PictureBrowser

CSEE 4840 Embedded System Design
Jean Kongpinda
Stephane Nyombayire
Joseanibal Colon-Ramos

Tan Roth

Table of Contents

1. Overview

2. JPEG Decoder

3. Hardware System

4. PictureBrowser Software

5. Support Software

6. Summary

7. Work Breakdown

8. Code

1. Hardware

2. Software

9. License

Chapter 1: Overview

The purpose of our project is to design a picture browser using the DE2 Altera Board.
The Altera Board comes equipped with a USB host, VGA output connection and four
pushbuttons among other features. The picture browser finds the JPEG files located on a
USB mass storage and display them on a VGA monitor attached to the board. The
pushbuttons are then used to browse through the pictures. Two of the buttons are used to
move forward and backward on the picture, one button is used to stretch the image while
the four one ends the picture browser application. Figure 1 illustrates our system

architecture:

NIOS 2
processor

[V N M)

SDRAM Button JPEG
(NxView) interface Decoder
[C—Ccode]

(UCLINUX)

In order to achieve this, we installed the pClinux operating system on the SDRAM of the

DE2 board. This operating system was configured to detect and mount the USB mass

storage. We then wrote software to locate the JPEG files on the USB mass storage and

call an image viewer program used for display. uClinux comes with a pre-installed JPEG

image viewer called NXView. However, the JPEG decoding used by the NXView is

fairly slow. We decided to have a portion of the JPEG decoding performed on the

hardware of the DE2 Altera Board in order to speed up the decoding process. The

decoded image was then displayed on the monitor through the VGA interface.

Chapter 2: JPEG Decoder

The inverse discrete cosine transform is completed in hardware due to the many
arithmetic operators used in its implementation. The JPEG decoder is used by libjpeg,
the software library used by nano-X, nxview, and thus the PictureBrowser software. The
seminal paper “Practical Fast 1-D DCT Algorithms with 11 Multiplications” by
Christoph Loeffler, Adriaan Ligtenberg and George S. Moschytz was consulted for
further information about the transform and graphics from the paper have been used here.

The IDCT requires dequantization of the input values, thus 16 values are sent for
each use of the hardware JPEG decoder for a total of 8 full multipliers. The rest of the
multipliers are reduced since the input values are multiplied by constant “rotators”. The

most simple version is shown in the figure below:

alege 1 : stage 2 ; stage 3 | stage 4

[i] 0 aven
1 4 pven— — -
H 2 odd
3 —_ o =
: i

?1 E Ud‘d

T 1

The solid circles represent addition if the lines are solid, and subtraction if the lines are
dashed. The squares represent multiplication by the rotators and a lined circle is a
multiplication by the square root of 2. The most basic algorithm has the fewest

multiplications and additions, but there are multiple multiplications per input; an

undesirable feature which adds delay. To correct this issue, 12 parallel multiplications
can be used at the cost of more additions per line. The figure for the reconstructed odd

portion of the algorithm is shown below:

Fp—

iz : } {4)— 1

Register Transfer Logic Design, although a familiar topic to the team, was
rejected as a design methodology. The limiting factor was the speed of sequentially
reading and writing input and output values; not the number of gates on the FPGA. The
design team did not feel it necessary to reuse the multipliers since the component fit onto
the FPGA without any problem. The highly parallel design is both simple and reusable
in applications such as DSP where multiple values could arrive at the same time. One
would only have to remove the input registers and output multiplexer. The stages are
also set up to be about the same delay, thus pipelining would be simple to implement.

The hardware synthesizer of Quartus was able to reduce the hardware design to a
point where it could be added to the original design and still fit on the available FPGA.
Although it was suggested that multiple JPEG decoders were possible, it was found that

the hardware design was only limited to the speed at which the 16 values could be loaded

into the device and not the combinatorial logic. The waveform showing the speed at

which the output values are asserted follows:

UT/autputd
UT/autputs

AbAUT outputs

4740 ns 0 2400

Another design consideration was the writing of input values to registers. In order
to be able to write in a value at each clock cycle, addressing had to be used. First
instincts led to the use of a simple FSM that sequentially enabled each input register,
however the use of a counter proved to be impossible in one clock cycle, especially since
the design tools would not allow the use of both the rising and falling clock edge. The
addressing has the input values inputed in even addresses and the dequantization values
inputed in the odd addresses. The reading is done on the lowest 8 addresses with the
addresses corresponding to the output names.

The JPEG decoder hardware is implemented in the VHSIC Hardware Description

Language. Original plans called for the shifting of the output values before they were
read, however this was not possible with the CAD tools used. The operator need for this
shifting, sra, was not available in the IEEE libraries. Quartus included the arithmetic
libraries that allowed for the sra operator, but ModelSim did not include the arithmetic
libraries. The last shifting is completed in software.

The JPEG decoder was written to interface with the Altera Avalon Bus Fabric.
An identifier of “s6” was used for the JPEG decoder. The bus readdata and writedata
vectors were of the signed integer type, as were most other signals used to carry the input
and dequantization values. Readdata and writedata were 32 bits in length with 31 as the

sign bit and O as the LSB.

Chapter 3: Hardware System

The JPEG decoder is part of a much larger hardware system taken from Altera's
software CD. The original purpose of the system was to demonstrate the VGA and PS/2
capabilities of the DE2 board. Our application required the slowing of the clock to
50MHz, but all other hardware remains a part of the system, even if it is not required for
the PictureBrowser. Hardware drivers are used to interact with the VGA framebuffer,
pushbuttons, and USB host device. The JPEG decoder is addressed directly in memory
since it does not have an interrupt request need.

The original hardware is implemented in Verilog. The JPEG decoder was written
in VHDL and the test bench was written in Verilog. No problems were encountered

mixing the two languages in the SOPC system builder and the ModelSim simulator.

Chapter 4: PictureBrowser Software

4.1 Hardware/Software Interface:

JPEG decoding in the hardware gets sixteen 32 bit signed integers as input from the
software and outputs another set of sixteen 32 bit signed integers to the jidcint.c
(lib/libjpeg). Our software component accesses the decoder as if it was a 16 word, 32 bit
memory device. We read and write to the Avalon bus through I0_RD_32DIRECT and
IOWR_32DIRECT. These two functions which are defined in io.h (lib/libjpeg/) are
macros defined after native input/output functions specific to the NIOs2 Board.
Functions signatures for these two functions are as follows:

IOWR_32DIRECT(BASE, OFFSET, DATA);

IORD_32DIRECT(BASE, OFFSET);

The base describes the address that SOPC assigned to the JPEG component (decoder) in
the hardware. The offset is 4 bytes since we are writing/reading 32 bits signed integers
to/from the hardware. Finally, as mentioned above the data is a 32 bit signed integer.

4.2 Software:

We perform the inverse discrete cosine transform along with dequantization of the JPEG
decoder in the hardware, in order to accomplish the task we had to disable the existing

features in the libjpeg directory.

4.2.1 IDCT and Dequantization:

4.2.1.1 jddctmanager.c:

This file manages which idct is to be used by the jpeg decoder, we modified this file in

order to only allow the slow inverse discrete cosine transform (idct_slow). The

IDCT_SLOW is defined in jidctint.c (lib/libjpeg), it only deals with 8 x 8 DCTs.

4.2.1.2 jidcint.c:

Each of the row of the matrix are 32 bits signed integers, they are iteratively (8 times)

written to the hardware along with their dequantizer counterparts. The result of the

decoding from the hardware is in turn descaled and read into the output matrix.

4.2.2 Button Reader and JPEG finder:

We enabled the driver for the Altera DE2 Board buttons by adding a new module via

menuconfig of the uClinux OS. We followed the steps described in the nios2 wiki to

install the module. Additionally, we wrote a ¢ program (pictureviewer.c) that recursively

iterates given a root directory through directories in order to find JPEG path filenames.

This program is case insensitive and does not distinguish between jpg and jpeg file

extension. The path filenames are stored into an array of strings (global variable); with

the four buttons a user can either view the next picture, previous one, stretch the current

picture or just exit the program. The executable of pictureviewer.c is copied into the

romfs directory in order to execute it on the board before we zip up the zZImage. At boot

up, we automatically mount the USB driver through the modified boot up script. At

execution our program goes recursively through folders of the mounted USB mass

storage and notify the user of the JPEG files found. The user can now navigate through

her JPEG pictures and even stretch them for an enjoyable feeling. However, it is also

important to note that nano-X (graphical windowing) has to be killed and restarted

everytime we run nxview (interface that calls our modified libjpeg library). This causes a

delay in the display of pictures but this delay is significantly less than the same process

running using the original libjpeg.

Chapter 5: Support Software

Our project heavily relied on uClinux, below are the existing applications that we took

advantage of:

- Nano-X: a graphical windowing application
- Nxview: application that allows display of various file formats

- Busybox: customizable system calls

More documentation about these applications can be found at these websites:

http://mioswiki.jot.com/WikiHome/OperatingSystems/UClinuxDist

http://mioswiki.jot.com/WikiHome/OperatingSystems/ % C2 % BSClinux/UsbHost

http://mioswiki.jot.com/WikiHome/OperatingSystems/ % C2 %

B5Clinux/FrameBuffer

Here are some useful screen shots for uClinux menu config:

Terminal - Ternmin:al

Arrow keys navigate the menu. <Enter> selects submenus =——>,
Hi hlightad letters are hotkeys. Pressing <Y> selectes a feature,
while <M> will exclude a feature. Press (Esc>{Esc> to exit, <7> for

Help, </> for Search. Legend: [»] feature iz selected [] feature is

pplets
rchival Utilities —2
oreuti ey

onsole Utilities -—-—>

ehian Utilicies -—>

ditors ——=3

inding Utilities =—>

nit Utilities —>

ogin/Password Management Utilities —>
inux Ext2 F$ Praogs =-———>

inux Module Utilities —>

inux System Utilities -—2>

H scellaneous Utilities -—>

N tworking Utilities =—=>

rocess Utilities =---=>

B m—
ysten Logging Utilities -——-3>

oad an Alternate Configuration File
ave Configuration to an Alternate File

€ Bxit > L Melp >

Chapter 6: Summary

The system is able to display JPEG pictures as planned. Implementing the Inverse
Discrete Cosine Algorithm on the hardware proved to be faster than its software
implementation. For that reason, the pictures are displayed faster. As a matter of fact,
our program took about 100 microseconds less than before to open a JPEG picture of
about 60 kB. This difference becomes very significant as you increase the picture size
and the picture resolution. We were able to flip through the pictures using the
pushbuttons.

One of the biggest issues we had was dealing the uClinux operating software. In
order to debug and test out design, we had to recompile the kernel every time. That
recompilation took about an average of 30-40 minutes. It was also difficult to debug
problems on the pClinux software itself since it has a fairly large code base. Also, the
DE2 development itself has limited resources. It turned out that the S8MB SDRAM
available on it is not the ideal size for a uClinux kernel. However, we were able to
carefully program it to run both our software and the operating system. On the hardware
side of things, we wish we started working on it early enough because it turned out to be
quite a challenge. The main problem was interfacing the rest of the software JPEG
decoding with the result from the IDCT performed on hardware. ModelSim was very

helpful as a simulation program to test the hardware. Using ModelSim, we were able to

check the validity of the hardware IDCT by comparing it wave outputs to the outputs we
would expect in a C IDCT. However, Quartus and ModelSim have different VHDL
libraries so we had to try to make our VHDL code compatible to both for testing
purposes.

The most important lesson we learned how to handle debugging processes. The
nice thing about having a project on picture decoding is that from analyzing the resulting
pictures, you can make intelligent guesses on which part of the decoding process is
faulty. Also, simulation on hardware is very helpful and we hoped we had started using it
from the beginning. It saved us a lot of Quartus compilation time. In addition, the
interfacing between hardware and software must be done delicately. We should have
first tried a small sample code to test the timing and communication between the two.

uClinux is a great operation system, but there are still some improvement to be made.

Chapter 7: Work Breakdown

Jean Kongpinda: Hardware simulation, pClinux configuration, nxview modification.
Stephane Nyombayire: libjpeg modification and testing, software/hardware interface,
button configuration.

Joseanibal Colon-Ramos: PictureBrowser software, software integration.

Ian Roth: Hardware IDCT, hardware simulation, nxview modification.

Chapter 8: Code

8.1 Hardware

JPEG _decode.vhd

—— JPEG_decode
—— Modified 5/05/2007
—— Ian Roth

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity JPEG_decode is

port (
avs_s6_clk,
avs_s6_chipselect,
avs_sb6_reset_n,
avs_sb6_read,
avs_s6_write : in std_logic;
avs_s6_address: in std_logic_vector (3 downto 0);
avs_s6_writedata : in signed(31 downto 0);
avs_sb6_readdata : out signed(31 downto 0)

) ;
end JPEG_decode;

architecture rtl of JPEG_decode is

component reggate is

port (
clk,reset_n : in std_logic;
input : in signed(31 downto 0);
enable : in std_logic;

output : out signed(31 downto 0)
) ;

end component reggate;
component mux is

port (
input0, inputl, input2, input3,
input4, inputb5, input6, input7 : in signed(31
downto 0);
sel : in std_logic_vector (2 downto 0);
output : out signed(31 downto 0)
) 7

end component mux;

component quantmux is

port (
input : in signed(31 downto 0);
dequant : in signed (31 downto 0);

output : out signed(31 downto 0)
)i

end component quantmux;

constant cos0 : signed(31 downto 0) :=
"00000000000000000000100110001110";—— 2446 FIX
(0.298631336)

constant cosl : signed(31 downto 0) :=
"00000000000000000000110001112100";—— 3196 FIX
(0.390180644)

constant cos2 : signed(31 downto 0) :=
"00000000000000000001000101010001L™;—— 4433 FIX

(0.541196100)

constant cos3 : signed(31 downto 0) :=
"0000000000000000000110000111121210";—— 6270 FIX
(0.765366865)

constant cos4 : signed(31 downto 0) :=
"00000000000000000001110011001101";—— 7373 FIX
(0.899976223)

constant cos5 : signed(31 downto 0) :=
"00000000000000000010010110100001";—— 9633 FIX
(1.175875602)

constant cos6 : signed(31 downto 0) :=
"00000000000000000011000000001011";—— 12299 FIX
(1.501321110)

constant cos”7 : signed(31 downto 0) :=
"00000000000000000011101100100001";—= 15137 FIX
(1.847759065)

constant cos8 : signed(31 downto 0) :=
"00000000000000000011111011000101";—— 16069 FIX
(1.961570560)

constant cos9 : signed(31 downto 0) :=
"00000000000000000100000110110011";—— 16819 FIX
(2.053119869)

constant cosl0 : signed(31 downto 0):=
"00000000000000000101001000000011";—— 20995 FIX
(2.562915447)

constant cosll : signed(31 downto 0):=
"00000000000000000110001001010100";—— 25172 FIX
(3.072711026)

constant ncosl : signed(31 downto 0) :=
"11111111111111111111001110000100";—-— 3196 FIX
(0.390180644)

constant ncos4 : signed(31 downto 0) :=
"11111111111111111110001100110011";—— 7373 FIX
(0.899976223)

constant ncos7 : signed(31 downto 0) :=
"11111111111111111100010011011111";—— 15137 FIX
(1.847759065)

constant ncos8 : signed(31 downto 0) :=
"11111111111111111100000100111011";—— 16069 FIX
(1.961570560)

constant ncosl0 : signed(31 downto 0):=
"11111111111111111010110111111101";-= 20995 FIX
(2.562915447)

signal
enablel,enablel,enable?2,enable3,enabled4,enable5,enables,
enable’,

enable8,enable9,enablell,enablell,enablel?2,enablel3,enab
leld,enablel5 : std_logic;

signal tobus : signed (31 downto 0);
signal enableout : std_logic;
signal enable : std_logic_vector (15 downto 0);
signal dequantQ,

dequantl,

dequant2,

dequant3,

dequant4,

dequantb,

dequanté,

dequant7 : signed (31 downto 0);
signal inputO,

inputl,

input2,

input3,

input4,

inputb,

inputeé6,

input7 : signed (31 downto 0);
signal stagelO,

stagell,

stagel?2,

stagel3,

stageld,

stagelb,

stagel6,

stagel7 : signed(31 downto 0);
signal stage22, stage23 : signed(63 downto 0);
signal stage20,

stage2l,

stage?24,
stage?25,
stage?26,
stage?7,
stage?28§,
stage?29,
stage210
stage2ll
stage212 : signed(31 downto 0);
signal stage30,
stage3l,
stage32,
stage33,
stage34,
stage35,
stage36,
stage37,
stage38,
stage39,
stage310
stage3ll,
stage312 : signed(63 downto 0);
signal stage4ol,
stagedl,
staged?2,
stage43,
stage4di,
stageds,
stagedb6,
staged7 : signed(63 downto 0);
signal tempO, templ, temp2, temp3, tempd4d, tempb5, temps
signed (63 downto 0);
signal temp6, temp?7 : signed(31 downto 0);
signal outputO,
outputl,
output?2,
output3,
output4,
outputb,
outputé6,

~

~

~

output?7 : signed(31 downto 0);

begin

REGMUX : mux port map (
input0 => outputO,

inputl => outputl,
input2 => output2,
input3 => output3,
input4 => output4,
input5 => outputh,
input6 => outputé6,

input7 => output?,
sel => avs_s6_address (2 downto 0),
output => tobus

) ;

RO : reggate port map (
clk => avs_s6_clk,
reset_n => avs_sb6_reset_n,
input => avs_s6_writedata,
enable => enableO,
output => inputO

R1 : reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enable?2,
output => inputl

R2 : reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enabled,
output => input?2

R3

R4

R5

R6

R7

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enable6,
output => input3

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enable8,
output => input4

reggate port map (
clk => avs_s6_clk,
reset_n => avs_sb6_reset_n,
input => avs_s6_writedata,
enable => enablelO,
output => inputb

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enablel2,
output => inputé6

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enableld,
output => input?

Q0

Q1

Q2

Q3

04

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enablel,
output => dequantO

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enable3,
output => dequantl

reggate port map (
clk => avs_s6_clk,
reset_n => avs_sb6_reset_n,
input => avs_s6_writedata,
enable => enableb,
output => dequant?2

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enable’,
output => dequant3

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enable9,
output => dequant4d

Q5

06

Q7

)i

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enablell,
output => dequantb

reggate port map (
clk => avs_s6_clk,
reset_n => avs_s6_reset_n,
input => avs_s6_writedata,
enable => enablel3,
output => dequanté6

reggate port map (
clk => avs_s6_clk,
reset_n => avs_sb6_reset_n,
input => avs_s6_writedata,
enable => enablel5,
output => dequant?

DEO : gquantmux port map (

) ;

input => input0,
dequant => dequantO,
output => stagell

DE1l : gquantmux port map (

);

input => inputl,
dequant => dequantl,
output => stagell

DE2 : gquantmux port map (

input => input2,
dequant => dequant2,

output => stagel?2
) 7

DE3 : quantmux port map (
input => input3,
dequant => dequant3,
output => stagel3

) ;

DE4 : gquantmux port map (
input => input4,
dequant => dequanti,
output => stageld

);

DE5 : gquantmux port map (
input => inputb,
dequant => dequantb),
output => stagelb

)i

DE6 : gquantmux port map (
input => inputé6,
dequant => dequanté6,
output => stagel6

)i

DE7 : quantmux port map (
input => input7,
dequant => dequant?,
output => stagel’

) ;

tempb <= stagelO + stageld;

temp’7 <= stagel0 - stagel4;

stage20 <= temp6(31l) & temp6(1l7 downto 0) &
"0000000000000"; —— shift by CONST_BITS

stage2l <= temp7(31) & temp7(17 downto 0) &
"0000000000000"; —— shift by CONST_BITS

temp8 <= (stagel2 + stagel6) * cos2;

stage22
stage23
stage24
stage2b
stage26
stage27
stage?28
stage29

stage30
stage3l
stage32
stage33
stage34
stage35
stage36
stage37
stage38
stage39
stage310
stage31l1l
stage312
tempO
templ
temp?2
temp3
temp4
tempb
staged0
stagedl
stage4?2
stage43
staged4d
stagedb
stagedb6
staged’
outputO

<=
<=
<= stagel’;
<= stagelb;
<= stagel3;
<= stagell;

(stagel6 * ncos7)
(stagel2 * cos3)

<= stage24 + stagel’;
<= stage25 + stage26;
stage210 <= stage26 + stage24;
stage2ll <= stage25 + stagel?7;
stage2l12 <= stage2l10

<= stage20
<= stage?l
<= stage2l
<= stage20
<= stage24
<= stage2b
<= stage26
<= stage27
<= stage28
<= stageZ29

+
+

b .

*

<= stage210
<= stage2ll
<= stage2l2

= stage34 +
= stage35 +
= stage36 +
= stage37 +

<= stage30
<= stage3l
<= stage32
<= stage33
<= stage33
<= stage32
<= stage3l
<= stage30
<= stage40(

+ stage2l1l;
stage23;
stage?22;
stage22;
stage23;
cos0;
cos9;
cosll;
cosb6;
ncos4;
ncosl0;
* ncos8;
* ncosl;
* cosb5;

= stage310 + stage3l2;
= stage31ll + stage3l2;

+ temp8§;
+ temp§;

stage38
stage39
stage39
stage38

J’_

+
J’_
—+

tempO;
templ;
tempO;
templ;

+
+
+
+

63

tempb5;
temp4;
temp3;
temp?2;
temp?2;
temp3;
temp4;
tempb5;

) & staged40(30 downto 0);
Reduce bit count for multiplied lines and keep the sign

bit
outputl <= stagedl(63)
output2 < (63)
output3 <= (63)
outputd <= staged4d(63)
outputb <= (63)
output6 < (63)
output?7 <= staged7(63)

2 2 2 &2 &2 & R

enable0 <= avs_s6_write and enable(0)

avs_s6_chipselect;

enablel <= avs_s6_write
avs_s6_chipselect;

enable?2 <= avs_s6_write
avs_s6_chipselect;

enable3 <= avs_s6_write
avs_s6_chipselect;

enabled4 <= avs_s6_write
avs_s6_chipselect;

enableb <= avs_s6_write
avs_s6_chipselect;

enable6 <= avs_s6_write
avs_s6_chipselect;

enable”7 <= avs_s6_write
avs_s6_chipselect;

enable8 <= avs_s6_write
avs_s6_chipselect;

enable9 <= avs_s6_write
avs_s6_chipselect;

enablel0 <= avs_s6_write
avs_sb6_chipselect;

enablell <= avs_s6_write
avs_sb6_chipselect;

enablel?2 <= avs_s6_write
avs_s6_chipselect;

enablel3 <= avs_s6_write
avs_s6_chipselect;

enableld4 <= avs_s6_write
avs_s6_chipselect;

enablelb <= avs_s6_write

sta
sta
sta
sta
sta
sta
sta

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

ged4l (30 downto
ged42 (30 downto
ged43(30 downto
ged44 (30 downto
ge45(30 downto
ged6 (30 downto
ged7(30 downto
and
enable(l) and
enable(2) and
enable(3) and
enable(4) and
enable(5) and
enable(6) and
enable(7) and
enable(8) and
enable(9) and
enable(10) and
enable(1l1l) and
enable(12) and
enable(13) and
enable(14) and
enable(15) and

O O O O O O O

Ne Ne Ne Neo Ne wo

~e

avs_s6_chipselect;

with avs _s6_address select
enable <= "0000000000000001"™ when "O0OO0QO",
"0000000000000010"™ when "00O01™,
"0000000000000100" when "OO1O0",
"0000000000001000"™ when "O0O011™,
"0000000000010000"™ when "0100",
"0000000000100000"™ when "0101™,
"0000000001000000"™ when "0110",
"0000000010000000"™ when "O111™",
"0000000100000000"™ when "1000",
"0000001000000000"™ when "1001™,
"0000010000000000"™ when "1010",
"0000100000000000" when "1011™",
"0001000000000000"™ when "1100",
"0010000000000000" when "1101",
"0100000000000000"™ when "1110",
"1000000000000000" when "1111",
"0000000000000000" when others;

enableout <= avs_s6_read and avs_s6_chipselect;

with enableout select
avs_sb6_readdata <= tobus when '1l',

"00000000000000000000000000000000" when others;

end architecture rtl;

mux.vhd

—— Modified 3/17/2007
—— TIan Roth

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity mux is

port (
input0, inputl, input2, input3,
input4, inputb5, input6, input?
downto 0);
sel : in std_logic_vector (2 downto 0);
out signed (31 downto 0)

in signed(31

output
) 7

end mux;

architecture behavior of mux is
begin
with sel select

output (31 downto 0) <= 1input0(31 downto 0) when

"ooo",
inputl (31 downto 0) when "001",
input2(31 downto 0) when "010",
input3(31 downto 0) when "011",
input4 (31 downto 0) when "100",
input5(31 downto 0) when "101",
input6 (31 downto 0) when "110",
input7(31 downto 0) when others;

end behavior;

quantmux.vhd

—-— gquantmux.vhd

—— Modified 4/27/2007
—— Ian Roth

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity quantmux is

port (
input : in signed(31 downto 0);
dequant : in signed (31 downto 0);

output : out signed(31 downto 0)
) ;

end quantmux;
architecture behavior of gquantmux is

signal temp : signed(31 downto 0);

signal multi : signed (63 downto 0);
begin
multi <= (input * dequant);

temp <= multi(31 downto 0);

with dequant select
output <= input when
"00000000000000O0O00O0O0O0OO0O0O0OOO0O0OOO0OL™,
temp when others;

end behavior;

reggate.vhd

—— Modified 4/19/2007
—— TIan Roth

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity reggate is

port (
clk, reset_n : in std_logic;
input : in signed (31 downto 0);
enable : in std_logic;

output : out signed(31 downto 0)
)i

end reggate;

architecture behavior of reggate is

begin
process (clk, reset_n, enable)
begin
if reset. . n = '0' then
output <= "00000000000000000000000000000000";
elsif clk'event and clk = '1' then
if enable = 'l' then
output <= input;
end if;
end 1if;

end process;

end behavior;

th.v

module tb;

reg avs_sb6_clk;

reg avs_sb6_chipselect;

reg avs_s6_reset_n;

reg avs_sb6_read;

reg avs_sb6_write;

reg [3:0] avs_s6_address;
reg [31:0] avs_s6_writedata;

wire [31:0] avs_s6_readdata;

JPEG_decode UUT (
avs_s6_clk,
avs_s6_chipselect,
avs_sb6_reset_n,
avs_sb6_read,
avs_sb6_write,
avs_sb6_address,
avs_sb6_writedata,
avs_sb6_readdata);

initial begin

avs_s6_clk <= 0;
avs_s6_chipselect <= 0;
avs_sb6_reset_n <= 0;
avs_sb6_read <= 0;
avs_sb6_write <= 0;
avs_sb6_writedata <= 0;
avs_sb6_address <= 0;

#200;
avs_sb6_reset_n <= 1'bl;
#310;

nios_write(4'd0, 32'd50);
nios_write(4'dl, 32'dl);
nios_write(4'd2, 32'd50);
nios_write(4'd3, 32'dl);
nios_write(4'd4, 32'd50);
nios_write(4'd5, 32'dl);
nios_write(4'de, 32'd50);
nios_write(4'd7, 32'dl);
nios_write(4'd8, 32'd50);
nios_write(4'd9, 32'dl);
nios_write(4'd10, 32'd50);
nios_write(4'dll, 32'dl);
nios_write(4'dl2, 32'd50);
nios_write(4'dl3, 32'dl);
nios_write(4'dl4, 32'd50);
(

nios_write(4'dl5, 32'dl);

#1000;

nios_read(4'd0);
nios_read(4'dl);
nios_read(4'd2);

// nios_write(32'h80);
#1000;
Sfinish;

end
always #20 avs_s6_clk <= ~avs_s6_clk;

task nios_read;
input [31:0] addr;
begin

@(posedge avs_s6_clk) ;
avs_sb6_address <= addr;
avs_sb6_writedata <= 32'hO0;
avs_sb6_read <= 1'bl;
avs_s6_write <= 1'b0;

avs_s6_chipselect <= 1'bl;

@(posedge avs_s6_clk) ;
// address <= 0;
avs_sb6_writedata <= 32'hO0;
avs_sb6_read <= 1'b0;
avs_sb6_chipselect <= 1'b0;

@(posedge avs_s6_clk) ;

endtask

task nios_write;
input [3:0] addr;
input [31:0] data;
begin

@(posedge avs_s6_clk) ;
avs_sb6_address <= addr;
avs_sb6_writedata <= data;
avs_sb6_read <= 1'b0;
avs_sb6_write <= 1'bl;
avs_s6_chipselect <= 1'bl;

@(posedge avs_s6_clk) ;
avs_sb6_address <= 0;
avs_s6_writedata <= data;
avs_sb6_read <= 1'b0;
avs_s6_write <= 1'b0;
avs_s6_chipselect <= 1'b0;
@(posedge avs_s6_clk) ;

endtask

endmodule

8.2 Software

io.h

#ifndef _ IO H
#define _ IO _H

/***~k****~k****~k****~k****~k****~k**************************
R I b e b b I b b g b b b b b Sh S S b 4

*

License Agreement

T

Copyright (c) 2003 Altera Corporation, San Jose,
California, USA. *

* All rights reserved.
*

*

*

* Permission is hereby granted, free of charge, to any
person obtaining a *

* copy of this software and associated documentation
files (the "Software"), *

* to deal in the Software without restriction, including
without limitation *

* the rights to use, copy, modify, merge, publish,
distribute, sublicense, *

* and/or sell copies of the Software, and to permit
persons to whom the *

* Software is furnished to do so, subject to the

following conditions: *
*

*

* The above copyright notice and this permission notice
shall be included in *
* all copies or substantial portions of the Software.

* % ok ok

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR *

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, *

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE *

* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER *

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING *

* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER *

* DEALINGS IN THE SOFTWARE.

* % ok ok

This agreement shall be governed in all respects by
the laws of the State *
* of California and by the laws of the United States of

America. *
*

*

* Altera does not recommend, suggest or require that
this reference design *
* file be used in conjunction or combination with any

other product. *
LR b b b db b b b b b b b b b b i b b db b b b b b b b b b b d b b b b b b b b b b db b b b b g b b b b b 4

**********************/

/* I0 Header file for Nios II Toolchain */

#include "alt_types.h"
#ifdef _ cplusplus
extern "C"

{
#fendif /* __ _cplusplus */

//#ifndef SYSTEM BUS WIDTH
//#error SYSTEM RUS_WIDTH undefined
//#endif

/* Dynamic bus access functions */

#define ___TIO_CALC_ADDRESS_DYNAMIC(BASE, OFFSET) \
((void *)(((alt_u8*)BASE) + (OFFSET)))

#define IORD_32DIRECT(BASE, OFFSET) \

__builtin_ldwio (__TIO_CALC_ADDRESS_DYNAMIC ((BASE),
(OFFSET)))
#define IORD_16DIRECT(BASE, OFFSET) \
__builtin_1ldhuio (__TIO_CALC_ADDRESS_DYNAMIC ((BASE),
(OFFSET)))
#define IORD_8DIRECT(BASE, OFFSET) \
__builtin_1ldbuio (__TIO_CALC_ADDRESS_DYNAMIC ((BASE),
(OFFSET)))

#define IOWR_32DIRECT(BASE, OFFSET, DATA) \

__builtin_stwio (__IO_CALC_ADDRESS_DYNAMIC ((BASE),
(OFFSET)), (DATA))
#define IOWR_16DIRECT(BASE, OFFSET, DATA) \
__builtin_sthio (__TIO_CALC_ADDRESS_DYNAMIC ((BASE),

(OFFSET)), (DATA))

#define IOWR_8DIRECT(BASE, OFFSET, DATA) \
__builtin_stbio (__IO_CALC_ADDRESS_DYNAMIC ((BASE),

(OFFSET)), (DATA))

/* Native bus access functions */
#define _ TO_CALC_ADDRESS_NATIVE(BASE, REGNUM) \
((void *)(((alt_u8*)BASE) + ((REGNUM) *

(SYSTEM_BUS_WIDTH/8))))

#define IORD(BASE, REGNUM) \

__builtin_ldwio (__TIO_CALC_ADDRESS_NATIVE ((BASE),
(REGNUM)))
#define IOWR(BASE, REGNUM, DATA) \

__builtin_stwio (__IO_CALC_ADDRESS_NATIVE ((BASE),

(REGNUM)), (DATA))

#ifdef _ cplusplus
}

#endif
#endif /* 1O H__ */

jddctmgr.c

/ *

* jddctmgr.c

*

* Copyright (C) 1994-1996, Thomas G. Lane.

* This file is part of the Independent JPEG Group's
software.

* For conditions of distribution and use, see the
accompanying
README file.

*

* This file contains the inverse-DCT management logic.

* This code selects a particular IDCT implementation to
be used,

* and it performs related housekeeping chores. No code
in this
file

* is executed per IDCT step, only during output pass
setup.

*

* Note that the IDCT routines are responsible for
performing
coefficient

* dequantization as well as the IDCT proper. This
module sets up
the

* dequantization multiplier table needed by the IDCT
routine.

*/

#define JPEG_INTERNALS

#include "jinclude.h"

#include "jpeglib.h"

#include "jdct.h" /* Private declarations
for DCT subsystem */

/*

* The decompressor input side (jdinput.c) saves away
the
appropriate

* quantization table for each component at the start of
the first

scan

* involving that component. (This is necessary in
order to
correctly

* decode files that reuse QO-table slots.)

* When we are ready to make an output pass, the saved
O-table 1is
converted

* to a multiplier table that will actually be used by
the IDCT
routine.

* The multiplier table contents are IDCT-method-
dependent. To

support

* application changes in IDCT method between scans, we
can remake
the

* multiplier tables if necessary.

* In buffered-image mode, the first output pass may
occur before
any data

* has been seen for some components, and thus before
their Q-tables
have

* been saved away. To handle this case, multiplier
tables are
preset

* to zeroes; the result of the IDCT will be a neutral
gray level.

*/

/* Private subobject for this module */

typedef struct {

struct jpeg_inverse_dct pub; /* public fields

*/

/* This array contains the IDCT method code that each

multiplier
table

* is currently set up for, or -1 if it's not yet
up.

* The actual multiplier tables are pointed to by
dct_table in the

* per—-component comp_info structures.

*/

int cur_method[MAX_COMPONENTS];

} my_idct_controller;

typedef my_idct_controller * my_idct_ptr;

/* Allocated multiplier tables: big enough for any
supported variant

*/

typedef union {
ISLOW_MULT_TYPE islow_array[DCTSIZEZ2];
#ifdef DCT_IFAST_SUPPORTED
IFAST_MULT_TYPE ifast_array[DCTSIZEZ2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
FLOAT _MULT_TYPE float_array[DCTSIZEZ2];
#endif
} multiplier_table;

set

/* The current scaled-IDCT routines require ISLOW-style

multiplier
tables,

* so be sure to compile that code if either ISLOW or

SCALING 1is

requested.

*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif

/*

* Prepare for an output pass.

* Here we select the proper IDCT routine for each
component and
build

* a matching multiplier table.

*/

METHODDEF (void)

start_pass (j_decompress_ptr cinfo)

{
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
int ci, 1i;
jpeg_component_info *compptr;
int method = 0;
inverse_DCT_method_ptr method_ptr = NULL;
JQUANT_TBL * gtbl;

for (ci = 0, compptr = cinfo->comp_info; ci <
cinfo->num_components;
ci++, compptr++) {
/* Select the proper IDCT routine for this
component's scaling
*/
switch (compptr->DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
case 1:
method_ptr = jpeg_idct_1x1;
method = JDCT_ISLOW; /* jidctred uses

islow-style table */

break;
case 2:
method_ptr = jpeg_idct_2x2;
method = JDCT_ISLOW; /* jidctred uses
islow-style table */
break;
case 4:
method_ptr = jpeg_idct_4x4;
method = JDCT_ISLOW; /* jidctred uses
islow-style table */
break;
fendif

case DCTSIZE:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;

switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_TIFAST:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
fendif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED) ;
break;

}
break;
default:
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr-
>DCT_scaled_size);
break;
}
idct->pub.inverse_DCT[ci] = method_ptr;
/* Create multiplier table from quant table.
* However, we can skip this if the component is
uninteresting
* or if we already built the table. Also, if no
quant table
* has yet been saved for the component, we leave
the
* multiplier table all-zero; we'll be reading
zeroes from the
* coefficient controller's buffer anyway.
*/

if (! compptr—->component_needed || idct->cur_method

continue;
gtbl = compptr->quant_table;
if (gtbl == NULL) /* happens if no
data yet for component */
continue;
idct—>cur_method[ci] = method;
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal
to raw quantization
* coefficients, but are stored as ints to
ensure access
efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *)
compptr->dct_table;

for (1 = 0; 1 < DCTSIZEZ; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) gtbl->quantval[i];
}

}

break;
#endif
#ifdef DCT_IFAST SUPPORTED
case JDCT_TIFAST:
{
/* For LL&M IDCT method, multipliers are equal
to raw gquantization
* coefficients, but are stored as ints to
ensure access
efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *)
compptr—->dct_table;
for (1 = 0; 1 < DCTSIZEZ2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) gtbl->quantval[il];
}
}

break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For LL&M IDCT method, multipliers are equal
to raw quantization
* coefficients, but are stored as ints to
ensure access
efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *)
compptr—->dct_table;
for (1 = 0; 1 < DCTSIZEZ2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) gtbl->quantvall[il];
}
}

break;
#endif

default:

ERREXIT(cinfo,
break;

}

JERR_NOT_COMPILED) ;

/*

* Initialize IDCT manager.

*/

GLOBAL (void)

jinit_inverse_dct

{

(j_decompress_ptr cinfo)

my_idct_ptr idct;
int ci;

jpeg_component_info *compptr;

idct = (my_idct_ptr)

(*cinfo->mem—->alloc_small)

((j_common_ptr) cinfo,
JPOOL_IMAGE,

SIZEQOF
(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *) idct;
idct->pub.start_pass = start_pass;
for (ci = 0, compptr = cinfo->comp_info; ci <
cinfo->num_components;

ci++, compptr++) {

/* Allocate and pre-zero a multiplier table for each
component

*/
compptr->dct_table =

(*cinfo->mem—>alloc_small)

((j_common_ptr) cinfo,
JPOOL_IMAGE,

SIZEOF
(multiplier_table));

MEMZERO (compptr—->dct_table, SIZEOF

(multiplier_table));

/* Mark multiplier table not yet set up for any
method */

idct—->cur_method[ci] = -1;

jidctint.c
/ *

* jidctint.c

Copyright (C) 1991-1998, Thomas G. Lane.
This file is part of the Independent JPEG Group's
software.

b S

* For conditions of distribution and use, see the
accompanying README file.

*

* This file contains a slow-but—-accurate integer
implementation of the

* inverse DCT (Discrete Cosine Transform). In the IJG
code, this routine

* must also perform dequantization of the input
coefficients.

*

* A 2-D IDCT can be done by 1-D IDCT on each column
followed by 1-D IDCT

* on each row (or vice versa, but it's more convenient
to emit a row at

* a time). Direct algorithms are also available, but
they are much more

* complex and seem not to be any faster when reduced to
code.

*

* This implementation is based on an algorithm
described in

* C. Loeffler, A. Ligtenberg and G. Moschytz,
"Practical Fast 1-D DCT

* Algorithms with 11 Multiplications", Proc. Int'l.
Conf. on Acoustics,

* Speech, and Signal Processing 1989 (ICASSP '89),

pp. 988-991.

* The primary algorithm described there uses 11
multiplies and 29 adds.

* We use their alternate method with 12 multiplies and
32 adds.

* The advantage of this method is that no data path
contains more than one

* multiplication; this allows a very simple and
accurate implementation in

* scaled fixed-point arithmetic, with a minimal number
of shifts.

*/

#define JPEG_INTERNALS

#include "jinclude.h"

#include "jpeglib.h"

#include "jdct.h" /* Private declarations for DCT
subsystem */

#include <io.h>

#include <stdio.h>

#ifdef DCT_ISLOW_SUPPORTED

/*
* This module is specialized to the case DCTSIZE = 8.
*/

#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /*

deliberate syntax err */

#endif

#define IOWR_JPEG_DATA(base, offset, data) \
JOWR_32DIRECT (base, (offset) * 4, data)

#define JPEG_BASE 0x00400000

#define IORD_JPEG_DATA(base, offset) \

IORD_32DIRECT (base, (offset) * 4)

/*

* The poop on this scaling stuff is as follows:

*

* Each 1-D IDCT step produces outputs which are a
factor of sqgrt(N)

* larger than the true IDCT outputs. The final outputs
are therefore

* a factor of N larger than desired; since N=8 this can
be cured by

* a simple right shift at the end of the algorithm.
The advantage of

* this arrangement is that we save two multiplications
per 1-D IDCT,

* because the y0 and y4 inputs need not be divided by
sgrt(N) .

*

* We have to do addition and subtraction of the integer
inputs, which

* is no problem, and multiplication by fractional
constants, which is

* a problem to do in integer arithmetic. We multiply
all the constants

* by CONST_SCALE and convert them to integer constants
(thus retaining

* CONST_BITS bits of precision in the constants).
After doing a

* multiplication we have to divide the product by
CONST_SCALE, with proper

* rounding, to produce the correct output. This
division can be done

* cheaply as a right shift of CONST_BITS bits. We
postpone shifting

* as long as possible so that partial sums can be added
together with

* full fractional precision.

*

* The outputs of the first pass are scaled up by
PASS1 BITS bits so that

* they are represented to better-than-integral
precision. These outputs

* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this
fits in a 16-bit word

* with the recommended scaling. (To scale up 12-bit
sample data further, an

* intermediate INT32 array would be needed.)

*

* To avoid overflow of the 32-bit intermediate results
in pass 2, we must

* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.
Error analysis

* shows that the values given below are the most
effective.

*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1 BITS 1 /* lose a little precision
to avoid overflow */
#endif

/* Multiply an INT32 variable by an INT32 constant to
yield an INT32 result.

* For 8-bit samples with the recommended scaling, all
the variable

* and constant values involved are no more than 16 bits
wide, so a

* 16x16->32 bit multiply can be used instead of a full
32x32 multiply.

* For 12-bit samples, a full 32-bit multiplication will
be needed.

*/

#if BITS_IN_JSAMPLE ==
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else

#define MULTIPLY (var,const) ((var) * (const))
#endif

/* Dequantize a coefficient by multiplying it by the
multiplier-table

* entry; produce an int result. In this module, both
inputs and result

* are 16 bits or less, so either int or short multiply
will work.

*/
#define DEQUANTIZE (coef,quantval) (((ISLOW_MULT_TYPE)
(coef)) * (gquantval))

/*

* Perform dequantization and inverse DCT on one block
of coefficients.

*/

GLOBAL (void)
jpeg_idct_islow (j_decompress_ptr cinfo,
jpeg_component_info * compptr,

JCOEFPTR coef_block,

JSAMPARRAY output_buf, JDIMENSION output_col)

int counterint;
int cycleint;

JCOEFPTR inptr;

ISLOW_MULT_TYPE * quantptr;

int * wsptr;

JSAMPROW outptr;

JSAMPLE *range_limit = IDCT_range_limit(cinfo);

int ctr;

int workspace[DCTSIZE2]; /* buffers data between
passes */

SHIFT_TEMPS

/* Pass 1: process columns from input, store into work

array. */

/* Note results are scaled up by sqrt(8) compared to a
true IDCT; */

/* furthermore, we scale the results by 2**PASS1_BITS.

*/

inptr = coef_block;

quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr——) {

/* Due to quantization, we will usually find that
many of the input
* coefficients are zero, especially the AC terms.
We can exploit this
* by short-circuiting the IDCT calculation for any
column in which all
* the AC terms are zero. In that case each output
is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half
or more of the
* column DCT calculations can be simplified this

way .
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0
&&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&

inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr
[DCTSIZE*0]) << PASS1_BITS;

wsptr[DCTSIZE*Q] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;

wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next

column */
quantptr++;
wsptr++;
continue;

IOWR_JPEG_DATA(JPEG_BASE,0,inptr[DCTSIZE*0]);
IOWR_JPEG_DATA(JPEG_BASE, 1,quantptr[DCTSIZE*0]);
IOWR_JPEG_DATA(JPEG_BASE,2,inptr[DCTSIZE*1]);
IOWR_JPEG_DATA(JPEG_BASE, 3,quantptr[DCTSIZE*1]);
IOWR_JPEG_DATA(JPEG_BASE,4,inptr[DCTSIZE*2]);
IOWR_JPEG_DATA(JPEG_BASE,5,quantptr[DCTSIZE*2]) ;
IOWR_JPEG_DATA(JPEG_BASE,6,inptr[DCTSIZE*3]);
IOWR_JPEG_DATA(JPEG_BASE, 7,quantptr[DCTSIZE*3]) ;
IOWR_JPEG_DATA(JPEG_BASE,8,inptr[DCTSIZE*4]);
IOWR_JPEG_DATA(JPEG_BASE, 9,quantptr[DCTSIZE*4]) ;
IOWR_JPEG_DATA(JPEG_BASE,10,inptr[DCTSIZE*5]);
IOWR_JPEG_DATA(JPEG_BASE,11,quantptr[DCTSIZE*5]);
IOWR_JPEG_DATA(JPEG_BASE,12,inptr[DCTSIZE*6]);
IOWR_JPEG_DATA(JPEG_BASE,13,quantptr[DCTSIZE*6]);
IOWR_JPEG_DATA(JPEG_BASE, 14,inptr[DCTSIZE*7]);
IOWR_JPEG_DATA(JPEG_BASE,15,quantptr[DCTSIZE*7]);

/*

for(counterint = 0; counterint < 10; counterint++)
cycleint = cycleint++;

}

*/

wsptr[DCTSIZE*0O]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,0), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,1), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,2), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3]=(int) DESCALE(IORD_JPEG_DATA

(JPEG_BASE,3), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,4), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,5), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,6), CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7]=(int) DESCALE(IORD_JPEG_DATA
(JPEG_BASE,7), CONST_BITS-PASS1_BITS);

inptr++; /* advance pointers to next
column */

quantptr++;

wsptr++;

/* Pass 2: process rows from work array, store into
output array. */

/* Note that we must descale the results by a factor
of 8 == 2**3, */

/* and also undo the PASS1_BITS scaling. */

’

IOWR_JPEG_DATA(JPEG_BASE,1,1
IOWR_JPEG_DATA(JPEG_BASE, 3,1

)
) 4
IOWR_JPEG_DATA (JPEG_BASE,5,1);
)
)

14

(

(

(
IOWR_JPEG_DATA(JPEG_BASE, 7,1
IOWR_JPEG_DATA(JPEG_BASE,9,1);
IOWR_JPEG_DATA(JPEG_BASE,11,1);
IOWR_JPEG_DATA(JPEG_BASE,13,1);
IOWR_JPEG_DATA(JPEG_BASE,15,1)

14

wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way
as we did with columns.

* However, the column calculation has created many
nonzero AC terms, so

* the simplification applies less often (typically
5% to 10% of the time).

* On machines with very fast multiplication, it's
possible that the

* test takes more time than it's worth. In that
case this section

* may be commented out.

*/

#ifndef NO_ZERO_ROW_TEST

if (wsptr[l] == 0 && wsptr[2] == 0 && wsptr[3] ==
&& wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {

/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32)
wsptr[0], PASS1_BITS+3)
& RANGE_MASK];

outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;,
outptr[3] = dcval;
outptr[4] = dcval;,
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to

next row */
continue;

}
#endif

/* Even part: reverse the even part of the forward
DCT. */

/* The rotator is sqgrt(2)*c(-6).

IOWR_JPEG_DATA(JPEG_BASE, 0 ,wsptr|
IOWR_JPEG_DATA(JPEG_BASE, 2,wsptr]|
IOWR_JPEG_DATA(JPEG_BASE, 4 ,wsptr|
IOWR_JPEG_DATA(JPEG_BASE, 6 ,wsptr]|
TOWR_JPEG_DATA(JPEG_BASE, 8 ,wsptr|
IOWR_JPEG_DATA(JPEG_BASE,10,wsptr

o~ o~ o~ o~ o~ o~

IOWR_JPEG_DATA(JPEG_BASE,12,wsptr[6]);
IOWR_JPEG_DATA(JPEG_BASE,14,wsptr[7]);

/*

for(counterint = 0; counterint < 10; counterint++) {
cycleint = cycleint++;

}

*/

outptr[0]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE,0),
CONST_BITS+PASS1_BITS+3)&
RANGE_MASK] ;
outptr[l]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE, 1),
CONST_BITS+PASS]1_BITS+3)&
RANGE_MASK];
outptr[2]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE,2),
CONST_BITS+PASS]1_BITS+3)&
RANGE_MASK];
outptr[3]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE, 3),
CONST_BITS+PASS1_BITS+3)&
RANGE_MASK];
outptr[4]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE,4),
CONST_BITS+PASS1_BITS+3)&
RANGE_MASK];
outptr[5]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE,5),
CONST_BITS+PASS1_BITS+3)&
RANGE_MASK];
outptr[6]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE,6),
CONST_BITS+PASS1_BITS+3)&
RANGE_MASK] ;
outptr[7]= range_limit[(int)DESCALE(IORD_JPEG_DATA
(JPEG_BASE,7),
CONST_BITS+PASS]1_BITS+3)&

RANGE_MASK];

wsptr += DCTSIZE; /* advance pointer to next
row */

}

#endif /* DCT_ISLOW_SUPPORTED */

alt_types.h
#ifndef _ ALT TYPES_H_
#define _ ALT_TYPES_H_

/*k*k***
R I R G b b g g b db g b b S b b db g S b g 4
*

*

* License Agreement

*

* % %

Copyright (c) 2003 Altera Corporation, San Jose,
California, USA. *
* All rights reserved.

b S

Permission is hereby granted, free of charge, to any
person obtaining a *

* copy of this software and associated documentation
files (the "Software"), *

* to deal in the Software without restriction, including
without limitation *

* the rights to use, copy, modify, merge, publish,
distribute, sublicense, *

* and/or sell copies of the Software, and to permit
persons to whom the *

* Software is furnished to do so, subject to the

following conditions: *
*

*

* The above copyright notice and this permission notice
shall be included in *

* all copies or substantial portions of the Software.

% X

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR *

* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, *

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE *

* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLATM,
DAMAGES OR OTHER *

* LITABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING *
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER *

* DEALINGS IN THE SOFTWARE.

b

This agreement shall be governed in all respects by
the laws of the State *
* of California and by the laws of the United States of

America. *
*

*

* Altera does not recommend, suggest or require that
this reference design *
* file be used in conjunction or combination with any

other product. *
R i b b b b b b b b b b b b b b b i b b i b g b b b b i b b i b b b b b b b i b b i b b b b g i b i b b g ¢

**********************/

/%
* Don't declare these typedefs if this file is included
by assembly source.

*/

#ifndef ALT_ASM_SRC

typedef signed char alt_8;

typedef unsigned char alt_u8;
typedef signed short alt_16;
typedef unsigned short alt_ulé6;
typedef signed long alt_32;

typedef unsigned long alt_u32;
typedef long long alt_64;

typedef unsigned long long alt_u64;
#endif

#define ALT_INLINE __inline___
#define ALT_ALWAYS INLINE _ attribute
((always_inline))

#define ALT WEAK __attribute_ ((weak))

#endif /* __ ALT_TYPES_H__ */

picturebrowser.c

#include <stdio.h>

#include <errno.h> //needed for errnum
#include <string.h>//needed for strerror
#include <shimix_pio_button.h>

#include <fcntl.h>
#include <dirent.h>
#include <sys/stat.h>
#include <sys/types.h>

#define BUTTON _DEVICE "/dev/shimix"

static char* pics [100];
//pics = (char *) malloc(100);
static int count = 0;

void get_file_info(char *name, char *path) {
struct stat file_stats;
if(stat(name, &file_stats) == -1){
printf("\nFailed to access %s\n", name);

return;

}
printf("\nFile found!\n");

(
printf(" File name: %$s\n", name);
printf(" Relative path: %s\n", path);
printf(" Protection mode: %d\n",
file _stats.st_mode);
printf(" User id of owner: %d\n",
file _stats.st_uid);
printf("Group id of owner: %d\n",
file_stats.st_gid);
printf(" Size in bytes: %d\n",

file stats.st_size);
if (count < 100){
if(file_stats.st_size <= 20000){

pics[count]= strdup(name);
printf("Added pic[%d] = %s\n",count, name);

count ++;
}
else{
printf("File is too big. Skipping file...\n");

}
if((file_stats.st_mode & S_IFMT) == S_IFDIR){
printf("The file is a directory.\n\n");

void str_tolower(char *s)
{
while(*s)
{
*s=tolower(*s);
S++;

int StartSearch(char *name, char *path, int

found_signal) {

DIR *dfd;
struct dirent *dp;
struct stat file_stat;

if((dfd = opendir(path)) == NULL) {

)
printf("Directory [%s], failed to open.", path);

return;
}
while ((dp = readdir(dfd)) != NULL) {
if(strcmp(dp->d_name, ".") == | | strcmp(dp-
>d_name, "..") == 0){

continue; /*skipping itself and parent
directories*/

}
char slash[2] = "";

char *path_cpy = (char *)
(path)+strlen(dp—>d_name)+2);
strcpy(path_cpy, path);

malloc(sizeof(char)*strlen

char *d_nameCopy = (char *)
*strlen(dp->d_name)+2);

strcpy(d_nameCopy, dp->d_name) ;

malloc(sizeof (char)

char *combined = strcat(path_cpy, slash);

char *full_name = strcat(combined, dp->d_name);

if(stat(full_name, &file_stat) == -1){

printf("\nFailed to access:

%$s\nSkipping...\n ",
full name);

continue; /*skip bad file or directory*/
}
if((file_stat.st_mode & S_IFMT)
StartSearch(name, full_name,
recursive search/

}

== S _TIFDIR){
found_signal); /

str_tolower (d_nameCopy) ;

if(strstr(d_nameCopy, name)) {
get_file_info(full_name, path);
found_signal = 1;
//FILE FOUND!!!

free(path_cpy);
free(d_nameCopy) ;
}
closedir(dfd);
return found_signal;

int main(int argc, char *argv[])
{
FILE * fButton; //handle to button device
char buf[l]; //read buffer to store value of button
pushed when read from fButton
int numBytesRead = 0;
char keyInput = 0;
unsigned int ioctlCmd;
printf ("Launching button reader v1.3\n");

/* Establishing the root directory */

char* initial_path = "home/";

int found_signal = 0;

char * jpg = ".Jpeg";

int find = StartSearch(jpg, initial_path,
found_signal);

jpg= ".Jjpg";

find = StartSearch(jpg, initial_path, found_signal);

char modprobe[28] = "modprobe\tshimix_pio_button";
char makeDevice[29] = "mknod\t/dev/shimix\tc\t63\t0";
//printf ("mknod is ran\n\n");
int x = system(modprobe);

X = system(makeDevice);

fButton = fopen(BUTTON_DEVICE, "r"); //open button
device for read-only
if (fButton==NULL) {
printf ("Error opening up %s\n", BUTTON_DEVICE) ;
return -1;

ioctl(fileno(fButton), SBLD_IOCT_LEDBUTTONNUM, 1); //
enable displaying button pushed

ioctl(fileno(fButton), SBLD_IOCT_LEDCOUNTER, 1); //
enable button counters

printf ("Entering main loop\n\n");

char commandl[8] = "nano-X&";

char killall[20] = "killall\t-9\tnano-X";
// position of our cursor through the pics
int pos = 0;

//int J;

char andPersand[4] = "\t&";
char resize[6] = "\tl2&";
char nxview[9] = "nxview\t";
char *command?2;

short first_time = 0;

while (keyInput!='qg' && keyInput!='Q') {
printf("awaiting button: ");
if ((numBytesRead=read(fileno(fButton), buf, sizeof
(char), 0))<= 0) { //if no bytes read or error
printf ("Error reading %s\n", BUTTON_DEVICE) ;
}
else {
X = system(killall);
//j = sleep(l);

if(first_time == 0){
printf ("executing command nano-X....\n");
X = system(commandl) ;

//j = sleep(l);
command?2 = (char *) malloc(sizeof(char)*strlen

(nxview));
strcpy
printf

command?2, nxview);

"$d Su\n", buf[0], buf[01]);
strcat(command2, pics[pos]);

strcat (command?2, andPersand);

printf ("executing %s\n",command?2);
X = system(command?) ;

//J = sleep(l);

free(command?2) ;

first_time = 1;
}
else{
if (buf[0] == 2) {
printf("executing command nano—-X....\n");
X = system(commandl) ;
//3 = sleep(l);
command? = (char *) malloc(sizeof(char)*strlen

(nxview));
strcpy(command2, nxview);
printf("%$d %u\n", buf[0], buf[0]);

if (pos == count-1){
pos = 0O;

t

else{
pos = pos + 1;

}

strcat(command?2, pics[pos]);
strcat(command2, andPersand);

printf("executing %s\n",command?2);
X = system(command?) ;

//j = sleep(l);
free(command?2) ;

}

else/{
if (buf[0] == 4) {
printf ("executing command nano-X....\n");
X = system(commandl) ;
//3 = sleep(l);
command?2 = (char *) malloc(sizeof(char)*strlen

(nxview));

strcpy(command2, nxview);

printf("%d %u\n", buf[0], buf[0]);

if (pos <= 0){

pos = count-1;
}
else(

pos = pos - 1;

}
strcat(command2, pics[pos]);
strcat (command2, andPersand);

printf("executing %s\n",command?2);
X = system(command?) ;

//j = sleep(l);
free(command?2) ;

}

else{

if (bufl[0] == 8){
printf ("executing command nano-X....\n");
x = system(commandl) ;
//3 = sleep(l);
command?2 = (char *) malloc(sizeof(char)

*strlen(nxview));

strcpy(c ommandZ nxview) ;
printf("%$d %u\n", buf[0], buf[0]);
strcat(commandZ pics[pos]);
strcat (command?2, resize);
printf("executing %s\n",command?2);

X = system(command?) ;
//j = sleep(l);
free(command?2) ;

//printf ("Press q to quit or any other key to

continue reading buttons\n");
//keyInput = getchar();
}

int 1i;

for(i = 0; i < count; i++){
free(pics[i]);

printf ("Button Reader terminating\n");

rc

hostname uClinux

mount -t proc proc /proc

mount -t sysfs sysfs /sys

mount -t usbfs none /proc/bus/usb

mount -t vfat dev/sdal mnt # add this line
mkdir /var/tmp

mkdir /var/log

mkdir /var/run

mkdir /var/lock

mkdir /var/empty

ifconfig lo 127.0.0.1

route add -net 127.0.0.0 netmask 255.0.0.0 lo
dhcpcd -p —a eth0 &

cat /etc/motd

nxview.c

/*

* Copyright (c) 2000, 2001 Greg Haerr
<greg@censoft.com>

*

* nxview - Nano-X image viewer
*
* Autorecognizes and displays BMP, GIF, JPEG, PNG and
XPM files
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MWINCLUDECOLORS
#include "nano-X.h"
#include <errno.h> //needed for errnum
#include <shimix_pio_button.h>

#include <fcntl.h>
#include <dirent.h>
#include <stat.h>

#include <types.h>

//#define BUTTON_DEVICE "/dev/shimix"
//static int count = 0;

/*

static char* pics [100];
static int count = 0;

void get_file_info(char *name, char *path) {
struct stat file_stats;
if(stat(name, &file_stats) == -1){
printf("\nFailed to access %$s\n", name);
return;

}
printf("\nFile found!\n");

(
printf(" File name: %s\n", name);
printf(" Relative path: %s\n", path);
printf(" Protection mode: %d\n",
file stats.st_mode);
printf(" User id of owner: %d\n",
file stats.st_uid);
printf("Group id of owner: %d\n",
file_stats.st_gid);
printf(" Size in bytes: %d\n",

file stats.st_size);
if(count < 100){
if(file _stats.st_size <= 20000){

pics[count]= strdup(name);
printf ("Added pic[%d] = %s\n",count, name);

count ++;
}
else{
printf("File is too big. Skipping file...\n");

if((file_stats.st_mode & S_IFMT) == S_IFDIR){
printf("The file is a directory.\n\n");

}

*/

/*

int StartSearch(char *name, char *path, int
found_signal) {

DIR *dfd;
struct dirent *dp;
struct stat file_stat;

if((dfd = opendir(path)) == NULL) {
printf("Directory [%s], failed to open.", path);
return;
}
while ((dp = readdir(dfd)) !'= NULL) {
if(strcmp(dp->d_name, ".") == | | strcmp(dp-
>d_name, "..") == 0){

continue; //skipping itself and parent
directories//

}
char slash[2] = "";

char *path_cpy = (char *) malloc(sizeof(char)*strlen
(path)+strlen(dp->d_name)+2);
strcpy(path_cpy, path);

char *d_nameCopy = (char *) malloc(sizeof (char)
*strlen(dp—->d_name)+2);
strcpy(d_nameCopy, dp->d_name) ;

char *combined = strcat(path_cpy, slash);
char *full_name = strcat(combined, dp->d_name);
if(stat(full_name, &file_stat) == -1){

printf("\nFailed to access: %$s\nSkipping...\n ",
full_name);
continue; //skip bad file or directory//

}
if((file_stat.st_mode & S_IFMT) == S _IFDIR){
StartSearch(name, full_name, found_signal); //
recursive search//

}
str_tolower (d_nameCopy) ;

if(strstr(d_nameCopy, name)) {
get_file_info(full_name, path);
found_signal = 1;
//FILE FOUND!!!

free(path_cpy);
free(d_nameCopy) ;
}
closedir(dfd);
return found_signal;
}
*/

int main(int argc,char **argv)
{
GR_IMAGE_ID image_id;

GR_WINDOW_ID window_id;
GR_GC_1ID gc_id;

GR_SIZE w = —-1;
GR_SIZE h =-1;
GR_EVENT event;

GR_SCREEN_INFO sinfo;
GR_IMAGE_INFO info;

char title[256];

int pos = 0;

int count = 10;

/*

FILE * fButton; //handle to button device
char buf[l]; //read buffer to store value of button

pushed when read from fButton
int numBytesRead = 0;

char keyInput = 0;

unsigned int ioctlCmd;

int pos = 0;

int count = 10;

printf("Launching button reader v1.3\n");

fButton = fopen(BUTTON_DEVICE, "r"); //open button
device for read-only
if (fButton==NULL) {
printf ("Error opening up %s\n", BUTTON_DEVICE) ;
return -1;

ioctl(fileno(fButton), SBLD_IOCT_LEDBUTTONNUM, 1); //
enable displaying button pushed

ioctl(fileno(fButton), SBLD_IOCT_LEDCOUNTER, 1); //
enable button counters
*/

/* Establishing the root directory */

/* char* initial_path = "/home/";

int found_signal = 0;

char * jpg = ".jpeg";

int find = StartSearch(jpg, initial_path,
found_signal);

jpg= ".Jjpg";

find = StartSearch(jpg, initial_path, found_signal);

int pos = 0;

int next_image = 0;
int first_time = 0;*/
//while (1) {

if (argc < 2) {
printf("Usage: nxview <image file> [stretch]\n");
exit(1l);

if (GrOpen() < 0) {
fprintf(stderr, "cannot open graphics\n");

exit(1l);
}
if (!(image_id = GrLoadImageFromFile(argv[1l], 0))) {
//if (!(image_id = GrLoadImageFromFile(pics[pos],
0))) |
fprintf(stderr, "Can't load image file: %$s\n", argv
[11);
exit(1l);
}
/ *
if(first_time == 0){

GrGetImageInfo(image_id, &info);
w = info.width;
h = info.height;

}

first_time = 1;

*/

if(argc > 2) {
// stretch to half screen size
GrGetScreenInfo(&sinfo);
w = sinfo.cols/2;
h = sinfo.rows/2;
}
else {
GrGetImageInfo(image_id, &info);
w = info.width;
h = info.height;

sprintf(title, "nxview %s", argv[1l]);
window_id = GrNewWindowEx (GR_WM_PROPS_APPWINDOW,
title,

GR_ROOT_WINDOW_ID, (640 - w)/2,
- h)/2, w, h, BLACK);

GrSelectEvents(window_id,
GR_EVENT_MASK_CLOSE_REQ|
GR_EVENT_MASK_EXPOSURE) ;
GrMapWindow (window_id) ;

gc_id = GrNewGC() ;

while (1) {

GrGetNextEvent (&event) ;

// if(next_image == 1) {
//event.type = GR_EVENT_TYPE_CLOSE_REQ;
//}

switch(event.type) {

case GR_EVENT_TYPE_ CLOSE_REQ:
GrDestroyWindow(window_id) ;
GrDestroyGC(gc_id) ;
GrFreelImage(image_id);
GrClose();
//break;
exit(0);
/* no return*/

case GR_EVENT_TYPE_EXPOSURE:
GrDrawImageToFit(window_id, gc_id, 0,0, w,h,

image_id);

break;

}

/*
printf("awaiting button: ");
if ((numBytesRead=read(fileno(fButton), buf,
sizeof(char), 0))<=0) { //if no bytes read or error
printf ("Error reading %s\n", BUTTON_DEVICE) ;
}

else{

(480

next_image = 1;

if (buf[0] == 2) {
printf("%d %u\n", buf[0], buf[0]);
//GrGetImageInfo(image_id, &info);
//w = info.width;
//h = info.height;

if (pos == count-1){
pos = 0;
}
else/{
pos = pos + 1;
}
}
else{
if (buf[0] == 4) {

printf("%d %u\n", buf[0], buf[0]);
//GrGetImageInfo(image_id, &info);
//w = info.width;

//h = info.height;

if (pos <= 0){

pos = count-1;
}
else(
pos = pos - 1;
}
}
else{
if (bufl[0] == 8){

printf("%d %u\n", buf[0], bufl[0]);
//stretch to half screen size//
//GrGetScreenInfo(&sinfo);
//w = sinfo.cols/2;
//h = sinfo.rows/2;
}
}
}
} </
}
//next_image = 0;
return 0;

}

// int 1;

// for(i = 0; 1 < count; 1i++){
// free(pics[i]);
/] 0}

//return 0;

//}

Chapter 9: License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301 USA Everyone 1is permitted to copy and distribute
verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take
away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee
your freedom to share and change free software—--to make
sure the software is free for all its users. This
General Public License applies to most of the Free
Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU
Lesser General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to
freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to
distribute copies of free software (and charge for
this service if you wish), that you receive source code
or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions
that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions

translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a
program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code.
And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright
the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify
the software.

Also, for each author's protection and ours, we want
to make certain that everyone understands that there is
no warranty for this free software. If the software is
modified by someone else and passed on, we want its
recipients to know that what they have is not the
original, so that any problems introduced by others will
not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by
software patents. We wish to avoid the danger that
redistributors of a free program will individually
obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear
that any patent must be licensed for everyone's free use
or not licensed at all.

The precise terms and conditions for copying,
distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work
which contains a notice placed by the copyright holder

saying it may be distributed under the terms of this
General Public License. The "Program", below, refers to
any such program or work, and a "work based on the
Program" means either the Program or any derivative work
under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with
modifications and/or translated into another language.
(Hereinafter, translation is included without limitation
in the term "modification".) Each licensee is addressed
as "you".

Activities other than copying, distribution and
modification are not covered by this License; they are
outside its scope. The act of running the Program is
not restricted, and the output from the Program is
covered only 1f its contents constitute a work based on
the Program (independent of having been made by running
the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the
Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any
warranty; and give any other recipients of the Program a
copy of this License along with the Program.

You may charge a fee for the physical act of
transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program
or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry

prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or
publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as
a whole at no charge to all third parties under the
terms of this License.

c) If the modified program normally reads commands
interactively when run, you must cause it, when started
running for such interactive use in the most ordinary
way, to print or display an announcement including an
appropriate copyright notice and a notice that there is
no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program
under these conditions, and telling the user how to view
a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such
an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a
whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably
considered independent and separate works in themselves,
then this License, and its terms, do not apply to those
sections when you distribute them as separate works.
But when you distribute the same sections as part of a
whole which is a work based on the Program, the
distribution of the whole must be on the terms of

this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim
rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based
on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of
this License.

3. You may copy and distribute the Program (or a work
based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corresponding
machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at
least three years, to give any third party, for a charge
no more than your cost of physically performing source
distribution, a complete machine-readable copy of the
corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c) Accompany it with the information you received as
to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial
distribution and only if you received the program in
object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of
the work for making modifications to it. For an
executable work, complete source code means all the
source code for all modules it contains, plus any
associated interface definition files, plus the scripts
used to control compilation and installation of the
executable. However, as a special exception, the source
code distributed need not include anything that is

normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by
offering access to copy from a designated place, then
offering equivalent access to copy the source code from
the same place counts as distribution of the source
code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute
the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will
automatically terminate your rights under this License.
However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since
you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or
its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this
License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works
based on it.

6. Each time you redistribute the Program (or any work
based on the Program), the recipient automatically
receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms
and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights
granted herein.

You are not responsible for enforcing compliance by
third parties to this License.

7. If, as a consequence of a court judgment or
allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example,
if a patent license would not permit royalty-free
redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or
unenforceable under any particular circumstance, the
balance of the section is intended to apply and the
section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to
infringe any patents or other property right claims or
to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by
public license practices. Many people have made
generous contributions to the wide range of software
distributed through that system in reliance on
consistent application of that system; it is up to the
author/donor to decide if he or she is willing to
distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what
is believed to be a consequence of the rest of this

License.

8. If the distribution and/or use of the Program is
restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder
who places the Program under this License may add an
explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case,
this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised
and/or new versions of the General Public License from
time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail
to address new problems or concerns.

Fach version is given a distinguishing version number.
If the Program specifies a version number of this
License which applies to it and "any later version", you
have the option of following the terms and conditions
either of that version or of any later version published
by the Free Software Foundation. If the Program does
not specify a version number of this License, you may
choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program
into other free programs whose distribution conditions
are different, write to the author to ask for
permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving
the free status of all derivatives of our free software
and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPATR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

