Video

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu

Columbia University
Spring 2007
The Model 181 is a high console model which provides television sight and sound entertainment with a selection of four (4) television channels. The black and white picture of pleasing contrast is reproduced on the screen of the 14 inch teletron, and measures 8 inches by 10 inches. The beautifully grained walnut cabinet of pleasing modern design measures 48½ inches high, 23 inches wide and 26 inches deep. It is completely A.C., operated from standard 110 volt 60 cycle power lines. Twenty-two (22) tubes including the Du Mont Teletron are employed in the superheterodyne circuit. A dynamic speaker is used for perfect sound reproduction. In addition, a three-band superheterodyne all wave radio is provided for standard radio reception. This receiver employs 8 tubes, is completely A.C. operated from 110 volt 60 cycle power lines. Push button and manual tuning are provided. An individual dynamic speaker is used for broadcast sound reproduction.
Vector Displays

GAME OVER

INSERT COIN

© ATARI 1980
Raster Scanning
Raster Scanning
Originally black-and-white
60 Hz vertical scan frequency
15.75 kHz horizontal frequency

\[\frac{15.75 \text{ kHz}}{60 \text{ Hz}} = 262.5 \text{ lines per field} \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1 V</td>
</tr>
<tr>
<td>Black</td>
<td>0.075 V</td>
</tr>
<tr>
<td>Blank</td>
<td>0 V</td>
</tr>
<tr>
<td>Sync</td>
<td>– 0.4 V</td>
</tr>
</tbody>
</table>
A Line of B&W Video

Front Porch: 0.02H
Sync: 0.08H
Back Porch: 0.06H
Blanking: 0.16H
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Interlaced Scanning
Color added later: had to be backwards compatible.

Solution: continue to transmit a “black-and-white” signal and modulate two color signals on top of it.

RGB vs. YIQ colorspace

\[
\begin{bmatrix}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{bmatrix}
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
=
\begin{bmatrix}
Y \\
I \\
Q
\end{bmatrix}
\]

Y baseband 4 MHz “black-and-white” signal
I as 1.5 MHz, Q as 0.5 MHz at 90°: modulated at 3.58 MHz
International Standards

<table>
<thead>
<tr>
<th></th>
<th>lines</th>
<th>active lines</th>
<th>vertical lines</th>
<th>aspect ratio</th>
<th>horiz. res.</th>
<th>frame rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>525</td>
<td>484</td>
<td>242</td>
<td>4:3</td>
<td>427</td>
<td>29.94 Hz</td>
</tr>
<tr>
<td>PAL</td>
<td>625</td>
<td>575</td>
<td>290</td>
<td>4:3</td>
<td>425</td>
<td>25 Hz</td>
</tr>
<tr>
<td>SECAM</td>
<td>625</td>
<td>575</td>
<td>290</td>
<td>4:3</td>
<td>465</td>
<td>25 Hz</td>
</tr>
</tbody>
</table>

PAL: Uses YUV instead of YIQ, flips phase of V every other line

SECAM: Transmits the two chrominance signals on alternate lines; no quadrature modulation
Computer Video: VGA

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Red</td>
<td>Green</td>
<td>Blue</td>
<td>ID2</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>RGND</td>
<td>GGND</td>
<td>BGND</td>
<td>(+5V)</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>ID0</td>
<td>ID1</td>
<td>hsync</td>
<td>vsync</td>
<td>ID3</td>
</tr>
</tbody>
</table>

ID2 ID0 ID1

- GND: Monochrome, \(<1024 \times 768\)
- Color, \(<1024 \times 768\)
- Color, \(\geq1024 \times 768\)

DDC1

- ID2: Data from display
- vsync: also data clock

DDC2

- ID1: \(i^2C\) SDA
- ID3: \(i^2C\) SLC
<table>
<thead>
<tr>
<th>Mode</th>
<th>Resolution</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Pixel Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA</td>
<td>640×350</td>
<td>70 Hz</td>
<td>31.5 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>VGA</td>
<td>640×400</td>
<td>70 Hz</td>
<td>31.5 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>VGA</td>
<td>640×480</td>
<td>59.94 Hz</td>
<td>31.469 kHz</td>
<td>25.175 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800×600</td>
<td>56 Hz</td>
<td>35.2 kHz</td>
<td>36 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800×600</td>
<td>60 Hz</td>
<td>37.8 kHz</td>
<td>40 MHz</td>
</tr>
<tr>
<td>SVGA</td>
<td>800×600</td>
<td>72 Hz</td>
<td>48.0 kHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>XGA</td>
<td>1024×768</td>
<td>60 Hz</td>
<td>48.5 kHz</td>
<td>65 MHz</td>
</tr>
<tr>
<td>SXGA</td>
<td>1280×1024</td>
<td>61 Hz</td>
<td>64.2 kHz</td>
<td>110 MHz</td>
</tr>
<tr>
<td>HDTV</td>
<td>1920×1080i</td>
<td>60 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UXGA</td>
<td>1600×1200</td>
<td>60 Hz</td>
<td>75 kHz</td>
<td>162 MHz</td>
</tr>
<tr>
<td>UXGA</td>
<td>1600×1200</td>
<td>85 Hz</td>
<td>105.77 kHz</td>
<td>220 MHz</td>
</tr>
<tr>
<td>WUXGA</td>
<td>1920×1200</td>
<td>70 Hz</td>
<td>87.5 kHz</td>
<td>230 MHz</td>
</tr>
</tbody>
</table>
Detailed VGA Timing

640 × 480, “60 Hz”

25.175 MHz Dot Clock
31.469 kHz Line Frequency
59.94 Hz Field Frequency

<table>
<thead>
<tr>
<th>pixels</th>
<th>role</th>
<th>lines</th>
<th>role</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Front Porch</td>
<td>2</td>
<td>Front Porch</td>
</tr>
<tr>
<td>96</td>
<td>Horizontal Sync</td>
<td>2</td>
<td>Vertical Sync</td>
</tr>
<tr>
<td>40</td>
<td>Back Porch</td>
<td>25</td>
<td>Back Porch</td>
</tr>
<tr>
<td>8</td>
<td>Left border</td>
<td>8</td>
<td>Top Border</td>
</tr>
<tr>
<td>640</td>
<td>Active</td>
<td>480</td>
<td>Active</td>
</tr>
<tr>
<td>8</td>
<td>Right border</td>
<td>8</td>
<td>Bottom Border</td>
</tr>
<tr>
<td>800</td>
<td>total per line</td>
<td>525</td>
<td>total per field</td>
</tr>
</tbody>
</table>

Active-low Horizontal and Vertical sync signals.
Challenge: A white rectangle

Let’s build a VHDL module that displays a 640 × 480 VGA raster with a white rectangle in the center against a blue background.
For a 25.175 MHz pixel clock,

- **HSYNC**: 96 pixels
- **BACK_PORCH**: 48
- **HACTIVE**: 640
- **FRONT_PORCH**: 16
- **HTOTAL**: 800
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity vga_raster is

port (
 reset : in std_logic;
 clk : in std_logic; -- Should be 25.125 MHz
 VGA_CLK, -- Dot clock to DAC
 VGA_HS, -- Active-Low Horizontal Sync
 VGA_VS, -- Active-Low Vertical Sync
 VGA_BLANK, -- Active-Low DAC blanking control
 VGA_SYNC : out std_logic; -- Active-Low DAC Sync on Green
 VGA_R, VGA_G, VGA_B : out std_logic_vector(9 downto 0)
);

end vga_raster;
architecture rtl of vga_raster is

-- Video parameters

constant HTOTAL : integer := 800;
constant HSYNC : integer := 96;
constant HBACK_PORCH : integer := 48;
constant HACTIVE : integer := 640;
constant HFRONT_PORCH : integer := 16;

constant VTOTAL : integer := 525;
constant VSYNC : integer := 2;
constant VBACK_PORCH : integer := 33;
constant VACTIVE : integer := 480;
constant VFRONT_PORCH : integer := 10;

constant RECTANGLE_HSTART : integer := 100;
constant RECTANGLE_HEND : integer := 540;
constant RECTANGLE_VSTART : integer := 100;
constant RECTANGLE_VEND : integer := 380;
-- Horizontal position (0-800)
signal Hcount : std_logic_vector(9 downto 0);
-- Vertical position (0-524)
signal Vcount : std_logic_vector(9 downto 0);
signal EndOfLine, EndOfField : std_logic;

signal vga_hblank, vga_hsync,
 vga_vblank, vga_vsync : std_logic; -- Sync. signals

signal rectangle_h, rectangle_v, rectangle : std_logic; -- rectangle area

begin
HCounter : process (clk, reset)
begin
 if reset = '1' then
 Hcount <= (others => '0');
 elsif clk'event and clk = '1' then
 if EndOfLine = '1' then
 Hcount <= (others => '0');
 else
 Hcount <= Hcount + 1;
 end if;
 end if;
end process HCounter;

EndOfLine <= '1' when Hcount = HTOTAL - 1 else '0';

VCounter: process (clk, reset)
begin
 if reset = '1' then
 Vcount <= (others => '0');
 elsif clk'event and clk = '1' then
 if EndOfLine = '1' then
 if EndOfField = '1' then
 Vcount <= (others => '0');
 else
 Vcount <= Vcount + 1;
 end if;
 end if;
 end if;
end process VCounter;

EndOfField <= '1' when Vcount = VTOTAL - 1 else '0';
Horizontal signals

HSyncGen : process (clk, reset)
begin
 if reset = '1' then
 vga_hsync <= '1';
 elsif clk'event and clk = '1' then
 if EndOfLine = '1' then
 vga_hsync <= '1';
 elsif Hcount = HSYNC - 1 then
 vga_hsync <= '0';
 end if;
 end if;
end process HSyncGen;

HBlankGen : process (clk, reset)
begin
 if reset = '1' then
 vga_hblank <= '1';
 elsif clk'event and clk = '1' then
 if Hcount = HSYNC + HBACK_PORCH then
 vga_hblank <= '0';
 elsif Hcount = HSYNC + HBACK_PORCH + HACTIVE then
 vga_hblank <= '1';
 end if;
 end if;
end process HBlankGen;
Vertical signals

VSyncGen : process (clk, reset)
begin
 if reset = '1' then
 vga_vsync <= '1';
 elsif clk'event and clk = '1' then
 if EndOfLine = '1' then
 if EndOfField = '1' then
 vga_vsync <= '1';
 elsif Vcount = VSYNC - 1 then
 vga_vsync <= '0';
 end if;
 end if;
 end if;
end if;
end process VSyncGen;

VBlankGen : process (clk, reset)
begin
 if reset = '1' then
 vga_vblank <= '1';
 elsif clk'event and clk = '1' then
 if EndOfLine = '1' then
 if Vcount = VSYNC + VBACK_PORCH - 1 then
 vga_vblank <= '0';
 elsif Vcount = VSYNC + VBACK_PORCH + VACTIVE - 1 then
 vga_vblank <= '1';
 end if;
 end if;
 end if;
end if;
end process VBlankGen;
The Rectangle

RectangleHGen : process (clk, reset)
begin
 if reset = '1' then
 rectangle_h <= '1';
 elsif clk'event and clk = '1' then
 if Hcount = HSYNC + HBACK_PORCH + RECTANGLE_HSTART then
 rectangle_h <= '1';
 elsif Hcount = HSYNC + HBACK_PORCH + RECTANGLE_HEND then
 rectangle_h <= '0';
 end if;
 end if;
end process RectangleHGen;

RectangleVGen : process (clk, reset)
begin
 if reset = '1' then
 rectangle_v <= '0';
 elsif clk'event and clk = '1' then
 if EndOfLine = '1' then
 if Vcount = VSYNC + VBACK_PORCH - 1 + RECTANGLE_VSTART then
 rectangle_v <= '1';
 elsif Vcount = VSYNC + VBACK_PORCH - 1 + RECTANGLE_VEND then
 rectangle_v <= '0';
 end if;
 end if;
 end if;
end process RectangleVGen;

rectangle <= rectangle_h and rectangle_v;
Output signals

VideoOut: process (clk, reset)
begin
if reset = '1' then
 VGA_R <= "0000000000";
 VGA_G <= "0000000000";
 VGA_B <= "0000000000";
elsif clk'event and clk = '1' then
 if rectangle = '1' then
 VGA_R <= "1111111111";
 VGA_G <= "1111111111";
 VGA_B <= "1111111111";
 elsif vga_hblank = '0' and vga_vblank = '0' then
 VGA_R <= "0000000000";
 VGA_G <= "0000000000";
 VGA_B <= "1111111111";
 else
 VGA_R <= "0000000000";
 VGA_G <= "0000000000";
 VGA_B <= "0000000000";
 end if;
end if;
end process VideoOut;

VGA_CLK <= clk;
VGA_HS <= not vga_hsync;
VGA_VS <= not vga_vsync;
VGA_SYNC <= '0';
VGA_BLANK <= not (vga_hsync or vga_vsync);
end rtl;