is read from or written into in a program, there may be an independent file instance.

Once a file instance is created, it must be associated with content from a real file. This is done via a read

statement. Also, once data corresponding to a file instance is ready, it can be committed to a real file. This is

done via the write statement. Statements that operate on files are detailed later. This section deals with files

and their properties.

An element that is declared to be of a file type may be perceived as a file buffer. Conceptually, this is

equivalent to the following structure.

struct file {
byte[*] data;

}_file;
File variables are declared as follows:

file-declaration:

file filename-list

filename-list:

filename

filename-list

8

filename:

identifier

Files, once declared, may be used in assignment statements, read, set and write statements. A file is

considered to be a raw sequence of bits. Hence when assigning a file to a structure, the types of the structure

elements dictate the interpretation of the raw data in the conceptual file buffer. Also, when assigning

structures to files, the types of the structure's elements dictates the format of the bytes that are populated in

the conceptual file buffer.

Properties can be attributed to any file variable that is declared. This is done using the set statement. One

of the key properties of a file is its endian-ness. This may be specified as an attribute of the file once it is

created.

4 Lvalues
An lvalue is an expression which refers to an object to which a value can be assigned. In other words, and

lvalue is an expression that can occur on the left hand side of a BDPL assignment statement. Any identifier of

a basic type, an array name, one or more indexed elements of an array, a struct type element, or a member

of a struct may form an lvalue. The nature of type conversion that occurs for various lvalue expressions is

detailed in the sections on assignment statements and type conversions.

5 Conversions
The operators in BDPL may, depending on the types of the operands, convert an operand from one type to

another. All types conversions are implicit. The nature of type conversion or type promotion that is adopted

for all operands is detailed in the table below and governed by the following rules.

1. All types other than bit[], byte[] and struct are regarded as types that possibly carry numeric values.

Hence in all conversions involving these types, a best attempt is made to maintain the numeric value

following conversion.

2. Bit-Order: In an array of bits, the left-most bit (index 0) is regarded as the most significant when all

bits are taken together.

3. Endian-ness: In an array of bytes, the byte at index 0 is regarded as least significant when all bytes

are taken together.

4. In an assignment expression, the type of the lvalue is held sacrosanct and the type of the right hand

side is converted to the type of the left-hand side as per the type conversion table.

5. Float and double types are not regarded as raw bit-sequences. Hence,

1. when converting from the floating point domain to the bit-sequence domain, the floating point

number is first converted to a 32-bit integer. The rules from the conversion table are then applied

9

to convert the integer to the desired type. The exceptions to this are conversions to bit array and

byte array types.

2. when converting from the bit-sequence domain to the floating point domain, rules from the

conversion table are applied to convert the bit-sequence to a 32-bit integer. This integer is then

cast to its floating point equivalent.

6. When converting a bit-sequence to an array of undefined size, with the with the whole array taken at

once,

1. the size of the array is taken to be the fieldsize if specified

2. the size of the array is taken to be the size of the right-hand size expression rounded upwards to

be a multiple of the size of the basic type from which the array is formed.

7. Expanding: When converting a bit-sequence to one of a larger size, the bit sequence is copied at the

least-significant end of the target sequence, and sign-extension rules are applied if required.

8. Truncating: When converting a bit-sequence to one of a smaller size, the bit sequence is truncated to

the required size by retaining the least significant end and chopping of the most significant bits that

cannot be accommodated.

9. Sign extension is performed only when both the type from which conversion is being done and the

type to which conversion is being done are signed.

10. When dealing with expressions where the types on the LHS and the RHS are * arrays (something like

bit[*] = bit[*]) , everything form the RHS is populated into the first element of the LHS.

10

FROM
bit byte int float double bit[] byte[] struct

TO

bit Copy bit Copy LSb Copy LSb float->int
int->bit

double
->int

int->bit

Copy LSb Copy LSb
of byte[0]

Copy
next bit

byte Copy bit
to LSb,

NSE

Copy
byte

Copy
LSB

float->int
int->byte

double ->
int

int -> byte

Copy 8
LSb, T, *,

NSE

Copy
LSB, *

Copy
next byte

int Copy bit
to LSb,

NSE

Copy
byte, SE

Copy
bytes

C-style C-style Copy 32
LSb, T, *,
E, NSE

Copy 4
LSB, T, *,
E, NSE

Copy
next 4

bytes, T,
E

float bit->int
int->float

byte->int
int->float

C-style Copy
bytes

C-style Copy 32
LSb, T, *

Copy 4
LSB, T, *,

E

struct ->
int

int -> float

double bit->int
int

->double

byte->int
int ->

double

C-style C-style Copy
bytes

Copy 64
LSb, T, *

Copy 8
LSB, T, *,

E

struct ->
int

int ->
double

bit[] Copy bit
to LSb, *

Copy to
LSB, T, *

Copy to
32 LSb,
T, *, E

Copy to
32 LSb,

T, *

Copy to
64 LSb,

T, *

Copy LSb
to LSb, T,

*, NSE

Copy LSb
to LSb, T,

*, NSE

Copy
next bits,

*

byte[] Copy bit
to LSb of
byte[0]

Copy to
LSB, *

Copy to 4
LSB, T, E,

*

Copy to 4
LSB, T, *

Copy to 8
LSB, T, *

Copy LSb
to LSB, T,

*, NSE

Copy
LSB to

LSB, T, *

Copy
next

bytes, *

struct Error Error Error Error Error Copy
bits, *

Copy
bits, *

Type cast

Notation Meaning
LSb Least Significant Bit

LSB Least Significant Byte

NSE No Sign Extension

SE Sign Extension as per rules for extension

* Follow rules for handling arrays of undefined size

T Follow rules for truncation and expansion

E Follow rules for endian-ness

When the operands in an expression are of different types, the following rules are applied to promote one

type to the other prior to performing the operation. Note that these rules do not apply to the assignment and

push operators. In the case of the assignment and push operators, the type of the lvalue expression is held

sacrosanct, and type conversion is applied to the expression on the right-hand side. To convert, the rules

defined in the table above are used.

11

1. If one of the operands is a bit and the other is either a byte, int, float or double, the bit is promoted to

the other type for purposes of the operation.

2. If one of the operands is a byte and the other is either an int, float or double the byte is promoted to

the other type for purposes of the operation.

3. If one of the operands is an int and the other is either a float or a double, the int is promoted to the

other type for purposes of the operation.

4. If one of the operands is a float and the other, a double, the float is promoted to a double.

Bit array and byte array operands may only be used in assignment statements and shift/rotate operations.

Type promotion is not relevant for the latter. In the former case, standard type conversion rules are applied.

6 Expressions
Expressions are ordered by precedence starting from the highest precedence.

6.1 Primary Expressions

6.1.1 Identifier
primary-expr: identifier

An identifier is a primary expression. Each identifier must be declared to be of a basic or defined type.

6.1.2 Numeric Constant
A numeric constant may be an decimal, binary or hexadecimal number.

6.1.3 Parenthesized Expressions
expr: (expr)

A parenthesized expression is a primary expression whose type and value are identical to those of the

unadorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

6.1.4 Array expression
expr: primary-expr[expr]

primary-expr[expr-list]

expr-list: expr

expr,expr-list

An array expression is also an expression. The methods of indexing the elements of the array is already

detailed in section 3.2.

12

6.1.5 Dot Operator
primary-expr: primary-expr.member

A primary expression followed by a dot followed by the name of the member of a structure is a primary

expression. The element member must be defined to be a field within the structure which is being

referenced.

6.2 Range Operator
range: expr..expr

The range operator taken BDPL expressions as operands, but does not return an expression. It returns a list

of elements starting from the numerical value of the expression on the left, ending at the numerical value of

the expression on the right and including both bounding elements.

6.3 Unary Operators
Associativity : All operators described in this section are right associative

6.3.1 Negation operators

expr : ~ expr

! expr

There are two negation operators, Bitwise negation (~) and Logical negation (!). These are both unary

operators. The logical negation operator logically negates expressions. Ie, converts a non-zero value to zero

and a zero value to 1 . The bitwise negation operator does a bitwise flipping of bits so that ~0b1101 becomes

0b0010.

6.3.2 Offset Operator
There are 3 offset operators, Position operator ($) , Size operator ($#) and Byte-size operator (#).

Position operator

The position operator ($) can operate a struct or an array. It indicates the current position in the struct or

array where next element will be written (in a push operation where the operand was a lvalue) or where the

next element will be read from (in case the operand was a rvalue). This value can be modified by the

programmer (i.e be used as an lvalue). Conceptually, we can view this value as being analogous to a file

offset. Thus,

$a=10;
will be a valid expression.

13

Size Operator

The size operator ($#) returns the number of elements contained in the operand. This can operate only on

arrays. This cannot be used as an lvalue.

Byte-size Operator

The Byte-size(#) operator returns the size of an operand in number of bytes. The value returned is the

current size of the operand (0 in case of uninitialized * arrays). Note that size may change if elements are

pushed to the operand. Size of basic types is fixed and will not change. The resulting value cannot be used as

a lvalue.

6.4 Multiplicative Operators
expr : expr * expr

Associativity: Left to right

The '*' operator is a binary operator that indicates multiplication. The result of a multiplication expression

is the product of the operands. Operands may only be of basic types. Type promotion rules are applied as

detailed in the section on type conversion when the two operands are of different types.

expr : expr / expr

Associativity: Left to right

The '/' operator is a binary operator that indicates division. The result of a division expression is the

quotient. Operands may only be of basic types. Type promotion rules are applied as detailed in the section on

type conversion when the two operands are of different types.

expr : expr % expr

Associativity: Left to right

The '%' operator is a binary operator that indicates modulus. The result of a modulus expression is the

remainder from dividing the left operand by the right operand. Operands may only be of basic integer types.

Type promotion rules are applied as detailed in the section on type conversion when the two operands are of

different types.

6.5 Additive Operators
expr : expr + expr

Associativity: Left to right

The '+' operator is a binary operator that indicates addition. The result of an addition expression is the sum

of the operands. Operands may only be of basic types. Type promotion rules are applied as detailed in the

14

section on type conversion when the two operands are of different types.

expr : expr - expr

Associativity: Left to right

The '-' operator is a binary operator that indicates subtraction. The result of a subtraction expression is the

difference of the operands. Operands may only be of basic types. Type promotion rules are applied as detailed

in the section on type conversion when the two operands are of different types.

6.6 Shift Operators

6.6.1 Bitwise shift Operators
expr : expr << expr

expr : expr >> expr

Associativity: Left to right

The '<<' and '>>' operators are logical shift operators. The left operand may only be of a basic integer type

or an array of these types. The second operand must be a positive integer type. The result of the expression

with '<<' is the bit-sequence of the first operand is rotated left as many times as indicated by the value of the

right operand. Vacated bit positions are filled with 0. The result of the expression with '>>' is the bit-sequence

of the first operand is rotated right as many times as indicated by the value of the right operand. Vacated bit

positions are filled with 0.

6.6.2 Arithmetic Shift Operators
expr : expr <<< expr

expr : expr >>> expr

Associativity: Left to right

The '<<<' and '>>>' operators are arithmetic shift operators. The left operand may only be of a basic integer

type or an array of these types. The second operand must be a positive integer type. The result of the

expression with '<<<' is the bit-sequence of the first operand is rotated left as many times as indicated by the

value of the right operand. Vacated bit positions are filled with 0. The result of the expression with '>>>' is the

bit-sequence of the first operand is rotated right as many times as indicated by the value of the right

operand. Vacated bit positions are filled with the most significant bit taken as sign. Essentially, the left

operand is treated as a number in 2's complement form.

6.6.3 Rotation Operators
expr : expr <-< expr

expr : expr >-> expr

15

Associativity: Left to right

The '<-<' and '>->' operators are left and right rotation operators. The left operand may only be of a basic

integer type or an array of these types. The second operand must be a positive integer type. The result of the

expression with '<-<' is the bit-sequence of the first operand is rotated left as many times as indicated by the

value of the right operand. Vacated bit positions are filled with the bits that are rotated out of the left of the

bit-sequence. The result of the expression with '>->' is the bit-sequence of the first operand is rotated right as

many times as indicated by the value of the right operand. Vacated bit positions are filled with the bits that

are rotated out of the right of the bit-sequence.

6.7 Comparison Operators
Associativity is not defined for comparison operators since expressions with these operators cannot be

cascaded.

6.7.1 Greater than
expr : expr > expr

6.7.2 Less than
expr : expr < expr

6.7.3 Greater than or equal to
expr : expr >= expr

6.7.4 Less than or equal to
expr : expr <= expr

The result of these expressions is a 1 if the boolean result of the expression is true and 0 otherwise. The

operands must be of a basic type.

6.8 Equality Operators

6.8.1 Equal to
expr : expr == expr

6.8.2 Not Equal to
expr : expr != expr

The result of these expressions is a 1 if the boolean result of the expression is true and 0 otherwise. The

operands must be of a basic type.

16

6.9 Bitwise AND Operator
expr : expr & expr

Associativity: Left to right

The & operator performs a bitwise logical 'and' or of the operands. The operands are not required to be of

the same type. However, both operands are required to be of a basic type and must have equal lengths in

bits.

6.10 Bitwise XOR Operator
expr : expr ^ expr

Associativity: Left to right

The ^ operator performs a bitwise 'exclusive or' of the operands. The operands are not required to be of

the same type. However, both operands are required to be of a basic type and must have equal lengths in

bits.

6.11 Bitwise OR Operator
expr : expr | expr

Associativity: Left to right

The | operator performs a bitwise 'inclusive or' of the operands. The operands are not required to be of

the same type. However, both operands are required to be of a basic type and must have equal lengths in

bits.

6.12 Logical AND Operator
expr : expr && expr

Associativity: Left to right

The && operator returns 1 if both of its operands have a non-zero value, and 0 otherwise. Each of the

operands must be of a basic type. However, both operands are not required to be of the same type. The

second operand is not evaluated is the value of the first operand is zero.

6.13 Logical OR Operator
expr : expr || expr

Associativity: Left to right

The || operator returns 1 if either of its operands has a non-zero value, and 0 otherwise. Each of the two

operands must be of a basic type. However, both operands are not required to be of the same type The

second operand is not evaluated if the value of the first operand is non-zero.

17

6.14 Assignment Operator
object = expr

The assignment operator denotes that the variable on the LHS will hold the value of the expression on the

RHS. Various type conversion rules will be applied to evaluate what exactly should happen when an

assignment is executed. Indeed, there are many consideration of endian-ness, loss of precession, unmatched

types etc. which have been address in section 5.

6.15 Push Operator
object <- expr

 The push operator takes the expression on the right and streams the value to the lvalue. It is like an

assignment, but non- destructive. The current value of the object is not overwritten. Instead, the data is

made available to the object for appending.

7 Declarations
Declarations are used to specify types for identifiers. Whether declarations reserve memory for identifiers

is dependent upon the implementation of the compiler. However, once declared, an identifier refers to an

object that is of the indicated type and which is available till the end of the program's execution.

Declarations take the following form:

declaration:

type-specifier array declarator-list valid-check optional-check

Each declaration statement may comprise at most one type specifier. The type specifier field may be

followed by the array operator, which makes every declared element an array of the specified type. The

specification of the type is followed by a list of identifiers which are named elements of the said type. This

list may be followed by two optional clauses referred to in the grammar above as valid-check and optional-

check. These are detailed in later sections. Each declaration statement must be terminated with a semi-

colon. A declaration statement may not appear within a statement-block.

The declarator-list is a comma separated list of declarators. The comma-separated list of n identifiers is a

concise representation which is equivalent to the declaration of n identifiers one after the other via a

sequence of declaration statements. This equivalence should be borne in mind when declaring a comma-

separated list of identifiers within a struct type.

declarator-list:

declarator

declarator, declarator-list

declarator:

identifier initializer fieldsize

18

(declarator)

7.1 Type Specifiers
The type specifier for a declaration may be any of the basic types available in BDPL, a structure definition,

or a reference to a structure that is completely defined earlier in the BDPL source file.

type-specifiers:
int

bit

byte

float

double

struct-defn

struct-type

struct-defn:

struct name {declarations}

name:

identifier

struct-type:

type struct name

declarations:

declaration

declaration declarations

Each defined structure must be assigned a name, which identifies the type just created by virtue of the

definition. The struct-defn must be accompanied by the declaration of an element of that struct type. The

struct definition may contain any number of valid declaration statements within it, including the definition of

other struct types, as detailed in 3.3. The struct-type construct must be employed when creating elements of

a struct which has previously been defined. The name must be of a struct defined earlier.

7.2 Array Types
Array types may be created by following the type specification for an identifier by the array operator

along with a specification of the size of the array. The size of the array may be specified in the form of any

valid expression. The size of the array may also be specified as unknown, in which case, a '*' character should

be used in the size field. This creates a free-size array.

array:

[expr]

[*]

19

7.3 Identifier Properties
The each identifier may be qualified by an additional specification of its environment and properties. This

is in the form of an optional initializer and an optional field-size. Currently no strings are defined.

initializer:

(“string” => “string”)

(“string” => “string”),initializer

The field-size construct may to be used to specify circumstances wherein the application would like that

information be stored in a data structure of size other than in the file being processed. For an array of

unspecified size, the field-size indicates the maximum size in bits of the array element. For elements where

size is not variable, the field-size indicates the size of the representation of that field in a file should the field

be written to or read from a file.

field-size:

fieldsize expr

7.4 Valid Value Checks
For each identifier which is declared, constraints may be imposed on the value, set of values or range of

values that the variable may take. The variable is checked for a valid value assignments whenever an

expression with the identifier as lvalue is evaluated. The valid value check takes the following form:

valid-check:
valid {value-specifier} ok-blockopt nok-blockopt

ok-block:

ok {statement-block-1}

nok-block

nok {statement-block-2}

The value to be assigned to the identifier is evaluated and validated against the value-specifier. If this

comparison indicates that the assigned value is valid, the statement block-1 is executed, if present. If the

comparison fails, statement block-2 is executed if present. The ok and nok constructs are both optional and

either or both of these may be skipped. The ok keyword and statement-block1 must either both be present, or

neither. The nok keyword and statement-block2 must either both be present, or neither.

7.5 Optional Field Checks
When an element is being declared, an additional condition may be specified to allow the presence or

absence of a field based on a condition. This should be done using the optional-on construct, which requires

the specification of an expression. The element is considered present if the expression evaluates to a non-

zero value, and absent otherwise. Should an element be marked absent, its field-size is no more relevant.

20

optional-check:

optional on (expr)

8 Statements
Statements are executed in the order in which they are written in the program, except when the order is

explicitly changed by the program itself, using the statement constructs indicated below.

8.1 Expressions
Construction:

expression;
An expression terminated by a semi-colon constitutes a basic statement.

8.2 Statement Blocks
Construction:

{statement-block}
statement-block:

statement

statement statement-block

A statement block is a collection of statements that can be used together in lieu of a single statement.

8.3 Conditional Statements
Construction:

if (expression) statement else statement
if (expression) statement

The conditional statement can occur either with or without an else section. If the expression evaluates to

a non-zero value, the first statement is executed and if the expression evaluates to zero, the second

statement is executed, if present. The else is connected with the last encountered else-less if.

8.4 For Loop
Construction:

for(expression-1 ; expression-2 ; expression-3) statement
The loop statement is used to execute a statement several times depending upon a condition. In the said

syntax, expression-1 specifies an initialization for the loop, expression-2 specifies a condition which is

evaluated prior to each iteration and expression-3 specifies an incrementing action that is performed after

21

each iteration and before the evaluation of expression-2. Any or all of the expressions may be omitted.

8.5 Continue
Construction:

continue
This statement must be used within the for loop. It causes control to skip over the remaining statements in

the enclosing loop statement block and pass to the end of the loop.

8.6 Break
Construction:

break
This statement must be used within the for loop. It causes control to break out of the loop and pass to the

statement immediately following the loop statement.

8.7 Set
Construction:

set(string => string,identifier)
This statement allows attributes to be set for files. The first element should be a pair of strings separated

by the => symbol. The first of these strings identifies the attribute to be set, and the second, the value for

that attribute. The only pre-defined attribute string for files is “endian”, which defines the endian-ness of the

file. Its value may either be “big” or “little”. The default value is “little”. The second element with braces

must be the name of the file element for which the attribute is being set. This file element must already have

been declared through a file declaration statement.

8.8 Read
Construction:

read(string,identifier)
This statement allows the contents of a file to be read into a conceptual file buffer. The path to the file

whose contents have to be read is supplied as a string, and forms the first element of the read statement

within braces. The file type variable which represents the buffer into which the file must be read is the

second element. This file element must already have been declared through a file declaration statement.

8.9 Print
Construction:

22

print(string)
This statement allows the programmer to write message to the console from within the BDPL program. The

message to be written must be a string enclosed within braces that follow the print keyword.

8.10 Exit
Construction:

exit(int)
The execution of this statement stops execution of the current program and returns. The argument

(integer) is returned by exit to the caller.

8.11 Write
Construction:

write(string,identifier)
This statement allows the contents of a conceptual file buffer to be written to a file. The path to the file

whose contents have to be created is supplied as a string, and forms the first element of the write statement

within braces. The file type variable which represents the buffer from which the file must be written is the

second element. This file element must already have been declared through a file declaration statement.

9 Scope and lifetime
Every element is visible in the portion of the BDPL source file following its declaration. Every element has

the lifetime of the program.

10 Examples
The following examples demonstrate some real applications of the language.

10.1 MPEG Files
The following program parses Mpeg files :

struct trp_file
{
 struct transport_packet
 {
 byte magic
 valid {0x47} nok {print("Sync Byte Error");};
 bit[1] error;
 bit[1] priority;
 bit[1] something;
 bit[13] pid;

23

 bit[2] adaptation_field_control;
 bit[2] transport_scrambling_control;
 bit[4] continuity_counter
 valid {((tp[$#tp-1].continuity_counter + 1)%16)}
 nok
 {
 print("Continuity counter error ");
 };
 byte[184] payload;
 }[*] tp;
}trp_f;

file f1;
read("hello-world.mpeg",f1);
trp_f = f1;
print("mpeg file parsing complete");

The program starts out by defining the layout of the mpeg packet. The main program merely opens the file

and populate elements into the struct "trp_file". How does this work ? Mpeg files comprise of packets. We

have defined the struct "transport_packet" to mimic this. Then we define the structure trp_file which

contains an array of transport_packets . The size of this array is undefined initially. Depending on the amount

of data available, the size of the transport_packet array (tp) will increase. So when we execute the

statement

 trp_f = f1;
What actually happens is that bytes are read from the file and populated into the struct trp_file. This

in turn streams the bytes to the next element of the array tp (because thats all the trp_file contains. Thus,

packets get read incrementally form the file. Notice the line

valid {(tp[$#tp-1].continuity_ counter + 1)%16)}
tp refers to the array of packets. $#tp means the number of elements in tp . Thus, $#tp -1 is the last

element that was read. So , the code actually means that the continuity counter of the current packet is

dependent on the continuity counter of the last packet. If the value of the continuity counter does not match

the expected result, then an error will be flagged.

10.2 TIFF files
Here's a program to model the structure of a tiff file. Tiff files comprise of a header and a linked list of

image file directories. The position of where the next image file directory starts is given in the current

directory. The operation of reading the directory involves jumping to the new location and reading the

directory from there. We will demonstrate how this can be easily achieved in BDPL.

file f1;
struct tiff_file
{
 struct image_file_header
 {

24

 byte[2] endianness
 valid { 0x4949 , 0x4d4d }
 ok {

 if(endianness == 0x4949)
 set("endian" => "little",f1);

 else
set("endian" => "big",f1);

 }
 nok { exit("bad endianness byte"); };
 byte[2] magic valid {42} nok {exit("bad magic");};
 byte[4] ifd_pointer;
 }header;
}tiff;

struct image_file_directory
{
 byte[2] numEntries;
 struct image_file_directory_entry
 {
 byte[2] tag;
 byte[2] typefield;
 byte[4] count;
 byte[4] value;
 }ifdentry;
 byte[4] nextifdpointer;
}[*] ifd;

read("hello-world.tiff",f1);
tiff.header <- f1;
$f1 = tiff.header.ifd_pointer;

type struct image_file_directory temp_idf;
for(;1;)
{
 temp_idf <- f1 ;
 idf <- temp_idf;
 if(temp_idf.nextifdpointer > 0 && temp_idf.nextifdpointer < $#f1)
 { $f1 = temp_idf.nextifdpointer; }
 else { break; }
}
print("tiff file parsing complete")

The program defines 2 structures image_file_header and image_file_directory which describes the layout

of the 2 entities. The main part of the program reads the header from the file and gets the value of the initial

offset where the first image_file_directory resides. The offset of the file is set to this value with the

statement :

$(f1) = ifh.ifd_pointer;
$ is a unary operator which returns the position inside the current structure. This value can be modified to

jump to a new position.

Notice that the we have declared an array of image_file_directory structures. We intend to read structures

one by one from the file, push it into the array and jump to the new position where the next directory

25

structure will be found. The Algorithm is modelled exactly this way.

Lines :

 temp_idf <- f1 ;
 idf <- temp_idf;

get the next image_file_directory entry and push it into the array. Note here the "push" operator <- . This

operators reads a bitstream from the rhs and pushes it onto the LHS. This operator is non destructive.

The next lines :

 if(temp_idf.nextifdpointer > 0 && temp_idf.nextifdpointer < $#(f1))
 { $(f1) = temp_idf.nextifdpointer; }
 else { break; }

check if the end of the linked list has been reached and break accordingly.

11 Appendix

11.1 Appendix A – Operators, precedence

Operator Name Precedence Associativity

[] Aray index 1 Left

, List separator 1 Left

$ Position 1 Right

$# Size 1 Right

Byte size 1 Right

() Parenthesis 1

.. Range 1

~ Bitwise Negation 2 Right

! Logical Negation 2 Right

* Multiplication 3 Left

/ Division 3 Left

% Modulo 3 Left

+ Addition 4 Left

_ Subtraction 4 Left

26

<< Logical Left shift 5 Left

<<< Arithmetic left shift 5 Left

>> Logical Right Shift 5 Left

>>> Arithmetic right shift 5 Left

>-> Right rotate 5 Left

<-< Left Rotate 5 Left

< Less than 6 Left

> Greater than 6 Left

<= Less than equals 6 Left

>= Greater than equals 6 Left

== Equals 7 Left

!= Not equals 7 Left

& Bitwise And 8 Left

^ Bitwise Xor 8 Left

| Bitwise Or 8 Left

&& Logical And 9 Left

|| Logical Or 9 Left

? : Conditional 10 Right

= Assignment 11 Right

<- Push 11 Right

=> Set 11 Right

11.2 Appendix B – Antlr Grammar
class BdplLexer extends Lexer;
options {
 charVocabulary = '\3'..'\377';
 k = 3;
}

protected
LETTER
 : ('a'..'z'|'A'..'Z')
 ;

protected

27

DIGIT
 : ('0'..'9')
 ;

protected
UNDERSCORE
 : '_'
 ;

SEMICOLON : ';';
TERMINATOR : ":-)";
COMMA : ',';
OPENBRACE : '{';
CLOSEBRACE : '}';
SQBRACKETOPEN : '[';
SQBRACKETCLOSE : ']';
OPENPAREN : '(';
CLOSEPAREN : ')';
STAR : '*';
SLASH : '/';
ASSIGN : '=';
DOT_DOT : "..";
DOT : '.';
NEGATE : '~';
NOT : '!';
MINUS : '-' ;
PLUS : '+';
PERCENT : '%';
SET : "=>";
EQUALITY : "==";
INEQUALITY : "!=";
LLSH : "<<";
LRSH : ">>";
ALSH : "<<<";
ARSH : ">>>";
GT : ">";
LT : "<";
GTE : ">=";
LTE : "<=";
ROL : "<-<";
ROR : ">->";
QUESTION :'?';
APPEND : "<-";
INDEX : "$#";
BYTEOFFSET : "$";
LAND : "&&";
BAND : "&";

ID
 : (LETTER | UNDERSCORE)(LETTER|DIGIT|'_')*
 ;

protected
BINPREFIX
 : '0''b'
 ;

protected
BINDIGITS
 : ('0'|'1')
 ;

protected
BINNUM
 : BINPREFIX(BINDIGITS)+
 ;

protected
DECNUM
 : (DIGIT)+

28

 ;

protected
HEXDIGITS
 : ('0'..'9' | 'a'..'f' | 'A'..'F')
 ;

protected
HEXPREFIX
 : '0'('x'|'X')
 ;

protected
HEXNUM
 : HEXPREFIX (HEXDIGITS)+
 ;

NUM
 : DECNUM
 | HEXNUM
 | BINNUM
 ;

WS
 : (' '
 | '\n'
 | '\r' {newline();}
 | '\t'
) {$setType(Token.SKIP);}
 ;

STRING
 : '"'! ('"' '"'! | ~('"'))* '"'!
 ;

COMMENT
 : '/' '/' ((~'\n')* '\n' {newline();}) {$setType(Token.SKIP);}
 ;

class BdplParser extends Parser;
options{
 k = 1;
}

file
 : (stmt)+ EOF
 ;

stmt
 : declstmt
 | execstmt
 ;

expr
 : (term ASSIGN tern_expr) => assign_expr
 | (term APPEND tern_expr) => append_expr
 | tern_expr
 ;

append_expr
 : term APPEND tern_expr
 ;

assign_expr
 : term ASSIGN tern_expr
 ;

execstmt
 : expr ";"

29

 | stmtblock
 | "if" "(" expr ")" execstmt (options {greedy=true;}: "else" execstmt)?
 | "for" "(" (expr)? ";" (expr)? ";" (expr)? ")" execstmt
 | "read" "(" (STRING|"stdin") "," ID ")" ";"
 | "write" "(" (STRING|"stdout"|"stderr") "," ID ")" ";"
 | "set" "(" STRING "=>" STRING "," ID ")" ";"
 | "exit" "(" STRING ")" ";"
 | "print" "(" STRING ")" ";"
 ;

stmtblock
 : "{" (execstmt)* "}"
 ;

declstmt
 : basic_type (array)? list_of_ids (valid_check)? (optional_check)? ";"
 | "file" ID ("," ID)* ";"
 ;

basic_type
 : "bit"
 | "byte"
 | "int"
 | "float"
 | "double"
 | struct_type
 | struct_defn
 ;

struct_defn
 : "struct" ID "{" (declstmt)* "}"
 ;

struct_type
 : "type" "struct" ID
 ;

array
 : "[" (expr|STAR) "]"
 ;

range_list
 : (range_element)("," range_element)*
 ;

range_element
 : (expr)(DOT_DOT expr)?
 ;

list_of_ids
 : (single_id)(COMMA single_id)*
 ;

single_id
 : ID ("(" initializer ")")? ("fieldsize" expr)?
 ;

valid_check
 : "valid" ("{" range_list "}") ("ok" stmtblock)? ("nok" stmtblock)?
 ;

optional_check
 : "optional" "on" expr
 ;

initializer
 : (STRING SET STRING)(COMMA STRING SET STRING)*
 ;

tern_expr
 : lor_expr(QUESTION tern_expr COLON tern_expr)?

30

 ;

lor_expr
 : and_expr lor_exprt
 ;

lor_exprt
 : (("||" and_expr) lor_exprt)?
 ;

and_expr
 : bior_expr and_exprt
 ;

and_exprt
 : ((LAND bior_expr) and_exprt)?
 ;

bior_expr
 : beor_expr bior_exprt
 ;

bior_exprt
 : (("|" beor_expr) bior_exprt)?
 ;

beor_expr
 : band_expr beor_exprt
 ;

beor_exprt
 : (("^" band_expr) beor_exprt)?
 ;

band_expr
 : eq_expr band_exprt
 ;

band_exprt
 : ((BAND eq_expr) band_exprt)?
 ;

eq_expr
 : comp_expr eq_exprt
 ;

eq_exprt
 :((EQUALITY comp_expr)
 | (INEQUALITY comp_expr) eq_exprt)?
 ;

comp_expr
 : sh_expr comp_exprt
 ;

comp_exprt
 : ((GT sh_expr)
 |(LT sh_expr)
 |(GTE sh_expr)
 |(LTE sh_expr) comp_exprt)?
 ;

sh_expr
 : sum_expr sh_exprt
 ;

sh_exprt
 : ((LLSH sum_expr)
 |(LRSH sum_expr)
 |(ALSH sum_expr)
 |(ARSH sum_expr)

31

 |(ROL sum_expr)
 |(ROR sum_expr) sh_exprt)?
 ;

sum_expr
 : mult_expr sum_exprt
 ;

sum_exprt
 : ((PLUS mult_expr | MINUS mult_expr) sum_exprt)?
 ;

mult_expr
 : not_expr mult_exprt
 ;

mult_exprt
 : ((STAR not_expr | SLASH not_expr | PERCENT not_expr) mult_exprt)?
 ;

not_expr
 : (NEGATE child_term | NOT child_term | child_term)
 ;

child_term
 : term
 | "(" expr ")"
 | INDEX object
 | "#" lvalue_term
 | NUM
 ;

term
 : lvalue_term termt
 | BYTEOFFSET lvalue_term
 ;

termt
 : ("." lvalue_term termt)?
 ;

lvalue_term
 : object("[" (range_list|STAR) "]")?
 ;

object
 : ID
 ;

32

	1Introduction
	2Lexical conventions
	2.1Comments
	2.2Identifiers
	2.3Keywords
	2.4Reserved Words
	2.5Constants
	2.5.1Decimal constants
	2.5.2Hexadecimal constants
	2.5.3Binary constants
	2.5.4Floating constants
	2.5.5String constants

	3Types
	3.1Basic Types
	3.2Arrays
	3.3Structures
	3.4Files

	4Lvalues
	5Conversions
	6Expressions
	6.1Primary Expressions
	6.1.1Identifier
	6.1.2Numeric Constant
	6.1.3Parenthesized Expressions
	6.1.4Array expression
	6.1.5Dot Operator

	6.2Range Operator
	6.3Unary Operators
	6.3.1Negation operators
	6.3.2Offset Operator

	6.4Multiplicative Operators
	6.5Additive Operators
	6.6Shift Operators
	6.6.1Bitwise shift Operators
	6.6.2Arithmetic Shift Operators
	6.6.3Rotation Operators

	6.7Comparison Operators
	6.7.1Greater than
	6.7.2Less than
	6.7.3Greater than or equal to
	6.7.4Less than or equal to

	6.8Equality Operators
	6.8.1Equal to
	6.8.2Not Equal to

	6.9Bitwise AND Operator
	6.10Bitwise XOR Operator
	6.11Bitwise OR Operator
	6.12Logical AND Operator
	6.13Logical OR Operator
	6.14Assignment Operator
	6.15Push Operator

	7Declarations
	7.1Type Specifiers
	7.2Array Types
	7.3Identifier Properties
	7.4Valid Value Checks
	7.5Optional Field Checks

	8Statements
	8.1Expressions
	8.2Statement Blocks
	8.3Conditional Statements
	8.4For Loop
	8.5Continue
	8.6Break
	8.7Set
	8.8Read
	8.9Print
	8.10Exit
	8.11Write

	9Scope and lifetime
	10Examples
	10.1MPEG Files
	10.2TIFF files

	11Appendix
	11.1Appendix A – Operators, precedence
	11.2Appendix B – Antlr Grammar

