&

QUARTUS"II

Quartus Il Version 6.1 Handbook

ALTERAW

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com

Qll5v4-6.1

Volume 4: SOPC Builder

http://www.altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-

plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera nsu
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

LS. EN ISO 9001

Altera Corporation

A |:| ==/ Contents

-
®
Chapter ReviSion Datescooviiiiiiiiii e v v e e e e e e e enes Xi
About this HAndDOOK.............ccooimini e Xiii
HOW 10 CONTACE AIEETA ..vovviiveeeeeeeeceteeeeeeetete ettt ettt ettt et e enesenaeeaeeeteeeaeeaeenseenseenseessesasenees xiii
Typographic CONVENIONScccoiiimiiiiiiiiiiiii s Xiv

Section |. SOPC Builder Features

Chapter 1. Introduction to SOPC Builder
OVEIVIEW .ot
Architecture of SOPC Builder Systemscccccevruennee
SOPC Builder Componentsccccovuievricceiiiinnnnn
SOPC Builder Ready Components
User-Defined Components
System Interconnect Fabric
Functions of SOPC Builderccccccocviniiiniiininnn
Defining & Generating the System Hardware
Creating a Memory Map for Software Development
Creating a Simulation Model & Testbench ..o
Getting Started
Document Revision HiStOTY ...

Chapter 2. Tour of the SOPC Builder User Interface
Starting SOPC BUILAETcccciiiiiiiiiiiiicii s
Starting a New SOPC Builder System ...
Working with SOPC Builder SYStemsccoceuiiiiiiiiiiiiiiiccs e
System Contents Tabcccoviieiiiiiic e —
Adding a Component to the System
Specifying Connections, Base Address, Clock & IRQccccvviiiiiiiniiiniininncccnes 2-6
ConNection Panel ...
Table of Active Components
Creating User-Defined COMPONENLScccvviiiiiiiiiiiiiiiiiiiic s 2-7
System Dependency Tabs
Board Settings Tabccccccoeereviiinnnne.
System Generation Tab ..o
System Generation Tab OPHiONScccccciiiiiiiiiiiiiiiii e 2-11
SDK Option
HDL Option

Altera Corporation iii

Quartus Il Handbook, Volume 4

SIMUIAON OPHON ..o
Starting System Generation ...
(@4 4 V< o e Yo -SSR
PLEIETEIICES ...vvievieeeeeeeeeeeee ettt ettt e et e te et e et e et e eteeeseeeteeaeenteenesenseensesnseerseeseeeseeereenreans
Document Revision HiStOTYoooiruimieieiceee s

Chapter 3. System Interconnect Fabric for Memory-Mapped Interfaces

TNELOAUCHION ettt ettt ettt et ete e te e eteebeeaveeaseesseesseesaeessenseentsenseenseenseessesasenaes 3-1
High-Level Description ..ottt 3-1
Fundamentals of Implementation ... 3-3
Functions of System Interconnect Fabric ... 3-3

Address Decoding

Datapath MUltPIEXINgcccovvieiiiiiieiiiiii s

WaAIt-State INSEITION ..cvvicviiieiiieiece ettt ettt ettt et e eve e te et e easeeaaeesseeseeeseeseenseeseenseessesasenens

Pipelining for High Performance ...
Pipeline Management

Endian CONVEIrSIONccccooveiveeeeeeeiieteeeeeeeeeeee e eveeeeenes
Native Address Alignment & Dynamic Bus Sizingccccvviiniiiiiiiciiccccccas 3-10
Native Address ALGNMENtcoceuiiiiiiiiiii e 3-11
Dynamic BUS SiZINGccccvviiiiiiiiciiici e 3-12
WIAET MASEET ...ttt ettt ettt ete et e et eeae et e eteeete e beeteenseenseeaseesseessenssenseeseenseens 3-12
Narrower Masterccccceeevvenneeen. .. 3-12
Arbitration for Multimaster SYStems ... 3-13
Traditional Shared Bus ArChiteCtUIESc..coeiviiiiiiiiiieceieee ettt eae v enae s 3-14
Slave-Side Arbitration
ATDIIator DELAILS ...voovieeeieiecieeeeece ettt ettt et et et e ettt eare e e eaen
ATDIFation RULESoooviiiieieciecee ettt et et et ete e ve e teete e s e ensesaaeersaeasenanas
Fairness-Based SNATEScccvvevvivviiiiieiiticreeteee ettt et ete e evseserseseesessesseeseessessessessensensens 3-17
Round-Robin SCheduling ... 3-18
Burst Transfersccoeueue...
Minimum Share Value
Setting Arbitration Parameters in the SOPC Builder GUIcccooeviiiniiiniiciniiccnnne, 3-20
Burst Management 320
Clock Domain Crossing 3-21
Description of Clock Domain-Crossing Logic 321
Location of Clock Domain Crossing LOgICccccoviriiiiiiiiiniiiicccccns 3-23
Duration of Transfers Crossing Clock DOmains ..., 3-23

Implementing Multiple Clock Domains in the SOPC Builder GUI ...
Interrupt Controller
Software Priority
Hardware Priority
Assigning IRQs in the SOPC Builder GUI ... 3-27
Reset Distribution
Document Revision HiStOTYooooiuiiiiiiiiiiiici e 3-29

iv Altera Corporation

Contents

Chapter 4. SOPC Builder Components

INETOAUCHON .o 4-1
Sources Of COMPONENLSciucuiuiiieiriiiictiiiiiei s sasaenena 4-1
Location of the Component Hardwareccccoiiiiiiiiiiiiiiicccccceseenns 4-2

Components That Include Logic Inside the System Modulecccceoeviiiiiinniinncne, 4-2
Components That Interface to Logic Outside the System Moduleccccccoviininnnnninnnnn. 4-3
Structure & Contents of a Component Directory

ClasS. P FIle ...
Cb_generator.PLEFIle ..o
RAL DIFECLOTY ...cuviiiiiiiic bbb
Other Component FIles ... e
Component Directory Location
Document Revision HiStOTYoooiiiiiiee e

Chapter 5. Component Editor
INEFOAUCHON .o
Component Editor Output

Starting the Component Editor
HDL Files Tabccccccccceecueueueicnnne

SIGNALS TAD ..ot
Naming Signals for Automatic Type and Interface Recognitionc.cccococvvvevvicnneiiincnnnne. 5-6
Templates for Interfaces to External LOgicccccovvviiviviiccinininnnes s 5-7

INEETEACES TAD .vovivieeeceeeeee ettt ettt ettt ettt te et e eveete et s eteessessessensensestenseereensensensensensenrens 5-7

SW FILES TAD ..ocvvetveeieieiectecteete ettt ettt ettt et e st be st e beebeetsetsessensensesseseseeseeseeseessersersensensens 5-9

Component Wizard Tab ... 5-10
Identifying INfOrmMation ..o 5-10
Parametersccooveeciieciieeeeeeeeeeeees ... 511

Saving a Component 5-12

Re-Editing @ COMPONENLvvuiviiiiicieieiccieie ittt e 5-13

Document Revision HiStOIYcccoiiiiiiiiiiiiiicccc s 5-14

Chapter 6. Archiving SOPC Builder Projects

TNETOAUCHION <.ttt s 6-1

Scope

ReqUITEd FIlEScvviiiiii s 62
SOPC Builder Design Filesccccovuiiiiiiiiiiiiiciiicecc e 6-2
Nios II Application Software Project Filesccccocviiiniiiniiicniccccccecccies 6-3
Nios II System Library Projectcccovviiiiiiiiiiniiiiiiccccsces e 64

File Write Permissions

Document Revision HiStOIY ..o 64

Chapter 7. Board Description Editor

INEPOAUCHON .ot 7-1
Board DesCriptionscoveeieiiieieiicee s 7-1
Uses for Board DeSCriptionsccoceiiuiiiiiniiiiicicic s sssnes 7-2
Board Description Editor

Creating a Board DeSCription ..o 74

Altera Corporation v

Quartus Il Handbook, Volume 4

PINS FIOW oot 7-4
Steps for the PIns FIOW ... 7-5
Creating a PCB Model from the Netlistccccccooiiiiiiiiiiiiicc 7-5

FIASI FIOW ...t

Board Description Editor Output
Board Description File StIUCtUIeccooeuiiiiiiieiiiiicc e 7-9
Using Board DeSCIiPtionscooceviiicieiniicieiiceie e 7-9

Starting the Board Description Editor 7-10
Intro Tab 7-10
Netlist Tab 7-10
DEVICES TAD ... s 7-11

DeViCe LISt .vviuiiieiiiiicc s 7-12

Filtered Nets, Pass Throughs & Device GIoupsScccccevieeieininiieiernicieieiiceeee e 7-13
Creating Pass TRroughs ... 7-13
Creating Device GIOUPScceueueieieieieieieieie e 7-14

Filtering False Target DeViCescccocviiiiiiiiiiiiiiiiiiciii s 7-15

Previewing Pins Visible to the PIin Mapper ... 7-15

Nets Tabccccovviviviiiiiiinc

Pass Throughs Tab

Groups Tab

Flash Memory Tab

FIIES TAD ..
Board Description Name and Version
System TEMPIAteccceveiiiieiiice e

Saving & Exiting the Board Description EditOrc.ccooeiiiiiiiiiiiiiice, 7-24

Document Revision HiStOIY ..o 7-24

Chapter 8. Pin Mapper
INELOAUCHON vttt ettt ettt ettt es et se et ese st esesse st esesseseesensenesseneesansens 8-1
Design Flow
Applying Pin Assignments to the Quartus II Project ..., 8-3
Pin Name ReqUirementscccccoovoiiiiiiiiiiiiii s
Pin Mapper GUIccccoevenee.
Source Signals Column
Target Device Column
Target Pin COIUMINccccoiiiiiiiiii s
Vector SIGNALScoviiueiiicic s
Differential Signalscccccccvuvivirunnne.
Signals with Multiple Destinations
Assign in Quartus IT ..o
Pin Mappings StAtUSccceeueieiiieieiciceeceee e
Document Revision HiStOIY ... —

vi Altera Corporation

Contents

Section Il. Building Systems with SOPC Builder

Chapter 9. Building Memory Subsystems Using SOPC Builder
TNELOAUCHON .ttt ettt ekttt ettt st b ettt ebe et enan
Example Design
Example Design StIUCTUTEcccoiiiiiiiiiiiiiicccc e —
Example Design Starting POINtccooveviiiiiiniiiciccc e
Hardware & Software Requirements ...
DESIZN FIOW ...ttt s
Component-Level Design in SOPC BUilder ... 9-6
SOPC Builder System-Level Design

SIMUIATION vttt t ettt e st e s e s et esesaes e beneese st ese s eseesessesesseneesensesesseneesansans —
Quartus II Project-Level DeSIigncccoviiieiiiriieiiciciece s
Board-Level Designcccccoeuvvnneen.
Simulation Considerations

Generic Memory Models

Vendor-Specific Memory Modelscccceunueeen.

On-Chip RAM & ROM ..ot

Component-Level Design for On-Chip Memory

Memory Type

Size oo

Read Latency
SOPC Builder System-Level Design for On-Chip Memory
Simulation for On-Chip MemOTIY ..o
Quartus II Project-Level Design for On-Chip Memory
Board-Level Design for On-Chip MemMOTYcccoviiiimriiimniiniciiiiscescsiessescssssssssnes
Example Design with On-Chip MemOTYcccocveueiiiiriiiiiiicieieciece e

EPCS Serial Configuration Device

Component-Level Design for an EPCS DeViCe ..o
SOPC Builder System-Level Design for an EPCS DevVice ..o, 9-14
Simulation for an EPCS Device
Quartus II Project-Level Design for an EPCS DeVICeccccoeuviviiniriiiiiiiiieciecennene. 9-14
Board-Level Design for an EPCS DevVice ..o 9-14

Example Design with an EPCS Device
SDRAM .o
Component-Level Design for SDRAM
SOPC Builder System-Level Design for SDRAM
Simulation for SDRAM ...
Quartus II Project-Level Design for SDRAM
Connecting & Assigning the SDRAM-Related Pins
Accommodating Clock Skew
Board-Level Design for SDRAM
Example Design with SDRAM
Off-Chip SRAM & Flash MEMOTYcccovuiuriiiniciiiiiiciinicicecnicnscese e
Component-Level Design for SRAM & Flash Memory
Avalon Tristate Brid@e ...
FIash MEMOTYcocciiiiiiiiiiiiiiii s

Altera Corporation vii

Quartus Il Handbook, Volume 4

SOPC Builder System-Level Design for SRAM & Flash Memory ...
Simulation for SRAM & Flash Memory
Quartus II Project-Level Design for SRAM & Flash MemOTIyccccooeuviiiviiiiicnniiinicicinn, 9-25
Board-Level Design for SRAM & Flash Memory
Aligning the Least-Significant Address Bitsccccocccvviiiiiiiiicniiniccc,
Aligning the Most-Significant Address Bitscccccoevieiiiniiiiiiniccccccccnes
Example Design with SRAM & Flash Memory ...
Adding the Avalon Tristate Bridge
Adding the Flash Memory Interface
Adding the SRAM INtEIfacecccoevviiiriiiiiiiiiiiiiicicec e
SOPC Builder System Contents Tabcccccoceueiirieiiiiiieiiciece e,
Connecting & Assigning Pins in the Quartus II Project
Connecting FPGA Pins to Devices on the Board 9-32
Document Revision HiStOIYccooiiiiiiiicccccce s 9-34

Chapter 10. Developing Components for SOPC Builder
TNELOAUCHION ettt ettt bbbtttk ettt sttt ebebene 10-1
SOPC Builder Components & the Component Editorccocoveeviiiiiiniiiiniccce, 10-1
Assumptions About the Readerccccoovrveiniieininnnnnnn
Hardware & Software Requirements
Component Development Flow
Typical DeSigN SEEPSc.cvivimiiiiiiiiiiiicici
Hardware DeSINcccouiiiiiiiiiiiic e
Software Design
Verifying the COMPONENTccoviiiieiiiiiiii s
Unit VerifiCationcccciiiiiiiiiiiiiiiccccece s
System-Level VerifiCation ...
Design Example: Pulse-Width Modulator Slave ..o 10-8
Install the Design Files
Review the Example Design Specificationscccccevviiiiiiniiiiininiccicccecce s
PWM DeSigN FAIESoviieiiiiiiiciiiici sttt
Functional Specification
PWM Task Logic
Register Filecccccc.....
AVAlON-MM INEEITACEceeriiiviiiieeierietctctrtre ettt ettt ee
SOFEWATE AP ...
Package the Design Files into an SOPC Builder Component
Open the Quartus II Project & Start the Component Editor
HDL Files Tabccccoeiiviiiiiiiiiiiiiccicccecsves
SIGNALS TaAD ..ouieiiiiiiicc
INEEITACES TAD ..ottt ettt
Software Files (SW Files) Tab
Component Wizard Tab ...t
Save the COMPONENLceviiiieiiiee e
Instantiate the Component in Hardwarecccccocviiiiiiiiiiiiicccccnnas
Add a PWM Component to the SOPC Builder System ..o,

viii Altera Corporation

Contents

Modify the Quartus II Design to Use the PWM Output
Compile the Hardware Design & Download to the Target Board

Exercise the Hardware Using Nios II SOftWarecccccooviiiiiiniiiiiiicccecnns
Start the Nios II IDE & Create a New IDE Project ..o
Compile the Software Project & Run on the Target Board ...
Sharing COMPONENLScceviiiriieiiicie et s e nnae 10-28
Document Revision HiStOTYcoooiiuiiiiiiiii s 10-29

Chapter 11. Building Systems with Multiple Clock Domains
TNETOAUCHON .ottt ettt ettt ettt et v etsetsetsessessense s eebeebeeseeseeteessensensensensensesensas
Example Design OVeIrVIEWcccciiiiiiiiiiiiiiiiicnc s
Hardware & Software Requirements
Creating the Multi-Clock Hardware Systemccococeveiiiiiieiniiinieicciecce s
Copy the Hardware Design Files to a New Directorycccccocoeveeveiiiceiniiicesicieeccin,
Modify the Design in SOPC Builderccccoovviruiinnnnne
Open the System in SOPC Builderccccc.c......
Add DMA Controller & Memory Components
Connect DMA Master Ports to Memory Slave Ports ...
Make Clock Domain ASSiNMENtscccceueivierieiiiiinrniniiciece e
Update the Quartus I Design
Update the System Module Symbolcccccoueunnnnn.
Update PLL Settings to Generate a 100 MHz Clock
Connect the 100 MHz Clock to the System Modulecccooriiiiiiiniiiciine,
Compile the Design & Download to the Board ..o,
Running Software to Exercise the Multi-Clock Hardware ...
Install the Example Software Design Filesccccoviiiniiiiiiiiniincicecccccines
Create a New Nios IT IDE PrOJECtccoeuvviiiriiiiiiiieiiicie ettt
Build & Run the Program ...
(@06 4Tl LT3 To) s WO RUTRS
Document Revision HiStOIYccoooviiiiiiiiciccccccccccc s

Altera Corporation ix

Quartus Il Handbook, Volume 4

% Altera Corporation

A |:| —Ig 0)/\ Chapter Revision Dates

®

The chapters in this book, Quartus II Handbook, Volume 4, were revised on the following dates. Where
chapters or groups of chapters are available separately, part numbers are listed.

Chapter 1. Introduction to SOPC Builder
Revised: November 2006
Part number: QI154001-6.1.0

Chapter 2. Tour of the SOPC Builder User Interface
Revised: November 2006
Part number: QII54002-6.1.0

Chapter 3. System Interconnect Fabric for Memory-Mapped Interfaces
Revised: November 2006
Part number: QI154003-6.1.0

Chapter 4. SOPC Builder Components
Revised: November 2006
Part number: QI154004-6.1.0

Chapter 5. Component Editor
Revised: November 2006
Part number: QII54005-6.1.0

Chapter 6. Archiving SOPC Builder Projects
Revised: November 2006
Part number: QII54017-6.1.0

Chapter 7. Board Description Editor
Revised: November 2006
Part number: QI154017-6.1.0

Chapter 8. Pin Mapper
Revised: November 2006
Part number: QII54016-6.1.0

Chapter 9. Building Memory Subsystems Using SOPC Builder

Revised: November 2006
Part number: QI154006-6.1.0

Altera Corporation Xi

Chapter Revision Dates Quartus Il Handbook, Volume 4

Chapter 10. Developing Components for SOPC Builder
Revised: November 2006
Part number: QI154007-6.1.0

Chapter 11. Building Systems with Multiple Clock Domains

Revised: November 2006
Part number: QI154008-6.1.0

xii Altera Corporation

A |:| —Ig D)/A About this Handbook

®

How to Contact
Altera

This handbook provides comprehensive information about the Altera®
SOPC Builder tool.

For the most up-to-date information about Altera products, go to the
Altera world-wide web site at www.altera.com. For technical support on
this product, go to www.altera.com/mysupport. For additional
information about Altera products, consult the sources shown below.

Information Type USA & Canada All Other Locations
Technical support www.altera.com/mysupport/ www.altera.com/mysupport/
(800) 800-EPLD (3753) +1 408-544-8767
(7:00 a.m. to 5:00 p.m. Pacific Time) 7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time
Product literature www.altera.com www.altera.com
Altera literature services literature @altera.com literature @altera.com
Non-technical customer (800) 767-3753 + 1 408-544-7000
service 7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time
FTP site ftp.altera.com ftp.altera.com

Altera Corporation

xiii

http://www.altera.com
http://www.altera.com/mysupport
http://www.altera.com/mysupport/
http://www.altera.com/mysupport/
http://www.altera.com
http://www.altera.com
mailto:literature@altera.com
mailto:literature@altera.com
ftp://ftp.altera.com
ftp://ftp.altera.com

Typographic Conventions

Quartus Il Handbook, Volume 4

Typographic
Conventions

This document uses the typographic conventions shown below.

Visual Cue

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type

External timing parameters, directory names, project names, disk drive names,
filenames, filename extensions, and software utility names are shown in bold
type. Examples: fyax, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

ltalic type

Internal timing parameters and variables are shown in italic type.
Examples: tpja, n+ 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters

Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title”

References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type

Signal and port names are shown in lowercase Courier type. Examples: datal,
tdi, input . Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\gdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (e.g., the AHDL
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in
Courier.

1,2,3., and Numbered steps are used in a list of items when the sequence of the items is
a., b, c., etc. important, such as the steps listed in a procedure.
H e ° Bullets are used in a list of items when the sequence of the items is not important.
v The checkmark indicates a procedure that consists of one step only.
s The hand points to information that requires special attention.
A A caution calls attention to a condition or possible situation that can damage or
CAUTION destroy the product or the user’s work.

0 A warning calls attention to a condition or possible situation that can cause injury

to the user.

“ The angled arrow indicates you should press the Enter key.
e The feet direct you to more information on a particular topic.

Altera Corporation

A |:| E DY/A Section . SOPC Builder

® Features

Altera Corporation

Section I of this volume introduces the SOPC Builder system integration
tool, and describes the main features. Chapters in this section serve to
answer the following questions:

B What is SOPC Builder?
B What services does SOPC Builder provide?

This section includes the following chapters:

Chapter 1, Introduction to SOPC Builder

Chapter 2, Tour of the SOPC Builder User Interface

Chapter 3, System Interconnect Fabric for Memory-Mapped
Interfaces

Chapter 4, SOPC Builder Components

Chapter 5, Component Editor

Chapter 6, Archiving SOPC Builder Projects

Chapter 7, Board Description Editor

Chapter 8, Pin Mapper

=
q

For information about the revision history for chapters in this
section, refer to each individual chapter for that chapter’s
revision history.

Section I-1

SOPC Builder Features Quartus Il Handbook, Volume 4

Section |1-2 Altera Corporation

/N

A 1. Introduction to SOPC
Builder

QI154001-6.1.0

Overview

Altera Corporation
November 2006

SOPC Builder is a powerful system development tool for creating
systems based on processors, peripherals, and memories. SOPC Builder
enables you to define and generate a complete
system-on-a-programmable-chip (SOPC) in much less time than using
traditional, manual integration methods. SOPC Builder is included in the
Quartus® II software and is available to all Altera® customers.

Many designers already know SOPC Builder as the tool for creating
systems based on the Nios® II processor. However, SOPC Builder is more
than a Nios II system builder; it is a general-purpose tool for creating
arbitrary SOPC designs that may or may not contain a processor.

SOPC Builder automates the task of integrating hardware components
into a larger system. Using traditional system-on-chip (SOC) design
methods, you had to manually write top-level HDL files that wire
together the pieces of the system. Using SOPC Builder, you specify the
system components in a graphical user interface (GUI), and SOPC Builder
generates the interconnect logic automatically. SOPC Builder outputs
HDL files that define all components of the system, and a top-level HDL
design file that connects all the components together. SOPC Builder
generates both Verilog HDL and VHDL equally, and does not favor one
over the other.

In addition to its role as a hardware generation tool, SOPC Builder also
serves as the starting point for system simulation and embedded software
creation. SOPC Builder provides features to ease writing software and to
accelerate system simulation.

This chapter introduces you to the architectural structure of systems built
with SOPC Builder, and describes the primary functions of SOPC Builder.

Quartus Il Handbook, Volume 4

Architecture of
SOPC Builder

Systems

This section describes the fundamental architecture of an SOPC Builder
system.

An SOPC Builder component is a design module that SOPC Builder
recognizes and can automatically integrate into a system. SOPC Builder
connects multiple components together to create a top-level HDL file
called the system module. SOPC Builder generates system interconnect fabric
that contains logic to manage the connectivity of all components in the
system. Figure 1-1 shows an example of a multi-master system module
with system interconnect fabric connecting the multiple master and slave
components.

Figure 1-1. Example of a System Module Generated by SOPC Builder

l

System Interconnect Fabric

Ethernet

PHY

Chip
A
System Module v

Processor Ethernet MAC Custom Logic
(82-bit master (32-bit master (64-bit master
component) component) component)

Flash SRAM SDRAM UART Custom
Memory Interface Controller (16-bit Logic
Interface (16-bit (32-bit - (64-bit

(8-bit slave slave slave component) slave
component)| |component)| |component) component)
A A A 4
4 \/ \ 4 \
Flash SRAM SDRAM RS-232
Chip Chip Chip

Altera Corporation

November 2006

Architecture of SOPC Builder Systems

SOPC Builder Components

SOPC Builder components are the building blocks of the system module.
SOPC Builder components use the Avalon® Memory-Mapped
(Avalon-MM) interface for the physical connection of components, and
you can use SOPC Builder to connect any logical device (either on-chip or
off-chip) that has an Avalon-MM interface. The Avalon-MM interface
uses an address-mapped read /write protocol that allows master
components to read and/or write any slave component.

a® For details on the Avalon-MM interface, see the Avalon Memory-Mapped
Interface Specification at www.altera.com.

A component can be a logical device that is entirely contained within the
system module, such as the processor component in Figure 1-1 on

page 1-2. Alternately, a component can act as an interface to an off-chip
device, such as the SRAM interface component in Figure 1-1 on page 1-2.
In addition to the Avalon-MM interface, a component can have other
signals that connect to logic outside the system module. Non-Avalon-MM
signals can provide a special-purpose interface to the system module,
such as the Ethernet MAC in Figure 1-1 on page 1-2.

A component can be instantiated more than once per design.

Altera and third-party developers provide ready-to-use SOPC Builder
components, such as:

Microprocessors, such as the Nios II processor
Microcontroller peripherals

Timers

Serial communication interfaces, such as a UART and a serial
peripheral interface (SPI)

General purpose I/O

Digital signal processing (DSP) functions
Communications peripherals

Interfaces to off-chip devices

e Memory controllers

Buses and bridges

Application-specific standard products (ASSP)
Application-specific integrated circuits (ASIC)
Processors

Altera Corporation 1-3
November 2006

Quartus Il Handbook, Volume 4

SOPC Builder Ready Components

Altera awards the SOPC Builder Ready certification to intellectual
property (IP) designs that have plug—and-play integration with SOPC
Builder. These functions may be accompanied by software drivers, low-
level routines, or other software design files.

Altera’s OpenCore® and OpenCore Plus evaluation programs allow you
to “test drive” an SOPC Builder component both in simulation and in
hardware before you buy. You can download evaluations of Altera IP
functions directly from www.altera.com/IPMegastore. For IP functions
provided by third-party vendors, contact the vendor directly to obtain an
OpenCore evaluation.

Check the Altera web site at www.altera.com for up—to—date
information about available SOPC Builder Ready components. You can
identify SOPC Builder Ready components by the logo shown in

Figure 1-2.

Figure 1-2. The SOPC Builder Ready Certification Logo

n SOPC Builder Ready

User-Defined Components

SOPC Builder provides an easy method for you to develop and connect
your own components. With the Avalon-MM interface, user-defined logic
need only adhere to a simple interface based on address, data, read-
enable, and write-enable signals.

You use the following design flow to integrate custom logic into an SOPC
Builder system:

1. Define the interface to the user-defined component.

2. If the component logic resides on-chip, write HDL files describing
the component in either Verilog HDL or VHDL.

3. Use the SOPC Builder component editor wizard to specify the
interface and optionally package your HDL files into an SOPC
Builder component.

Altera Corporation
November 2006

Functions of SOPC Builder

Functions of
SOPC Builder

Altera Corporation
November 2006

4. Instantiate your component in the same manner as other SOPC
Builder Ready components.

Once you have created an SOPC Builder component, you can reuse the
component in other SOPC Builder systems, and share the component
with other design teams.

For instructions on developing a custom SOPC Builder component, see
the Developing SOPC Builder Components chapter in Volume 4 of the
Quartus 11 Handbook. For complete detail on the file structure of a
component, see the SOPC Builder Components chapter in Volume 4 of the
Quartus 11 Handbook. For details on the SOPC Builder component editor,
see the Component Editor chapter in Volume 4 of the Quartus II Handbook.

System Interconnect Fabric

The system interconnect fabric is the glue that binds SOPC Builder-
generated systems together. The system interconnect fabric is the
collection of signals and logic that connects master and slave
components, including address decoding, data-path multiplexing, wait-
state generation, arbitration, interrupt controller, and data-width
matching. SOPC Builder generates the system interconnect fabric
automatically, so that you do not have to manually perform the tedious,
error-prone task of connecting hardware modules.

The purpose of SOPC Builder is to abstract away the complexity of
interconnect logic, allowing designers to focus on the details of their
custom components and the high-level system architecture.
Automatically generating the system interconnect fabric is the keystone
to achieving this purpose. system interconnect fabric in the system
module is like air for humans: Its existence is essential, but largely
ignored. Because SOPC Builder generates system interconnect fabric
automatically, most users do not interact directly with it or the HDL that
describes it.

For further details, see the System Interconnect Fabric for Memory-Mapped
Interfaces chapter in Volume 4 of the Quartus II Handbook.

This section describes the fundamental functions of SOPC Builder.

Defining & Generating the System Hardware

The purpose of the SOPC Builder GUI is to allow you to easily define the
structure of a hardware system, and then generate the system. The GUI is
designed for the tasks of adding components to a system, configuring the
components, and specifying how they connect together.

Quartus Il Handbook, Volume 4

After you add all components and specify all necessary system
parameters, SOPC Builder is ready to generate the system interconnect
fabric and output the HDL files that describe the system. During system
generation, SOPC Builder outputs the following items:

B An HDL file for the top-level system module and for each
component in the system

B A Block Symbol File (.bsf) representation of the top-level system
module for use in Quartus II Block Diagram Files (.bdf)

B (Optional) Software files for embedded software development, such
as a memory-map header file and component drivers

B (Optional) Testbench for the system module and ModelSim®
simulation project files

After you generate the system module, it can be compiled directly by the
Quartus II software, or instantiated in a larger FPGA design.

«o For more detail on the SOPC Builder GUI for defining and generating
systems, see the Tour of the SOPC Builder User Interface chapter in Volume
4 of the Quartus II Handbook.

Creating a Memory Map for Software Development

For each microprocessor in the system, SOPC Builder optionally
generates a header file that defines the address of each slave component.
In addition, each slave component can provide software drivers and
other software functions and libraries for the processor.

The process for writing software for the system depends heavily on the
nature of the processor in the system. For example, Nios II processor
systems use Nios II processor-specific software development tools. These
tools are separate from SOPC Builder, but they do use the output of SOPC
Builder as the foundation for software development.

Creating a Simulation Model & Testbench

You can simulate your custom systems with minimal effort immediately
after generating the system with SOPC Builder. During system
generation, SOPC Builder optionally outputs a push-button simulation
environment that eases the system simulation effort. SOPC Builder
generates both a simulation model and a testbench for the entire system.
The testbench includes the following functionality:

e Instantiates the system module
e Dirives all clocks and resets appropriately
e Optionally instantiates simulation models for off-chip devices

1-6 Altera Corporation
November 2006

Getting Started

Getting Started

Document
Revision History

One of the easiest ways to get started using SOPC Builder is to read the
Nios II Hardware Development Tutorial which guides you step-by-step in
building a microprocessor system, including CPU, memory, and
peripherals. This tutorial and other SOPC Builder example designs are
included in the Nios II Embedded Design Suite (EDS), Evaluation
Edition. You can download this design suite for free from the Altera

Download Center at www.altera.com.

Table 1-1 shows the revision history for this document.

Table 1-1. Document Revision History

Date & Document
Version

Changes Made

Summary of Changes

November 2006, | Updated Avalon terminology because of changes to Avalon
v6.1.0 technologies. Changed old “Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon interface” terms to
“Avalon Memory-Mapped interface.”

For the 6.1 release,
Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006, v6.0.0 | No change from previous release.

October 2005, No change from previous release.
v56.1.0

May 2005, v5.0.0 | No change from previous release.
February 2005, Initial release.

v1.0

Altera Corporation
November 2006

Quartus Il Handbook, Volume 4

1-8 Altera Corporation
November 2006

/NATES

2. Tour of the SOPC Builder
User Interface

Q1154002-6.1.0

Starting SOPC
Builder

Altera Corporation
November 2006

This chapter provides reference on how to access the features available in
the SOPC Builder graphical user interface (GUI). This chapter will
familiarize you with the main features of the SOPC Builder GUL

I Due to evolution and improvement of the software, the figures
in this chapter may not match exactly what you see in the
software.

Each SOPC Builder system is associated with one Quartus® II project.
Therefore, to launch SOPC Builder, you must first open a project in the
Quartus Il software. With a Quartus II project open, you can launch SOPC
Builder by choosing SOPC Builder (Tools menu) or by clicking the SOPC
Builder toolbar button. See Figure 2-1.

Figure 2-1. SOPC Builder Toolbar Button

ST D),

Il'=~ The SOPC Builder toolbar button might not appear by default.
To enable it, use the Customize window (Tools menu).

Starting a New SOPC Builder System

If an SOPC Builder system does not exist in the current Quartus II project
directory, SOPC Builder will display the Create New System dialog as
shown in Figure 2-2 on page 2-2, and prompt you to specify the
following:

B A name for the new SOPC Builder system — This serves as the name
of the system module that SOPC Builder will generate.

B Target HDL - This setting determines the output language of the
system module.

Quartus Il Handbook, Volume 4

Figure 2-2. Create New System Dialog

1™ Create Hew System

System Name: | full _1c20
HOL Language

() Werilog O wHDL

Working with SOPC Builder Systems

SOPC Builder operates on exactly one system at a time, and the system
must be associated with a Quartus II project. A Quartus II project may
have multiple associated SOPC Builder systems, but typically will have
only one (if any).

If you integrate multiple SOPC Builder system modules in one
Quartus II project, you must make sure all components are
named uniquely across all system modules. Otherwise, filename
collision will occur.

CAUTION

In SOPC Builder, you can create a new system by choosing New System
(File menu). You can switch to a different system by choosing Open
System (File menu).

SOPC Builder saves files in the same directory as the Quartus II project.
Each SOPC Builder system is represented by a file named <system module
name>.ptf, which is a plain-text file describing the structure of the system
and other system-specific details. In a purely mechanical sense, the SOPC
Builder GUI is a .ptf file editor.

Il=~ Changes you make in the SOPC Builder GUI are saved
immediately to the .ptf file. When you open a system, SOPC
Builder creates a back-up file named <system module
name>.ptf.bak, in case you need to revert changes.

2-2 Altera Corporation
November 2006

System Contents Tab

System Contents

Tab

SOPC Builder employs a tabbed user interface. Tasks are categorized by
function, and related tasks are presented on the same tab.

The System Contents tab is displayed when you open SOPC Builder. It is
the view of SOPC Builder that you will use most often. You use the
System Contents tab to do the following:

B Add components to a system
B Configure the components
B Specify connections between components

Figure 2-3 lists the elements of the System Contents tab. See Table 2-1 on
page 2—4 for details.

Figure 2-3. Elements of the System Contents Tab

Tabs

Altera SOPC Builder - Tull_1c20

Board Settings

Clock Settings Table

Eile Modulz Systesr™ View Tools Help
T o~
System Contents | Board Settings | Mios II More "cpu” Settings | System Generation
A Aitera SOFC Builder 4 Target
Create Mew Componert... Clock Source hHz Fipeling:
Avalon Components Board: ‘N\ns Development Board, Cyeclone (EP1C20) i svs_clk o0 Fram conn... |50.0 O =
: & nioz || Processor - Attera Corpor pld_chout &0 From conn... | 528 O =
Bridges :l pld_clockinput |External 50,0 O v
Communication
& ITAG UART
@ SPI(3Wire Serial) Use Module Name Description Input Clock Base End H
& ULRT (RS-232 serial port) = LRocessor - Alters Cornorg clc 3
isplay = hstruction_master Master port
EP1C20 Hios Development Boart ahtly_coupled_instruction_n ... Waster port
3 Boarc —| Hata_master Master port IR0 IRG 31| &y
. . Lt Boarc Mg fightly_coupled_data_master_0 |Master part
List of Available nt Board ag_riebug_tnocule Slave part 0x02120000/ 0x021207FF
Components 1 Editic l El fighthy_coupled_instr - On-Chip Memary (RAM or ROM) |sys_clk
Boarc 1 Slarve port § 0x040000..) 0x04000FFF
[#-Ethernet b—— k2 Slarve port # 0x040000..) O0x04000FFF
xtra Wilities [fighthy_coupled_data_menn... [On-Chip Memory (RAM or ROM) sys_clk
egacy Components f—iH DM sys_chk 0x02120800 Ox0212081F [¥
emony {# _ram_bus Avalon Tristate Brice sys_clk
@ Cypress CY7C1380C SSRAI eit_flash Flazh Memory (Cammon Flash Int... # 0x000000..| Ox007FFFFF
EPCS Serial Flash Controller eltt_ram IDTT 4 B SRAM # 0020000, 0x020FFFFF
@ Flash Memary (Comman Flas & _controller EPCS Serial Flash Cartroller sys_chk 0x02100000 0x021007FF [5 |
& [OT71v415 SRém a fan91c111 LANS1c111 Interface (Ethernet] 0x02110000 (0x0211FFFF|[6
|] _clk_timer Irterval timer ys_clk 0x02120820 0x0212033F [0
. [jthg_uart JTAG UART sys_clk 0402120800 002120807 [1
Urgdizliot T [~——= plitton_pio PIO (Parallel 110} sys_clk 0x02120880 0x0212083F [2
o | @ [~ Jeid_pio FIO (Parallel 110 ays_chk 0x02120890) 0x0212059F
[— Jcd_display Character LCD (16x2, Optrex 162.. |sys_clk 0x021208A0) 0x0212034F
a Movelp | [w Mowe Down
[7) epu was gknerated with full capahilities and must be campiled in{Quartus 1T with the same license.
cpu: The rset address points to volatile memory. Execution of indefined code may occur upon reset,
[Done checling For updates.
[Exit Mext ﬁ Generate
Component Filters Connection Panel Messages Window Table of Active Components
Altera Corporation 2-3

November 2006

Quartus Il Handbook, Volume 4

Table 2-1 describes the GUI elements shown in Figure 2-3.

Table 2-1. GUI Elements on the System Generation Tab

GUI Element Description
Tabs Categorizes GUI controls, based on task.
List of Available Lists the library of available SOPC Builder components, organized by category.
Components Each component appears with a colored dot next to its name. The colors of the dots

have the following meanings:

e Green dot — A full, licensed version of the component is installed.

o Yellow dot — A limited, evaluation version of the component is installed.

e White dot — This component is available from Altera or a partner vendor, but is
not installed.

Component Filters

Filters which type of components appear in the list of available components.

Table of Active
Components (7)

Lists the components instantiated in the current system, and allows you to specify
the following:

e Name for each component instance

e Base address for each slave port

e® Clock source for each component instance

e |Interrupt priority (if any) for each slave port

Connection Panel (1)

Represents connections between the components, and allows you to perform the

following:

e Specify connections between master ports and slave ports.

e Specify arbitration shares for slave ports that are shared by multiple master
ports.

Board Settings

Allows you to specify details regarding the target hardware platform:

e Board - If the target board is known and you have an SOPC Builder board
description, you can specify the target board. The board setting provides SOPC
Builder with information about the target hardware, such as pin-outs and
connections to off-chip devices.

o Device Family - If the target board is not known, you can specify a particular
device family, which affects the behavior of certain components.

e HardCopy Compatible - Certain components have limited functionality when
targeting Altera HardCopy devices. This option allows you to use only
components and settings that are compatible with HardCopy devices.

Clock Settings Table

Allows you to define the clock signals used in the system module. For each clock

in the clock settings table, you can specify:

e Name

e Source - Clock signals can be provided from an external source, or can be
generated by a component inside the system module.

e Frequency in MHz

e Pipeline for high performance - SOPC Builder can pipeline the system
interconnect fabric for the clock domain, which improves fyax performance.

Messages Window

Displays information, warning, or error messages related to the current system.

Note for Table 2-1:

(1) Options available in the View menu alter how this element is displayed.

2-4

Altera Corporation
November 2006

System Contents Tab

Altera Corporation
November 2006

You can connect any master port to any slave port, as long as they use the
same interface protocol. If they use different interface protocols, they
must communicate through a bridge component.

Adding a Component to the System

To add a component to the system, find the component in the list of
available components and do one of the following:

B Double-click the component.
B Select the component, then click Add.
B Right-click the component and choose Add New <component name>.

If the component has any parameterized features, a wizard will appear
allowing you to configure this instance of the component. Figure 2—4
shows an example of a configuration wizard for the SDRAM controller
included with the Quartus II software.

Figure 2—-4. SDRAM Controller Configuration Wizard

1™ SDRAM Controller - sdram 3]

Presets: single Micron MT4ELC4M3IZE2-T chip e

Mernory Profile | Timing

SDRAM Timing Parameters

CAS latency cycles O 1 O 2 @]
Initislization refresh cycles 2

|zzue one refresh command every 15625 us
Delay after powerup, before inttialization 100 us
Duration of refresh command (t_rfc) 70 ns
Duration of precharge command (t_rp) 20 ns
ACTIVE to READ or WRITE delay (t_rcd) 20 (153
Access time (t_ac) 25 ns
‘Wite recovery time (t_wr, No auto precharge) 14 ns

Cancel = Prev Finish

Like the overall SOPC Builder GUI, component configuration wizards
use tabs to categorize GUI features, and have a message window that
displays dynamic information about the current configuration of the
component.

2-5

Quartus Il Handbook, Volume 4

The parameters and information displayed in the configuration wizard
depend on the component. Many wizards provide tool tips that give you
information on how to specify each parameter.

s You can open component documentation from within SOPC
Builder. Right-click the component in the list of available
components, and choose one of the document items listed.

Specifying Connections, Base Address, Clock & IRQ

After you add a component, you must configure how it fits within the
system.

Connection Panel

In the connection panel you specify the master-slave connections
between components.

'~ Each SOPC Builder component can have one or more master
and slave ports. Each slave port must be connected to a master
port.

Hovering the mouse over the connection panel displays the potential
connection points between components, represented as dots Connecting
wires. A filled dot shows that a connection is made; an open dot shows a
potential connection point that is not currently connected. Clicking a dot
toggles the connection status. See Figure 2-5.

Figure 2-5. Connection Panel

Module Mame Description Clock Bus Type Base End IR
= epu Mios Il Processar - <er ... |clk
4 instruction_master Master port avalon
et (Jita_naster Master port avalon IR 0 IRz 31
e _debug_module Slave port avalon 0x02120000| 0:x021207FF)
{H sdram SDRAM Cortraller clk avalon | @ 0x01000000) 0x01FFFFFF

rterval timer clk
Slave port avalon 0x02120820| 0:x0212085F| 3
JTAG UART clk avalon 0x02120800| 0x02120307|] 4

Hma,-"read_master is nok a master of sys_clk_l:imer,.-"sl| clk

2-6

You can connect any master port to any slave port, as long as the ports use
the same type of hardware interface. If they use different interfaces, they
must communicate through a bridge component.

Altera Corporation
November 2006

System Contents Tab

Table of Active Components

After your component is connected in the connection panel, you use the
table of active components to specify the parameters listed in Table 2-2.

Table 2-2. Table of Active Components

Parameter Description

Name Name of the instance of the component. SOPC Builder assigns a default name
when you add a new component. To change this name, right click the component
name and select Rename.

Use Enables/Disables the component in the current system. Turning off the Use setting
is equivalent to removing the component from the system.

Clock Clock source for the component. You must choose one of the clocks defined in the
clock settings table.

Base (1) Base address where the slave port will appear in the master port's address space.
SOPC Builder can automatically choose new base address values to avoid
conflicts between all components.

You can automatically assign base addresses for all components by choosing
Auto-Assign Base Addresses (System menu).

You can lock the base address on a component so that SOPC Builder will not
change it automatically. To lock the base address, right-click the component in the
table of active components, and choose Lock Base Address.

IRQ (1) Specifies the IRQ value the slave drives to the master, if the slave port can generate
interrupts. If you specify NC for an IRQ value, SOPC Builder will not connect
interrupt signals from slave to master.

SOPC Builder can automatically choose new IRQ values to avoid conflicts between
all components. To automatically assign IRQs for all components, choose Auto-
Assign IRQs (System menu).

Note to Table 2-2:
(1) This setting applies to slave ports only.

Il=~ SOPC Builder automatically chooses defaults for these
parameters when you add each component, but you must verify
that they are appropriate for your system.

Creating User-Defined Components

You can use the SOPC Builder component editor to create a component
from user-defined logic. To open the component editor, choose New
Component (File menu) or select Create New Component in the list of
available components, and click Add.

Altera Corporation 2-7
November 2006

Quartus Il Handbook, Volume 4

Figure 2—-6 shows an example of the component editor editing a 32-bit

master component.

Figure 2-6. SOPC Builder Component Editor

™ Component Editor - Interface to External Master, {32-bit)

File:
Intraduction | HOL Files | Sionals | nterfaces | SW Files | Component Wizard
[About Sighals
[Marne Interface Signal Type Wickth Direction
@ laddress avalon_master_0 acddress 32 output
] readdata avalon_master_0 readdata 32 input
& read avalon_master_0 read 1 output
& [writedata avalon_master_0 weritedata 32 output
& [werite avalon_master_0 erite 1 output
& |clk avalon_master_0 clk 1 input
& [wvaitreguest avalon_master_0 weaitrecuest 1 input
readdataralic avalon_master_0 readdatavalid 1 input
i firg avalon_master_0 irgy 1 input
& firanumber avalon_master_0 ircnumber [output
<
@ avalon_master_0: Sighal irg [6] type irg must have direction of [input]
sprev | [met» | [Finish..
After creating a user-defined component, the process to instantiate the
component is the same as for any other component.
-
«® Forinstructions on developing a custom SOPC Builder component, see

System
Dependency
Tabs

2-8

the Developing SOPC Builder Components chapter in Volume 4 of the
Quartus II Handbook. For complete detail on the file structure of a
component, see the SOPC Builder Components chapter in Volume 4 of the
Quartus II Handbook. For details on the SOPC Builder component editor,
see the Component Editor chapter in Volume 4 of the Quartus II Handbook.

Certain components must be configured based on system-level factors
external to the component. SOPC Builder provides system dependency
tabs, which allow further configuration of a component beyond the
component's configuration wizard. System dependency tabs are titled
More "<Name of component instance>" Settings, and appear next to the
System Contents tab.

Figure 2-7 shows an example of the system dependency tab for an
instance of the Nios® I processor named cpu. In this example, the Nios IT
processor reset and exception addresses depend on memory components
in the system but external to the processor, and therefore uses a system
dependency tab.

Altera Corporation
November 2006

Board Settings Tab

Figure 2-7. System Dependency Tab for a Nios Il Processor

¥ pltera SOPC Builder - full_1c20

File Module

System Wiew Tools Help

System Contents

Nios IT More "cpu” Settings | System Generation

Processor Configuration

Hios IIf Core

4-Khyte Instruction Cache (128 lines, 32 bytesfline, 22 tag bit/line)

2-Khyte Data Cache (512 lines, 4 bytes/line, 17 tag bits/line)

JTAG Debug Module (S breakpoints, 4 HlY breakpoints, 4 data triggers, on-chip trace, off-chip trace)

Processor Function Mermary Module Offzet Address

Reset Address ext_flash 000000000 (000000000
Exception Address sdram 000000020 (001000020
Break Location cpuiftag_debug_module 000000020 (002120020

“ou can change Hios Il software settings, such as data memory, host communication, and
debugging communication, in the System Library properties of the Mios || IDE.

|:| Legacy SDK support. Generate headers libraries, and memory contents with Mios SDK interfaces.

Board Settings
Tab

Altera Corporation
November 2006

The Board Settings tab provides board-specific settings for the target
hardware platform. SOPC Builder displays a Board Settings tab only if
you specify a target board on the System Contents tab.

The main feature of the Board Settings tab is the SOPC Builder pin
mapper. The pin mapper simplifies the process of assigning FPGA pins.
You use the pin mapper to map logical connections between system
components and devices mounted on the PCB. Based on your pin mapper
settings, SOPC Builder applies appropriate pin assignments to your
Quartus II project.

In addition to accelerating the process of assigning FPGA pins, the pin
mapper provides a level of assurance that you have accounted for the pin
assignments required for a target board. Figure 2-8 on page 2-10 shows
an example of the pin mapper for a target board.

2-9

Quartus Il Handbook, Volume 4

Figure 2-8. Board Settings Tah

I8 pltera SOPC Builder - full_1c20

File Module System Yiew Tools Help
System Contents | Board Settings | Nios IT More "cpu” Settings | System Generation
Pin Mapper
The pin mapper lets you map signals on the system module to pins on target devices on the printed circuit board,
SOPC Builder will make pin assignments for the Quarkus I project when you generate the system.
Source Signal Target Device Device Pin
M3 System -~
+-Ik global_signals elicl: ba assigit.. r
-k cpu 125 {Debug|Trace Connector)
-4F ext_flash U5 {CFI Flash Memory)
-k ext_ram elicl: ba assigit..
-4F lan91cl11l U4 (Ethernet Adpater)
-47F button_pio elicl: ba assigit..
~4F led_pio click ta assigit..
-4k led_display 2 {LCD Display Connector)
[-=2 LCD_data " [14..7]
9
g
7
&
. =
----- —aLCD R . 5
[k seven_seg_pio click ta assigi. 2
=B Incomplete mapping 1F All signals mapped 3 Fins auto-assigned Lk Assign in Quartus II
The top-level pins in the Quartus II project must have the same names as the source signals on the system module,
Svste m This section describes the settings available on the System Generation

. tab, and discusses the various outputs of SOPC Builder. System
Generation Tab generation refers to SOPC Builder's process of generating output files that
describe your system, based on the parameters you specified in the SOPC
Builder GUL

2-10 Altera Corporation
November 2006

System Generation Tab

Figure 2-9 shows an example of the System Generation tab.

Figure 2-9. System Generation Page

1™ pltera SOPC Builder - second_system

File Module

System Wiew Tools Help

System Content

ystem Generation

Options

|:| SDK. Generate header files, library files, and memory contents for CPUCS) and peripherals in your system.

HOL. Generate system module logic in Verilog.

Simulation. Create ModelSimitm) project files. Run ModelSim

z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.
z2004.1Z2.

z0
z0
z0
z0
z0
z0
z0
z0
z0
z0
z0

.20

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

13:

wltera S0PC Builder Version 4.20 Build 157 -
Copyright (c) 1999-2004 Altera Corporation. &ll rights reserved.

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

06:

04 (%) mk custom_sdk starting

04 (*) Reading project C:/alteraskits/nioszZ/examples/werilog/niosII_cyclo
04 (*) Finding all CPUs

04 (*) Finding all peripherals

04 (*) Finding software components

04 (*) (Legacy 5SDE Generation Skipped)

04 (*) (411 TCL Script Generation Skipped)

04 (*) (No Libraries Built)

04 (*) (Contents Generation Skipped)

04 (%) mk_custom_sdk finishing

04 (*) Starting generation for system: second systenm.

04 (*) FPunning Generator Program for sS¥sZ_external master_3EZbit

(7] Dane checking for updates.

Exit = Prev Generate

Altera Corporation
November 2006

I.E =

Some SOPC Builder components, such as the Nios II processor,
may modify the available options on this page.

Depending on the options on the System Generation tab, SOPC Builder
generates the following outputs:

B Hardware design files
B Simulation model, testbench, and ModelSim® project files
B Files for software development

System Generation Tab Options

This section describes each of the options available on the System
Generation tab.

2-11

Quartus Il Handbook, Volume 4

2-12

SDK Option

When the SDK option is turned on, during system generation SOPC
Builder creates a custom software development kit (SDK) directory in the
Quartus II project directory for each CPU in the system. The SDK contains
a memory map and software files (drivers, libraries, and utilities) for any
system components that provide software support files.

1= The Nios II processor provides a different software development
flow, and therefore does not use the SDK option.

SDK files are arranged into the following directories:

B inc - This directory contains header files. These files include the
definition for the memory map, register declarations for included
peripherals, and macros that can be used in creating embedded
software applications.

B lib — This directory contains software library files. During system
generation, processor components can include commands to have
SOPC Builder compile the libraries automatically.

B src— This directory provides a location for application source code
development. Example source code files associated with peripherals
may also be copied into this directory during system generation.

Every time you generate or update the system hardware module, you
must give the SDK files to the software engineers developing application
code.

Il=7 Ifyou edit the files generated by SOPC Builder, save them with
a unique filename to prevent the file from being overwritten in
a subsequent system generation.

HDL Option

When the HDL option is turned on, during system generation SOPC
Builder creates HDL files that describe the system, and stores them in the
Quartus II project directory. The HDL files contain the following;:

B The top-level system module

B Aninstance of every component in the system

B The system interconnect fabric tailored to connect all components in
the system

B A simulation model and a simulation testbench, depending on the
Simulation option. See “Simulation Option” on page 2-13 for more
details.

Altera Corporation
November 2006

System Generation Tab

Altera Corporation
November 2006

SOPC Builder outputs the top-level system module file in either Verilog
HDL or VHDL, depending on which language you specified when
starting SOPC Builder. However, some SOPC Builder components may
provide source files in only one language.

Simulation Option

When the Simulation option is turned on, during generation SOPC
Builder creates a simulation model and a test bench for the system.
Simulation-specific files are written to a simulation directory in the
Quartus II project directory, separate from the synthesizable HDL files.

The testbench is tailored to the structure of system module. The testbench
provides the following functionality:

B Instantiates the system module

B Drives clock and reset inputs with default behaviors

B Instantiates and connects the simulation models provided for any
components external to the system module, such as memory models

Individual components may also provide simulation files, which SOPC
Builder copies into the simulation directory during system generation.

SOPC Builder generates a ModelSim project directory that includes the
following files:

B A ModelSim Project File (mpf) for the current system

B Simulation data files for all memory components that have
initialized contents

B A setup_sim.do file that contains setup information and aliases
customized for simulating the system module

B A wave_presets.do file that automatically displays a default set of
useful waveforms

You can run the ModelSim software directly from SOPC Builder by
clicking Run ModelSim. This requires that the ModelSim software be
specified in your search path in the Setup window (File menu).

I'=" Run ModelSim might be disabled by a component in the
system. For example, Nios II processor systems provide a
different simulation flow, and therefore Run ModelSim is
unavailable on the System Generation tab for Nios II processor
systems.

The SOPC Builder output files for simulation are designed to work with

the ModelSim simulator. You can use the SOPC Builder-generated
simulation model and testbench with other HDL simulators. While the

2-13

Quartus Il Handbook, Volume 4

Other Tools

Preferences

2-14

ModelSim-specific files (.tcl, .do, .mpf, etc.) will not work directly with
other simulators, you can inspect these files and use them as a basis for
setting up similar capabilities.

Starting System Generation

After you have configured all system parameters and specified the
desired generation options on this tab, clicking Generate starts the
system generation process. Generate is available from all tabs in SOPC
Builder. It is disabled whenever there are any errors displayed in the
messages window.

The middle area of the System Generation tab is a progress display,
showing a time-stamped list of progress messages that occur during
system generation. SOPC Builder executes multiple tools and scripts to
generate the system, and the status messages from each step are reported
in the progress display.

If system generation completes successfully, SOPC Builder displays a
final progress message:

<timestamp> SUCCESS: SYSTEM GENERATION COMPLETED.

SOPC Builder saves a log file of the progress messages in the Quartus II
project directory.

The Tools menu provides access to a dynamic list of downstream design
tools, depending on the components in the system. For example, if the
system contains a Nios II processor, Nios II processor-related tools are
listed in the Tools menu.

The SOPC Builder Setup window (File menu) provides global options
that affect SOPC Builder's operation, such as:

Search path for SOPC Builder components

Install path for ModelSim

Location of documentation files

Web browser settings (for accessing component documentation)

Altera Corporation
November 2006

Preferences

Altera Corporation
November 2006

The SOPC Builder Setup window is shown in Figure 2-10.

Figure 2-10. SOPC Builder Setup Window

OPC Builder Setup

General

Always enable 'Run Modelsim' button

Componertidit Library Search Path
Additional directories containing SOPC Builder components § kits

Documeritation accessed |Locally % | |, or Onling when nat available.

Application Paths

Pre-3.0 SOPC Builder Installation

L)

ModelSim Directory

L)

‘Weh Broweser (Leave blank for system default)

L)

|:| Use Proxy Host | | |

2-15

Quartus Il Handbook, Volume 4

Document

Table 2-3 shows the revision history for this document.

Revision History

Table 2-3. Document Revision History

interconnect fabric.” Changed old “Avalon interface” terms to
“Avalon Memory-Mapped interface.”

Date & Document
] Changes Made Summary of Changes
Version
November 2006, |Updated Avalon terminology because of changes to Avalon For the 6.1 release,
v6.1.0 technologies. Changed old “Avalon switch fabric” term to “system | Altera released the

Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006, v6.0.0

No change from previous release.

October 2005,
v5.1.0

o Updated for the Quartus Il software version 5.1.
o Added pipeline for high performance details.
o Added endian conversion details.

May 2005, v5.0.0

No change from previous release.

February 2005,
v1.0

Initial release.

2-16

Altera Corporation
November 2006

. I
Z;\l |:| —E D)/A 3. System Interconnect

Q1154003-6.1.0

Fabric for Memory-Mapped
Interfaces

®

Introduction

Altera Corporation
November 2006

System interconnect fabric for memory-mapped interfaces is a
high-bandwidth interconnect structure for connecting components that
use the Avalon® Memory-Mapped (Avalon-MM) interface. This system
interconnect fabric is the glue that binds together components based on
the Avalon-MM interface in an SOPC Builder system. System
interconnect fabric consumes minimal logic resources and provides
greater flexibility than a typical shared system bus. This chapter describes
the functions of system interconnect fabric for memory-mapped
interfaces and the implementation of those functions.

High-Level Description

System interconnect fabric is the collection of interconnect and logic
resources that connects Avalon-MM master and slave ports on
components in a system. SOPC Builder generates system interconnect
fabric to match the needs of the specific components in a system. System
interconnect fabric encapsulates the connection details of a system. It
guarantees that signals travel correctly between master and slave ports,
as long as the ports adhere to the rules of the Avalon Memory-Mapped
interface specification. As a result, system designers can think at a higher
level and focus on the parts of a system that add value, rather than worry
about the interconnect.

For details on the Avalon-MM interface, refer to the Avalon Memory-
Mapped Interface Specification available at www.altera.com. For details on
how to use SOPC Builder to create system interconnect fabric, refer to
the Tour of the SOPC Builder User Interface chapter in volume 4 of the
Quartus II Handbook.

System interconnect fabric for memory-mapped interfaces supports:

B Any number of master and slave components. The master-to-slave
relationship can be one-to-one, one-to-many, many-to-one, or
many-to-many.

On-chip components

Interfaces to off-chip devices

Master and slave ports of differing data widths

Big-endian or little-endian components

Components operating in different clock domains

Components using multiple Avalon-MM ports

Quartus Il Handbook, Volume 4

Figure 3-1 shows a simplified diagram of the system interconnect fabric
in an example memory-mapped system with multiple masters.

Figure 3-1. System Interconnect Fabric Block Diagram — Example System

[s |
Processor Control
Instruction ~ Data DMA Controller
M M Read Write
A A M M
: l..! A
System
Interconnect : : :
Fabric e
: iy v A
: E\Arbitrator/ \Arbitrator/
| v
Tri-State Bridge
Ly Py A / A
S S S i
Instruction Data SDRAM) / v
Memory Memory Controller s s
A Ethernet Flash
: MAC/PHY Memory
' Chip Chip
\ 4
SDRAM Chip

——p Write Data & Control Signals

------ » Read Data

== =% |nterface to Off-Chip Device

IEI Avalon-MM Master Port

Avalon-MM Slave Port

3-2

SOPC Builder supports components with multiple Avalon-MM ports,
such as the processor component shown in Figure 3—1. Because SOPC
Builder can create system interconnect fabric to connect components with
multiple ports, you can create complex interfaces that provide more
functionality than a single Avalon-MM port. For example, an Avalon-MM
slave port can have only one interrupt-request (IRQ) signal. However, by

Altera Corporation
November 2006

Introduction

Altera Corporation
November 2006

using three Avalon-MM slave ports together, you can create a component
that generates three separate IRQs. In this case, SOPC Builder generates
the system interconnect fabric to connect all ports.

System interconnect fabric can connect any topology of component
connections, as long as each port conforms to the Avalon-MM interface
specification. It can, for example, connect a system comprising only two
components with unidirectional dataflow between them. However, the
Avalon Streaming interface might be more appropriate for high-
bandwidth point-to-point connections for streaming data.

For details, refer to the Avalon Streaming Interface Specification.

Generating system interconnect fabric is SOPC Builder's primary
purpose. Because SOPC Builder automatically generates system
interconnect fabric, most users do not interact directly with it or the HDL
that describes it. You do not need to know anything about the internal
workings of system interconnect fabric to take advantage of the services
it provides. On the other hand, a basic understanding of how it works can
help you optimize your components and systems. For example,
knowledge of the arbitration mechanism can help designers of
multimaster systems minimize the impact of arbitration on the system
throughput.

Fundamentals of Implementation

System interconnect fabric for memory-mapped interfaces uses active
logic to implement a switched interconnect structure that provides a
dedicated path between master and slave ports. System interconnect
fabric consists of synchronous logic and routing resources inside an
FPGA.

For each port interface on components, system interconnect fabric
manages Avalon-MM transfers, interacting with and responding to
signals on the connected component. The signals that appear on the
master port and corresponding slave port of a master-slave pair can be
different, depending on how the system interconnect fabric transports
signals between the master and slave ports. In the path between master
and slave ports, the system interconnect fabric might introduce registers
for timing synchronization, finite state machines for event sequencing, or
nothing at all, depending on the services required by the specific ports.

Functions of System Interconnect Fabric

System interconnect fabric logic provides the following functions:

B Address Decoding (page 3—4)

3-3

Quartus Il Handbook, Volume 4

Address
Decoding

3-4

Datapath Multiplexing (page 3-5)

Wait-State Insertion (page 3-6)

Pipelining for High Performance (page 3-7)
Pipeline Management (page 3-8)

Endian Conversion (page 3-9)

Native Address Alignment & Dynamic Bus Sizing (page 3-10)
Arbitration for Multimaster Systems (page 3-13)
Burst Management (page 3-20)

Clock Domain Crossing (page 3-21)

Interrupt Controller (page 3-25)

Reset Distribution (page 3-28)

The behavior of these functions in a specific SOPC Builder system
depends on the design of the components in the system and the settings
made in the SOPC Builder graphical user interface (GUI). The remaining
sections of this chapter describe how SOPC Builder implements each
function.

Address decoding logic in the system interconnect fabric distributes an
appropriate address and produces a chipselect signal for each slave port.
Address decoding logic simplifies component design in the following
ways:

B The system interconnect fabric selects a slave port whenever it is
being addressed by a master. Slave components do not need to
decode the address to determine when they are selected.

B Slave port addresses are always properly aligned for the data width
of the slave port.

B SOPC Builder automatically generates address decoding logic to
implement the memory map specified in the GUI. Therefore,
changing the system memory map does not involve manually
editing HDL.

Figure 3-2 shows a block diagram of the address-decoding logic for one
master and two slave ports. Separate address-decoding logic is generated
for every master port in a system.

As shown in Figure 3-2, the address decoding logic handles the
difference between the master address width (M) and the individual
slave address widths (S and T). It also maps only the necessary master
address bits to access words in each slave port's address space.

Altera Corporation
November 2006

Datapath Multiplexing

Figure 3-2. Block Diagram of Address Decoding Logic

Datapath
Multiplexing

Altera Corporation
November 2006

chipselect1 sl
address [M..0] _ Address address [S..0] _ Poar;/?
Master "| Decoding o (8-bit)
Port Logic
chipselect2 > Slave
address [T..2] Port 2
(32-bit)
L=~ All figures in this chapter are simplified to show only the

particular function being discussed. In a complete system, the
system interconnect fabric might alter the address, data, and
control paths beyond what is shown in any one particular figure.

In the SOPC Builder GUI, the user-configurable aspects of address
decoding logic are controlled by the Base setting in the list of active
components on the System Contents tab, as shown in Figure 3-3.

Figure 3-3. Base Settings in SOPC Builder Control Address Decoding

Module Mame Description
Ecpu Mios Il Proces...
instruction_master Master port
data_master Master port

jtan_debug_mod... | Slave port
ext_flash Flash Memary...
ext_ram IDT71Y4HE S,
ext_ram_bus Avalon Tri-St...
button_pio PIC (Parallel 1iC)

high_res_timer

Interval timer

Base End IR

IR 0 IR 31
002120000 A biraa
& 0x00000000(0x007FFFFF
& 0x02000000| 0x020FFFFF

0x02120860) 0021 2056F || 2
0x02120820) 0021 20835F|| 3

Datapath multiplexing logic in the system interconnect fabric aggregates
read- data signals from multiple slave ports during a read transfer, and
presents the signals from only the selected slave back to the master port.

Figure 3—4 shows a block diagram of the datapath multiplexing logic for
one master and two slave ports. SOPC Builder generates separate
datapath multiplexing logic for every master port in the system.

3-5

Quartus Il Handbook, Volume 4

Figure 3-4. Block Diagram of Datapath Multiplexing Logic

readdatal
b >
Slave
address —> Port 1
Data .
t
Path m’ Master writedata l —
Port
—} o control
9
P
Slave
> Port 2
—>
readdata2

Wait-State
Insertion

3-6

Datapath multiplexing is not necessary in the write-data direction for
write transfers. The writedata signals are distributed equally to all
slave ports, and each slave port ignores writedata except for when the
address-decoding logic selects that port.

In the SOPC Builder GUI, the generation of datapath multiplexing logic
is specified using the connections panel on the System Contents page, as
shown in Figure 3-5.

Figure 3-5. Connection Panel Settings in SOPC Builder Control Datapath
Multiplexing

npt Clock Base
or - Aters Corporation ok a5

Connection Panel
Settings PRI

Wait states extend the duration of a transfer by one or more cycles for the
benefit of components with special synchronization needs. Wait-state
insertion logic accommodates the timing needs of each slave port, and
coordinates the master port to wait until the slave can proceed. System
interconnect fabric inserts wait states into a transfer when the target slave

Altera Corporation
November 2006

Pipelining for High Performance

Pipelining for
High
Performance

Altera Corporation
November 2006

port cannot respond in a single clock cycle. System interconnect fabric
also inserts wait states in cases when slave read-enable and write-enable
signals have setup or hold time requirements.

Wait-state insertion logic is a small finite-state machine that translates
control signal sequencing between the slave side and the master side.
Figure 3-6 shows a block diagram of the wait-state insertion logic
between one master and one slave.

Figure 3-6. Block Diagram of Wait-State Insertion Logic

Wait-State

Insertion
Logic

control control

wait request
Master Slave
Port address Port

data

vy

A

System interconnect fabric can force a master port to wait for several
reasons in addition to the wait state needs of a slave port. For example,
arbitration logic in a multimaster system can force a master port to wait
until it is granted access to a slave port.

SOPC Builder generates wait-state insertion logic based on the properties
of all slave ports in the system.

SOPC Builder can automatically pipeline the system interconnect fabric
by inserting stages of registers between all master-slave pairs on a
particular clock domain. Adding pipeline registers can increase the fyjax
performance of the system and ensure that the critical timing path does
not occur in the interconnect between components.

Pipeline registers introduce one or more clock cycles of latency between
master-slave pairs, which creates a trade-off between transfer latency and
fymax performance. The pipeline registers can also increase logic
utilization, depending on the complexity of the system. Components that
support pipelined Avalon-MM transfers minimize the effects of the
pipeline latency. For details on how pipelining for high performance
affects pipelined Avalon-MM ports, see section “Pipeline Management”
on page 3-8.

3-7

Quartus Il Handbook, Volume 4

Pipeline
Management

3-8

You can enable automatic pipelining with the clock settings table on the
System Contents tab in SOPC Builder, shown in Figure 3-7. You can
pipeline each clock domain separately by turning on its Pipeline check
box.

Figure 3-7. Turning On Pipelining for High Performance

Clock Source hHz Pipeline
clk_35 External 35.0
clk_733 0 From pll 233,78
Il Automatic pipeline registers are most likely to improve

performance for the case of many master ports sharing a
common slave port. For N masters accessing a slave port, the
increased latency is on the order of (log,N + 1).

The Avalon-MM interface supports pipelined read transfers. A pipelined
Avalon-MM port can start multiple read transfers in succession without
waiting for the prior transfers to complete. Pipelined transfers allow
master-slave pairs to achieve maximum throughput, even though the
slave port might require one or more cycles of latency to return data for
each transfer.

SOPC Builder generates system interconnect fabric with pipeline
management logic to take advantage of pipelined components wherever
possible, based on the pipeline properties of each master-slave pair in the
system. Regardless of the pipeline latency of a target slave port, SOPC
Builder guarantees that read data arrives at each master port in the order

Altera Corporation
November 2006

Endian Conversion

requested. Because master and slave ports often have mismatched
pipeline latency, system interconnect fabric often contains logic to
reconcile the differences. Many cases are possible, as shown in Table 3-1.

Table 3-1. Various Cases of Pipeline Latency in a Master-Slave Pair
Master Port Slave Port Pipeline Management Logic Structure

No Pipeline No Pipeline The system interconnect fabric does not instantiate logic to handle
pipeline latency.

No Pipeline Pipelined with The system interconnect fabric forces the master port to wait through

Fixed or Variable | any slave-side latency cycles. This master-slave pair gains no benefits

Latency of pipelining, because the master port is not pipelined and therefore
waits for each transfer to complete before beginning a new transfer.
However, while the master port is waiting, the slave port can accept
transfers from a different master port.

Pipelined No Pipeline The system interconnect fabric carries out the transfer as if neither
port were pipelined, forcing the master port to wait until the slave port
returns data.

Pipelined Pipelined with The system interconnect fabric coordinates the master port to capture

Fixed Latency data at the exact clock cycle when data is valid on the slave port. This
case enables this master-slave pair to achieve maximum throughput
performance.

Pipelined Pipelined with This is the simplest pipelined case, in which the slave port asserts a

Variable Latency | signal when its data is valid, and the master port captures the data.
This case enables this master-slave pair to achieve maximum
throughput performance.
SOPC Builder generates logic to handle pipeline latency based on the
properties of the master and slave ports in the system. When configuring
a system in SOPC Builder, there are no GUI settings that directly control
the pipeline management logic in the system interconnect fabric.
Endian Starting with version 5.1 of the Quartus® II software, SOPC Builder
. supports big endian master ports. Prior to version 5.1, SOPC Builder
Conversion

Altera Corporation
November 2006

treated all components as little endian. With version 5.1 and later, an
SOPC Builder system can contain both big and little endian components.

The endianness of an Avalon-MM port depends on the component
design. Endianness affects the order a master port expects individual
bytes to be arranged within a larger word. If all master ports in the system
use the same endianness, then all master ports” perception of byte
addresses is consistent within the system. In this case there is no further
endian-related design consideration required.

3-9

Quartus Il Handbook, Volume 4

Native Address
Alignment &
Dynamic Bus
Sizing

3-10

System interconnect fabric provides endian-conversion functionality to
allow master ports of differing endianness to share memory. The
Avalon-MM endian-conversion logic hides the endian difference of
master ports when the following conditions are met:

1. The master ports access a common memory slave port.
2. The data width of the master ports are equal.

3. The master ports read and write the memory using only
native-width units of data. For example, a 32-bit master port can
read and write only 32-bit units of data.

4. The master ports use a common interpretation of the data type.

As an example, consider a three-chip system comprised of a discrete
32-bit CPU chip, an FPGA containing 32-bit coprocessor logic (an SOPC
Builder system), and a shared DDR SDRAM chip. Furthermore, suppose
that the CPU is big endian, while the FPGA coprocessor system is little
endian. In this case, the CPU and the coprocessor can share data in the
SDRAM seamlessly without manually accounting for the endianness of
data.

s The system interconnect fabric does not guarantee proper byte
arrangement for big-endian master ports when accessing
peripheral registers via an Avalon-MM slave port.

SOPC Builder generates system interconnect fabric to accommodate
master and slave ports with unmatched data widths. Address alignment
affects how slave data is aligned in a master port's address space, in the
case that the master and slave data widths are different. Address
alignment is a property of each slave port, and it can be different for each
slave port in a system. A slave port can declare itself to use one of the
following: 2

B Native address alignment
B Dynamic bus sizing

Altera Corporation
November 2006

Native Address Alignment & Dynamic Bus Sizing

Table 3-2 demonstrates native address alignment and dynamic bus sizing
for a 32-bit master port connected to a 16-bit slave port (a 2:1 ratio). In this
example, the slave port is mapped to base address BASE in the master
port’s address space. In Table 3-2, OFFSET refers to the offset into the
16-bit slave address space.

Table 3-2. 32-Bit Master View of 16-Bit Slave Data

32-hit Master Address Data with Native Alignment Data with Dynamic Bus Sizing
BASE + 0x0 (word 0) 0000:0FFSET[0] OFFSET[1] :OFFSET[0]
BASE + 0x4 (word 1) 0000:0FFSET[1] OFFSET[3] :OFFSET [2]
BASE + 0x8 (word 2) 0000:0FFSET[2] OFFSET[5] :OFFSET [4]
BASE + 0xC (word 3) 0000:0FFSET [3] OFFSET[7] :OFFSET[6]
BASE + 4N (word N) 0000 :0FFSET[N] OFFSET[2N+1] : OFFSET [2N]

Altera Corporation
November 2006

SOPC Builder generates appropriate address-alignment logic based on
the properties of the master and slave ports in the system. When
configuring a system in SOPC Builder, there are no GUI settings that
directly control the address alignment in the system interconnect fabric.

Native Address Alignment

Slave ports that access address-mapped registers inside the component
generally use native address alignment. The defining properties of native
address alignment are:

B Each slave offset (that is, word) maps to exactly one master word,
regardless of the data width of the ports.

B One transfer on the master port generates exactly one transfer on the
slave port.

In the case of native address alignment, system interconnect fabric maps
all slave data bits to the lower bits of the master data, and fills any
remaining upper bits with zero. System interconnect fabric performs
simple wire-mapping in the datapath, but nothing else.

Native address alignment is only valid if the master data width is equal
to or wider than the slave data width. If an N-bit master port is connected
to a wider slave with native alignment, then the master port can access
only the lower N data bits at each offset in the slave.

3-11

Quartus Il Handbook, Volume 4

3-12

Dynamic Bus Sizing

Slave ports that access memory devices generally use dynamic bus sizing.
Dynamic bus sizing hides the details of interfacing a narrow memory
device to a wider master port, and vice versa. When an N-bit master port
accesses a slave port with dynamic bus sizing, the master port operates
exclusively on full N-bit words of data, without awareness of the slave
data width.

1= When using dynamic bus sizing, the slave data width must be a
power of two.

Dynamic bus sizing provides the following benefits:

B Eliminates the need to create address-alignment hardware manually.

B Reduces design complexity of the master component.

B Enables any master port to access any memory device seamlessly,
regardless of the data width.

In the case of dynamic bus sizing, the system interconnect fabric includes
a small finite state machine that reconciles the difference between master
and slave data widths. The behavior is different depending on whether
the master data width is wider or narrower than the slave.

Wider Master

In the case of a wider master, the dynamic bus-sizing logic accepts a
single, wide transfer on the master side, and then performs multiple
narrow transfers on the slave side. For a data-width ratio of N:1, the
dynamic bus-sizing logic generates up to N slave transfers for each
master transfer. The master port waits while multiple slave-side transfers
complete; the master transfer ends when all slave-side transfers end.

Dynamic bus-sizing logic uses the master-side byte-enable signals to
generate appropriate slave transfers. The dynamic bus-sizing logic
performs as many slave-side transfers as necessary to write or read the
specified byte lanes.

Narrower Master

In the case of a narrower master, one transfer on the master side generates
one transfer on the slave side. In this case, multiple master word
addresses map to a single offset in the slave memory space. The dynamic
bus-sizing logic maps each master address to a subset of byte lanes in the
appropriate slave offset. All bytes of the slave memory are accessible in
the master address space.

Altera Corporation
November 2006

Arbitration for Multimaster Systems

Arbitration for
Multimaster
Systems

Altera Corporation
November 2006

Table 3-3 demonstrates the case of a 32-bit master port accessing a 64-bit
slave port with dynamic bus sizing. In the table, offset refers to the offset
into the slave port memory space.

Table 3-3. 32-Bit Master View of 64-Bit Slave with Dynamic Bus Sizing
32-bit Address Data

0x00000000 (word 0) OFFSET [0731.0

0x00000004 (word 1) OFFSET[0] g3 32

0x00000008 (word 2) OFFSET [1]31.0

0x0000000C (word 3) OFFSET [1]63.32

In the case of a read transfer, the dynamic bus-sizing logic multiplexes the
appropriate byte lanes of the slave data to the narrow master port. In the
case of a write transfer, the dynamic bus-sizing logic uses slave-side
byte-enable signals to write only to the appropriate byte lanes.

System interconnect fabric supports systems with multiple master
components. In a system with multiple master ports, such as the system
pictured in Figure 3-1 on page 3-2, the system interconnect fabric
provides shared access to slave ports using a technique called slave-side
arbitration. Slave-side arbitration determines which master port gains
access to a specific slave port in the event that multiple master ports
attempt to access the same slave port at the same time.

3-13

Quartus Il Handbook, Volume 4

The multimaster architecture used by system interconnect fabric offers
the following benefits:

B Eliminates the need to create arbitration hardware manually.

B Allows multiple master ports to transfer data simultaneously. Unlike
traditional host-side arbitration architectures in which each master
must wait until it is granted access to the shared bus, multiple
Avalon-MM masters can simultaneously perform transfers with
independent slaves. Arbitration logic stalls a master port only when
multiple master ports attempt to access the same slave port during
the same cycle.

B Eliminates unnecessary master-slave connections. The connection
between a master port and a slave port exists only if it is specified in
the SOPC Builder GUL. If a master port never initiates transfers to a
specific slave port, no connection is necessary, and therefore SOPC
Builder does not waste logic resources to connect the two ports.

B Provides configurable arbitration settings, and arbitration for each
slave port is specified independently. For example, you can grant one
master port the most access to a particular slave port, while other
master ports have more access to other slave ports.

B Simplifies master component design. The details of arbitration are
encapsulated inside the system interconnect fabric. Each
Avalon-MM master port connects to the system interconnect fabric
like it is the only master port in the system. As a result, you can reuse
a component in single-master and multimaster systems without
requiring design changes to the component.

This section discusses the architecture of the system interconnect fabric
generated by SOPC Builder for multimaster systems.

Traditional Shared Bus Architectures

As a frame of reference for the discussion of multiple masters and
arbitration, this section describes traditional bus architectures.

In traditional bus architectures, one or more bus masters and bus slaves
connect to a shared bus, consisting of wires on a printed circuit board. A
single arbitrator controls the bus (that is, the path between bus masters
and bus slaves), so that multiple bus masters do not simultaneously drive
the bus and cause electrical contention. Each bus master requests control
of the bus from the arbitrator, and the arbitrator grants access to a single
master at a time. Once a master has control of the bus, the master
performs transfers with a bus slave. If multiple masters attempt to access
the bus at the same time, the arbitrator allocates the bus resources to a
single master based on fixed arbitration rules, forcing all other masters to

3-14 Altera Corporation
November 2006

Arbitration for Multimaster Systems

Altera Corporation
November 2006

wait. For example, the priority arbitration scheme—in which the
arbitrator always grants control to the master with the highest priority—
is used in many existing bus architectures.

Figure 3-8 illustrates the bus architecture for a traditional processor
system. Access to the shared system bus becomes the bottleneck for
throughput and utilization performance. Only one master has access to
the bus at a time, which means that other masters are forced to wait
(diminishing throughput), and only one slave can transfer data at a time
(diminishing utilization).

Figure 3-8. Bus Architecture in a Traditional Microprocessor System

Master 1
Masts
asters System CPU

Master 2
DMA
Controller

]

Arbitrator |

1t <«—— Bottleneck

| System Bus |
Slaves UART PIO Program Data
Memory Memory

Slave-Side Arbitration

The multimaster architecture used by system interconnect fabric
eliminates the bottleneck for access to a shared bus, because the system
does not have shared bus lines. Avalon-MM master-slave pairs are
connected by dedicated paths. A master port never waits to access a slave
port, unless a different master port attempts to access the same slave port
at the same time. As a result, multiple master ports can be active at the
same time, simultaneously transferring data with independent slave
ports.

A multimaster Avalon-MM system requires arbitration, but only when
two masters contend for the same slave port. This arbitration is called
slave-side arbitration, because it is implemented at the point where two
(or more) master ports connect to a single slave. Master ports contend for
individual slave ports, not for a shared bus resource.

3-15

Quartus Il Handbook, Volume 4

3-16

For example, Figure 3-1 on page 3-2 demonstrates a system with two
master ports (a CPU and a DMA controller) sharing a slave port (an
SDRAM controller). Arbitration is performed on the SDRAM slave port;
the arbitrator dictates which master port gains access to the slave port if
both master ports initiate a transfer with the slave port at the same time.

Figure 3-9 focuses on the two master ports and the shared slave port, and
shows additional detail of the data, address, and control paths. The
arbitrator logic multiplexes all address, data, and control signals from a
master port to a shared slave port.

Figure 3-9. Detailed View of Multimaster Connections

M1 Address >
M1 Write Data B) Address
Request Control o -
< S | Write Data Slave |—
M2 Address : j(E Control >

M2 Write Data
Request Control

Slave Read Data

Arbitrator Details

SOPC Builder generates an arbitrator for every slave port connected to
multiple master ports, based on arbitration parameters specified in the
SOPC Builder GUL The arbitrator logic performs the following functions
for its associated slave port:

B Evaluates the address and control signals from each master port at
every clock cycle when a new transfer can begin, and determines
which master port, if any, is requesting access to the slave.

Chooses which master port gains access to the slave next.

Grants access to the chosen master port (that is, allows it to proceed

with the transfer), and forces all other requesting master ports to

wait.

B Uses multiplexers to connect address, control, and datapaths
between the multiple master ports and the slave port. The arbitrator
logic guarantees that an appropriate master port (if any) is connected
to the slave port.

Altera Corporation
November 2006

Arbitration for Multimaster Systems

Figure 3-10 shows the arbitrator logic in an example multimaster system
with two master ports, each connected to two slave ports.

Figure 3-10. Block Diagram of Arbitrator Logic

S1 Read Data & Control

Data-Path M1 Wa.'t
1 Multiplexing } M2 wait
Logic Arbitrator FeERERE
Y
— M?;Itf)r ! M1 Address, Write
> Data & Control
Data-Path
Multiplexing
Logic
—p| Masier2 M2 Address, Write |
_ (M2) Data & Control >
=
M1 wait
Slave 2 M2 wait
UL asterselect
S2 Read Data & Control
Arbitration Rules
This section describes the rules by which the arbitrator grants access to
master ports when they contend.
Fairness-Based Shares
Arbitrator logic uses a fairness-based arbitration scheme. In a
fairness-based arbitration scheme, each master port pair has an integer
value of transfer shares with respect to a slave port. One share represents
permission to perform one transfer.
Altera Corporation 3-17

November 2006

Quartus Il Handbook, Volume 4

For example, assume that two master ports continuously attempt to
perform back-to-back transfers to a slave port. Master 1 is assigned three
shares and Master 2 is assigned four shares. In this case, the arbitrator
grants Master 1 access for three transfers, then Master 2 for four transfers.
This cycle repeats indefinitely. Figure 3—11 demonstrates this case,
showing each master port's transfer request output, wait request input
(which is driven by the arbitrator logic), and the current master with
control of the slave.

Figure 3-11. Arbitration of Continuous Transfer Requests from Two Master Ports

M1_transfer_request .

M1_waitrequest - / \ / \
M2_transfer_request .
M2_waitrequest - \ / \ /

CurrenLMaster-(Master 1 X Master 2 X Master1 X Master 2 X Master 1

If a master stops requesting transfers before it exhausts its shares, it
forfeits all its remaining shares, and the arbitrator grants access to another
requesting master. See Figure 3-12. After completing one transfer, Master
2 stops requesting for one clock cycle. As a result, the arbitrator grants
access back to Master 1, which gets a replenished supply of shares.

Figure 3-12. Arbitration of Two Masters with a Gap in Transfer Requests

M1_transfer_request .

M1_waitrequest - / \ / \ /
M2_transfer_request . \ /
M2_waitrequest [\ / \ / \

CurrenLMaster-(Master 1 Master 1 X Master 2 X Master 1 X Master 2

Round-Robin Scheduling

When multiple master ports contend for access to a slave port, the
arbitrator grants shares in round-robin order. At every slave transfer, only
requesting master ports are included in the round-robin arbitration.

3-18 Altera Corporation
November 2006

Arbitration for Multimaster Systems

Altera Corporation
November 2006

Burst Transfers

Avalon-MM burst transfers grant a master port uninterrupted access to a
slave port for a specified number of transfers. The master port specifies
the number of transfers when it initiates the burst. Once a burst begins
between a master-slave pair, arbitrator logic does not allow any other
master port to access the slave port until the burst completes. For further
information, see “Burst Management” on page 3-20.

Minimum Share Value

A component design can declare the minimum number of shares in each
round-robin cycle, which affects how the arbitrator grants access. For
example, if a slave port has a minimum share value of ten, then the
arbitrator will grant at least ten shares to any master port when it begins
a sequence of transfer requests. The arbitrator might grant more shares, if
the master port is assigned more shares in the SOPC Builder GUL

By declaring a minimum share value of N, a slave port declares that it is
more efficient at handling continuous sequential transfers of length N.
Accessing the slave port in sequences less than N incurs performance
penalties that might prevent the slave port from achieving higher
performance. By nature, continuous back-to-back master transfers tend to
access sequential addresses. However, there is no requirement that the
master port perform transfers to sequential addresses.

1= Burst transfers provide even higher performance for continuous
transfers when they are guaranteed to access sequential
addresses. The minimum share value does not apply to slave
ports that support bursts; the burst length takes precedence over
minimum share value. See “Burst Management” on page 3-20
for information.

3-19

Quartus Il Handbook, Volume 4

Burst
Management

3-20

Setting Arbitration Parameters in the SOPC Builder GUI

You specify the arbitration shares for each master using the connection
panel on the System Contents tab of the SOPC Builder GUI, as shown in
Figure 3-13.

Figure 3-13. Arbitration Settings on the System Contents Tab

Module Mame
Ecpu
instruction_master
| —t data_master
1 1 = jtag_debug_module
I m— sys_clk_timer
[1 1 @ ext_ram_bus
ext_flash
ext_ram
[1 1 @ epes_controller
| & langte111
,1_ jtag_uart

Description

Mioz Il Processar - Alte..
Master port

Master port

Slave port

Interval timer

Avalon Tri-State Bridge
Flash Memary (Commo...
IDT71% 416 SRAM

EPCS Serial Flash Cort..
LM 111 Interface (...
JTAG UART

Clock

clk

clk
clk

clk

clk

Il&~ Thearbitration settings are hidden by default. To view them, on
the View menu, click Show Arbitration.

System interconnect fabric provides burst management logic to
accommodate the burst capabilities of each port in the system, including
ports that do not support burst transfers. Burst management logic is a
finite state machine that translates the sequencing of address and control
signals between the slave side and the master side.

The maximum burst length for each port is determined by the component
design and is independent of other ports in the system. Therefore, a
particular master port might be capable of initiating a burst longer than a
slave port’s maximum supported burst length. In this case, the burst
management logic translates the master burst into smaller slave bursts, or
into individual slave transfers if the slave port does not support bursts.
Until the master port completes the burst, the arbitrator logic prevents
other master ports from accessing the target slave port.

For example, if a master port initiates a burst of 16 transfers to a slave port
with maximum burst length of 8, the burst management logic initiates
two bursts of length 8 to the slave port. If a master port initiates a burst of
16 transfers to a slave port that does not support bursts, the burst
management logic initiates 16 separate transfers to the slave port.

Altera Corporation
November 2006

Clock Domain Crossing

Clock Domain
Crossing

Altera Corporation
November 2006

SOPC Builder generates clock-domain crossing (CDC) logic that hides the
details of interfacing components operating in asynchronous clock
domains. The system interconnect fabric upholds the Avalon-MM
protocol with each port independently, and therefore each Avalon-MM
portneed only be aware of its own clock domain. The system interconnect
fabric logic propagates transfers across clock domain boundaries
transparently to the user.

The CDC logic in system interconnect fabric provides the following
benefits that simplify system design efforts:

B Allows component interfaces to operate at a different clock
frequency than system logic.

B Eliminates the need to design CDC hardware manually.

B Each Avalon-MM port operates in only one clock domain, which
reduces design complexity of components.

B Enables master ports to access any slave port without awareness of
the slave clock domain.

m Allows you to focus performance optimization efforts only on
components that require fast clock speed.

Description of Clock Domain-Crossing Logic

The CDC logic consists of two finite state machines (FSM), one in each
clock domain, which use a simple hand-shaking protocol to propagate
transfer control signals (read request, write request, and the master
wait-request signals) across the clock boundary. Figure 3-14 shows a
block diagram of the clock domain crossing logic between one master and
one slave port.

3-21

Quartus Il Handbook, Volume 4

Figure 3-14. Block Diagram of Clock Domain-Crossing Logic

Master clock domain Slave clock domain

[
!
[
CDC Logic |
[
control transfer ' |Synchro- control
< i (V" < =
- = request nizer >
itrequest Rl ! SIETT waitrequest
< waitreq Handshake ! Handshake |«g¢
[
FSM Synchro-| | acknowledge FSM
7 hizer]
[
adg'iress _
| >
[
' Yy
_ readdata |
: < P readdata
\ <
writedata &: byte enable _
| >
!
[

The Synchronizer blocks in Figure 3-14 use multiple stages of flip-flops

to eliminate the propagation of metastable events on the control signals

that enter the hand-shake FSMs.

The CDC logic works with any clock ratio. Altera® tests the CDC logic

extensively on a variety of system architectures, both in simulation and in

hardware, to ensure that the logic functions correctly.

The typical sequence of events for a transfer across the CDC logic is

described below:

1. Master port asserts address, data, and control signals.

2. The master handshake FSM captures the control signals, and

immediately forces the master port to wait.

I'=~ TheFSM uses only the control signals, not address and data. For
example, the master port simply holds the address signal
constant until the slave side has safely captured it.

3. Master handshake FSM initiates a transfer request to the slave

handshake FSM.
3-22 Altera Corporation

November 2006

Clock Domain Crossing

Altera Corporation
November 2006

4. The transfer request is synchronized to the slave clock domain.

5. The slave handshake FSM processes the request, performing the
requested transfer with the slave port.

6. When the slave transfer completes, the slave handshake FSM sends
an acknowledge back to the master handshake FSM.

7. The acknowledge is synchronized back to the master clock domain.

8. The master handshake FSM completes the transaction by releasing
the master port from the wait condition.

Transfers proceed as normal on the slave and the master side, without a
special protocol to handle crossing clock domains. From the perspective
of a slave port, there is nothing different about a transfer initiated by a
master port in a different clock domain. From the perspective of a master
port, a transfer across clock domains simply takes extra clock cycles.
Similar to other transfer delay cases (for example, arbitration delay or
wait states on the slave side), the system interconnect fabric simply forces
the master port to wait until the transfer terminates. As a result,
latency-aware master ports do not benefit from pipelining when
performing transfers to a different clock domain.

Location of Clock Domain Crossing Logic

SOPC Builder automatically determines where to insert the CDC logic,

based on the system contents and the connections between components.
SOPC Builder places CDC logic to maintain the highest transfer rate for
all components. SOPC Builder evaluates the need for CDC logic on each
slave port independently, and generates CDC logic wherever necessary.

Duration of Transfers Crossing Clock Domains

CDC logic extends the duration of master transfers across clock domain
boundaries. In the worst case, each transfer is extended by five master
clock cycles and five slave clock cycles. The components of this delay are
the following:

B Four additional master clock cycles, due to the master-side clock
synchronizer

B Four additional slave clock cycles, due to the slave-side clock
synchronizer

B One additional clock in each direction, due to potential metastable
events as the control signals cross clock domains

3-23

Quartus Il Handbook, Volume 4

Implementing Multiple Clock Domains in the SOPC Builder GUI

You specify the clock domains used by your system on the System
Contents tab of the SOPC Builder GUL You define the input clocks to the
system using the clock settings table, shown in Figure 3-15. Clock sources
can be driven by external input signals to the system module, or by PLLs
inside the system module. Clock domains are differentiated based on the
name of the clock. It is possible to create multiple asynchronous clocks
with the same frequency.

Figure 3-15. Clock Settings on the System Contents Tab

Clack Source MHz Pipeling
clk_55 External]
clk_233 c0 fram pll 23775

L]

After you define the system clocks, you specify which clock drives which
components using the table of active components, as shown in
Figure 3-16.

Figure 3-16. Assigning Clocks to Components

Module Mame Description Clack Base End Blgl
L e _apray R N B < L e B
high_res_timer Irtersyal timer clk et 0x02120820 0x0212083F [3
Seven_seg_pio PIC (Parallel 100 0x02120890, 0021 20585F)
reconfig_request_pio PIO (Parallel 110) fastolk 0x021208A0 0021 2084F]
uart1 UART (RE-232 serial port)|clk 0x02120840 0x021 2085F|[4
sysid Systemn D Peripheral clk 0x021208B8 0x021205EF
sdram SDRAM Cortraller clk & Coc01 000000 001 FFFFFF]
dma_0 DM, tastclk 0x0080001F| [T
read_buffer COn-Chip Memary (RAM ... |fastclk 0x00801000] 000301FFF)
write_buffer COn-Chip Memary (RAM ... |(fastclk 0x00802000] 0x00302FFF)

“®.e For further details, refer to the Building Systems with Multiple Clock

Domains chapter in volume 4 of the Quartus II Handbook.

3-24 Altera Corporation
November 2006

Interrupt Controller

Interrupt
Controller

Altera Corporation
November 2006

In systems with one or more slave ports that generate interrupt requests
(IRQ), the system interconnect fabric includes interrupt controller logic. A
separate interrupt controller is generated for each master port that
accepts interrupts. The interrupt controller aggregates IRQ signals from
all slave ports, and maps slave IRQ outputs to user-specified values on
the master IRQ inputs.

Each slave port optionally produces an IRQ output signal. There are two
master signals related to interrupts: irqand irgnumber. SOPC Builder
generates the interrupt controller in one of two configurations, software
priority or hardware priority, depending on the interrupt signals present
on the master port.

Software Priority

In the software priority configuration, the system interconnect fabric
passes IRQs directly from slave to master port, without making any
assumptions about IRQ priority. In the event that multiple slave ports
assert their IRQs simultaneously, the master logic (presumably under
software control) determines which IRQ has highest priority, then
responds appropriately.

Using software priority, the interrupt controller can handle up to 32 slave
IRQ inputs. The interrupt controller generates a 32-bit signal
irg[31..0] to the master port, and simply maps slave IRQ signals to
the bits of irq[31..0]. Any unassigned bits of irq[31..0] are
permanently disabled. Figure 3-17 shows an example of the interrupt
controller mapping the IRQs on four slave ports to irg[31..0] ona
master port.

3-25

Quartus Il Handbook, Volume 4

Figure 3-17. IRQ Mapping Using Software Priority

Slave irq
1
Interrupt
Controller
Slave irq === =
2
i N
Slave irq - 27
3 Ll - —‘/ —_— = -
7/
7
= 7
Slave irq
4

Hardware Priority

In the hardware priority configuration, in the event that multiple slaves
assert their IRQs simultaneously, the system interconnect fabric (i.e.
hardware logic) identifies the IRQ of highest priority and passes only that
IRQ number to the master port. An IRQ of lesser priority is undetectable
until a master port clears all IRQs of higher priority.

Using hardware priority, the interrupt controller can handle up to 64
slave IRQ signals. The interrupt controller generates a 1-bit i rq signal to
the master port, signifying that one or more slave ports have generated an
IRQ. The controller also generates a 6-bit i rqnumber signal, which
outputs the encoded value of the highest pending IRQ. See Figure 3-18.

3-26 Altera Corporation
November 2006

Interrupt Controller

Figure 3-18. IRQ Mapping Using Hardware Priority

Slave irg Interrupt
1 Controller
Slave irq
2 |
g
Slave irq >
3
| -
Ll
Slave irq
4 irq0
irq1 r
irg2 >
irg3 >
irq4 > Priority
irg5 Encoder
irg6 >
irq63 >

irq

irgnumber [5..0]

Altera Corporation
November 2006

Assigning IRQs in the SOPC Builder GUI

You specify IRQ settings on the System Contents tab of the SOPC Builder
GUIL After adding all components to the system, you make IRQ settings
for all slave ports that can generate IRQs, with respect to each master port.
For each slave port, you can either specify an IRQ number, or specify not
to connect the IRQ. Figure 3-19 shows the IRQ settings for multiple slave
IRQs that drive the master component named cpu.

3-27

Quartus Il Handbook, Volume 4

Figure 3-19. Assigning IRQs in the SOPC Builder GUI

Module Mame

cpu
ext_ram_bus
ext_flash
ext_ram
epcs_controller
lan91c111
sys_clk_timer
jtag_uart
button_pio
led_pio
high_res_timer

Description Clock Base Enicl M
Mioz Il Processar - Atter... |clk 0x02120000 0021 207FF) i
Avalon Tri-State Bridge |clk

Flash Memary (Common .. & 000000000 0x007FFFFF]

IDT71% 416 SRAM & (02000000 0x020FFFFF)

EPCS Serial Flash Contr... |clk 0x02100000] 0021 007FF|[HC
LAMI1C111 Interface (E... 0x02110000; 0x0211FFFF|[6_
Irtersyal timer clk 0x02120800 0021 2051F) rﬁ
JTAG UART clk 002120860 0x02120867| [1
PIC (Parallel 100 clk 0x02120860 0x021 2086F|[2
PIC (Parallel 1007 clk 002120870 0021 2057F) I
Iriteryal timer clk 0x02120520 0x0212083F|[3
Character LCD (16x2, 0. |clk 0x02120880 0021 2085F) | =
DI cParallal Lo e PRPEPErPERN fnenn AneOE

Reset
Distribution

3-28

The system interconnect fabric generates and distributes a system-wide
reset pulse to all logic in the system module. The system interconnect
fabric distributes the reset signal conditioned for each clock domain. The
duration of the reset signal is at least one clock period.

The system interconnect fabric asserts the system-wide reset in the
following conditions:

B The global reset input to the system module is asserted.
B Aslave port asserts its resetrequest signal.
B The FPGA is reconfigured.

All components must enter a well-defined reset state whenever the
system interconnect fabric asserts the system-wide reset. The timing of
the reset signal is asynchronous to the operation of transfers.

Altera Corporation
November 2006

Document Revision History

Document
Revision History

Table 3—4 shows the revision history for this document.

Table 3-4. Document Revision History

v6.1.0

e Updated Avalon terminology because of changes to Avalon
technologies. Changed old “Avalon switch fabric” term to
“system interconnect fabric.” Changed old “Avalon interface”
terms to “Avalon Memory-Mapped interface.”

@ Rearranged content in section “Introduction” on page 3—1 to
enhance clarity and to acknowledge the existence of the new
Avalon Streaming interface.

e Updated Table 3—2 on page 3—11 for improved clarity.

e Updated section “Dynamic Bus Sizing” on page 3—12 to
reflect new behavior of system interconnect fabric with
respect to byte enables during read transfers. For a master-
to-slave data-width ratio of N:1, the system interconnect fabric
might not need to perform N slave-side read transfers,
depending on how the master port asserts its byte-enable
signals.

Dato & Dn_cumenl Changes Made Summary of Changes
Version
November 2006, |e This chapter was previously titled Avalon Switch Fabric. For the 6.1 release,

Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.
The behavior of
byteenable signals in
the Avalon Memory-
Mapped Interface
Specification was
updated, necessitating
changes to this
document.

May 2006, v6.0.0

No change from previous release.

October 2005, No change from previous release. -
v5.1.0

August 2005, Updated for the Quartus Il software version 5.1.

v5.0.1

May 2005, v5.0.0

o Added burst transfer management details.
o Updated pipeline management details.

February 2005,
v1.0

No change from previous release.

Altera Corporation
November 2006

3-29

Quartus Il Handbook, Volume 4

3-30 Altera Corporation
November 2006

4. PC Buil
Z;\l |:| —E D)/A SOPC Builder Components

®

QI154004-6.1.0

Introduction

Sources of
Components

Altera Corporation
November 2006

This chapter describes in detail what an SOPC Builder component is.
SOPC Builder components are individual design blocks that SOPC
Builder uses to integrate a larger system module. Each component
consists of a structured set of files within a directory.

The files in a component directory serve the following purposes:

B Defines the hardware interface to the component, such as the names
and types of I/O signals.

B Declares any parameters that specify the structure of the component
logic and the component interface.

B Describes a configuration wizard GUI for configuring the
component in SOPC Builder.

B Provides scripts and other information SOPC Builder needs to
generate the component HDL and integrate the component into the
system module.

B Contains component-related information, such as software drivers,
necessary for development steps downstream from SOPC Builder.

For details on creating custom components, see the Developing SOPC
Builder Components chapter in Volume 4 of the Quartus II Handbook. For
details on the SOPC Builder component editor, see the Component Editor
chapter in Volume 4 of the Quartus II Handbook.

There are several sources for components, including the following:

B The Quartus® II software, which includes SOPC Builder, installs a
number of components.

B Altera® development kits, such as the Nios® II Development Kit,
provide SOPC Builder components as features.

B Third-party developers provide SOPC Builder Ready components,
including component directories and documentation on how to use
the component.

B You can package your own HDL files into a new, custom component,
using the SOPC Builder component editor.

IS While it is possible to write component files manually,
Altera strongly recommends you use the SOPC Builder
component editor to create custom components, for reasons
of consistency and forward compatibility.

Quartus Il Handbook, Volume 4

Location of the

Component
Hardware

component logic resides:

B Components that include their associated logic inside the system

module

There are two types of components, based on where the associated

B Components that interface to logic outside the system module

Figure 4-1 shows an example of both types of component.

Figure 4-1. Component Logic Inside and Outside the System Module

Avalon Interface
(Automatically connected
by SOPC Builder)

System Module

Avalon Interface
(Manually connected
by system designer)

k]
“E’ e I Application-
8 S Compqnent I Specific
o Logic : Interface
£ . Signals
Rest of
the System

8

% 2o External Signals

% 0 O |« > Logic

%3193 & o?’ . Unrelated
E Off-Chip : to SOPC

Diawites Builder

4-2

Components That Include Logic Inside the System Module

In this case, the component files provide a full description of the
component hardware. During system generation, SOPC Builder
instantiates the component logic inside the system module and
automatically wires the component to the rest of the system. Internal to
the system module, the component connects to the rest of the system
through its Avalon® Memory-Mapped (Avalon-MM) interface. The
component can also have non-Avalon-MM signals that SOPC Builder

exposes on the top-level system module.

Altera Corporation
November 2006

Structure & Contents of a Component Directory

Structure &
Contents of a
Component
Directory

Altera Corporation
November 2006

Components That Interface to Logic Outside the System Module

In this case, the component files describe only the interface to logic
external to the system module. During system generation, SOPC Builder
does not instantiate any logic for this component. Instead, SOPC Builder
exposes an Avalon-MM interface for this component on the top-level
system module. You must manually wire the interface to external logic,
such as a separate HDL module or an off-chip device.

As shown in Figure 4-1, in this case there is no physical embodiment of

the SOPC Builder component. Components that interface to external logic
describe only the shape of the Avalon-MM interface; they do not include
logic inside the system module.

This section describes the files that exist in a component directory.
Figure 4-2 shows a typical component directory created by the
component editor.

Figure 4-2. Typical Component Directory

Iahdl
r=j cb_generatar.pl

cIass.ptF

At a minimum, a component consists of a directory containing a file
named class.ptf. Usually there are other files as well. The name of the
enclosing directory is ignored. The class.ptf file defines everything that
SOPC Builder needs to know about the name and location of component
files.

As shown in Figure 4-2, the component directory can contain the
following items, and other files:

B class.ptf file
B cb_generator.pl script
B hdl directory

class.ptf File

SOPC Builder reads this file to find everything it needs to know about the
component. The class.ptf file defines the following aspects of a
component:

1. The component identity — The component class.ptf file defines the
following properties that identify a component:

4-3

Quartus Il Handbook, Volume 4

e Name — The user-visible name of the component.

e Class — The unique identifier that SOPC Builder uses to
differentiate components. The class name uses only filename-
friendly characters. When you instantiate a component in SOPC
Builder, the instantiation name defaults to the class name.

e Version — Identifies the version of a component. During system
generation, SOPC Builder records the version number of each
component in the system module.

e Group — Determines in which group the component appears in
the list of available components in the SOPC Builder GUL

2. How the component hardware connects into a system module,
including:

e Interface to the component — The class.ptf file describes the black
box structure of the component, defining the name, type, and
direction of each interface signal.

e Method to generate a hardware instance of the component — If the
component includes logic inside the system module, the
class.ptf file specifies a mechanism for SOPC Builder to generate
the component hardware. The class.ptf file typically specifies a
separate executable file to generate the component instance.

3. How the component presents its configurable options to the user —
The class.ptf file declares the user-configurable parameters, and
specifies a GUI for configuring those parameters.

ch_generator.pl File

This file is a Perl script used by SOPC Builder during system generation.
Based on parameters you specify in the SOPC Builder GUI, the script
generates one or more instances of this component to be instantiated in
the top-level system module. The name of the file is not significant. The
file name is defined in the class.ptf file.

For components generated by the SOPC Builder component editor, this
script creates a Verilog or VHDL wrapper that instantiates HDL modules
defined by files in the hdl directory. During system generation, a typical
generator script copies the HDL files to the Quartus II project directory,
and renames the files uniquely to match the instance name. The generator
script can also define parameters for the top-level HDL module, based on
parameters specified in the SOPC Builder GUI.

4-4 Altera Corporation
November 2006

Structure & Contents of a Component Directory

Altera Corporation
November 2006

Il=" The generator script for most Altera-provided components
dynamically generates HDL for each instance of the component,
based on parameters specified in the SOPC Builder GUIL Such
components do not include HDL files, because the HDL is
generated programmatically.

hdl Directory

This subdirectory contains HDL files that describes the component
hardware. This directory is not required to exist, and the name of the
directory is not significant. The generator script specifies the exact path to
HDL files, if any.

Other Component Files

The component directory can contain other files and subdirectories,
depending on the component's design and recommended usage.
Typically, such items are not used directly by SOPC Builder, but are
necessary for other stages of development. SOPC Builder ignores any
files it cannot identify for its own purposes.

Items you might find in a component directory include the following:

B incsubdirectory — This directory includes the register map for a
peripheral component. The register map is typically declared as a C
header file that defines symbols and macros for accessing the
component hardware. SOPC Builder does not use this information
directly. For Nios II processor systems, the Nios II IDE uses the
contents of inc.

B HAL subdirectory — This directory contains software drivers for a
component. SOPC Builder does not use this information directly. For
Nios II processor systems, the Nios II IDE uses the contents of HAL
to generate software for the component.

B UCOSII subdirectory — This directory contains software drivers for
a component, specific to the MicroC/OS-1I real-time operating
system (RTOS). SOPC Builder does not use this information directly.
For Nios II processor systems, the Nios II IDE uses the contents of
UCOSII to generate software for the component.

B Files associated with the generator script — The generator script may
require data files, Perl libraries, or other files.

B sdk subdirectory — This directory contains software and header files
to support the legacy software development kit (SDK) flow for the
first-generation Nios processor.

B Data files, source code, or other files needed by tools other than
SOPC Builder

4-5

Quartus Il Handbook, Volume 4

Component
Directory
Location

4-6

Each time SOPC Builder starts up, it looks for component directories. Any
components that it finds are displayed in the list of available components
on the SOPC Builder System Contents tab.

SOPC Builder searches the following locations for component directories:
1. The current Quartus II project directory

2. Any directories specified under Component/Kit Library Search
Path on the SOPC Builder Setup page in the SOPC Builder GUL

3. SOPC_BUILDER_PATH
4. QUARTUS_ROOTDIR/sopc_builder/

The following describes the process by which SOPC Builder identifies
components:

B SOPC_BUILDER_PATH and QUARTUS_ROOTDIR are
environment variables that are defined during the Quartus II
installation process.

B SOPC Builder searches each of these locations for subdirectories in
the order shown, and then searches each subdirectory for a class.ptf
file.

B When SOPC Builder finds a class.ptf file, it reads the file, identifies
the component, and makes the component available in the SOPC
Builder GUL

B If multiple instances of the same component class exist, SOPC
Builder uses the following rules to determine which one to use:

e The component with the highest version takes precedence.
e If all component versions are equal, the first component found
takes precedence.

B If a directory is recognized as a kit directory (indicated by the
presence of a file named .sopc_builder), then SOPC Builder further
searches in the components/ subdirectory.

Figure 4-3 shows an example of the directory of components installed
with the Quartus II software. Note that not all directories correspond
directly to user-visible components.

Altera Corporation
November 2006

Component Directory Location

Figure 4-3. Component Directories

@ components

File Edit Wiew

Folders
=] :} My Computer
[=) S Local Disk (C:)
=) aleera
125 kits

= 53 quartus4z

o=

I25) qdesigns4z

Favorites Tools Help

123 bin
I25) drivers
I3 eda
123 libraries
23 Imf
@ min
= |23 sope_builder
123 bin
=R] orrpon

I25) altera_shb_avalon_bridge
IC5) altera_avalon_avalon_shb_br &

@Back > lﬁ /_JSearch ‘[Ei‘ Folders

X

>

5 3 X 9 @@

Mame

|| [C)altera_shb_avalon_bridge

—) altera_avalon_avalon_ahb_bridge
[5)altera_avalon_burst_adapter

) altera_avalon_clock_adapter

) altera_avalon_dma
|5)altera_avalon_onchip_memory
|5)altera_avalon_tri_state_bridge

) altera_avalon_user_defined_interface
) altera_sope_builder

[Ead

| »

Altera Corporation
November 2006

Quartus Il Handbook, Volume 4

Document

Table 4-1 shows the revision history for this document.

Revision History

Table 4-1. Document Revision History

interconnect fabric.” Changed old “Avalon interface” terms to
“Avalon Memory-Mapped interface.”

Date & Document
] Changes Made Summary of Changes
Version
November 2006, |Updated Avalon terminology because of changes to Avalon For the 6.1 release,
v6.1.0 technologies. Changed old “Avalon switch fabric” term to “system | Altera released the

Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006, v6.0.0

No change from previous release.

October 2005, No change from previous release. -
v56.1.0
August 2005, Corrected reference to figure.
v5.0.1
May 2005, v5.0.0 | No change from previous release. -
February 2005, Initial release. -
v1.0

4-8

Altera Corporation
November 2006

iAN |:| —E D)/A 5. Component Editor

®

QI154005-6.1.0

Introduction This chapter describes the SOPC Builder component editor. The
component editor is a feature of SOPC Builder that lets you create and
edit your own SOPC Builder components. You use the component editor
GUI to do the following:

Import hardware description language (HDL) files (if any) that
describe the component hardware.

Specify the hardware interface(s) to the component.

Package software drivers into the component directory.

Declare any parameters that alter the component structure or
functionality, and define a user interface to let users parameterize
instances of the component.

A typical development sequence might include the following steps, not
necessarily in this order:

1.

2.

6.

Design and test custom hardware in Verilog or VHDL.
Build an SOPC Builder system.

Use the component editor to package the custom HDL into an SOPC
Builder component.

Incorporate one or more instances of your custom component into
the SOPC Builder system.

Test the system including the new component, and make iterative
refinements to the HDL.

Use component editor to update the component files.

You can also use the component editor to define an Avalon® Memory-
Mapped (Avalon-MM) interface to logic external to the system module. In
this case, you do not provide HDL files, and use the component editor
only to define the hardware interface.

Altera Corporation
November 2006

Quartus Il Handbook, Volume 4

Component

Editor Output

5-2

Based on the settings you make using the component editor GUI, the
component editor outputs a properly-formed component directory,
containing the following items:

B class.ptf file — This file identifies the component, defines how the
component hardware connects to the overall system, and declares
user-configurable parameters.

B cb_generator.pl file — This file is a script used by SOPC Builder
during system generation to generate instances of the component
hardware.

B hdl directory — If the component includes logic inside the system
module, this directory contains the HDL files.

B Software files — If this component is a processor peripheral, you can
associate software files, such as drivers.

Exiting the component editor automatically prompts you to save the
component files. On the File menu you can also click Save to save the
files. Note that "saving" actually creates or copies multiple files, and
stores them in their appropriate places in a component directory.

If you later edit the source code, you must update the
component. Refer to section “Re-Editing a Component” on
page 5-13.

CAUTION

The component editor always saves your new component to a
subdirectory in the current Quartus® II project directory. You can relocate
the component directory later, if you wish. For example, you could locate
the component files in a central location so that other users can instantiate
the component in their systems.

The component editor creates components with the following hardware
characteristics:

B A component has one or more interfaces. Typically, an interface
means an Avalon-MM master port or slave port. The component
editor lets you build a component with any combination of
Avalon-MM master or slave ports.

B Each interface is comprised of one or more signals.

B The component can use a set of global signals that are not associated
to a specific Avalon-MM interface.

B The component can include logic inside the system module, or serve
as an interface to logic external to the system module.

See the SOPC Builder Components chapter in Volume 4 of the Quartus II
Handbook for details on components. See the Avalon Memory-Mapped
Interface Specification for details on the Avalon-MM interface.

Altera Corporation
November 2006

Starting the Component Editor

Starting the
Component
Editor

HDL Files Tab

Altera Corporation
November 2006

To start the component editor, in the SOPC Builder GUI on the File menu
click New Component. When the component editor starts, it displays the
Introduction tab, which provides a simple introduction to using the
component editor.

The component editor GUI presents several tabs that group like settings
on the same tab. A message window at the bottom of the component
editor displays warning and error messages.

1= Each tab in the component editor GUI provides on-screen
information that describes how to use each tab. Click the
triangle at the top-left of each tab to view these instructions.

In general, you will proceed through the tabs from left to right as you
progress through the component creation process. You can return to an
earlier tab at any time.

You use the HDL Files tab to import existing Verilog or VHDL files that
describe the component hardware. When you save the component later,
the component editor copies these files into your new component's
directory.

s If your component is an interface to external logic, then do not
specify any files on this tab.

As you add each HDL file, the component editor analyzes the file by
invoking the Quartus II Analyzer in the background. If there are errors, a
dialog appears on the screen describing the problems. If the file is
successfully analyzed, then the component editor identifies any design
modules described in the file, and lists them in the Top Level Module list.
If your HDL contains more than one module, you must select the
appropriate top level module in the Top Level Module list.

5-3

Quartus Il Handbook, Volume 4

Figure 5-1 shows an example of the HDL Files tab.

Figure 5-1. HDL Files Tab

® Component Editor - my_custom_uart
File

Templates

Intraduction | HOL Files | Signals || Interfaces | Sw Files | Companent Wizard |

I+ About HOL Files

HOL Files:

Top Level Madule:

File: Marmne Into Syrith... Sirnula. ..
custam_uart v 3 12
B |custom_uart_sim v 2k, 200501 14154412]
Add HDL File... | [Remove HOL File |
cuskorn_uark.v: uark w |

—‘ Component "my_custom_uart” is ok,

[< Prev] [Mext =] [Einish...]

If separate HDL files define the synthesizable hardware and simulation
model for the component, use the Synthesis and Simulation boxes to

specify the role for each file.

Altera Corporation
November 2006

Signals Tab

Signals Tah

You use the Signals tab to specify the purpose of each signal in the top
level component module. If you specified files on the HDL Files tab, then
the signals on the top-level module appear on the Signals tab. If the
component is an interface to external logic, then you must manually add
the signals that comprise the interface to the external logic.

Figure 5-2 shows an example of the Signals tab.

Figure 5-2. Signals Tab

Component Editor - my._custom_uart

File Templates
| Introduction || HOL Files | Signals | Interfaces || Sy Files || Component Wizard|
p About Signals &
Marme Iriterface Signal Type Wicdth Direction
al_signals (5| A |
E|reset_n glokal_sigrals reset_n 1 it
| dataavailable cortrol_slave_port datasvailable 1 oLt
H|irg cortrol_slave_port iy 1 oLt
B |dude cortrol_slave_port export 1 oLt
B |readdata cortrol_slave_port readdata 16 oLt
B |readyfordata cortrol_slave_port readyfordata 1 oLt
B [t cortrol_slave_port export 1 oLt
B |addrezzs cortrol_slave_port address 3 it
] |hegintransfer cortrol_slave_port begintransfer 1 it
H|chipzelect cortrol_slave_port chipselect 1 it
E|read_n control_slave_port read_n 1 input B
B |rxd cortrol_slave_port export 1 it
B werite_n cortrol_slave_port write_n 1 it
B wvritedata cortrol_slave_port writedata 16 it
~
—‘ Component "my_custom_uart” is ok,
< Prev] [Mext =] [Finish...
Altera Corporation 5-5

November 2006

Quartus Il Handbook, Volume 4

Each signal must be assigned a signal type. The default type is export,
which means that SOPC Builder does not connect the signal internally to
the system module, and instead exposes the signal on the top-level
system module.

You assign each signal to an interface using the Interface column. In
addition to Avalon-MM port interfaces that you create, every component
has a global interface for common signals such as c1k and reset, and for
exported signals.

Naming Signals for Automatic Type and Interface Recognition

The component editor can automatically recognize signal types and
interfaces based on the names of signals in the source HDL file. The
component editor recognizes signal names that follow a specific
structure. Table 5-1 lists the signal name structures.

Table 5-1. Structure of Automatically Recognized Signal Names

Type of Signal

Name Structure

Avalon-MM signal associated with a | <Interface Type> <Interface Name>_<Avalon-MM Signal Type>[_n]

specific Avalon-MM interface

Export signal associated with a <Interface Type>_ <Interface Name> export <Name>[n]

specific Avalon-MM interface

Global clock or reset

gls_clk[_n] or gls_reset[_n]

5-6

For any value of Interface Name the component editor will automatically
create an interface by that name, if necessary, and assign the signal to it.
Avalon-MM Signal Type must match one of the valid Avalon-MM signal
types. You can append n to indicate an active-low signal. Table 5-2 lists
the valid values for Interface Type.

Table 5-2. Valid Values for <Interface Type>
Value Meaning
avs Avalon-MM slave port
avm Avalon-MM master port
ats Avalon-MM tristate slave port
gls Global signals not associated to a specific Avalon-MM port

The following example shows a Verilog HDL module declaration with
signal names that infer two Avalon-MM slave ports.

Altera Corporation
November 2006

Interfaces Tab

Example: Verilog Module With Automatically Recognized Signal
Names
module my multiport component (
// Signals for Avalon-MM slave port "sl1"
avs_sl clk,
avs sl reset n,
avs_ sl address,
avs_ sl read,
avs sl write,
avs_ sl writedata,
avs_sl readdata,
avs sl export dac output,

// Signals for Avalon-MM slave port "s2"
avs_ s2 address,

avs_s2 read,

avs_s2 readdata,

avs_ s2 export dac output,

// Global interface siganals
gls clk
)

Templates for Interfaces to External Logic

If you are creating an interface to external logic, you can use the
Templates menu to add a set of signals for a typical Avalon-MM master
or slave port. After adding a template, you can add or delete signals to
customize the interface to meet your needs. Figures 5-3 shows the
Templates menu.

Figure 5-3. Templates Menu

® Component Editor - my_custom_uart

5w Files | Component Wizard

Inter face Signal Type

Interfaces Tah The Interfaces tab lets you configure the interfaces on your component,
and specify a name for each interface. The interface name identifies the
interface, and appears in the SOPC Builder GUI connection panel. The
interface name is also used to uniquely identify any signals that are
exposed on the top-level system module.

Altera Corporation 5-7
November 2006

Quartus Il Handbook, Volume 4

The Interfaces tab also lets you configure the type and properties of each
interface. For example, an Avalon-MM slave interface has timing
parameters which you must set appropriately.

Figure 5-4 shows an example of the Interfaces tab.

Figure 5-4. Interfaces Tab

® Component Editor - my,_custom_uart
File Templates

| tntraduction | HOL Files | Signals | Inkerfaces | swi Files | Component wizard |

[

— = avalon slave "control_slave_port™ (1 of 1)

Tame: |c0ntr0|_slav3j0rt |

Type: | avalon slave w |

= Avalon Slave Settings

Slave addressing: |Mem0ry (use dynamic bus sizing)

Minirur Arbitration Shares:

Can receive stderrfstdout: |[Mo W

~ = Avalon Slave Timing
Read Wait:

Setup: :
Wfrite wait:

— Pipelined Transfers

Read Latency: EI l:l

Assert chipselect through read latency

Hold: EI Lnits:

~ Read Waveforms

clk
address .

Add Interface Remove Interfaces Wikh Mo Signals

—p Component “my_cuskam_uark” is ok,

< Prev Mext = Eiriish. ..

5-8 Altera Corporation
November 2006

SW Files Tab

SW Files Tab

The software files tab (SW Files) lets you add existing driver software for

your new component. When you save the component later, the
component editor copies the software files to software subdirectories

inside the component directory. The component editor uses the software
directory structure specified by the hardware abstraction layer (HAL) for
the Nios® II processor.

For information on writing component driver software for the Nios® I

processor, including the directory structure, see the Nios II Software

Developer’s Handbook.

Figure 5-5 shows an example of the SW Files tab.

Figure 5-5. Software Files (SW Files) Tab

¥ Component Editor - my_custom_uart

File Templates

Introduction | HOL Files || Signals || Interfaces [; 2% Files {| Component wizard

Software Files:

[Abouk S Files

File: Marmne Info Type
B |attera_avalon_uart_regsh Bk, 2004 1210162341 Registers (inch)
B |attera_avalon_uart.h 1k, 2004 12101682341 HAL (HALANSA
B |attera_avalon_uart.c 23k, 2004 1210162341 HAL (HALsren

—P Component "my_cuskom_uart” is ok,

< Prew l l Mext = l l Finish. ..

Altera Corporation
November 2006

5-9

Quartus Il Handbook, Volume 4

Com pone nt T?e Component Wizarcz ttali lllprovides settings that affect the presentation
. of your new component to the user.
Wizard Tab

Figure 5-6 shows an example of the Component Wizard tab.

Figure 5-6. Component Wizard Tab

¥ Component Editor - my_custom_uart
Eile Templates

Introduction | HOL Files | Signals | Interfaces | Shi Filesl

b About Component Wizard

Falder: | c:faltera/kits/nios2_51jcomponents)my_custom_uark]

Class Mame: | my _custann_uark |

Companent Mame: | iy _cuskon_uart |

Component Yersion: | 1.2 |

Component Group: | User Logic |

Mame Default Yalue Editable Type Toolip
BEDaTs_BITS 7 [F] intecer
B |STOP_BITS 0 [v] irtecer
Parameters: | PARITY [elnnl [v] intecer "ODD" ar "EVEN"
B |=PEED 9500 E intecer Erter & standard baud ra.

Prewiaw the Wizard, ..

-i Camponent "my_custom_uart” is ok,

Identifying Information

You can specify information that identifies the component, such as the
component name, version, and group. The component name is the name
that appears in the list of available components in the SOPC Builder GUIL
The name can include spaces or other special characters.

5-10 Altera Corporation

November 2006

Component Wizard Tab

Based on the component name you specify, the component editor creates
a valid class name. The class name determines the component directory
name.

You can also specify a component version and a component group. The
group setting determines in which group SOPC Builder displays your
component in the list of available components. If you enter a previously
unused group name, SOPC Builder will display a new group by that
name.

Parameters

The Parameters table lets you specify the user-configurable parameters
for the component.

If the top-level module of the component HDL declares any parameters
(parameters for Verilog, or generics for VHDL) then those parameters
appear in the Parameters table. These parameters are presented to users
when they create or edit an instance of your component.

1= To provide parameterization for a lower-level submodule, the
top-level module must declare the parameter, and pass it down
to the appropriate submodule.

Using the Parameters table, you can specify whether or not each
parameter is user-editable or not. You can also specify a tooltip that is
displayed when a user mouses over the parameter name, to help explain
its use.

1= Tooltips can use basic HTML tags, such as and <p> to
format tooltip text. See Figure 5-7.

The following rules apply to HDL parameters exposed via the component
GUL

B Editable parameters cannot contain computed expressions.

B If a parameter N defines the width of a signal, the signal width must
be of the form N-1..0.

B When a VHDL component is used in a Verilog system module, or
vice versa, numeric parameters must be 32-bit decimal integers.
Passing other numeric parameter types might fail.

Altera Corporation 5-11
November 2006

Quartus Il Handbook, Volume 4

Click Preview the Wizard at any time to see how the component GUI will
look to an end user. Figure 5-7 shows an example of a component wizard
preview.

Figure 5-7. Example Component Wizard Preview

my_custom_uart - E]

imy_custom_uart 1.2 Settings |

Built on: 2005.12.13.14:07:.07
Class name: my_custom_uart
Clags version: 1.2

Component name: my _custom_uart
Component Group: User Logic

Parameters
STOP_BITS: |0 |
PARITY: | ODD |

speep: | 9600 || |
“TErter a standard baud rate, |

Saving a You can save the component by clicking Finish on any of the tabs, or by
clicking Save on the File menu. The component editor saves the

Com pone nt component files to the current Quartus® II project directory, in a

subdirectory named the same as the component class name specified on

the Component Wizard tab.

If you later edit the source code, you must update the
component. Refer to section “Re-Editing a Component” on
page 5-13.

CAUTION

When your component design is final, you can move the component files
to a different location.

5-12 Altera Corporation
November 2006

Re-Editing a Component

Re-Editing a
Component

Altera Corporation
November 2006

After you save a component and exit the component editor, you can re-
edit a component at any time from the SOPC Builder GUI. To edit a
component, right-click it in the list of available components, and choose
Edit Component. You cannot edit components that were not created by
the component editor, such as Altera®-provided components.

If you alter the source HDL, you need to use the component editor to
incorporate the HDL changes into the SOPC Builder component. If you
alter the signals on the top-level module, you need to reassign interface
signals. If you change the name of a component while editing it, the
component editor will save the component files to a new directory.

=" Existing SOPC Builder systems that use a previous version of
the component require further action to reflect the component

changes.

To update existing SOPC Builder systems with the new component
changes, perform the following steps:

1. Delete any existing instances of the component in the SOPC Builder
system, and add the component again.

2. Regenerate the system.

5-13

Quartus Il Handbook, Volume 4

Document Table 5-3 shows the revision history for this document.
Revision History

Table 5-3. Document Revision History

Dato & Dn_cumenl Changes Made Summary of Changes
Version
November 2006, |Updated Avalon terminology because of changes to Avalon For the 6.1 release,
v6.1.0 technologies. Changed old “Avalon switch fabric” term to “system | Altera released the
interconnect fabric.” Changed old “Avalon interface” terms to Avalon Streaming
“Avalon Memory-Mapped interface.” interface, which

necessitated some re-
phrasing of existing
Avalon terminology.

May 2006, v6.0.0 | No change from previous release. -

December 2005, | e Added section “Naming Signals for Automatic Type and -

v5.1.1 Interface Recognition” on page 5-6.

® Added section “Templates for Interfaces to External Logic” on
page 5-7.

e Clarified operation of the Save command.

e Updated all screenshots.

October 2005, No change from previous release. -
v5.1.0

May 2005, v5.0.0 | Initial release. -

5-14 Altera Corporation
November 2006

. Archivi PC Buil
ZA\”]ED A 6. Archiving SOPC Builder

® Projects

Q1154017-6.1.0

Introduction

Scope

Altera Corporation
November 2006

The purpose of this chapter is to help you identify the files you need to
include when archiving an SOPC Builder system module. With this
information, you can archive:

B The SOPC Builder system module
B The associated Nios®II software project, if any
B The associated Nios II system library project, if any

You might need to archive your SOPC Builder system for one of the
following reasons:

B To place an SOPC Builder design under source control
® To create a backup
B To bundle a design for transfer to another location

To use this information, you need to decide what source control or
archiving tool to use, and you need to know how to use it. This chapter
does not provide step-by-step instructions. It does cover the following
information:

B How to find and identify the files that must be included in an
archived SOPC Builder design.

B Which files must have write permission to allow the design to be
generated and the software projects compiled.

This chapter provides information about archiving SOPC Builder system
modules, including their Nios II software applications, if any. If your
SOPC Builder system does not contain a Nios II processor, you can
disregard information about Nios II software applications.

This chapter does not cover archiving SOPC Builder components, for two
reasons:

B SOPC Builder components can be recovered, if necessary, from the
original Quartus®II and Nios II installations.

B If your SOPC Builder system was developed with an earlier version
of the Quartus Il software and Nios I Embedded Development Suite
(EDS), when you restore it for use with the current version, you
normally use the current, installed components.

Required Files

Required Files

If your SOPC Builder system was developed with an earlier version of the
Quartus I and Nios II development software, and you restore it for use
with the current version, the regenerated system is functionally identical
to the original system. However, there might be differences in details such
as Quartus II timing, component implementation or HAL
implementation. For details of version changes, refer to the release notes
for the Quartus II software and the Nios II EDS.

To ensure that you can regenerate your exact original design, maintain a
record of the tool and IP version(s) originally used to develop the design.
Retain the original installation files or media in a safe place.

The archival process addressed by this chapter is different from
Quartus II project archiving. A Quartus II project archive contains the
complete Quartus II project, including the SOPC Builder module, but not
including any Nios II software. Quartus II adds all HDL files to the
archive, including HDL files generated by SOPC Builder, although these
files are not strictly necessary.

This chapter is only concerned with archiving the SOPC Builder system,
without the generated HDL files, but with all files needed to regenerate
them and rebuild the Nios II software (if any).

For more details about archiving Quartus II projects, refer to volume 2 of
the Quartus II Handbook.

This section describes the files required by an SOPC Builder system and
its associated Nios II software projects (if any). This is the minimum set of
files needed to completely recompile a system, both the FPGA
configuration image (.sof) and the executable software (.elf).

If you have Nios II software projects, archive them together with the

SOPC Builder system on which they are based. You cannot rebuild a
Nios II software project without its associated SOPC Builder system.

SOPC Builder Design Files

The files listed in Table 6-1 are located in the Quartus II project directory.

Table 6-1. Files Required for an SOPC Builder System (Part 1 of 2)

File description File name Write permission required? (7)
SOPC Builder system description <sopc_builder_systems.ptf Yes
All non-generated HDL source files (2) e.g. top_level_schematic.bdf, No
customlogic.v

6-2

Altera Corporation
November 2006

Archiving SOPC Builder Projects

Table 6-1. Files Required for an SOPC Builder System (Part 2 of 2)

File description File name Write permission required? (7)
Quartus Il project file <project_name>.qpf No
<project_name>.qgsf No

Quartus Il settings file

Notes to Table 6-1:

(1) For further information about write permissions, see “File Write Permissions” on page 6—4.

(2) Include all HDL source files not generated by SOPC Builder. This includes HDL source files you create or copy
from elsewhere. To identify a file generated by SOPC Builder, open the file and look for the Altera® header:
Legal Notice: (C)2006 Altera Corporation. All rights reserved.

Nios Il Application Software Project Files

The files listed in Table 6-2 are located in the Nios II software project

directory.

For more information about Nios II software projects, refer to the Nios II

Software Developer’s Handbook.

Table 6-2. Files Required for a Nios Il Application Software Project
File description File name Write permission required? (7)
All source files e.g. app.c, header.h, assembly.s, No
lookuptable.dat
Eclipse project file .project No
C/C++ Development Toolkit project file .cdtproject Yes
C/C++ Development Toolkit option file .cdtbuild No
Software configuration file application.stf No

Note to Table 6-1:

(1) For further information about write permissions, see “File Write Permissions” on page 6—4.

Altera Corporation
November 2006

6-3

File Write Permissions

Nios Il System Library Project

The files listed in Table 6-3 are located in the Nios II system library project
directory.

For more information about Nios II system libraries, refer to the Nios II
Software Developer’s Handbook.

Table 6-3. Files Required for a Nios Il System Library Project
File description File name Write permission required? (7)
Eclipse project file .project Yes
C/C++ Development Toolkit project file .cdtproject Yes
C/C++ Development Toolkit option file .cdtbuild No
System software configuration file system.stf Yes

Note for Table 6-3:

(1) For further information about write permissions, see “File Write Permissions” on page 6—4.

File Write
Permissions

Document
Revision History

You must have write permission for certain files. The tools write to these
files as part of the generation and compilation process. If the files are not
writable, the toolchain fails.

Many source control tools mark local files read-only by default. In this
case, you need to override this behavior. You do not need to check the files
out of source control unless you are modifying the SOPC Builder design
or Nios II software project.

Table 6-4 shows the revision history for this document.

Table 6—4. Document Revision History

Date & Document
Version

Changes Made Summary of Changes

v6.1.0

November 2006, | No changes from previous release.

May 2006, v6.0.0 | Initial release.

6-4

Altera Corporation
November 2006

7. Board D iption Edit
QA l |:| E 5Y/A oard Description Editor

®

Q1154015-6.1.0

Introduction

Altera Corporation
November 2006

This chapter introduces SOPC Builder board descriptions and provides
complete reference for the board description editor.

Board descriptions and the board description editor are
deprecated features in SOPC Builder v6.1. These features will be
removed in a future version of SOPC Builder. Do not use these
features for new projects.

CAUTION

Board Descriptions

SOPC Builder board descriptions contain detail about a printed circuit
board (PCB) with a mounted Altera® FPGA. Board descriptions
encapsulate low-level details about a board that can be reused by all users
of the board. A PCB designer creates a board description so that other
designers do not have to be board experts to create SOPC Builder systems
for the target board. A board description enables designers to create an
SOPC Builder design that works in hardware, even though they might
not know how to read a board schematic or make Quartus® II pin
assignments.

You can obtain board descriptions from several sources:

1. Altera provides ready-made board descriptions for Altera
development boards. If you are targeting an Altera development
board, use the board description provided with the board.

2. If you are designing an SOPC Builder system for an existing board,
you might receive the board description from the board designer as
part of the supporting files for the board.

3. If you are a board designer, you create a board description for your
custom boards using the SOPC Builder board description editor.

L=~ The figures in this document are based on Altera’s Nios
Development Board, Cyclone™ II Edition as an example. The
development tools for the Nios II processor include several
ready-made board descriptions which you can use as reference.
You can download an evaluation of the Nios II development
tools free at www.altera.com.

Quartus Il Handbook, Volume 4

7-2

Uses for Board Descriptions

Board descriptions serve three purposes:

B Provide FPGA pinout details to the SOPC Builder pin mapper.

B Define a system template for the target board. A system template is
a ready-made SOPC Builder system for the board, which provides a
starting place for future users of the board.

B Provide the Nios II flash programmer with details about flash
memory on the board.

Not all board descriptions serve all three purposes. For example, a board
description might contain only information for the Nios II flash
programmer. Alternately, it might provide only pinout details and a
system template.

For details on the pin mapper, see the chapter Pin Mapper in volume 4 of
the Quartus I Handbook. For details on the Nios II flash programmer, see
the Nios II Flash Programmer User Guide.

Board Description Editor

The board description editor is a feature of SOPC Builder that provides a
graphical user interface (GUI) for creating board descriptions

(Figure 7-1). Starting with the PCB netlist and details from the schematic,
a PCB designer uses the board description editor to package this
information into an SOPC Builder board description.

Altera Corporation
November 2006

Introduction

Figure 7-1. Board Description Editor

™ Board Description Editor, - Development Board, Cyclone Il EP2C35
File

Introduction

hoard.

Metlist | Flash Memary | Nets | Devices | Groups | Pass Throughs || Files

The SOPC Builder board description editar is & tool for cresting and modifying pluging known as board descriptions
wehich contain love-level detailz about the hardweare on a target board. Yow start with the board netlist and details from
the schematic, and the board description editor helps youw package this information into an SOPC Builder board
description. The hoard description editor lets you do three things:

1. Define detailz about flash memory on the board for use with the Nios || flazh programmer.
2. Specify FPGA pinout details for use with the SOPC Builder pin mapper.
3. Define a system template for the target board which provides a starting place for future users of the board.

vwhen you are done, the board description editor saves your news board description into the current project directory.
SOPC Builder then recognizes the board description and allovws users to select it as a target board. The Nios Il flash
programmer (if you use i) alzo uzes the board description for information required to program flash memory on the

To use the board description in other projects, you can configure SOPC Builder's search path by choosing SOPC
Builder Setup... on the File menu).

For complete details on board descriptions and the board description editor, see chapter Board Description Editor
[hitp: ity atteras comfitersturedbigtslots_gis4015 pdf) in the SOPC Builder volume of the Quartus If Handbook
[hitp: ity attera comiitersturedhbigtslots_gisvd pdf).

P Step by step instructions

. FP&A pins can be reached from one another: A&7 (I0.PLLL_OUTp) on net SDRAM_CLE_P, A6 (I0LPLLL_OUTR) on net SDR.
.- FPGA pins can be reached from one another: AC7 {10, YREFESN1) on net M10805507, AC12 (10, VREFESNO) on net 103055
.- The template system is not specified.

Mext = Finish...

Altera Corporation
November 2006

The board description editor GUI consists of several tabs and a message
window. You do not have to use the tabs in order. The board description
editor consists of the following tabs:

Intro Tab

Netlist Tab

Flash Memory Tab
Nets Tab

Devices Tab
Groups Tab

Pass Throughs Tab
Files Tab

=
Cj,‘\

Each tab in the board description editor GUI provides on-screen
instructions that describe the usage of the tab. Click the triangle
at the top-left of each tab to view the on-screen instructions.

The remainder of this document provides complete reference for the
board description editor.

Quartus Il Handbook, Volume 4

Creatin ga Board The process of creating a board description is independent from creating
- an SOPC Builder system. You can build a new SOPC Builder system with
Descri ptl on no target board in mind, or you can create a new board description with
no particular target system in mind. However, if you want to create an
SOPC Builder targeting a particular board, you first must create a board
description.

There are two possible flows for using the board description editor:

1. Pins Flow - Creates a board description for use with the SOPC
Builder pin mapper.

2. Flash Flow - Creates a board description for use with the Nios II
flash programmer.

Depending on how you intend to use the board description, you can use
one or both of the flows. The two flows are independent of each other, and
can be performed in either order.

Pins Flow

The purpose of the pins flow is to process the PBC netlist for use by the
SOPC Builder pin mapper. The end result is a simplified model of the
PCB. After finishing the pins flow, you can use your new board
description as the target board in SOPC Builder, and you can use the pin
mapper to map pins to the PCB.

«o For further information on the pin mapper, see chapter Pin Mapper in
volume 4 of the Quartus II Handbook.

7-4 Altera Corporation
November 2006

Creating a Board Description

Altera Corporation
November 2006

Steps for the Pins Flow

Below are the typical steps for the pins flow:

1. Use the Netlist tab to select the netlist for the target PCB and specify
the target FPGA device.

2. Use the Devices and Nets tabs to filter devices and nets that are not
used by the pin mapper, such as ground and power pins.

3. Use the Devices and Pass Throughs tabs to define pass-through
devices, such as resistors and buffers.

4. Use the Groups tab to combine multiple devices into a logical
grouping.

5. Use the Files tab to name the board description and specify the
version.

6. Use the Files tab to specify a template system for the PCB.

Creating a PCB Model from the Netlist

The pins flow defines the connections between the FPGA and devices on
the PCB. You start with the netlist for the PCB and incrementally add
details about the board schematic until the board description editor has
an appropriate model of the PCB for the pin mapper.

Figure 7-2 shows a board schematic representing a PCB netlist. Without

further information, the pin mapper cannot infer how to connect
components in an SOPC Builder system to the devices on the PCB.

7-5

Quartus Il Handbook, Volume 4

7-6

Figure 7-2. Board Schematic

C
~

U3

Vce Vee
16-Bit 16-Bit
f SRAM SRAM j
T &
S g
=] -]
© ©
[=] [=]

U4
Config Control

Configuration
Controller

Address
Control

- L48

Flash
Memory

Using Figure 7-2 as an example, you must enter information into the
board description editor to overcome the following issues:

Devices are connected via common GND and VCC nets, but these
nets do not carry I/0O signals. You must filter these false paths
between devices.

The FPGA drives an LED (LED1), but the net for the FPGA I/0O pin
connects to a resistor (R1). You must define resistors to be pass-
through devices, which are logically transparent devices that 1/O
signals pass through.

The SRAM chips (U2, U3) are connected in parallel to be used as a
single logical memory. You must define a device group to combine
the SRAM chips into a single logical device.

Certain devices with hard-wired functionality (LEDO and U4) have
no relation to the function of the SOPC Builder system in the FPGA.
If the SOPC Builder system never needs to connect to a certain
device, you can filter the device so that the pin mapper cannot map
pins to it.

Altera Corporation
November 2006

Creating a Board Description

Altera Corporation
November 2006

After you provide these details, the pin mapper can model the PCB
appropriately, as shown in Figure 7-3.

Figure 7-3. Model of the PCB After Using the Board Description Editor

U2 -uUs

32-Bit
SRAM

g
o
K
©
a

Flash
Memory

us

To begin the pins flow, you need a netlist of the PCB. You must export a
netlist in the Wirelist format from your PCB design tool. Figure 7—4 shows
an example of the settings in OrCad to create the Wirelist file.

-7

Quartus Il Handbook, Volume 4

Figure 7-4. Creating a Wirelist File in OrCad

Create Netlist @

#llears | EDIF200| INF | Layout | PSpice | SPICE | Veriog | WHDL Other |

Part W alue PCB Faoatprint

Combined property sting: Combined property sting:

|talue} [{PCE Foctprint}
Formatters: - Options

wirefizt. dll [Do ot oukput pin numbers for Grid Amay parts

[Sort mets by net name

scicards. dil
spice.dll
tango.dil
telesiz. dll
wecton.dll
watmodel dl
winboard, dll

Wersion: 300 Oct 17 2004
Metlist File 1: v Wiew Output

]C: “S0URCEABOARDSWPROJECTSAMAINENSCHEMATICAWREV 02YM aine_re Browse. ..

| Bl

e |

QK | Cancel Help

I'=~ The method you use to produce a Wirelist file differs if you use
a different PCB layout tool or a different version of OrCad. If you
use OrCad, do not use the Convert view on your symbols,
because it causes OrCad to generate incorrect Wirelist files.

Flash Flow

The purpose of the flash flow is to define the flash memory devices on the
PCB for use by the Nios II flash programmer. After finishing the flash
flow, you can use the Nios II flash programmer to program the flash
memory on the PCB.

-« For further information on using the Nios II flash programmer, see the
Nios II Flash Programmer User Guide.

7-8 Altera Corporation
November 2006

Creating a Board Description

Altera Corporation
November 2006

The flash flow declares the presence of flash memory on the PCB, and
defines ranges in these devices for storing FPGA configuration data. Use
the flash flow if SOPC Builder systems for this board will include any of
the following components:

B Flash Memory (Common Flash Interface)
B EPCS Serial Flash Controller

Below are the typical steps for the flash flow:

1. Use the Flash Memory tab to declare the flash memory devices on
the board.

2. Use the Flash Memory tab to specify regions of flash memory for
FPGA configuration data.

Board Description Editor Output

This section describes the files output by the board description editor, and
explains how to share board descriptions with other designers.

Board Description File Structure

Structurally, a board description is a set of files recognized by SOPC
Builder and the Nios II IDE. Board descriptions use a file structure similar
to SOPC Builder component directories. Based on the settings you make
in the GUI, the board description editor outputs a properly formed
directory, containing the following items:

B class.ptf file - Contains defining information about the board
description which allows SOPC Builder and the Nios II IDE to
recognize it.

B netlist folder - Contains the board netlist, if you provide one.

B system folder - Contains the system template for the board, if you
provide one.

For details on SOPC Builder component file structure, see the chapter
Components in volume 4 of the Quartus II Handbook.

Using Board Descriptions

After you create a board description, you can share it with other
designers. To use a board description, you must store the files in a path
where SOPC Builder searches for components. To configure SOPC
Builder's search path, on the SOPC Builder File menu click SOPC Builder
Setup.

7-9

Quartus Il Handbook, Volume 4

Starting the
Board
Description
Editor

Intro Tab

Netlist Tab

You can start the board description editor from the SOPC Builder GUI by
doing one of the following:

B OntheFile menu click New Board Description to create a new board
description.

B On the File menu click Edit Board Description to edit the board
description for the currently-selected target board.

When the board description editor starts, it displays the Intro tab.

The Intro tab provides a brief description of the board description editor.
Figure 7-1 on page 7-3 shows an example of the Intro tab.

The Netlist tab lets you to choose the netlist for the PCB and the target
FPGA. Figure 7-5 shows an example of the Netlist tab.

Figure 7-5. Netlist Tab

¥ Board Description Editor. - Development Board, Cyclone Il EP2C35
File

IntrolNBt"St |Flash Mernory || MNets || Devices | Groups | Pass Throughs || Files

I+ About Metlist

Metlist: |_exam|:|Ie,l'altera_niu:us_dev_I:u:uaru:l_c';.r'cInne_ZcSS,l'netIist,l'wireIist.net

Browse. ..

FPaa Device: ||_|52 (EP2CISFG72CRES) v |

7-10

Use the Netlist box or the Browse button to choose the netlist. The board
description editor immediately parses the file for device, pin, and net
information.

= The netlist must be in the Wirelist format.

After choosing the netlist, you must select which device is the target
FPGA in the Target FPGA list.

Altera Corporation
November 2006

Devices Tab

Devices Tab

Altera Corporation
November 2006

=" If there are multiple FPGAs on the board that will contain SOPC
Builder systems, then you must create multiple board
descriptions. Each board description contains pin mapper-
related information for one FPGA.

If the netlist contains device names matching the pattern EP1* or EP2*
(the first letters of Altera device ordering codes), then the Target FPGA
list limits your choices to only those devices. Otherwise, it presents all
devices in the netlist.

Based on the Netlist and Target FPGA settings, the board description
editor determines possible connections between the FPGA pins and other
devices on the PCB.

The Devices tab lets you manage the list of devices that are visible to the
pin mapper. Your goal is to manipulate the device list on the Devices tab
until only devices appropriate for the pin mapper remain. The Devices
tab is central to the pins flow. For more information, see section “Pins
Flow” on page 7—4.

7-11

Quartus Il Handbook,

Volume 4

Figure 7-6 shows an example of the Devices tab.

Figure 7-6. Devices Tab

™ Board Description Editor - Development Board, Cyclone || EP2C35

File
| Intro || Metlist || Flash Memory || Mets | DBViCES§| Groups || Pass Throughs || Files|
[About Devices
Device Device Type Description Fitter
| o e] L
B2y 2w SHeader Debug Serial Port [] e
B H1 PMC_Receptacts_54P []
B =2 PhiC_Receptaclz_G4P []
B [Swis PE=witch Reset Switch]
: id
B (TP Test_Header]
B TPz Test_Header F]
FlGE Test_Header]
2] 49FCT3805 Clock Source]
B3 EFMT25ELETCT 00 Configuration Contraller :
4 Lapa1C111 Ethernet Adpater]
Bus AM290N T 25 CFI Flash Memary :
B =g FOCRIZAL []
) MAT 46 BRI BT DDR SDRAM :
B |uea EFCSE4 EPCS Flash Memory :
BEuTe T 3E0C-1 BT AC SSRAM : L
B a-0uga 2 TSegmertDisplay Seven Segment Display : b
Show: |Only devices visible to the pin mapper R
Mew Pass Through... Group.., Pin Mapper Preview..,

Device List

The board description editor populates the device list with the devices
found in the netlist. The columns of the device list are described in

Table 7-1.

Table 7-1. Device List Columns

Device

Device Type

Description

Filter

The reference
designator for each
device defined in the
netlist file.

Additional device
information contained in the
netlist file. There is no
standard data type or format
for Device Type. This data
is read-only.

Text you type in the Description
cell appears in the pin mapper, so
that future users of the pin
mapper easily understand what
each device is.

Turning on Filter for a
device excludes it from
the list of devices visible
to the pin mapper.

7-12

Altera Corporation
November 2006

Devices Tab

Altera Corporation
November 2006

Use the Show list to switch between the following modes:

B All devices - Lists every device in the netlist.
B Only devices visible to the pin mapper - Lists only devices that will
be available to the pin mapper after you finish the board description.

All devices listed in the Only devices visible to the pin mapper mode
will be available as a target device in the pin mapper later.

Filtered Nets, Pass Throughs & Device Groups

Filtered nets, pass throughs, and device groups modify the way the board
description editor displays devices in the device list. You can create new
pass throughs and device groups with the Devices tab.

=" The device list changes dynamically based on the settings you
make on the Nets, Pass Throughs, and Groups tabs. For further
information see the respective sections “Nets Tab”, “Pass
Throughs Tab”, and “Groups Tab”.

Creating Pass Throughs

To specify a device as a pass-through device, select it in the device list and
click New Pass Through. The New Pass Through dialog appears,
allowing you to choose what type of pass through to create. Figures 7-7
shows an example of creating a pass through for an inductor.

Figure 7-7. Creating a New Pass Through

™ New Pass Through 3

Which devices should this pass through affect?
() Only device L&'
("3 all devices of bype 'SMFerrite’

(®) All devices named 'L<n ="

’ Ok ” Cancel

7-13

Quartus Il Handbook, Volume 4

There are three types of pass throughs:

B Single device — Applies only to one specific device, such as a single
inductor with reference designator Lé.

B Device type — Applies to all devices with the same Device Type, such
as all inductors with Device Type "SMFerrite".

B Reference designator pattern — Applies to all devices with numbered
reference designators sharing a common prefix, such as Ln, where n
is any sequence of digits.

After creating a new pass through, you must go to the Pass Throughs tab
to define the pass through properties.

Creating Device Groups

To specify that multiple devices form a device group, select multiple
devices in the device list and click Group. To select multiple devices,
press and hold the Control key while selecting devices in the list.

After creating a new device group, you must go to the Groups tab to
name the pins on the device group.

7-14 Altera Corporation
November 2006

Devices Tab

Altera Corporation
November 2006

Filtering False Target Devices

Some devices in the netlist file are meaningless to the pin mapper. On the
Devices tab, you can turn on Filter for false target devices to make them
invisible to the pin mapper.

Filter the following types of false target devices:

B Damping capacitors - Some FPGA pins have a capacitor connected to
ground to improve signal integrity. These capacitors are not the
intended target for any I/O signal. The board description editor
automatically filters any device with reference designator of the form
Cn, where 1 is any sequence of digits.

W Secondary target devices - If an FPGA pin connects to two (or more)
target devices, you might want to filter the device(s) that do not serve
the primary function of the pin. For example, in Figure 7-2 on
page 7-6 switch SW0 and LEDO connect to the same FPGA pin.
Closing SWO0 pulls the FPGA pin low and turns on LEDO. In this case,
SWO0 is the primary function for the FPGA pin, and eliminating LEDO
from the pin mapper is a good idea.

B False paths back to the FPGA - There might be devices that create false
signal paths leading back to the FPGA. For example, termination
resistors between differential-pair nets create a loop between FPGA
pins that is not a logical signal path.

B No-stuff devices - Some devices in the netlist are not stuffed on the
PCB during manufacturing. You can filter such devices to disallow
pin mapper users from connecting FPGA signals to a target device
that does not exist on the board.

I~ If you turn on Filter when Show is set to Only devices visible
to the pin mapper, the device immediately disappears from the
device list. To see all filtered and unfiltered devices, select All
devices in the Show list.

Previewing Pins Visible to the Pin Mapper

You can click Pin Mapper Preview to open the Pin Mapper Preview
window which displays the complete list of devices and pins visible to
the pin mapper. You are finished with the pins flow when the Pin Mapper
Preview window contains exactly the devices and pins you wish to
expose to the pin mapper. Figure 7-8 shows an example of the preview
listing for a device.

7-15

Quartus Il Handbook, Volume 4

Figure 7-8. Pin Mapper Preview Window

™ Pin Mapper Preview (x

UEe (device of cype EPCSEd) ., description "EPCS Flash Memory®. has ¢ wisible pins ont of ¢ ﬁ
{net FLD_ASDO}

DATA (nekt PLD_DPLTPL(H

DCLE inet PLD_DCLK}

{net PLD_CE N}

T4

ASDI

nig

(devwice

Al
Al
A2
Al
A
AS
RE
AT
AZ
&

{nec
({nek
[§=1-1-4
{nec
({nek
[§=1-1-4
{net
[$-1-14

{nek
frar

of Eype CYTCL3IZA0C-167AC), descriptiom "SSEAM", has T1 wisible pins ouk of 73
ADDEG}
ADDEL}
ADDE2}
ADDEZ}
ADDE4
ADDES}
ADDEA}
AODES}

AODELG:
DTTTT L —

7-16

For each device with pins visible to the pin mapper, the preview lists the
following:

B Reference designator, device type, and description, as shown on the
Devices tab.

B Total number of pins connected to unfiltered nets, and the number of
pins visible to the pin mapper. These numbers provide a useful
sanity check. For example, imagine an eight-pin device with one
power pin and one ground pin. If power and ground nets are filtered,
the total number of unfiltered pins is six. Of the six total pins,
perhaps 4 connect to the FPGA.

B The name of each pin visible to the pin mapper, and its
corresponding FPGA pin net name.

Altera Corporation
November 2006

Nets Tab

Nets Tab

The Nets tab lets you manage the list of nets that the board description
editor considers as signal paths from device-to-device. Typically, multiple
devices connect to common power and ground nets, even though not all
of these devices have I/O interconnections. Your goal is to filter the netlist
to exclude nets that do not carry I/O signals, such as power and ground
nets, so that the pin mapper does not detect false signal paths between
devices.

Turn on Filter for non-I/0 nets. Figure 7-9 shows an example with all
power supply nets filtered, which prevents the pin mapper from
including these nets as signal paths between devices.

Figure 7-9. Nets Tab

™ Board Description Editor, - Development Board), Cyclone |l EP2C35 CEE]

Eile:

| Intra | Metlist | Flash Memary |§NEL'5 i| Devices | Groups | Pass Throughs ||%|

[+ About Mets

Mame
LZER_LEDS

Fitter

| *

LIZER_LECE

LUZER_LECT

LIZER_FED

LZER_PE1

LZER_FEZ

LZER_PEZ

WO

WCCT2

WCC-12

W2

WO _2_PLL

W25

CCE_3

WCC_BLFFERT

WCC_BLFFER2

WOC_BUFFERT 58946

WOC_BUFFERT 516333

WCOC_BUFFERZ 99033

WG _BUFFERZ 816300

K EEEEEEEEEEE OO O E e

Show filkered nets

Altera Corporation
November 2006

The board description editor automatically filters nets matching the
pattern GND* or VCC*.

Il Changes you make on this tab affect the device list on the

Devices tab. If you filter all nets connecting a device to the
FPGA, the Devices tab ignores the device.

7-17

Quartus Il Handbook, Volume 4

Pass Throughs
Tab

7-18

A pass through is a logically transparent device that exists along a signal
path but does not alter the signal's logic level, such as a resistor. The Pass
Throughs tab displays all pass throughs created with the Devices tab.
After you create a new pass through with the Devices tab, you use the
Pass Throughs tab to define the pin-to-pin paths that are logically
transparent. For information on creating pass throughs, see section
“Creating Pass Throughs” on page 7-13.

Some FPGA 1/0O pins drive signals through a pass-through device. Pass
throughs are not the signal's final destination. For example, in Figure 7-2
on page 7-6 an FPGA pin connects to R1, but the true signal destination
is LED1. You define pass throughs to allow the board description editor
to detect the true signal destination beyond the pass through device.

You might have to create pass throughs for the following types of
logically transparent devices:

B Resistors in signal paths to limit current flow
B Buffers, level shifters, and power transistors
B Inductors in signal path to improve signal integrity

Figure 7-10 shows an example of the Pass Throughs tab with the
following pass throughs:

B For device type PI5C3384 — This pass through affects voltage level-
shifters labeled "PI5C3384". Signals pass transparently from pin An
to Bn, where n is any digit.

W For reference designators matching pattern Rn — This pass through
affects all resistors with reference designator Rn, where 7 is any
sequence of digits. Signals pass transparently through the two pins
on these resistors.

Altera Corporation
November 2006

Pass Throughs Tab

Figure 7-10. Pass Throughs Tah

Board Description Editor, - Development Board, Cyclone Il EP2C35

File
| Intro || Metlisk || Flash Memory || Mets || Devices || Groups| Pass Throughs | Files|
~
- = "PISC3384" (4 of 7) =
Devices of kype: | PISC3384 |
To
=3 e
ET
[=5:]
B9
Mo Connection —
Mo Connection i
~ = "Rn" (5 aof 7}
Cevices named: | R[O-9]+ L
Fraom Ta
&1 2

For each entry on the Pass Throughs tab, you use the table to specify
transparent pin-to-pin paths through the device. For each pin in the From
list, select an appropriate To setting. If a pin does not have a logically
transparent path through the device, select No Connection. From and To
settings only imply transparent paths through the device; they do not
imply signal direction.

[l=~ Changes you make on this tab affect the device list on the
Devices tab. After you define a pass through for a particular
device, the Devices tab no longer displays the device. Instead, it
displays the device(s) connected to the other side of the pass-
through device.

Altera Corporation 7-19
November 2006

Quartus Il Handbook, Volume 4

Groups Tab

A device group is comprised of multiple devices that the pin mapper
treats as a single device. The Groups tab displays all device groups
created with the Devices tab. After you create a new group with the
Devices tab, you use the Groups tab to name the pins on the group. For
information on creating device groups, see section “Creating Device
Groups” on page 7-14.

If the PCB is designed for multiple devices to connect to a single SOPC
Builder component in the FPGA, creating a device group tends to make
the pin mapper easier to use for that component. For example, in
Figure 7-2 on page 7-6 grouping the two 16-bit SRAM devices creates a
32-bit SRAM device group.

Figure 7-11 shows the Groups tab for the case of eight individual LEDs
(DO to D7) combined to form an 8-bit bank of LEDs.

Figure 7-11. Groups Tab

™ Board Description Editor - Development Board, Cyclone || EP2C35

File

Intro | Metlist | Flash Memory || Mets | Devices |§GFDUD5§|Pass Throughs | Files

b About Device Groups

= Device group "DO-D7" (1 af 3)

Device Mame: | DO-C7 |

Grouped Devices; | Do, 01, Dz, 03, D4, D5, D&, D7 |

|

Criginal Pin Mame Meww Pin Matne
[o0 CATHODE Do -~
B |01 cATHODE i 3
|02 CATHODE 02
B [D3 CATHODE 03
B[4 CATHODE D y —
|@ps catHODE D3 2
L

Remove...

7-20

For each device group on the Groups tab, you use the table to specify a
new pin name for each pin that existed on the individual devices. For
each pin listed in the Original Pin Name list, type a descriptive name in
New Pin Name. This name appears as the pin name in the pin mapper.

The board description editor automatically fills New Pin Name
cells with default pin names. However, you must manually
inspect all new pin names to verify appropriateness.

CAUTION

Altera Corporation
November 2006

Flash Memory Tab

Flash Memo 1y The Flash Memory tab lets you specify details about flash memory on the
PCB. This information is used by the Nios II flash programmer. If you do
Ta b not intend to use the Nios II flash programmer with this board, or if the

board does not contain flash memory, then you can ignore this tab. The
Flash Memory tab is central to the flash flow. For more information, see
section “Flash Flow” on page 7-8.

Figure 7-12 shows an example of the Flash Memory tab for a PCB with
the following flash memories:

B One Altera EPCS serial configuration device containing one
hardware image, which is the maximum number of images for an
EPCS device.

B One CFIflash memory containing two hardware images. An external
configuration controller chip recognizes hardware images at offsets
0xC00000 and 0xE00000 in the flash memory.

Figure 7-12. Flash Memory Tab

® Board Description Editor, - Development Board,, Cyclone Il EP2C35

Eile
Intra | Metlist | Flash Memory | Mets | Devices | Groups | Pass Throughs | Files
¢ About Flash Memary
Device Type of Metnory
7 |UBS (EPCS Flash Memary) [EPCS Serial Flash Memary
]S [CFI Flash Memary) |CFI Flash Memary
Flash Memories:
[Mew Flash Memory] [Remove Flash Memory
Hardware Inage Mame Device Offset
i |lepc= LIES (EFCS Flash Memao... | 000000000
|ﬁ user L5 (CFI Flash Memmory) |0x:C00000
Hardware Images: (B |factory LIS [(CFI Flazh Memaory) (0xEQ0000
Mew Hardware Image] ’ Remove Hardware Image

You must add a device entry for each flash memory on the PCB that
connects to the FPGA. Click New Flash Memory to add devices to the
Flash Memories list. Select Type of Memory for each entry in the Flash
Memories list.

Altera Corporation 7-21
November 2006

Quartus Il Handbook, Volume 4

Each flash memory can contain one or more hardware images, which are
address ranges allocated for FPGA configuration data. Define all
hardware images stored in flash memory on the PCB.

Click New Hardware Image to add an entry to the Hardware Images list.
For each entry, type a descriptive name into the Hardware Image Name
box. Use the Device list to select which flash memory contains the image.
Type the offset where the hardware image data starts into the Offset cell.

I The first location in the flash memory is offset 0x0000.

The correct number of hardware images and the offset for each image
depend on the following:

B The FPGA configuration controller on the board. In most cases, the
configuration controller expects configuration data to exist at specific
offsets in flash memory.

B The size of the hardware image data for the target FPGA. The size of
the hardware image determines how closely the offsets can be
spaced.

Files Tabh The Files tab lets you give your new board description a name and

version, and specify a system template. Figure 7-13 shows an example of
the Files tab.

Figure 7-13. Files Tab

™ Board Description Editor - Development Board, Cyclone || EP2C35
File

Intro | Metlist || Flash Memory | Nets | Devices | Groups | Pass Throughsl F"BS|

b About Files

Falder: |C:,I'altera,I'bde_example,l'development_board_cyclone_ii_ep2c35,l’

Board Description Name: | Dewvelopment Board, Cyclone IT EPZC35 |

Wersion: | 1.2 |

 About System Template

System Template: | Cifalterafbde_exampleffull_2C35.pkf |

Browse, ..

7-22

Altera Corporation
November 2006

Files Tab

Altera Corporation
November 2006

Board Description Name and Version

The name you type in the Board Description Name box is the name that
appears in the SOPC Builder target board list. This name can include
spaces or other special characters. The Folder box displays the path
where the board description editor saves the board description files.
Board Description Name determines the Folder name. If you are creating
a new board description, the editor creates a new folder under the
Quartus II project path. If you are editing an existing board description,
the editor saves the files back to the same folder, unless you change Board
Description Name.

Similar to the version for SOPC Builder components, Version indicates to
SOPC Builder which board description is newer, in the event that more
than one of the same kind of board description is detected. SOPC Builder
displays only the board description with the highest version in the target
board list.

System Template

A system template is a ready-made SOPC Builder system for the board,
which provides a starting place for future users of the board. The system
template should include:

B An SOPC Builder component corresponding to each device
connected to the FPGA.

B Complete pin mappings that connect each component to its target
device on the PCB.

To specify the system template, type the path to an SOPC Builder system
in the System Template box, or click Browse.

Ils~ Donot assign a system template the first time you save your
board description. First, use the pin mapper with the new board
description to map pins for the system template.

To assign a system template correctly, perform the following steps:

1. In SOPC Builder, open or create the SOPC Builder system you plan
to use as the system template.

2. Select the new board description as the target board for the system.

3. Use the pin mapper to assign appropriate pin locations for all
signals in the system.

7-23

Quartus Il Handbook, Volume 4

Saving & Exiting
the Board
Description
Editor

Document
Revision History

4. Return to the Files tab in the board description editor, and select the
SOPC Builder system with complete pin mappings as the system
template.

5. Re-save the board description.

You can save the board description by clicking Finish on any of the tabs,

or by clicking Save on the File menu. Exiting the board description editor

automatically prompts you to save the files. The board description editor

saves files to a board description folder, creating a new folder if necessary.

s If you edit and re-save a board description, and you have
existing SOPC Builder systems based on a previous version, you
must update those systems to recognize the updates to the board

description.

To update an existing SOPC Builder system with board description
changes, perform the following steps:

1. Open the system with SOPC Builder.
2. Set the target board to Unspecified Board.

3. Set the target board back to the updated board description.

Table 7-2 shows the revision history for this document.

Table 7-2. Document Revision History

Date & Document
] Changes Made Summary of Changes
Version
November 2006, | Added a caution about deprecation of the board description Board description editor
v6.1.0 editor and board descriptions. and board descriptions

will be removed from a
future version of SOPC
Builder. The Nios Il IDE
no longer needs a board
description to program
flash on a target board.

May 2006, v6.0.0 | Chapter 7 was previously chapter 6. No change to content. -

v5.1.0

October 2005 Initial release. -

7-24

Altera Corporation
November 2006

Document Revision History

Altera Corporation 7-25
November 2006

Quartus Il Handbook, Volume 4

7-26 Altera Corporation
November 2006

Z;\l I:l —E D)/A 8. Pin Mapper

Q1154016-6.1.0

Introduction The SOPC Builder pin mapper simplifies the process of assigning FPGA
pins, allowing you to make device-to-device connections on the printed
circuit board (PCB) based on pin function, rather than pin numbers. The
pin mapper maps logical connections between SOPC Builder system
components and devices mounted on the PCB, as shown in Figures 8-1.

Figure 8-1. Pin Mapper Maps Logical Connections from SOPC Builder Components to Devices on the PCB

Printed Circuit Board
Altera FPGA
System Module
i Napper Associagi~
8
Restof |E £ 8
the System 2 g4 Source Target
I gl Component Device
E \ENT
Component Signals Pins on Pins on
Signals on System FPGA | Target Device
Module
Nets on
PCB

The pin mapper is a deprecated feature in SOPC Builder v6.1.
This feature will be removed in a future version of SOPC
Builder. Do not use it for new projects.

CAUTION

Altera Corporation 8-1
November 2006

Quartus Il Handbook, Volume 4

Design Flow

8-2

The pin mapper accelerates your design time by abstracting details that
are tedious and prone to human error, such as:

B Signal names on the SOPC Builder system module
B Pin numbers on the FPGA
B Net names on the PCB

The pin mapper assumes that you know the board you are targeting and
that you have an SOPC Builder board description for the target board.
Using the board description and information about the components in
your SOPC Builder system, the pin mapper GUI lets you map
connections from components in the system to device pins on the PCB. To
map pins correctly, you must know the function of signals on the source
component(s) and pins on the target device(s).

For more information on SOPC Builder board descriptions, refer to the
Board Description Editor chapter in volume 4 of the Quartus II Handbook.

The pin mapper provides a level of assurance that you have accounted for
the pin assignments required for a target board. In general, if the
Quartus® II project pin assignments do not match the specific board you
are using, your design will not function and you could damage the board.
The pin mapper helps ensure that you take care of pin assignments for
signals on the system module before downloading it to a board.

This section describes the design flow for using the pin mapper, and how
the pin mapper affects the Quartus II project.

The following is a typical design flow using the pin mapper:
1. Create an SOPC Builder system targeting a specific board.

2. Instantiate and configure system components on the System
Contents tab in SOPC Builder.

3. Use the pin mapper to map component signals to devices on the
PCB.

4. Generate the system in SOPC Builder. This step automatically
applies the pin assignments to the Quartus II project.

L=~ When targeting a specific board, you cannot generate the system
until you completely map all signals. Alternately, you can leave
all signals unmapped, in which case you must assign all pins
using the Quartus II Assignment Editor.

Altera Corporation
November 2006

Design Flow

Altera Corporation
November 2006

5. Integrate the system module into the top-level Quartus II project.

6. Compile the Quartus II project to fit the design in the FPGA using
the pin assignments.

The pin mapper is an optional step in the SOPC Builder system design
flow. If you choose to use the pin mapper, then SOPC Builder does not
allow you to generate the system until you have completely mapped all
signals on the system module.

Applying Pin Assignments to the Quartus Il Project

During system generation SOPC Builder generates a Tcl script named
<system module name>_setup_quartus.tcl which contains Quartus II
commands to assign pin locations for your system module. At the end of
system generation, SOPC Builder executes this script to apply the pin
assignments to the Quartus II project.

If you edit the SOPC Builder system later, you can alter the pin mapper
settings. However, you must regenerate the system in SOPC Builder to

update the Tcl script and apply your pin assignments to the Quartus II

project.

Pin Name Requirements

The <system module name>_setup_quartus.tcl script makes assignments
for pin names matching the names of signals on the system module.
Therefore, you must use specific names for pins at the top level of the
Quartus II project. For the pin mappings to work, you must name the
FPGA pins the same as the signal names on the system module.

For example, imagine a system module with an input vector named

in port to the button pio[3..0],and suppose thatyou use the
pin mapper to map these signals to four push-button switches on the
PCB. The input pins at the top level of the Quartus II project must also be
named in_port to_the button pio[3..0] for the pin
assignments to work.

It does not matter at what level of hierarchy you instantiate the system
module in the overall Quartus II project. You can use the system module
as the top-level design entity, or you can instantiate the system module
inside a lower-level design entity, as shown in Figure 8-2. As long as the
top-level pin names match the names of the signals on the system
module, the pin mappings will be effective.

8-3

Quartus Il Handbook, Volume 4

Figure 8-2. Pin Mapper and Quartus Il Project Hierarchy

System module signal names
must match pin names.

A

Quartus Il Project /
Top-level Design /
System Module * L
A A
M
Quartus Il Project B =
C N <> C
System Module D ° D
A—<"—>A
B—">8B
Other Submodule -
c—<—>¢C
D——>D
System module as top-level design. System module as submodule

within larger design.

Pin Ma pper GUI The pin mapper GUT is located on the Board Settings tab in SOPC
Builder, as shown in Figure 8-3.

=" SOPC Builder displays the Board Settings tab only if you
specify a target board on the System Contents tab. The Board
Settings tab does not appear when a target board is unspecified,
or if the target board description was created prior to version 5.1
of the Quartus II software.

8—4 Altera Corporation
November 2006

Pin Mapper GUI

Figure 8-3. Pin Mapper GUI on the Board Settings Tah

File Module System View Tools

Help

System Contents | Board Settings

Pin Mapper

Source Signal

2 System
[+-3E global_signals

----- =~ chipenablel_n
[=)-=2r data

= data[30]
= data[29]
= data[23]
= data[27]
= data[26]
-~ data[25]
= data[24]
= data[23]
= data[22]

£ 3 Incompleté mapping

1F All signals mapped
The top-level pins in the Quartus II project must have the same names as the source signals on the system module,

Nios II More "cpu” Settings | System Generation

Target Device

click ta assigi.
125 (Debug/Trace Connector)

174 (S5RAM)

3 Fins auto-assigned

The pin mapper lets you map signals on the system module to pins on target devices on the printed circuit board,
SOPC Builder will make pin assignments For the Quartus IT project when you generate the system,

Device Pin

Al15..0]
ADSC_n
click ta assigi.
BWE_n
CEl_n

click ta

L .

;} Assign in Quarkus IT

The pin mapper interface is a table with three columns. Table 8-1

describes the meaning of each column.

Table 8-1. Columns in the Pin Mapper GUI

Source Signals

Target Device

Target Pin

This column contains the names of
signals on the components in the
system module. This column groups
signals to make the list more
manageable.

This column contains the names of
the devices on the PCB that connect
to the FPGA.

This column contains the names of
individual pins on the target device.
This column shows only the pins
available on the selected target
device.

Source Signals Column

You can easily browse through source signals on the system module by
expanding and collapsing groups in the Source Signals column. The
signals are grouped together in the following hierarchical levels:

Altera Corporation
November 2006

8-5

Quartus Il Handbook, Volume 4

8-6

1. Component level — Signals for each component are grouped together.
In Figure 8-3 on page 8-5, the ssram group contains all signals
associated with this instance of the component. Component
instances with no external signals do not appear in the pin mapper.

2. Awvalon® Memory-Mapped (Avalon-MM) port level — Signals that are
associated to a particular Avalon-MM port are grouped together. In
Figure 8-3 on page 8-5, the ssram/s1 group contains all signals
associated with slave port s1. Some signals are not associated with a
particular Avalon-MM port and therefore appear outside of a port-
level grouping.

3. Signal vector level — Vectored signals are grouped together by a
common name. In Figure 8-3 on page 8-5, the ssram/s1/data group
represents a vector of 32 related data signals.

4. Individual signal level — The lowest level of hierarchy is the individual
signal level. Each individual signal can connect to one FPGA pin,
which connects to one or more pins on a target device. In Figure 8-1
on page 8-1, the ssram/s1/data/data[31] row represents an
individual signal on the system module.

Target Device Column

The Target Device column lets you map signals to a target device. You can
easily map individual signals, signal vectors, or an entire component to a
target device. For example, to map all signals on a component to a specific
device, you can highlight a component-level row and specify the device
in the Target Device column. Alternately, you can individually map each
signal to a particular device.

In Figure 8-3 on page 8-5, the component instance ssram is mapped to
device U74. The Target Device column shows that lower levels of
hierarchy inherit their device settings from the component level.

Depending on the contents of the board description, the pin mapper
might have enough information about certain devices on the PCB to
automatically map component signals to appropriate pins on the device.
In this case, when you target a whole component to a device, the pin
mapper automatically maps signals to pins on the target device.

Target Pin Column

The Target Pin column lets you map a signal to a specific pin on a device
on the PCB. To specify a target pin for a signal, you first must specify
Target Device. The Target Pin column displays only the pins on the target
device.

Altera Corporation
November 2006

Pin Mapper GUI

Altera Corporation
November 2006

For example, Figure 8-3 on page 8-5 shows that signal data [31] on the
component instance ssram maps to pin DQC23 on device U74.

Vector Signals

You can map a vector signal to a group of pins by clicking the Target Pin
cell for a vector signal. For a vector signal the Target Pin dropdown list
displays all groupings of pins on the target device that could logically
map to the vector signal.

Differential Signals

To map a signal to pins using a differential I/O standard such as LVDS,
you need to map the positive pin only. The Quartus II software will
automatically assign the negative pin.

I = You must set the I/O standard using the Assignment Editor in
the Quartus II software.

Signals with Multiple Destinations

Some FPGA I/0O pin nets connect to multiple devices on the PCB. As a
result, a signal routed to thatI/O pin connects to multiple devices. In this
case, using the pin mapper to map a signal to any one of the target device
pins is equivalent to mapping the signal to all of connected target pins.

Assign in Quartus Il

The Target Pin column provides the Assign in Quartus II setting to make
the pin mapper ignore a particular pin. When you set a signal to Assign
in Quartus II, the pin mapper does not create a Quartus II pin assignment
for that signal.

The Assign in Quartus II setting is useful for the following cases:

B You want to manually assign the pin using the Quartus II
Assignment Editor.

B If a particular signal connects to logic inside the FPGA rather than to
I/0 pins, the signal does not need a pin assignment.

Pin Mappings Status

The pin mapper displays the current status of signal mappings. When
you place the mouse over a row in the pin mapper, a tooltip displays the
FPGA pin assignment that will result from the current pin mapping.

8-7

Quartus Il Handbook, Volume 4

In addition, the colors of symbols in the Source Signals column change
to indicate status. Table 8-2 on page 8-8 shows the color coding for signal

mapping status.

Table 8-2. Color Coding for Signal Status

Color Meaning Example Cases

Red Incomplete mapping An individual signal is not yet mapped, or a group of
signals contains one or more signals that are not
yet mapped

Green All signals mapped The element is mapped, or the element is set to

Assign in Quartus II.

Blue Pins auto-assigned — This component The Altera DDR/DDR2 SDRAM MegaCore
provides its own pin assignments which provides specific pin assignments which must be
cannot be overridden by the pin mapper. used with the core.

Yellow Assign in the Quartus Il software — The pin | The pin mapper does not support components
mapper cannot assign pins for this created before Quartus Il version 5.0.
component, and therefore you must
manually assign pins using the Quartus Il
Assignment Editor.

D ocume nt Table 8-3 shows the revision history for this document.

Revision History

Table 8-3. Document Revision History

Date & Document
Version

Changes Made

Summary of Changes

v6.1.0

November 2006,

Added a caution about deprecation of the pin mapper.

The pin mapper will be
removed from a future
version of SOPC Builder.

May 2006, v6.0.0

Chapter 8 was previously chapter 7. No change to content. -

v5.1.0

October 2005

Initial release.

8-8

Altera Corporation
November 2006

A I:l =N Section Il. Building
= . Systems with SOPC Builder

Section II of this volume provides instructions on how to use SOPC
Builder to achieve specific goals. Chapters in this section serve to answer
the question, "How do I use SOPC Builder?" Many chapters in this
handbook provide design examples that you can download free from
www.altera.com. Design file hyperlinks are located with individual
chapters linked from the Altera web site.

This section includes the following chapters:

B Chapter 9, Building Memory Subsystems Using SOPC Builder

B Chapter 10, Developing Components for SOPC Builder

B Chapter 11, Building Systems with Multiple Clock Domains

I'=" For information about the revision history for chapters in this

section, refer to each individual chapter for that chapter’s
revision history.

Altera Corporation Section II-1

Building Systems with SOPC Builder Quartus Il Handbook, Volume 4

Section 11-2 Altera Corporation

A I:l 1 D A 9. Building Memory
= Subsystems Using SOPC

®

Builder

QI154006-6.1.0

Introduction

Altera Corporation

November 2006

Most systems generated with SOPC Builder require memory. For
example, embedded processor systems require memory for software
code, while digital signal processing (DSP) systems require memory for
data buffers. Many systems use multiple types of memories. For example,
a processor-based DSP system can use off-chip SDRAM to store software
code, and on-chip RAM for fast access to data buffers. You can use SOPC
Builder to integrate almost any type of memory into your system.

This chapter describes the process for building a memory subsystem as
part of a larger system created with SOPC Builder. This chapter focuses
on the kinds of memory most commonly used in SOPC Builder systems:

On-chip RAM and ROM

EPCS serial configuration devices

SDRAM

Off-chip RAM and ROM, such as SRAM and common flash interface
(CFI) flash memory

This chapter assumes that you are familiar with the following:

B Creating FPGA designs and making pin assignments with the
Quartus®II software. For details, see the Introduction to Quartus II
Manual.

B Building simple systems with SOPC Builder. For details, see the
Introduction to SOPC Builder and Tour of the SOPC Builder User
Interface chapters in volume 4 of the Quartus I Handbook.

B SOPC Builder components. For details, see the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

B Basic concepts of the Avalon® Memory-Mapped (Avalon-MM)
interface. You do not need extensive knowledge of the Avalon-MM
interface, such as transfer types or signal timing. However, to create
your own custom memory subsystem with external memories, you
need to understand the Avalon-MM interface. For details, see the
chapter System Interconnect Fabric for Memory-Mapped Interfaces in
volume 4 of the Quartus II Handbook and the Avalon Memory-Mapped
Interface Specification.

Quartus Il Handbook, Volume 4

9-2

Example Design

This chapter demonstrates the process for building a system that contains
one of each type memory as shown in Figure 9-1. Each section of the
chapter builds on previous sections, culminating in a complete system.

By following the example design through this chapter, you will learn how
to create a complete memory subsystem for your own custom system.
The memory components in the example design are independent. For a
custom system, you can instantiate exactly the memories you need, and
skip the memories you don't need. Furthermore, you can create multiple
instantiations of the same type of memory, limited only by on-chip
memory resources or FPGA pins to interface with off-chip memory
devices.

Example Design Structure

Figure 9-1 shows a block diagram of the example system.

Altera Corporation
November 2006

Introduction

Figure 9-1. Example Design Block Diagram

JTAG Interface
A

Altera FPGA v

JTAG
Controller

SOPC Builder System

Nios Il g
a
Processor é % l‘ﬂ:g
Data Instr. 2 =
5

System Interconnect Fabric

[s] s s s
Avalon-MM SDRAM 1K x 32 bit EPCS
Tristate Bridge Controller On-chip Device
RAM Controller
M Core
A 3 3
SDRAM EPCS
Interface Interface
A\ A\

@ Avalon-MM Master Port

Avalon-MM Slave Port

EPCS

Serial
Configuration

Device

8M x 8 bit 256K x 32 bit 4M x 32 bit
CFI SRAM SDRAM
Flash Memory Memory Chip
Memory Chip Chip

In Figure 9-1, all blocks shown below the system interconnect fabric
comprise the memory subsystem. For demonstration purposes, this
system uses a Nios® II processor core to master the memory devices, and
a JTAG UART core to communicate with the processor. However, the
memory subsystem could be connected to any master component, either
on-chip or off-chip.

Altera Corporation 9-3

November 2006

Quartus Il Handbook, Volume 4

Example Design Starting Point

The

The

following elements comprise the example design:

A Quartus II project named quartus2_project.A block diagram file
(BDF) named toplevel_design. toplevel_design is the top-level
design file for quartus2_project. toplevel_design instantiates the
SOPC Builder system module, as well as other pins and modules
required to complete the design.

An SOPC Builder system named sopc_memory_system.
sopc_memory_system is a subdesign of toplevel_design.
sopc_memory_system instantiates the memory components and
other SOPC Builder components required for a functioning system
module.

starting point for this chapter assumes that quartus2_project already

exists, that sopc_memory_system has been started in SOPC Builder, and
that the Nios II core and the JTAG UART core are already instantiated.
This example design uses the default settings for the Nios II/s core and
the JTAG UART core; these settings do not affect the rest of the memory
subsystem. Figure 9-2 shows the starting point in SOPC Builder.

Figure 9-2. Starting Point for the Example Design

1™ pltera SOPC Builder - sopc_memory_system

File Module System Wiew Tools

System Contents

+ Extra Utilities L
+ Legacy Components
= Memory
@ Cypress CYTC13
@ DDR SDR&M Cort
@ DDR2 SDRAM Co
@ D2
@ EPCS Serial Flast
@ Flash Memary (T
@ DT71V416 SRAN
@ On-Chip Memory
@ SDRAM Controlie
+ Other A

< >

Installed Components

—_————

7] Dane checking for updates.

R S

Help
Nios IT More "cpu" Settings | System Generation
Board Clock (MHZ)
Target: |Unspecified Board L3 clk ISD-D |
Target Device Family: |[Stratix w
Use Module Mame Description Clock Base Enicd IRG
E ch Nos Il Processor - Alte... |clk
instruction_master |Master port
data_master Master port RGO IRG 31
fta_debug_module [Slave port 0x00000000 0x000007FF)
jtag_uart JTAG UART clk 0x00000800 0:x00000507(| 1
[A Move Lp] [W Move Dowwn
T T ST ST ST TS ST
e
ar
Exit Mext =

9-4

All sections in this chapter build on this starting point.

Altera Corporation
November 2006

Design Flow

Hardware & Software Requirements

To build a memory subsystem similar to the example design in this
chapter, you need the following:

B Quartus II Software version 5.0 or higher —Both Quartus I Web
Edition and the fully licensed version support this design flow.

B Nios I Embedded Design Suite (EDS) version 5.0 or higher —Both the
evaluation edition and the fully licensed version support this design
flow. The Nios II EDS provides the SOPC Builder memory
components described in this chapter. It also provides several
complete example designs which demonstrate a variety of memory
components instantiated in working systems.

= The Quartus II Web Edition software and the Nios II EDS,
Evaluation Edition are available free for download from the
Altera® website. Visit www.altera.com/download.

This chapter does not go as far as downloading and verifying a working
system in hardware. Therefore, there are no hardware requirements for

the completion of this chapter. However, the example memory subsystem
has been tested in hardware.

i This section describes the design flow for building memory subsystems
esign Flow g g y subsy
with SOPC Builder.

The design flow for building a memory subsystem is similar to other
SOPC Builder designs. After starting a Quartus II project and an SOPC
Builder system, there are five steps to completing the system, as shown in
Figure 9-3:

1. Component-level design in SOPC Builder

2. SOPC Builder system-level design

3. Simulation

4. Quartus II project-level design

5. Board-level design

Altera Corporation 9-5
November 2006

Quartus Il Handbook, Volume 4

Figure 9-3. Design Flow

Add memory
component 1

I
i
I
i
I
I
I
I
i
I
I
i
I
: i

' Simulation
I

I

I

I

i

I

I

I

I

i

Add memory
component 2

I I
i i
I I
i i
I I
I I
I I
I I
i i
I I
I I
i i
I I
I I
I I
I I
I I
I I
I I
I I
| T |
| Connect :
| |
i i
i i
I I
I I
I I
I I
i i
I I
I I
I I
I I
I I
i i
I I
I I
I I
I I
I I
I I
I I

|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
Start an i
I

Starta S0PC . components Connect SOPC Assign FPGA Connect
Quartus Il ———» " _ . Builder system ins & compile FPGA pi
;:Dri:; Bunltder | ° generate modueto " P Quartus I’I) T merrm;
system Add memory SOIZC Quartus Il project project i chips
i component N S;;t;; i
| i |
i Add other i
: components :
| |
| ‘
w_/ N
SOPC Builder ‘
Cm%’g;gﬁ““' systemevel Quartus eps'i‘gﬁc' Board-Level Design
gn
Component-Level Design in SOPC Builder
In this step, you specify which memory components to use, and you
configure each component to meet the needs of the system. All memory
components are available from the Memory category in the SOPC Builder
list of available components, shown in Figure 9-4.
Figure 9-4. List of Available Memory Components in SOPC Builder
= Memory
@ Cypress CYTC1380C SSRAM
@ DOR SDRAM Controller MegaCore Function - Altera Corporation
@ DDR2 SDRAM Cortroller MegaCore Function - Altera Corporation
@ DM,
@ EPCS Serial Flash Controller
@ Flash Memory (Common Flazh Interface)
@ IDT71%416 SRAM
@ On-Chip Memory (RAM or RORM)
@ SDRAM Controller
9-6 Altera Corporation

November 2006

Design Flow

Altera Corporation
November 2006

SOPC Builder System-Level Design

In this step, you connect components together and configure the SOPC
Builder system as a whole. Similar to the process for adding non-memory
SOPC Builder components, you use the SOPC Builder System Contents
tab to do the following:

B Rename the component instance (optional).

® Connect the memory component to master ports in the system. Each
memory component must be connected to at least one master port.

B Assign a base address.

B Assign a clock domain. A memory component can operate on the
same or different clock domain as the master port(s) that access it.

Simulation

In this step, you verify the functionality of the SOPC Builder system
module. For systems with memories, this step depends on simulation
models for each of the memory components, in addition to the system
testbench generated by SOPC Builder. See “Simulation Considerations”
on page 9-7.

Quartus Il Project-Level Design

In this step, you integrate the SOPC Builder system module with the rest
of the Quartus II project. This step includes wiring the system module to
FPGA pins, and wiring the system module to other design blocks (such
as other HDL modules) in the Quartus II project.

= In the example design in this chapter, the SOPC Builder system
module comprises the entire FPGA design. There are no other
design blocks in the Quartus II project.

Board-Level Design

In this step, you connect the physical FPGA pins to memory devices on
the board. If the SOPC Builder system interfaces with off-chip memory
devices, then you must make board-level design choices.

Simulation Considerations

SOPC Builder can automatically generate a testbench for register transfer
level (RTL) simulation of the system. This testbench instantiates the
system module and can also instantiate memory models for external
memory components. The testbench is plain-text hardware description

9-7

Quartus Il Handbook, Volume 4

9-8

language (HDL), located at the bottom of the top-level system module
HDL design file. To explore the contents of the auto-generated testbench,
open the top-level HDL file, and search on keyword test bench.

Generic Memory Models

The memory components described in this chapter, except for the SRAM,
provide generic simulation models. Therefore, it is very easy to simulate
an SOPC Builder system with memory components immediately after
generating the system.

The generic memory models store memory initialization files, such as
Data [file name extension] (.dat) and Hexadecimal (.hex) files, in a
directory named <Quartus II project directory>/<SOPC Builder system
name>_sim. When generating a new system, SOPC Builder creates empty
initialization files. You can manually edit these files to provide custom
memory initialization contents for simulation.

1= For Nios II processor users, the Nios Il integrated development
environment (IDE) generates initialization contents
automatically.

Vendor-Specific Memory Models

You can also manually connect vendor-specific memory models to the
system module. In this case, you must manually edit the testbench and
connect the vendor memory model. You might also need to edit the
vendor memory model slightly for time delays. The SOPC Builder
testbench assumes zero delay.

There are special sections of the system module design file that
you can edit safely. You must edit only these sections, because
SOPC Builder overwrites the rest of the system module every
time you generate the system. These sections are marked by the
following text:

CAUTION

Verilog HDL

// <ALTERA NOTE> CODE INSERTED BETWEEN HERE

// add your signals and additional architecture here
// AND HERE WILL BE PRESERVED </ALTERA_NOTE>

VHDL

-- <ALTERA NOTE> CODE INSERTED BETWEEN HERE
--add your component and signal declaration here
—-— AND HERE WILL BE PRESERVED </ALTERA_NOTE>

Altera Corporation
November 2006

On-Chip RAM & ROM

On-Chip RAM &
ROM

Altera Corporation
November 2006

Altera FPGAs include on-chip memory blocks, that can be used as RAM
or ROM in SOPC Builder systems. On-chip memory has the following
benefits for SOPC Builder systems:

B On-chip memory has fast access time, compared to off-chip memory.

B SOPC Builder automatically instantiates on-chip memory inside the
system module, so you do not have to make any manual connections.

B Certain memory blocks can have initialized contents when the FPGA
powers up. This feature is useful, for example, for storing data
constants or processor boot code.

FPGAs have limited on-chip memory resources, which limits the
maximum practical size of an on-chip memory to approximately one
megabyte in the largest FPGA family.

Component-Level Design for On-Chip Memory

In SOPC Builder you instantiate on-chip memory by adding an On-chip
Memory (RAM or ROM) component. The configuration wizard for the
On-chip Memory (RAM or ROM) component has the following options:
Memory Type, Size, and Read Latency.

Memory Type

The Memory Type options define the structure of the on-chip memory.

B RAM (writeable) — This setting creates a readable and writeable
memory.

B ROM (read only) — This setting creates a read-only memory.

B Dual-Port Access — Turning on this setting creates a memory
component with two slave ports, which allows two master ports to
access the memory simultaneously.

B Block Type - This setting forces the Quartus II software to use a
specific type of memory block when fitting the on-chip memory in
the FPGA. The following choices are available:

e Automatic — This setting allows the Quartus II software to
choose the most appropriate memory resource.

e MS512 - This setting forces the Quartus II software to use M512
blocks.

e M4K - This setting forces the Quartus II software to use M4K
blocks.

e M-RAM - This setting forces the Quartus II software to use
M-RAM blocks. The 64 Kbit M-RAM blocks are appropriate for
larger RAM data buffers. However, M-RAM blocks do not allow
pre-initialized contents at power up.

9-9

Quartus Il Handbook, Volume 4

9-10

Size
The Size options define the size and width of the memory.

B Memory Width — This setting determines the data width of the
memory. The available choices are 8, 16, 32, 64, or 128 bits. Assign
Memory Width to match the width of the master port that accesses
this memory the most frequently or has the most critical timing
requirements.

B Total Memory Size — This setting determines the total size of the
on-chip memory block. The total memory size must be less than the
available memory in the target FPGA.

Read Latency

On-chip memory components use synchronous, pipelined Avalon-MM
slave ports. Pipelined access improves fyax performance, but also adds
latency cycles when reading the memory. The Read Latency option
allows you to specify the number of read latency cycles required to access
data. If the Dual-Port Access setting is turned on, you can specify a
different read latency for each slave port.

SOPC Builder System-Level Design for On-Chip Memory

There are not many SOPC Builder system-level design considerations for
on-chip memories. See “SOPC Builder System-Level Design” on
page 9-7.

When generating a new system, SOPC Builder creates a blank
initialization file in the Quartus II project directory for each on-chip
memory that can power up with initialized contents. The name of this file
is <Name of memory component>.hex.

Simulation for On-Chip Memory

At system generation time, SOPC Builder generates a simulation model
for the on-chip memory. This model is embedded inside the system
module, and there are no user-configurable options for the simulation
testbench.

You can provide memory initialization contents for simulation in the file
<Quartus II project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat.

Altera Corporation
November 2006

On-Chip RAM & ROM

Altera Corporation
November 2006

Quartus Il Project-Level Design for On-Chip Memory

The on-chip memory is embedded inside the SOPC Builder system
module, and therefore there are no signals to connect to the Quartus II
project.

To provide memory initialization contents, you must fill in the file <Name
of memory component>.hex. The Quartus II software recognizes this file
during design compilation and incorporates the contents into the
configuration files for the FPGA.

Il=~ For Nios II processor users, the Nios Il integrated development
environment (IDE) generates memory initialization file
automatically.

Board-Level Design for On-Chip Memory
The on-chip memory is embedded inside the SOPC Builder system

module, and therefore there is nothing to connect at the board level.

Example Design with On-Chip Memory

This section demonstrates adding a 4 Kbyte on-chip RAM to the example
design. This memory uses a single slave port with read latency of one
cycle.

Figure 9-5 shows the On-Chip Memory (RAM or ROM) configuration
wizard settings for the example design.

9-11

Quartus Il Handbook, Volume 4

Figure 9-5. On-Chip Memory (RAM or ROM) Configuration Wizard

1™ On-chip Memory - onchip_ram &
Mermary Type

() ROM (read-only)

|:| Dual-Port Access

Block Type: |Automatic s
Size

Mernory Wicth: 32 ¥ | hits

Total Memory Size: 4 Khytes »

Read Latency

Slave s1 [1 v

i) Memory will be intialized from onchip_ram.hex
i) Automatically choosing M4k blocks

Cancel Finizh

Figure 9-6 shows the SOPC Builder system after adding an instance of the
on-chip memory component, renaming it to onchip ram, and assigning
it a base address.

Figure 9-6. SOPC Builder System with On-Chip Memory

9-12

Module Mame Description Clock Ease End IR
= epu Mios Il Processar - &ftera C... [clk

instruction_master Master port

data_master Master port RGO IRG 31

e _debug_module Slave port 0x00000000| 0x000007FF) ']
jtag_uart JTAG UART clk 0000008071
on-Chip Memory (RaM or .. clk 0x00001000, 0x00001FFF)

For demonstration purposes, Figure 97 shows the result of generating
the system module at this stage. (In a normal design flow, you generate
the system only after adding all system components.)

Figure 9-7. System Module with On-Chip Memory

‘sopc_memory_system

—clk
»— reset_n

inst3

Altera Corporation
November 2006

EPCS Serial Configuration Device

Because the on-chip memory is contained entirely within the system
module, sopc_memory_system has no I/O signals associated with
onchip_ram. Therefore, you do not need to make any Quartus II project
connections or assignments for the on-chip RAM, and there are no
board-level considerations.

EPCS Serial Many systems use an Altera EPCS serial configuration device to

. . configure the FPGA. Altera provides the EPCS device controller core,
CO nfi gu ration which allows SOPC Builder systems to access the memory contents of the
Device EPCS device. This feature provides flexible design options:

B The FPGA design can reprogram its own configuration memory,
providing a mechanism for in-field upgrades.

B The FPGA design can use leftover space in the EPCS as nonvolatile
storage.

Physically the EPCS device is a serial flash memory device, which has
slow access time. Altera provides software drivers to control the EPCS
core for the Nios II processor only. Therefore, EPCS controller core
features are available only to SOPC Builder systems that include a Nios II
processor.

g For further details on the features and usage of the EPCS device
controller core, see the EPCS Device Controller Core with Avalon Interface
chapter in volume 5 of the Quartus II Handbook.

Component-Level Design for an EPCS Device

In SOPC Builder you instantiate an EPCS controller core by adding an
EPCS Serial Flash Controller component. There is only one setting for
this component: Reference Designator. When targeting a board that
declares a reference designator for the EPCS device, the Reference
Designator setting is fixed.

SOPC Builder uses reference designators to specify a unique identifier for
flash memory devices on the board. This convention is a requirement of

the Nios II EDS, specifically the Nios II Flash Programmer utility.

«® For details, see the Nios II Flash Programmer User Guide.

Altera Corporation 9-13
November 2006

Quartus Il Handbook, Volume 4

9-14

SOPC Builder System-Level Design for an EPCS Device

There are not many SOPC Builder system-level design considerations for
EPCS devices:

B Assign a base address.

B Set the IRQ connection to NC (disconnected). The EPCS controller
hardware is capable of generating an IRQ. However, the Nios II
driver software does not use this IRQ, and therefore you can leave
the IRQ signal disconnected.

There can only be one EPCS controller core per FPGA, and the instance of
the core is always named epcs_controller.

Simulation for an EPCS Device

The EPCS controller core provides a limited simulation model:

B Functional simulation does not include the FPGA configuration
process, and therefore the EPCS controller does not model the
configuration features.

B Thesimulation model does not support read and write operations to
the flash region of the EPCS device.

B A Nios II processor can boot from the EPCS device in simulation.
However, the boot loader code is different during simulation. The
EPCS controller boot loader code assumes that all other memory
simulation models are pre-initialized, and therefore the boot load
process is unnecessary. During simulation, the boot loader simply
forces the Nios II processor to jump to start, skipping the boot load
process.

Verification in hardware is the best way to test features related to the
EPCS device.

Quartus Il Project-Level Design for an EPCS Device

The Quartus II software automatically connects the EPCS controller core
in the SOPC Builder system to the dedicated configuration pins on the
FPGA. This connection is invisible to the user. Therefore there are no
EPCS-related signals to connect in the Quartus II project.

Board-Level Design for an EPCS Device

You must connect the EPCS device to the FPGA as described in the Altera
Configuration Handbook. No other connections are necessary.

Altera Corporation
November 2006

EPCS Serial Configuration Device

Example Design with an EPCS Device

This section demonstrates adding an EPCS device controller core to the
example design.

Figure 9-8 shows the EPCS Serial Flash Controller configuration wizard
settings for the example design. In this example, the target board declares
a reference designator U59 for the EPCS device on the board.

Figure 9-8. EPCS Serial Flash Controller Configuration Wizard

18 EPGS Serial Flash Controller - epcs_contr... (X]

Eoard Infa

Cancel Finizh

Figure 9-9 shows the SOPC Builder system after adding an instance of the
EPCS controller core and assigning it a base address.

Figure 9-9. SOPC Builder System with EPCS Device

Module Mame Description Clock Base Enicd M
= epu Mios Il Proceszar - &ftera C... |clk

instruction_master Master port

data_master Master port RGO IRG 31

e _debug_module Slave port 0x00000000| 0x000007FF) ']

. jtag_uart JTAG UART clk 0x00000800] 0x00000507|[1

onchip_ram On-Chip Mermory (RAM or ... |clk 0x00001000| 0x00001FFF)
[Eepes_controller _PCS Serial Flash Controller [clk

epcs_control_port Slave port 0x00002000) 0x000027FF|[HC

For demonstration purposes only, Figure 9-10 shows the result of
generating the system module at this stage.

Figure 9-10. System Module with EPCS Device

‘sopc_memory_system

—clk
»— reset_n

inst3

Altera Corporation 9-15
November 2006

Quartus Il Handbook, Volume 4

SDRAM

9-16

Because the Quartus II software automatically connects the EPCS
controller core to the FPGA pins, the system module has no I/O signals
associated with epcs_controller. Therefore, you do not need to make any
Quartus II project connections or assignments for the EPCS controller
core.

This chapter does not cover the details of configuration using the EPCS
device. For further information, see Altera's Configuration Handbook.

Altera provides a free SDRAM controller core, which lets you use
inexpensive SDRAM as bulk RAM in your FPGA designs. The SDRAM
controller core is necessary, because Avalon-MM signals cannot describe
the complex interface on an SDRAM device. The SDRAM controller acts
as a bridge between the system interconnect fabric and the pins on an
SDRAM device. The SDRAM controller can operate in excess of 100 MHz.

For further details on the features and usage of the SDRAM controller
core, see the SODRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus II Handbook.

Component-Level Design for SDRAM

The choice of SDRAM device(s) and the configuration of the device(s) on
the board heavily influence the component-level design for the SDRAM
controller. Typically, the component-level design task involves
parameterizing the SDRAM controller core to match the SDRAM
device(s) on the board. You must specify the structure (address width,
data width, number of devices, number of banks, etc.) and the timing
specifications of the device(s) on the board.

For complete details on configuration options for the SDRAM controller
core, see the SDRAM Controller Core with Avalon Interface chapter in
volume 5 of the Quartus IT Handbook.

SOPC Builder System-Level Design for SDRAM

In SOPC Builder on the System Contents tab, the SDRAM controller looks
like any other memory component. Similar to on-chip memory, there are
not many SOPC Builder system-level design considerations for SDRAM.
See “SOPC Builder System-Level Design” on page 9-7.

Simulation for SDRAM

At system generation time, SOPC Builder can generate a generic SDRAM
simulation model and include the model in the system testbench. To use
the generic SDRAM simulation model, you must turn on a setting in the

Altera Corporation
November 2006

SDRAM

Altera Corporation
November 2006

SDRAM controller configuration wizard. You can provide memory
initialization contents for simulation in the file <Quartus II project
directory>/<SOPC Builder system name>_sim/<Memory component
name>.dat.

Alternately, you can provide a specific vendor memory model for the
SDRAM. In this case, you must manually wire up the vendor memory
model in the system testbench.

For further details, see “Simulation Considerations” on page 9-7 and
"Hardware Simulation Considerations" in the chapter SDRAM Controller
Core with Avalon Interface in volume 5 of the Quartus II Handbook.

Quartus Il Project-Level Design for SDRAM

SOPC Builder generates a system module with top-level I/O signals
associated with the SDRAM controller. In the Quartus II project, you must
connect these I/0O signals to FPGA pins, which connect to the SDRAM
device on the board. In addition, you might have to accommodate clock
skew issues.

Connecting & Assigning the SDRAM-Related Pins

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

Accommodating Clock Skew

As SDRAM frequency increases, so does the possibility that you must
accommodate skew between the SDRAM clock and I/0O signals. This
issue affects all synchronous memory devices, including SDRAM. To
accommodate clock skew, you can instantiate an altpll megafunction
in the top-level Quartus II design to create a phase-locked loop (PLL)
clock output. You use a phase-shifted PLL output to drive the SDRAM
clock and overcome clock-skew issues. The exact settings for the altpll
depend on your target hardware; you must experiment to tune the phase
shift to match the board.

9-17

Quartus Il Handbook, Volume 4

For details, see the altpll Megafunction User Guide.

Board-Level Design for SDRAM

Memory requirements largely dictate the board-level configuration of the
SDRAM device(s). The SDRAM controller core can accommodate various
configurations of SDRAM on the board, including multiple banks and
multiple devices.

For further details, see the "Example Configurations" section in the
SDRAM Controller Core with Avalon Interface chapter in volume 5 of the
Quartus II Handbook.

Example Design with SDRAM

This section demonstrates adding a 16 Mbyte SDRAM device to the
example design. This SDRAM is a single device with 32-bit data.

Figure 9-11 shows the SDRAM Controller configuration wizard settings
for the example design.

Figure 9-11. SDRAM Controller Configuration Wizard

¥ SPDRAKM Controller - sdram E] ¥ SPDRAKM Controller - sdram E]
Presets: zingle Micron MT4ELCAM3I2E2-7 chip b Presets: zingle Micron MT4ELCAM3I2E2-7 chip b
Tirming Mernory Profil
Drata Wicth Architecture SDRAM Timing Parameters
32 v | Bits Chip Selects: |1 w Banks: |4 v CAS latency cycles O 1 O 2 [O] 3
Address Widths Initialization refresh cycles 2
Rowe |12 Column | 8 lzsue one refresh command every 15623 us
Drel ft hefore intializati 100
Share Pins via Tristate Bridge elay after powerup, before intislization us
. Duration of refresh command (t_rfc) 70 ns
|:| Cortroller shares dofdagm/faddr O pins.
Duration of precharge command (t_rp) 20 ns
"Crrmi WEmas) (i il i) ACTIVE to READ or WRITE delay (t_rcd) 0 ne
Include a functional memory model in the system testbench. Arcess time it_ac) 55 =
Memory size: 16 MBytes Wirite: recovery time (t_wr, Mo auto precharge) 14 ns
4194304 x 32
128 MEBit=
Cancel Mext = Finizh Cancel = Prev Finish

9-18

Figure 9-12 shows the SOPC Builder system after adding an instance of
the SDRAM controller, renaming it to sdram, and assigning it a base
address.

Altera Corporation
November 2006

SDRAM

Figure 9-12. SOPC Builder System with SDRAM

Module Mame

Ecpu
instruction_master
data_master

e _debug_module
jtag_uart
onchip_ram
epcs_controller

sdram

=1

Description Clock Base Enicd M

Mios I| Processor - Altera Corp... |clk

Master port

Master port RGO IRG 31

Slave port 0x00000000) 0x000007FF) ']

JTAG UART clk 0x00000800) (0x00000507| [1

Cn-Chip Memary (RAM or ROM) |clk 0x00001000) 0x00001FFF) I

EPCS Serial Flash Controller clk 0x00002000) 0x000027FF|[HC
DRAM Cortroller clk

Slave port 0x01000000) 0x01FFFFFF|

For demonstration purposes, Figure 9-13 shows the result of generating
the system module at this stage, and connecting it in

toplevel_design.bdf.

Figure 9-13. toplevel_design. bdf with SDRAM

sdram_pll

P %=}

inclk frequency: 50,000 MHz
Operation Made: Nomal

cd

el

SDRAM PLL

This FLL introtiucss & phass-shitt which compensates
for board-lsval delays in the clock network. Cther boards
may reguis different settings

inst2

Stratin

deiay_reset_biock

S0pC_rnemory_system

| clock_in delayed_reset_n
reset_n

Resst Delay: Allows FLL 10 Sabilze (k) ater
reset or devics-canfiguration

et_n

z5_adddr _from_the_sdram{11..0] Ty
z5_ba_from_the_sdram(1..0]
z5_oas_n_from_the_scram i
z5_cke_from_the_sdram I
zs_cs_n_from the_sdram T

SHRAT B
R G
T EHRER RAE T

25 _dy_to_and_from_the_sdram{31..0]
23 _dgm_trom_the_sdram[3..0]
z3_ras_n_from_the_sdram
z5_we_n_from_the_sdram

\THT
THT
i

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of SDRAM-related I/O signals
which must be connected to FPGA pins:

output
output
output
output
output
inout

output
output
output

Altera Corporation
November 2006

zs_addr from the sdram;
zs_ba from the sdram;

zs cas n from the sdram;

zs cke from the sdram;

zs_cs n from the sdram;

zs dgq to and from the sdram;
zs_dgm from the sdram;
zs_ras n_from the sdram;

zs we n from the sdram;

9-19

Quartus Il Handbook, Volume 4

As shown in Figure 9-13, toplevel_design.bdf uses an instance of
sdram_pll to phase shift the SDRAM clock by -63 degrees.
toplevel_design.bdf also uses a subdesign delay reset block to
insert a delay on the reset n signal for the system module. This delay is
necessary to allow the PLL output to stabilize before the SOPC Builder

system begins operating.

Figure 9-14 shows pin assignments in the Quartus II assignment editor
for some of the SDRAM pins. The correct pin assignments depend on the

target board.

Figure 9-14. Pin Assignments for SDRAM

Lacation

If0 Bank 1/ Standard

General Function

Special Function Reserver

FIN_AE4

Calumnn If0

189 € sDRAM_A[10] PIN_Y11 7 LYTTL Calurnn Tio

190 € soRAM_A[11] PIN_AE7 7 LYTTL Calurnn Tio

191 € sDRAM_A[1] PIN_W12 7 LYTTL Calurnn Tio PEMO
192 € sDRAM_A[2] PIN_AC11 7 LYTTL Calurnn Tio RS
193 € sDRAM_A[3] PIN_W10 7 LYTTL Calurnn Tio RURLU
194 € sDRAM_A[4] PIN_AA11 7 LYTTL Calurnn Tio PiEM1
195 € sDRAM_A[S] PIN_ACLO 7 LYTTL Calurnn Tio RONF
196 € sDRAM_A[E] PIN_AE11 7 LYTTL Calurnn Tio RUF7
197 € sDRAM_A[7] PIN_ACS 7 LYTTL Calurnn Tio FCLES
198 € sDRAM_A8] PIN_AB10 7 LYTTL Calurnn Tio FLE#
199 € sDRAM_a[9] PIN_¥11 7 LYTTL Colurnn [0

200 € soRAM_BA[0] PIN_AG19 8 LYTTL Calurnn Tio DB+
201 € sDRAM_BA[1] PIN_AF19 8 LYTTL Calurnn Tio DEES
202 € sDRAM_CAS_N PIN_AD1E 8 LYTTL Calurnn Tio DEE2Z
203 € SDRAM_CKE PIN_AE1S 8 LYTTL Calurnn Tio DEBL
204 € sDRAM_CS N PIN_AGLE 8 LYTTL Calurnn Tio DB
205 € sDRAM_DOM[D] [PIN_AE14 7 LYTTL Calurnn Tio CLKEN
206 € soRAM_DOM[L] [FIN_¥13 7 LYTTL Calurnn Tio CLETn
207 € sDRAM_DOM[2] [FIN_AET 7 LYTTL Calurnn Tio DS1B
208 € sDRAM_DOM[E] [PIN_AGLD 7 LYTTL Calurnn Tio D536

Off-Chip SRAM
& Flash Memory

9-20

SOPC Builder systems can directly access many off-chip RAM and ROM
devices, without a controller core to drive the off-chip memory.
Avalon-MM signals can exactly describe the interfaces on many standard

Altera Corporation

November 2006

Off-Chip SRAM & Flash Memory

Altera Corporation
November 2006

memories, such as SRAM and flash memory. In this case, I/O signals on
the SOPC Builder system module can connect directly to the memory
device.

While off-chip memory usually has slower access time than on-chip
memory, off-chip memory provides the following benefits:

B Off-chip memory is less expensive than on-chip memory resources.

B The size of off-chip memory is bounded only by the 32-bit
Avalon-MM address space.

B Off-chip ROM, such as flash memory, can be used for bulk storage of
nonvolatile data.

B Multiple off-chip RAM and ROM memories can share address and
data pins to conserve FPGA 1/0O resources.

Adding off-chip memories to an SOPC Builder system also requires the
Avalon Tristate Bridge component.

This section describes the process of adding off-chip flash memory and
SRAM to an SOPC Builder system.

Component-Level Design for SRAM & Flash Memory

There are several ways to instantiate an interface to an off-chip memory
device:

B For common flash interface (CFI) flash memory devices, add the
Flash Memory (Common Flash Interface) component in SOPC
Builder.

B For Altera development boards, Altera provides SOPC Builder
components that interface to the specific devices on each
development board. For example, the Nios II EDS includes the
components Cypress CY7C1380C SSRAM and IDT71V416 SRAM,
which appear on Nios development boards.

These components make it easy for you to create memory systems
targeting Altera development boards. However, these components target
only the specific memory device on the board; they do not work for
different devices.

B For general memory devices, RAM or ROM, you can create a custom
interface to the device with the SOPC Builder component editor.
Using the component editor, you define the I/O pins on the memory
device and the timing requirements of the pins.

9-21

Quartus Il Handbook, Volume 4

In all cases, you must also instantiate the Avalon Tristate Bridge
component as well. Multiple off-chip memories can connect to a single
tristate bridge.

Avalon Tristate Bridge

A tristate bridge connects off-chip devices to on-chip system interconnect
fabric. The tristate bridge creates I/O signals on the SOPC Builder system
module, which you must connect to FPGA pins in the top-level Quartus
IT project. These pins represent the system interconnect fabric to off-chip
devices.

The tristate bridge creates address and data pins which can be shared by
multiple off-chip devices. This feature lets you conserve FPGA pins when
connecting the FPGA to multiple devices with mutually exclusive access.

You must use a tristate bridge in either of the following cases:

B The off-chip device has bidirectional data pins.
B Multiple off-chip devices share the address and/or data buses.

In SOPC Builder, you instantiate a tristate bridge by instantiating the
Avalon Tristate Bridge component. The Avalon Tristate Bridge
configuration wizard has a single option: To register incoming (to the
FPGA) signals or not.

B Registered — This setting adds registers to all FPGA input pins
associated with the tristate bridge (outputs from the memory
device).

B Not Registered - This setting does not add registers between the
memory device output pins and the system interconnect fabric.

The Avalon tristate bridge automatically adds registers to output signals
from the tristate bridge to off-chip devices.

Registering the input and output signals shortens the register-to-register
delay from the memory device to the FPGA, resulting in higher system
fmax performance. However, in each direction, the registers add one
additional cycle of latency for Avalon-MM master ports accessing
memory connected to the tristate bridge. The registers do not affect the
timing of the transfers from the perspective of the memory device.

a®® For details on the Avalon-MM tristate interface, refer to the Avalon
Memory-Mapped Interface Specification.

9-22 Altera Corporation
November 2006

Off-Chip SRAM & Flash Memory

Altera Corporation
November 2006

Flash Memory

In SOPC Builder, you instantiate an interface to CFI flash memory by
adding a Flash Memory (Common Flash Interface) component. If the
flash memory is not CFI compliant, you must create a custom interface to
the device with the SOPC Builder component editor.

The choice of flash device(s) and the configuration of the device(s) on the
board heavily influence the component-level design for the flash memory
configuration wizard. Typically, the component-level design task
involves parameterizing the flash memory interface to match the
device(s) on the board. Using the Flash Memory (Common Flash
Interface) configuration wizard, you must specify the structure (address
width and data width) and the timing specifications of the device(s) on
the board.

For details on features and usage, refer to chapter Common Flash Interface
Controller Core with Avalon Interface in volume 5 of the Quartus II
Handbook.

For an example of instantiating the Flash Memory (Common Flash
Interface) component in an SOPC Builder system, see “Example Design
with SRAM & Flash Memory” on page 9-26.

SRAM

To instantiate an interface to off-chip RAM, you perform the following
steps:

1. Create a new component with the SOPC Builder component editor
that defines the interface.

2. Instantiate the new interface component in the SOPC Builder
system.

The choice of RAM device(s) and the configuration of the device(s) on the
board determine how you create the interface component. The
component-level design task involves entering parameters into the
component editor to match the device(s) on the board.

For details on using the component editor, refer to the Component Editor
chapter in volume 4 of the Quartus II Handbook.

9-23

Quartus Il Handbook, Volume 4

9-24

SOPC Builder System-Level Design for SRAM & Flash Memory

In SOPC Builder on the System Contents tab, the Avalon tristate bridge
has two ports:

B Avalon-MM slave port—This port faces the on-chip logic in the SOPC
Builder system. You connect this slave port to on-chip master ports
in the system.

B Avalon-MM tristate master port — This port faces the off-chip
memory devices. You connect this master port to the Avalon-MM
tristate slave ports on the interface components for off-chip
memories.

You assign a clock to the Avalon tristate bridge which determines the
clock cycle time for off-chip devices connected to the tristate bridge.

You must assign base addresses to each off-chip memory. The Avalon
tristate bridge does not have an address; it passes unmodified addresses
from on-chip master ports to off-chip slave ports.

Simulation for SRAM & Flash Memory

The SOPC Builder output for simulation depends on the type of memory
component(s) in the system:

B Flash Memory (Common Flash Interface) component — This
component provides a generic simulation model. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Flash memory
component name>.dat.

B Custom memory interface created with the component editor — In
this case, you must manually connect the vendor simulation model
to the system testbench. SOPC Builder does not automatically
connect simulation models for custom memory components to the
system module.

B Altera-provided interfaces to memory devices — Altera provides
simulation models for these interface components. You can provide
memory initialization contents for simulation in the file <Quartus II
project directory>/<SOPC Builder system name>_sim/<Memory
component name>.dat. Alternately, you can provide a specific vendor
simulation model for the memory. In this case, you must manually
wire up the vendor memory model in the system testbench.

For further details, see “Simulation Considerations” on page 9-7.

Altera Corporation
November 2006

Off-Chip SRAM & Flash Memory

Altera Corporation
November 2006

Quartus Il Project-Level Design for SRAM & Flash Memory

SOPC Builder generates a system module with top-level I/O signals
associated with the tristate bridge and the memory interface components.
In the Quartus II project, you must connect the I/O signals to FPGA pins,
which connect to the memory device(s) on the board.

After generating the system with SOPC Builder, you can find the names
and directions of the I/O signals in the top-level HDL file for the SOPC
Builder system module. The file has the name <Quartus II project
directory>/<SOPC Builder system name>.v or <Quartus II project
directory>/<SOPC Builder system name>.vhd. You must connect these
signals in the top-level Quartus II design file.

You must assign a pin location for each I/O signal in the top-level
Quartus II design to match the target board. Depending on the
performance requirements for the design, you might have to assign
FPGA pins carefully to achieve performance.

SOPC Builder inserts synthesis directives in the top-level system module
HDL to assist the Quartus II fitter with signals that interface with off-chip
devices. An example is below:

reg [22: 0] tri state bridge address /* synthesis
ALTERA ATTRIBUTE = "FAST OUTPUT REGISTER=ON" */;

Board-Level Design for SRAM & Flash Memory

Memory requirements largely dictate the board-level configuration of the
SRAM & flash memory device(s). You can lay out memory devices in any
configuration, as long as the resulting interface can be described with
Avalon-MM signals.

Special consideration is required when connecting the
Avalon-MM address signal to the address pins on the memory
devices.

CAUTION

The system module presents the smallest number of address lines
required to access the largest off-chip memory, which is usually less than
32 address bits. Not all memory devices connect to all address lines.

Aligning the Least-Significant Address Bits

The Avalon-MM tristate address signal always presents a byte address.
Each address location in many memory devices contains more than one
byte of data. In this case, the memory device must ignore one or more of
the least-significant Avalon-MM address lines. For example, a 16-bit

9-25

Quartus Il Handbook, Volume 4

memory device must ignore Avalon-MM address [0] (which is a byte
address), and connect Avalon-MM address[1] to the least-significant
address line.

Table 9-1 shows the relationship between Avalon-MM address lines
and off-chip address pins for different Avalon-MM data widths.

Table 9-1. Connecting the Least-Significant Avalon-MM Address Line

Avalon-MM Address Address Line on Memory Device
Line 8-bit Memory | 16-bit Memory | 32-bit Memory | 64-bit Memory | 128-bit Memory
address[0] A0 No connect No connect No connect No connect
address[1] Al AO No connect No connect No connect
address|[2] A2 A1l A0 No connect No connect
address[3] A3 A2 A1 AO No connect
address[4] A4 A3 A2 Al A0
address|[5] A5 A4 A3 A2 A1
address[6] A6 A5 A4 A3 A2
address|[7] A7 A6 A5 A4 A3
address[8] A8 A7 A6 A5 A4
address[9] A9 A8 A7 A6 A5
address[10] A10 A9 A8 A7 A6

Aligning the Most-Significant Address Bits

The Avalon-MM address signal contains enough address lines for the
largest memory on the tristate bridge. Smaller off-chip memories might
not use all of the most-significant address lines.

For example, a memory device with 210 locations uses 10 address bits,
while a memory with 220 locations uses 20 address bits. If both these
devices share the same tristate bridge, then the smaller memory ignores
the ten most-significant Avalon-MM address lines.

Example Design with SRAM & Flash Memory

This section demonstrates adding a 1 Mbyte SRAM and an 8Mbyte flash
memory to the example design. These memory devices connect to the
system interconnect fabric through an Avalon-MM tristate bridge.

9-26 Altera Corporation
November 2006

Off-Chip SRAM & Flash Memory

Altera Corporation
November 2006

Adding the Avalon Tristate Bridge

Figure 9-15 shows the Avalon Tristate Bridge configuration wizard for
the example design. The example design uses registered inputs and
outputs to maximize system fy;4x, which increases the read latency by
two for both the SRAM and flash memory.

Figure 9-15. Avalon Tristate Bridge Configuration Wizard

1™ fvalon Tri-State Bridge - tri_state_bridge

Incorming Sighals

off-chip Frmazx, but also increases latency.
O Mot registered

Outgoing address and contral signals are always registered.

Cancel Finizh

Adding the Flash Memory Interface

The flash memory is 8M x 8-bit, which requires 23 address bits and 8 data
bits. Figure 9-16 shows the Flash Memory (Common Flash Interface)
configuration wizard settings for the example design. In this example, the
target board declares a reference designator U5 for the flash device on the
board.

9-27

Quartus Il Handbook, Volume 4

Figure 9-16. Flash Memory Configuration Wizard

Presets: AMDZALY0GS0-120R b |
Size
Adoress Width: 23 V| bits
DataWicth, 3 | bits
Board Info

b=]

Create an interface to any industry-standard CFI (Common Flash
Intertace)-compliant flash memary device. Select from a list of
tested flash memories, or provide interface & timing information
for & CFl memory which does not appear oh the list.

Atributes | |

Setug: | 40

| Wit | 160 ‘ Halct: | 40 | Units: ris

Systemn Clock 50 MHz
Read Waveforms

Timing granularty is System Clock cycles.

data ::

addrj

aclect I_

readn aons 130na

‘Wite Viaveforms

data ::

addr:{

aglect I_

weiten aoms |aeoms [soma

(5] Flash memary capacity: & MBytes (8386608 bytes)

&) Flash memory capacity: & MBytes (8388605 bytes)

Cancel Mext = Finish

Cancel = Prew Finish

Adding the SRAM Interface

The SRAM device is 256K x 32-bit, which requires 18 address bits and 32
data bits. The example design uses a custom memory interface created

with the SOPC Builder component editor. Figure 9-17 — Figure 9-21
shows the settings required on the various component editor tabs to

implement an interface to this SRAM.

9-28

Altera Corporation
November 2006

Off-Chip SRAM & Flash Memory

Figure 9-17. SRAM Interface Component Editor HDL Files Tab

™ Component Editor - SRAM 256K x 32bit
File

Introduction |: HOL Files | Signals || Interfaces | S Files | Companent tizard

[About HOL Files

File Marne Info Syrthesis | Sirmulstion

HDL Files:

Acded HOL File... Remave HOL File
Top Level Module: | Mo HOL Files s

Figure 9-18. SRAM Interface Component Editor Signals Tab

™ Component Editor - SRAM 256K x 32bit

File
Introduction | HOL Files | Sionals | intertaces | SvwFiles | Componert wizard
P About Signals
Interface Signal Type Wickth Direction
sram_tristate_slave clata 32 biclir
sram_tristate_slave address 18 input
sram_tristate_slave byteenable_n 4 input
sram_tristate_slave chipselect_n il input
sram_tristate_slave werite_n 1 input
sram_tristate_slave read_n il input
Altera Corporation 9-29

November 2006

Quartus Il Handbook, Volume 4

Figure 9-19. SRAM Interface Component Editor Interfaces Tab

™ Component Editor - SRAM 256K x 32bit
File

Intracuction | HOL Files | Signals | Interfaces | s Files | Component izard

= gvalon_tristate slave “sram_tristate_slave™ (1 of 1)

[Marne: |sram_tristate_slave

Type: |ava|0n_tristate slave w |

= Svalon Tristate Slave Settings

Slave addressing: |Mem0ry (use dynamic bus sizing) |

Minirum Arbitration Shares:
Can receive stderrfstdout:

= &valon Tristate Slave Timing

Setup: Read Vial 0 Hold: |1D |

Units: |n3 M |

Whirite Vit

Pipelined Transfers

Read Waveforms

[] []

addreas :{AO

read n Tau

chipaelect f

Figure 9-20. SRAM Interface Component Editor Component Wizard Tah

™ Component Editor - SRAM 256K x 32bit
File

Intraduction | HOL Files | Signals || Interfaces SWFiIes| Componert Wizard

[About Componert VWizard

Falder: |C:.faItera.l'memory_subsystem_design.fsram_256k_x_32b'rt.f

Clazss Mame: | sram_256k_x_32bit |

Cormporient Name: | SRAM 256K x 326 |

Component YWersion: | 1.0 |

Component Group: | User Logic |

[Marne Default Walue | Editable Type

Parameters:

Toolktip

9-30

Altera Corporation
November 2006

Off-Chip SRAM & Flash Memory

Altera Corporation

November 2006

SOPC Builder System Contents Tab

Figure 9-21 shows the SOPC Builder system after adding the tristate
bridge and memory interface components, and configuring them
appropriately on the System Contents tab. Figure 9-21 represents the
complete example design in SOPC Builder.

Figure 9-21. SOPC Builder System with SRAM & Flash Memory

Module Mame Description Clock Ease End IR
l; cpu ios || Processaor - After... |clk B
ot inztruction_master Master port
L cata_master Master port IRz 0 IRz 31
ftan_debug_module |Slave port 0x00000000(0x000007FF ']
jtag_uart JTAG UART ik 0x00000800] 0000008071
{#] onchip_ram On-Chip Memary (RAM .. |clk 0x00001000(0x00001FFF I
epcs_controller EPCS Serial Flash Contr... |clk 0x00002000] 0:x000027FF|[HC
{# sdram SDRAM Cortraller clk 0x01000000) 0x01FFFFFF
[tri_state_bridge Avalon Tri-State Bridge [clk
S gyalon_zlave Slave port
triztate_master Master port
[l ext_flash Flazh Memory (Comman...
=1 Slave port 0x00FFFFFF
= ext_ram SRAM 256K = 32hit
sram_tristate_slave |Slave port 0x00100000(0:x001FFFFF

After generating the system, the top-level system module file
sopc_memory_system.v contains the list of I/O signals for SRAM and
flash memory which must be connected to FPGA pins:

output chipselect n to the ext ram;
output read n to the ext ram;

output select n to the ext flash;
output [22: 0] tri state bridge address;
output [3: 0] tri state bridge byteenablen;
inout [31: 0] tri state bridge data;

output tri state bridge readn;
output write n to the ext flash;
output write n to the ext ram;

The Avalon tristate bridge signals which can be shared are named after
the instance of the tristate bridge component, such as

tri state bridge data([31:0].

Connecting & Assigning Pins in the Quartus Il Project

Figure 9-22 shows the result of generating the system module for the
complete example design, and connecting it in toplevel _design.bdf.

9-31

Quartus Il Handbook, Volume 4

Figure 9-22. toplevel_design.bdf with SRAM & Flash Memory

sdrarn_pll SORAM PLL

This PLL infroduces a phase-shift which compensates

) for board-level delays in the clock network, Other hoards

{PLEELOEINPUTES it g I0OKD g foquency a0 000 ke c0 may require different settings

Operation Mode: Hormal &0 SR B E LR

[tk [Ratio [Ph cag)[DE (]

[v o500
instz Stratix

sape_memary_systern
" |

deiay_reset_biock

—|clock_in delayed_reset_n et n

PLE.ELEAR N P raset n
=5 _addr_from_the_scram{11..0] UTBIT e SR A 0]
instf zs_ba_from_the_sdram[1 0] UPUT . SORAWMBAT.L]
FEiT SHRA TASTH
Reset Delay: Allows PLL 10 stahiize (ock) after Zs’casgn’:mm’::e’sjmm e
z5_cke_from_the_sdram — X
reset or device-configuration 76 o5 1 from the sdram 1 {1 ok
=5_cloy_to_and_trom_the_sdram{31.0] SORA BRI
zs_dgm_trom_the_sdram(3..0] UL SORA_DOMB.0])
z5_tas_n_trom_the_sdram UTPUT . SDRAWMRAS_N
zs_we_n_from_the_scram WTPUT __——, SDRALWEN

inst3

Figure 9-23 shows the pin assignments in the Quartus II assignment
editor for some of the SRAM and flash memory pins. The correct pin
assignments depend on the target board.

Figure 9-23. Pin Assignments for SRAM & Flash Memory

To Location Ij0Bank [If0 Standard |Gemeral Function | Special Function Reset

743 & sram_BE_N[0] PIN_M18 3 LYTTL Calumn I/0

Zad & sraM_BE_N[1] PIN_F17 3 LYTTL Calumn I/0

745 & sraM_BE_N[Z] PIN_118 3 LYTTL Calumn I/0 RUP3

Z46 & sraM_BE_N[3] PIN_L17 3 LYTTL Calumn I/0 CLK15n

247 € sram_cs N PIN_Ez4 3 LYTTL Calumn I/0 DQaT4

745 & sraM_oE_N PIN_EZ6 3 LYTTL Calumn I/0 DQAT?

z49 € SRAM_WE_N PIN_C24 3 LYTTL Calumn 1/0 DQEaT

Connecting FPGA Pins to Devices on the Board

Table 9-2 shows the mapping between the Avalon-MM address lines and
the address pins on the SRAM and flash memory devices.

Table 9-2. FPGA Connections to SRAM & Flash Memory (Part 1 of 2)

. Flash Address SRAM Address
Avalon-MM Address Line (8M x 8-bit Data) (256K x 32-bit data)
tri state bridge address[0] A0 No connect
tri state bridge address[1] A1 No connect
tri state bridge address[2] A2 A0
9-32 Altera Corporation

November 2006

Off-Chip SRAM & Flash Memory

Table 9-2. FPGA Connections to SRAM & Flash Memory (Part 2 of 2)
. Flash Address SRAM Addr
Avalon-MM Address Line (8M x 8-bit Data) (256K x SZSilfiteds:ta)

tri state bridge address[3] A3 Al
tri state bridge address[4] A4 A2
tri state bridge address[5] A5 A3
tri state bridge address[6] A6 A4
tri state bridge address[7] A7 A5
tri state bridge address|[8] A8 A6
tri state bridge address[9] A9 A7
tri state bridge address[10] A10 A8
tri state bridge address[11] A1l A9
tri state bridge address[12] Al12 A10
tri state bridge address[13] A13 Al1
tri state bridge address[14] Al14 A12
tri state bridge address[15] A15 A13
tri state bridge address[16] A16 A14
tri state bridge address[17] A17 A15
tri state bridge address[18] A18 A16
tri state bridge address[19] A19 A17
tri state bridge address[20] A20 No connect
tri state bridge address[21] A21 No connect
tri state bridge address[22] A22 No connect
Altera Corporation 9-33

November 2006

Quartus Il Handbook, Volume 4

Document

Table 9-3 shows the revision history for this document.

Revision History

Table 9-3. Document Revision History

interconnect fabric.” Changed old “Avalon interface” terms to
“Avalon Memory-Mapped interface.”

Date & Document
] Changes Made Summary of Changes
Version
November 2006, |Updated Avalon terminology because of changes to Avalon For the 6.1 release,
v6.1.0 technologies. Changed old “Avalon switch fabric” term to “system

Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006, v6.0.0

Chapter 9 was previously chapter 8. No change to content.

October 2005,
v5.1.0

Chapter 8 was previously chapter 6. No change to content.

May 2005, v5.0.0

Initial release.

9-34

Altera Corporation
November 2006

for SOPC Builder

10. Developi
Z;\l |:| —E D)/A 0. Developing Components

®

Q1154007-6.1.0

Introduction

Altera Corporation
November 2006

This chapter describes the design flow to develop a custom SOPC Builder
component. This chapter provides tutorial steps that guide you through
the process of creating a custom component, integrating it into a system,
and downloading it to hardware.

This chapter is divided into the following sections:

B Component Development Flow (see page 10-3).

B Design Example: Pulse-Width Modulator (PWM) Slave (see page 10-8).
This design example demonstrates developing a component with a
single Avalon® Memory-Mapped (Avalon-MM) slave interface. In
this section, you will start with a ready-made HDL design, package
itinto a SOPC Builder component, and then instantiate it in a system.
If you have a development board, you can download the design to
hardware and see the PWM work.

B Sharing Components (see page 10-28). This section shows you how to
relocate component files to use them in other systems, or share them
with other designers.

SOPC Builder Components & the Component Editor

SOPC Builder provides a component editor that lets you create and edit
your own SOPC Builder components. By following the procedures
described in this document, you will learn to use the component editor
and turn any custom logic module into an SOPC Builder component.

Once your custom logic is packaged as component, you can instantiate it
in an SOPC Builder system in the same manner as commercially available
SOPC Builder Ready components. You can share your component with
other designers to encourage design reuse.

Typically, a component is comprised of the following:

B Hardware files: HDL modules that describe the component
hardware

B Software files: A C-language header file that defines the component
register map, and driver software that allows programs to control the
component

B Component description file (class.ptf): This file defines the structure
of the component, and provides SOPC Builder the information it
needs to integrate the component into a system. The component

10-1

Quartus Il Handbook, Volume 4

editor generates this file automatically based on the hardware &
software files you provide, and the parameters you specify in the
component editor GUIL

After you create the hardware and software files that describe the
component, you use the component editor to package those file into an
SOPC Builder component. You can also use the component editor later to
re-edit the component, if you ever update the hardware or software files.

Assumptions About the Reader

This chapter assumes that you are familiar with the following:

B Building systems with SOPC Builder. For details, see the Introduction
to SOPC Builder and Tour of the SOPC Builder User Interface chapters
in volume 4 of the Quartus II Handbook.

B SOPC Builder components. For details, see the SOPC Builder
Components chapter in volume 4 of the Quartus II Handbook.

B Basic concepts of the Avalon-MM interface. You do not need
extensive knowledge of the Avalon-MM interface, such as transfer
types or signal timing, to use the design example(s) provided with
this chapter. However, to create your own custom components, you
need a fuller understanding of the Avalon-MM interface. For details,
see the Avalon Memory-Mapped Interface Specification.

Hardware & Software Requirements

To use the design example(s) in this chapter, you must have the following;:

B Design files for the example design — A hyperlink to the design files
appears next to this chapter on the SOPC Builder literature page.
Visit www.altera.com/sopcbuilder.

B Quartus®II Software version 4.2 or higher — Both Quartus II Web
Edition and the fully licensed version will work with the example
design.

B Nios® I Embedded Design Suite (EDS) version 1.1 or higher — Both
the evaluation edition and the fully licensed version will work with
the example design.

B Nios development board and an Altera® USB-Blaster™ download
cable (Optional) — You can use any of the following
Nios development boards:

e Stratix®II Edition

Stratix Edition

Stratix Professional Edition

Cyclone™ Edition

10-2 Altera Corporation
November 2006

Component Development Flow

Component
Development
Flow

Altera Corporation
November 2006

If you do not have a development board, you can follow the hardware
development steps, but you will not be able to download the complete
system to a working board.

You can download the Quartus II Web Edition software and the Nios II
EDS, Evaluation Edition for free from the Altera Download Center at
www.altera.com.

Il=~ Before you begin, you must install the Quartus® II software and
Nios I development tools.

This section provides an overview of the development process for SOPC
Builder components, covering both the hardware and software aspects.
This section focuses on the design flow for components with a single
Avalon-MM slave interface. However, these steps are easily extrapolated
to components with a master port, or multiple master and slave ports.

Typical Design Steps

A typical development sequence for a slave component includes the
following steps, not necessarily in this order:

1. Specify the hardware functionality.
2. If amicroprocessor will be used to control the component, specify
the application program interface (API) to access and control the

hardware.

3. Based on the hardware and software requirements, define an
Avalon-MM interface that provides:

a. Appropriate control mechanisms

b. Adequate throughput performance
4. Write HDL that describes the hardware in either Verilog or VHDL.
5. Test the component hardware alone to verify correct operation.

6. Write a C header file that defines the hardware-level register map
for software.

7. Use the component editor to package the initial hardware and
software files into a component.

10-3

Quartus Il Handbook, Volume 4

10.

11.

12.

13.

14.

The design process for a master component is similar, except for software

Instantiate the component into a simple SOPC Builder system
module.

Test register-level accesses to the component using a
microprocessor, such as the Nios II processor. You can perform
verification in hardware, or on an HDL simulator such as
ModelSim®.

If a microprocessor will be used to control the component, write
driver software.

Iteratively improve the component design, based on in-system
behavior of the component:

a. Make hardware improvements and adjustments.
b. Make software improvements and adjustments.

c. Incorporate hardware and software changes into the
component using the component editor.

Build a complete SOPC Builder system incorporating one or more
instances of the component.

Perform system-level verification. Make further iterative
improvements, if necessary.

Finalize the component and distribute it for design reuse.

development aspects.

Hardware Design

As with any logic design process, the development of SOPC Builder
component hardware begins after the specification phase. Coding the

HDL is an iterative process, as you write and verify the HDL logic against

the specification.

10-4

Altera Corporation
November 2006

Component Development Flow

The architecture of a typical component consists of the following

functional blocks:

B Task Logic - The task logic implements the component's fundamental
function. The task logic is design dependent.

B Register File - The register file provides a path for communicating
signals from inside the task logic to the outside world, and vice versa.
The register file maps internal nodes to addressable offsets that can
be read or written by the Avalon-MM interface.

B Avalon-MM Interface - The Avalon-MM interface provides a standard

Avalon-MM front-end to the register file. The interface uses any

Avalon-MM signal types necessary to access the register file and

support the transfer types required by the task logic. The following

factors affect the Avalon-MM interface:

e How wide is the data to be transferred?

e What is the throughput requirement for the data transfers?

e Is this interface primarily for control or for data? That is, do
transfers tend to be sporadic, or come in continuous bursts?

e Is the hardware relatively fast or slow compared to other
components that will be in a system?

Figure 10-1 shows a block diagram of a typical component with one
Avalon-MM slave port.

Figure 10-1. Typical Component with One Avalon-MM Slave Port

Component Hardware

Register File
$| Status Register
Application- i 9
Specific .
Interface — Control Register1
Signals Control Register2 AVaS||0a|'\1/'éV|M
Avalon-MM [Port
$| Data Register1 <+—> Slave Signals
Interface
| Data Register2 .
$| Data Register3
Other Registers
Altera Corporation 10-5

November 2006

Quartus Il Handbook, Volume 4

Software Design

If your intent is for a microprocessor to control your component, then you
must provide software files that define the software view of the
component. At a minimum, you must define the register map for each
slave port that is accessible to a processor. The component editor lets you
package a C header file with the component to define the software view

of the hardware.

Typically, the header file declares macros to read and write each register
in the component, relative to a symbolic base address assigned to the
component. The following example shows an excerpt from the register
map for an Altera-provided UART component for the Nios II processor.

Example: Register Map for a Component

#include <io.h>

#define
#define
#define

#define
#define
#define
#define

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

10-6

TOADDR_ALTERA AVALON TIMER STATUS (base)
IORD ALTERA AVALON TIMER STATUS (base)
TOWR_ALTERA AVALON TIMER STATUS (base, data)
ALTERA AVALON TIMER STATUS TO MSK

ALTERA AVALON TIMER STATUS TO OFST

ALTERA AVALON TIMER STATUS RUN MSK

ALTERA AVALON TIMER STATUS RUN OFST

IOADDR_ALTERA AVALON TIMER CONTROL (base)
TORD_ALTERA AVALON TIMER CONTROL (base)
IOWR ALTERA AVALON TIMER CONTROL (base, data)
ALTERA AVALON TIMER CONTROL ITO MSK

ALTERA AVALON TIMER CONTROL_ ITO OFST

ALTERA AVALON TIMER CONTROL CONT MSK

ALTERA AVALON TIMER CONTROL_ CONT OFST
ALTERA AVALON TIMER CONTROL START MSK
ALTERA AVALON TIMER CONTROL_START OFST
ALTERA AVALON TIMER CONTROL STOP MSK

ALTERA AVALON TIMER CONTROL_ STOP OFST

__IO_CALC_ADDRESS NATIVE (base, 0)
IORD (base, 0)

IOWR (base, 0, data)

IO CALC_ADDRESS NATIVE (base, 1)
IORD (base, 1)

IOWR (base, 1, data)

Software drivers abstract hardware details of the component so that
software can access the component at a high level. The driver functions
provide the software an API to access the hardware. The software
requirements vary according to the needs of the component. The most
common types of routines initialize the hardware, read data, and write

data.

Driver software is dependent on the target processor. The component
editor lets you easily package software drivers for the hardware
abstraction layer (HAL) used by the Nios II processor development tools.
To provide drivers for other processors, you must accommodate the
needs of the development tools for the target processor.

Altera Corporation
November 2006

Component Development Flow

Altera Corporation
November 2006

For details on writing drivers for the Nios Il HAL, see the Nios II Software
Developer’s Handbook. It is instructive to look at the software files
provided for other ready-made components. The Nios II EDS provides
many components you can use as reference. See <Nios II EDS install
path>/components/.

Verifying the Component

You can verify the component in incremental stages, as you complete
more and more of the design. Typically, you first verify the hardware logic
as a unit (which might comprise multiple smaller stages of verification),
and later you verify the component in a system.

Unit Verification

To test the task logic block alone, you use your preferred verification
method(s), such as behavioral or register transfer level (RTL) simulation
tools. Similarly, you can verify all component logic, including the register
file and the Avalon-MM interface(s), using your preferred verification
tools.

After you package the HDL files into a component using the component
editor, the Nios II EDS offers an easy-to-use method to simulate read and
write transactions to the component. Using the Nios II processor's robust
simulation environment, you can write C code for the Nios II processor
that initiates read and write transfers to your component. The results can
be verified either on the ModelSim simulator or on hardware, such as a
Nios development board.

See AN351: Simulating Nios II Embedded Processor Designs for more
information.

System-Level Verification

After you package the HDL files into a component using the component
editor, you can instantiate the component in a system, and verify the
functionality of the overall system module.

SOPC Builder provides support for system-level verification for RTL
simulators such as ModelSim. While SOPC Builder produces a testbench
for system-level verification, the capability of the simulation environment
is largely dependent on the components included in the system.

10-7

Quartus Il Handbook, Volume 4

Design Example:
Pulse-Width
Modulator Slave

10-8

Il'=" During the verification phase, including a Nios II processor in
the system can be useful to get the benefits of the Nios II
simulation environment. Even if your component has no
relationship to the Nios II processor, the auto-generated
ModelSim simulation environment provides an easy-to-use
base that you can build upon to verify other logic in the system.

This section uses a pulse-width modulator (PWM) design example to
demonstrate the steps to create a component and instantiate it in a
system. This component has a single Avalon-MM slave port.

In this section, you will perform the following steps:

1. Install the design files.

2. Review the example design specifications.

3. Package the design files into an SOPC Builder component.

4. Instantiate the component in hardware.

5. Compile the hardware design in the Quartus II software, and
download the design to a target board.

6. Exercise the hardware using Nios II software.

Install the Design Files

Before you proceed, you must install the Nios II development tools and
download the PWM example design from the Altera web site. The
hardware design used in this chapter is based on the standard hardware
example design included with the Nios II EDS.

Do not use spaces in any directory path names when installing
the design files. If the path contains spaces, SOPC Builder might
not be able to access the files.

CAUTION

Perform the following steps to setup the design environment:

1. Unzip the contents of the PWM zip file to a directory on your
computer. This document will refer to this directory as the <PWM
design files> directory.

Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Altera Corporation
November 2006

On your host computer file system, locate the following directory:

<Nios II EDS install path>/examples/<verilog or vhdl>/<board
version>/standard

Each development board has a VHDL and Verilog version of the
design. You can use either one. Table 10-1 shows the names of the

directories for the available Nios development boards.

Table 10-1. Design File Directories
Nios Development Board Tutorial Directory
Stratix |l Edition niosl|_stratixll_2s60_es
Stratix Edition niosll_stratix_1s10 or niosl|_stratix_1s10_es
Stratix Professional niosll_stratix_1s40
Edition
Cyclone Edition niosll_cyclone_1c20

For demonstration purposes, the figures in this chapter show the
case of the Verilog design on the Nios Development Board, Cyclone
Edition.

Copy the standard directory to a new location. By copying the
design files, you avoid corrupting the original design. This
document will refer to the newly-created directory as the
<Quartus II project> directory.

Review the Example Design Specifications

This section discusses the design specifications for the provided PWM
example design, giving details on each of the following topics:

PWM Design Files
Functional Specification
PWM Task Logic
Register File
Avalon-MM Interface
Software API

In a typical design flow, it is the designer's responsibility to specify the
behavior of the component.

10-9

Quartus Il Handbook, Volume 4

PWM Design Files

Table 10-2 lists the contents provided in the <PWM design files> directory.

Table 10-2. PWM Design Files Directory

File Name

Description

/pwm_hw

Contains HDL files describing the component hardware.

pwm_task_logic.v

Contains the core of the PWM functionality.

pwm_register_file.v

Contains logic for reading and writing PWM registers.

pwm_avalon_interface.v

Instantiates task logic and register file, and provides an
Avalon-MM slave interface. This file contains the top-level
module.

Ipwm_sw Contains C files describing the software interface to the
component.
finc Contains header files defining low-level hardware interface.

avalon_slave_pwm_regs.h

Defines macros to access registers in the PWM component.

/HAL

Contains HAL driver files for the Nios Il processor.

linc

Contains HAL driver include files.

altera_avalon_pwm_routines.h

Declares function prototypes for accessing the PWM.

Isrc

Contains HAL driver source code files.

altera_avalon_pwm_routines.c

Defines functions for accessing the PWM.

Jtest_software

Contains an example program to test the component
hardware & software.

hello_altera_avalon_pwm.c

main () initializes the PWM hardware, and uses the PWM
to blink an LED.

Functional Specification

A PWM component outputs a square wave with modulated duty cycle. A
basic pulse-width waveform is shown in Figure 10-2.

Figure 10-2. Basic Pulse-Width Modulation Waveform

ek [L el

ft——————————————pwm_duty_cycle=7—+—+———>|

pwm_clock_divide = 10 (+1)

pwm_out

10-10

Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Altera Corporation
November 2006

The PWM component is specified and created as follows:

B The task logic operates synchronously to a single clock.

B The task logic uses 32-bit counters to provide a suitable range of
PWM periods and duty cycles.

B Ahostprocessor is responsible for setting the PWM period value and
duty-cycle value. This requirement implies the need for a read / write
interface to control logic.

B Register elements are defined to hold the PWM period value and
duty-cycle value.

B The host processor can halt the PWM output by using an enable
control bit.

PWM Task Logic

The PWM task logic has the following characteristics:

The PWM task logic consists of an input clock (c1k), an output signal
(pwm_out), an enable bit, a 32-bit modulo-n counter, and a 32-bit
comparator circuit.

clk drives the 32-bit modulo-n counter to establish the period of the
pwm_out signal.

The comparator compares the current value of the modulo-n counter
to the duty-cycle value and determines the output of pwm out.
When the current count value is less than or equal to the duty-cycle
value, pwm_out drives logic value 0; otherwise, it drives logic
value 1.

10-11

Quartus Il Handbook, Volume 4

The task-logic structure is shown in Figure 10-3.

Figure 10-3. PWM Task Logic Structure

Modulo-n Counter

-~ Modulo-n
- Value Register
Reset i o
Avalon-MM Enable lock Enabl =
Slave Port <@——@—p>| Control |Clock Enable: Up Counter —
Signals Register Master Clock: o
>
PWM
Output
o Duty Cycle
o Value Register
Register File

The register file provides access to the enable bit, the modulo-n value and
the duty cycle value, shown in Figure 10-3. The design maps each register
to a unique offset in the Avalon-MM slave port address space.

Each register has read and write access, which means that software can
read back values previously written into the registers. This is an arbitrary
design choice that provides software convenience at the expense of
hardware resources. You could equally design the registers to be write-
only, which would conserve on-chip logic resources, but make it
impossible for software to read back the register values.

10-12 Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

The register file and offset mapping is shown in Table 10-3. To support
three registers, two bits of address encoding are necessary. This gives rise
to the fourth register which is reserved.

Table 10-3. Register File & Address Mapping

Register Name Offset Access Description

clock divide 00 Read / Write | The number of clock cycles counted during one cycle
of the PWM output.

duty cycle 01 Read / Write | The number of clock cycles in which the PWM output
will be low.

enable 10 Read / Write | Enables/disables the PWM output. Setting bit 0 to 1
enables the PWM.

Reserved 11 -

Altera Corporation
November 2006

To read or write the registers requires only one clock cycle, which affects
the wait-states for the Avalon-MM interface.

Avalon-MM Interface

The Avalon-MM interface for the PWM component requires a single slave
port using a small set of Avalon-MM signals to handle simple read and
write transfers to the registers. The component's Avalon-MM slave port
has the following characteristics:

It is synchronous to the Avalon-MM slave port clock.

It is readable and writeable.
It has zero wait states for reading and writing, because the registers

are able to respond to transfers within one clock cycle.
It has no setup or hold restrictions for reading and writing.

Read latency is not required, because all transfers can complete in
one clock cycle. Read latency would not improve performance.

It uses native address alignment, because the slave port is connected
to registers rather than a memory device.

10-13

Quartus Il Handbook, Volume 4

Table 104 lists the Avalon-MM signals types required to implement these
transfer properties. The table also lists the names of each signal as defined

in the HDL design file.
Table 10-4. PWM Signal Names & Avalon-MM Signal Types
Signal Name in HDL gy;':ngm Bit-Width | Direction Notes

clk clk 1 input Clock that synchronizes data
transfers and task logic

resetn reset_n 1 input Reset signal; active low.

avalon chip select |chipselect 1 input Chip-select signal

address address 2 input 2-bit address; only three
encodings are used.

write write 1 input Write enable signal

write data writedata 32 input 32-bit write-data value

read read 1 input Read enable signal

read data readdata 32 output 32-bit read-data value

a®® For details on the behavior of Avalon-MM signals and transfers, see the
Avalon Memory-Mapped Interface Specification.

Software AP/

The PWM example design provides both a header file that defines the
register map, and driver software for the Nios II processor. See Table 10-2
on page 10-10 for a description of the individual files. The driver
functions are listed in Table 10-5.

Table 10-5. PWM Driver Functions (1)

Function Prototype Description
altera avalon pwm init(); Initializes the PWM hardware
altera avalon pwm enable(); Activates the PWM output
altera avalon pwm disable(); Deactivates the PWM output
altera avalon pwm change duty cycle(); Changes the PWM duty cycle

Note for Table 10-5:
(1) Each function takes a parameter that specifies the base address of a specific instance of the PWM component.

10-14 Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Altera Corporation
November 2006

Package the Design Files into an SOPC Builder Component

In this section, you will use the SOPC Builder component editor to
package the design files into an SOPC Builder component. You will
perform the following operations:

1. Open the Quartus II project and start the component editor.
2. Configure the settings on each tab of the component editor.

3. Save the Component.

Open the Quartus Il Project & Start the Component Editor

To open SOPC Builder from the Quartus II software, you must have a
Quartus II project open. Perform the following steps:

1. Start the Quartus II software.
2. Open the project standard.qpf in the <Quartus II project> directory.

3. On the Tools menu, click SOPC Builder. The SOPC Builder GUI
appears, displaying a ready-made example design containing a
Nios II processor and several components in the table of active
components.

4. On the File menu, click New Component. The component editor
GUI appears, displaying the Introduction tab.

HDL Files Tab

In this section you will associate the HDL files with the component using
the HDL Files tab. Perform the following steps:

1. Click the HDL Files tab.

=" Each tab in the component editor GUI provides on-screen
information that describes how to use each tab. Click the
triangle at the top-left of each tab to view these instructions.

2. Click Add HDL File.

3. Browse to the <PWM design files>/pwm_hw directory. There are
three Verilog HDL (.v) files in this directory.

4. Select all three HDL files in this directory and click Open. Use the
control key to select multiple files.

10-15

Quartus Il Handbook, Volume 4

You will return to the HDL Files tab. The component editor
immediately analyzes each file to read I/O signal and parameter
information from the file.

5. Ensure that both the Simulation and Synthesis boxes are turned on
for all files. This indicates that each file is appropriate for both

simulation and synthesis design flows.

6. Select pwm_avalon_interfave.v: pwm_avalon_interface in the Top
Level Module list to specify the top-level module.

At this point, the component editor GUI displays error messages. Ignore
these messages for now, because you will fix them in later steps.
Figure 104 shows the state of the HDL Files tab.

Figure 10-4. HDL Files Tab

™ Component Editor - pwm_avalon_interface

File

Introduction| HOL Files | Signals || Interfaces | SW Files | Compaonent YWizard

= About HDL Files

“HOL libraries must be added before any modules which use them.

After adding files, choose the top-level module for your component using the Top Level Module ist.

File Marme
B v _avalon_interface v

Info
3k, 2005.01 13471610

Syrthesis | Sirmulstion

pwm_register_file.v

Bk, 2005.01.1317:00:10

HDL Files: | B [prwm_task_logic.v

3k, 2005.01.13.15:56:56

EEE

EEE

Adlcl HOL File....

Top Level Module: |pvvin_svalon_interface.v. pwm_avalon_interface

On this tab you specify the Verilog or WHOL files to include in the component. Az you add each file, the component
editar will analyze it, indicated by green blinking.

If you do nat add any files here, then you must manually add signals and interfaces using the Signals and Interfaces
tabs. In this case, your component serves as an interface to an external device.

@ avalon_slave_0: Slave has write signal but no writedata sional
@ avalon_slave_0: Slave has read signal but no readdata signal
@ avalon_slave_0: Slave must have a read or write interface, or support interrupts.

<prev | [met» | [Finishe.

10-16

Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Signals Tab

For every 1/0 signal present on the top-level HDL module, you must
map the signal name to a valid Avalon-MM signal type using the Signals
tab. The component editor automatically fills in signal details that it finds
in the top-level HDL source file. If a signal is named the same as a
recognized Avalon-MM signal type (such as write or address), then
the component editor automatically assigns the signal's type. If the
component editor cannot determine the signal type, it assigns it to type
export.

Perform the following steps to define the component I/O signals:

1. Click the Signals tab. All of the I/O signals in the top level HDL
module pwm_avalon_interface appear automatically.

2. Assign the Signal Type settings for all signals, as show in
Figure 10-5. To change a value, click the Signal Type cell to display
a drop-down list, and select a new signal type from the list.

After you correctly assign each signal name to a signal type, the error
messages should disappear.

Figure 10-5. Assigning Signal Names to Signal Types

™ Component Editor - pwm_avalon_interface

File

Intraduction || HOL Files| Sighals | Interfaces || SW Files | Component Wizard

[About Sighals

Interface Signal Type Wickth Direction
avalon_slave_0 clk 1 input
avalon_slave_0 reset_n 1 inpt
avalon_slave_0 chipselect 1 input
avalon_slave_0 address 2 inpt
avalon_slave_0 werite: 1 input
avalon_slave_0 weritedata 32 inpt T
avalon_slave_0 read 1 input
avalon_slave_0 readdata 32 output
avalon_slave_0 export 1 output
<prev | [met» | [Finishe.

Altera Corporation
November 2006

[~ You assign type export to the signal pwm_out, because it is
not an Avalon-MM signal. It is intended to be an output of
the SOPC Builder system.

10-17

Quartus Il Handbook, Volume 4

10-18

Interfaces Tab

The Interfaces tab lets you configure the properties of all Avalon-MM
interfaces on the component. In this case there is only one Avalon-MM
interface, as specified in the section “Avalon-MM Interface” on

page 10-13. Perform the following steps to configure the Avalon-MM

slave port:

1. Click the Interfaces tab. The component editor displays a default
Avalon-MM slave port that it created automatically, based on the
top-level I/O signals in the component design.

2. Typecontrol slave in the Name field to rename the slave port.
This name appears in the SOPC Builder GUI when you instantiate
the component in SOPC Builder.

3. Change the settings for the control_slave interface as listed in
Table 10-6 below. Figure 10-6 on page 10-19 shows the Interfaces

tab with the correct settings.

Table 10-6. Control Slave Interface Settings

Setting Value Description
Slave addressing Registers | This setting is appropriate for slave ports

used to access address-mapped registers

Read Wait 0 This setting means that the slave port
responds to read requests in a single clock
cycle (that is, it does not need read
waitstates.)

Write Wait 0 This setting means that the slave port

captures write requests in a single clock
cycle (that is, it does not need write
waitstates.)

Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Altera Corporation
November 2006

Figure 10-6. Configuring the Interface Properties

™ Component Editor - pwm_avalon_interface
File

Intraduction || HOL Files Signals| Interfaces | S Files || Companent YWizard

[About Interfaces

= gvalon slave “control_slave™ (1 of 1)

[Marne: | control_slave

Type: |ava|0n slave w |

= Avalon Slave Settings

Slave addressing:
Can receive stderrfstdout:

= Avalon Slave Timing

o

I:I Read Wait:

Wwitite Wait: | O
Read Latency: EI
Read Waveforms
data
addr X
aelect
veadn loycles
Add Interface
<prev | [met» | [Finishe.

Software Files (SW Files) Tab

The SW Files tab lets you associate software files with the component,
and specify their usage. This component example design provides both a
header file that defines the registers and driver software for the Nios II
processor. For a description of each file, see Table 10-2 on page 10-10.

Perform the following steps to import the software files into the

component:
1. Click the SW Files tab.

2. Click Add SW File. The Open dialog appears.

3. Browse to the directory <PWM design files>/pwm_sw/inc.

10-19

Quartus Il Handbook, Volume 4

4. Select the file altera_avalon_pwm_regs.h and click Open.

5. Click the Type cell for altera_avalon_pwm_regs.h to change the file
type. A drop-down list appears.

6. Select type Registers (inc/).

7. Repeat steps 2 to 6 to add the file <PWM design
files>lpwm_sw/HAL/inc/altera_avalon_pwm_routines.h and set its
type to HAL (HAL/inc/).

8. Repeat steps 2 to 6 to add the file <PWM design
files>lpwm_sw/HAL/src/altera_avalon_pwm_routines.c and set its

type to HAL (HAL/src/).

Figure 10-7 shows the SW Files tab with the correct settings.

Figure 10-7. Software Files (SW Files) Tab

File Marne Info Type

attera_avalon_pwm_regs.h 3k, 2004 1217 16:21:10 Registers (inch)
attera_avalon_pewm_routines h 2k, 2004 1217 16:04:28 HAL (HALARCH
attera_avalon_pwm_routines.c 3k, 2004 1217 16:27:.04 HAL (HALf=srch)

Component Wizard Tab

This tab lets you control how SOPC Builder presents the component to a
user. Perform the following steps to configure the user presentation of the
component:

1. Click the Component Wizard tab.

2. For this example, do not change the default settings for Component
Name, Component Version, and Component Group.

These settings affect how SOPC Builder identifies the component
and displays it in the list of available components. The component
editor creates a default name for the component, based on the name
of the top-level design module.

3. Under Parameters, in the Tooltip cell for the parameter
clock_divide_reg_init, type the following:

Initial PWM Period After Reset

10-20 Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Altera Corporation
November 2006

4. In the Tooltip cell for clock_cycle_reg_init, type:
Initial Duty Cycle After Reset

5. Click Preview the Wizard to preview how the component wizard
will appear when instantiated from within SOPC Builder.

6. Close the preview window when you are done.

Save the Component

Perform the following steps to save the component and exit the
component editor:

1. Click Finish. A dialog appears describing the files that will be
created for the component.

2. Click Yes to save the files. The component editor saves the files to a
subdirectory under <Quartus II project>. The component editor
closes, and you return to the main SOPC Builder GUIL

3. Locate the new component pwm_avalon_interface in the list of
available components under the User Logic group.

You are ready to instantiate the component into an SOPC Builder system.

Instantiate the Component in Hardware

At this point, the new component is ready to instantiate in an SOPC
Builder system. The usage of a component is design dependent, based on
the needs of the system. The remaining steps for this design example
show one possible way to instantiate and test the component. However,
there is an unlimited number of ways this component can be used in a
system.

In this section you will add the new PWM component to a system,
recompile the hardware design, and configure the FPGA. This section

includes the following steps:

1. Add a PWM component to the SOPC Builder system and regenerate
the system.

2. Modify the Quartus II design to connect the PWM output to an
FPGA pin.

3. Compile the Quartus II design and configure the FPGA with the
new hardware image.

10-21

Quartus Il Handbook, Volume 4

10-22

Add a PWM Component to the SOPC Builder System

Perform the following steps to setup SOPC Builder's component search
path:

1. In the SOPC Builder GUI, on the File menu, click SOPC Builder
Setup.

2. Under Component/Kit Library Search Path, enter the path to the
<Quartus II project> directory. If there are pre-existing paths, use
"+" to separate the path names.

3. Click OK.

Il=" The steps above make the component's software files visible to
the Nios II IDE in later steps. These steps are necessary for the
Quartus II software v4.2 and the Nios II IDE v1.1. Future
releases will eliminate the need for these steps.

Perform the following steps to add a PWM component to the SOPC
Builder system:

1. On the SOPC Builder System Contents tab, select the new
component pwm_avalon_interface under the User Logic group in
the list of available components, and click Add. The configuration
wizard for the PWM component appears.

If you want to, you can modify the parameters in the configuration
GUIL The parameters affect the reset state of the PWM control
registers, but have no affect on the outcome of the steps in this
chapter.

2. Click Finish. You return to the SOPC Builder System Contents tab,
and the component pwm_avalon_interface_0 appears in the table
of active components.

3. Right-click pwm_avalon_interface_0 and choose Rename.

4. Typez pwm O for the component name and press Enter. (This name
is unusual, but it minimizes effort later when you update the
Quartus II design in section “Modify the Quartus II Design to Use
the PWM Output” on page 10-23.

You must name the component exactly as directed, or else later
steps in this chapter will fail.

CAUTION

Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

5. Click Generate to start generating the system.

6. After system generation completes successfully, exit SOPC Builder
and return to the Quartus II software.

Modify the Quartus Il Design to Use the PWM Output

At this point, you have created an SOPC Builder system that uses the
PWM component. Now you must update the Quartus II project to use the
PWM output.

The file standard.bdf is the top-level Block Design File (BDF) for the
Quartus II project. The BDF contains a symbol for the SOPC Builder
system module, named std_<FPGA>, where <FPGA> refers to the FPGA
on the target development board.

In the previous steps you added a PWM component which produces an
additional output from the system module. Now you need to update the
symbol for the system module, and connect the PWM output to an FPGA

pin.

s To complete this section, you must be familiar with the
Quartus II Block Editor.

1. In the Quartus II software, open the file standard.bdf.

2. Right-click the symbol std_<FPGA> in the BDF and choose Update
Symbol or Block. The Update Symbol or Block dialog appears.

3. Select Selected Symbol(s) or Block(s).

4. Click OK to close the dialog. The symbol std_<FPGA> in the BDF is
updated, and it now has an additional output port named
pwm_out_from_the_z pwm_0.

Il SOPC Builder creates unique names for all I/O ports on the
system module, by combining the signal name in the
component design file with the instance name of the
component in the system module.

5. Delete the symbol for pins LEDG[7. . 0] which are connected to
port out port from the led pio[7..0] on the system
module.

These pins connect to LEDs on the development board. This example
design uses one of the LEDs to display the output of the PWM.

Altera Corporation 10-23
November 2006

Quartus Il Handbook, Volume 4

10-24

6. Create a new output pin named LEDG [0].

7. Connect the new pin LEDG[0] to pwm out from the z pwm 0
on std_<FPGA>.

The hardware design is now ready to compile.

Compile the Hardware Design & Download to the Target Board

Perform the following steps to compile the hardware design and
download it to the target board.

1. On the File menu, click Save to save changes to the BDF.

2. On the Processing menu, click Start Compilation to start compiling
the hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation will
finish successfully after several minutes, and generate a new FPGA
configuration file for the project.

'~ You can only perform the remaining steps in this chapter if you
have a development board.

Perform the following steps to download the hardware design to the
board:

1. Connect your host computer to the development board using an
Altera download cable, such as the USB Blaster, and apply power to
the board.

2. On the Tools menu, click Programmer to open the Quartus II
Programmer.

3. Use the Programmer window to download the following FPGA
configuration file to the board: <Quartus II project>/standard.sof.

At this point, you have completed all the steps to create a hardware
design and download it to hardware.

Exercise the Hardware Using Nios Il Software

The PWM example design is based on the Nios II processor. You must
execute software on the Nios II processor to exercise the PWM hardware.
The example design files provide a C test program that pulses an LED by

Altera Corporation
November 2006

Design Example: Pulse-Width Modulator Slave

Altera Corporation
November 2006

gradually modulating the PWM duty cycle. This test program accesses
the hardware both by using the register map declarations directly, and by
calling the driver functions.

In this section you will perform the following steps:

1. Start the Nios Il IDE and create a new Nios II IDE project.

2. Build and run the C test program.

3. View the results.

To complete this section, you must have performed all prior steps, and
successfully configured the target board with the hardware design.

Start the Nios Il IDE & Create a New IDE Project

Perform the following steps to start the Nios II IDE and create a new IDE
project:

1. Start the Nios Il IDE.

2. On the Window menu, point to Open Perspective and then either
click Nios II C/C++, or click Other... and then click Nios II C/C++ to
open the Nios II C/C++ perspective.

3. On the File menu, point to New, and click Nios IT C/C++

Application to start a new project. The first page of the New Project
wizard appears.

4. Under Select Project Template, select Blank Project.
5. Inthe Name field, type hello pwm.
6. Ensure that Specify Location is turned off.

7. Click Browse under Select Target Hardware. The Select Target
Hardware dialog box appears.

8. Browse to the <Quartus II project> directory.
9. Select the file std_<FPGA>.ptf.
10. Click Open to return to the New Project wizard. The SOPC Builder

System and the CPU fields are now specified, as shown in
Figure 10-8 on page 10-26.

10-25

Quartus Il Handbook, Volume 4

11. Click Finish.

Figure 10-8. New Project Wizard

. New Project

E]]

C/C++ Application

Click Finish to create this project with a default system library @

Marne: | hella_pwm

¥ Use Default Location

Select Target Hardware

SOPC Builder System: | C:'I.a|tera'l,kits'l,ni052'|,examples'l,verilog'l,niosII_cyclone_lc20'|,sta|j

CPL: |cpu

Select Project Template

Description
Board Diagnostics

- X Blank Project
Customn Instruction Tutarial

Count Binary Details

Dhiyst

HeﬁisFrD::standing Creates an empy project to which you can add your
Hella LED o)

Hello MicraC fos-11

Hello world

Hello World Small

Memary Test

tMulti-Clock Domain Tutorial

Simple Socket Server w

Mext = Einish Cancel

After the IDE successfully creates the new project, the C/C++ Projects
view will contain two new projects, hello_pwm and hello_pwm_syslib,
in addition to Nios II Device Drivers, as shown in Figure 10-9.

Figure 10-9. New Projects in the C/C++ Projects View

+-128 hello_pwm_syslib [std_1c20]
+-128 Mios II Device Drivers

10-26 Altera Corporation

November 2006

Design Example: Pulse-Width Modulator Slave

Compile the Software Project & Run on the Target Board

In this section you will compile the C test program provided with the
PWM design files, and then download it to the target board.

First, perform the following steps to associate the C source file with the
new C/C++ project.

1. Inyour computer's file system, copy the file <PWM design
files>/pwm_sw/test_software/hello_altera_avalon_pwm.c to the
directory <Quartus II project>/software/hello_pwm/.

2. Inthe Nios II IDE C/C++ Projects view, right-click hello_pwm and
choose Refresh. This forces the IDE to recognize the new file in the
project directory.

The project is now ready to compile and run. Perform the following steps:

1. Right-click hello_pwm and choose Build Project to compile the
program. The first time you build the project, it can take a few

minutes for the compilation to finish.

2. After compilation completes, select hello_pwm in the Nios II
C/C++ Projects view.

3. On the Run menu, click Run. The Run dialog appears.
4. In the configurations list, right-click Nios II Hardware, and then
click New. A new run/debug configuration named hello_pwm

Nios II HW configuration appears.

5. If the Run button (in the bottom right of the Run dialog) is
deactivated, perform the following steps:

a. Click the Target Connection tab.
b. Click Refresh next to the JTAG cable list.

c. From the JTAG cable list, select the download cable you want
to use.

d. Click Refresh next to the JTAG device list.

6. Click Run.

Altera Corporation 10-27
November 2006

Quartus Il Handbook, Volume 4

Sharing
Components

10-28

7. View the results:

a. The Console view in the IDE displays messages similar to the
following:

Hello from the PWM test program.

The starting values in the PWM registers are:
Period = 0

Duty cycle = 0

Notice the pulsing LED on the development board.

b. LEDO on the development board repeatedly pulses on and off.

Congratulations! You have finished all steps for the PWM design
example.

When you create a component using the component editor, SOPC Builder
automatically saves the component in the current Quartus II project
directory. To promote design reuse, you can use the component in
different projects, and you can share your component with other
designers.

Perform the following steps to share a component:

1.

CAUTION

In your computer's file system, move the component directory to a
central location, outside any particular Quartus II project's directory.
For example, you could create a directory
c:\my_component_library to store your custom components.

The directory path name cannot contain spaces. If the path
contains spaces, SOPC Builder might not be able to access the
files.

In SOPC Builder, on the File menu, click SOPC Builder Setup. The
SOPC Builder Setup dialog appears, which lets you specify where
SOPC Builder searches for component files.

Under Component/Kit Library Search Path, add the path to the
enclosing directory of the component directory. For example, for a
component directory
c:\my_component_library\pwm_avalon_interface\, add the path

c:\my_component_library. If there are pre-existing paths, use "+" to
separate the path names.

Click OK.

Altera Corporation
November 2006

Document Revision History

Document

Table 107 shows the revision history for this document.

Revision History

Table 10-7. Document Revision History

v6.1.0

Dato & Dn_cumenl Changes Made Summary of Changes
Version
November 2006, |Updated Avalon terminology because of changes to Avalon For the 6.1 release,

technologies. Changed old “Avalon switch fabric” term to “system
interconnect fabric.” Changed old “Avalon interface” terms to
“Avalon Memory-Mapped interface.”

Altera released the
Avalon Streaming
interface, which
necessitated some re-
phrasing of existing
Avalon terminology.

May 2006, v6.0.0

Chapter 10 was previously chapter 9. No change to content.

October 2005, Chapter 9 was previously chapter 7. No change to content. -
v5.1.0

August 2005, Corrected Table 7-5.

v5.0.1

May 2005, v5.0.0 | No change from previous release. -
February 2005, Initial release. -
v1.0

Altera Corporation
November 2006

10-29

Quartus Il Handbook, Volume 4

10-30 Altera Corporation
November 2006

11. Buildi ith
Z;\l |:| —E D)/A uilding Systems wit

o Multiple Clock Domains

QI154008-6.1.0

Introduction

Altera Corporation
November 2006

This chapter guides you through the process of using SOPC Builder to
create a system with multiple clock domains. You will start with a ready-
made design that uses a single clock domain, and modify the design to
use two clocks.

Example Design Overview

The design in this chapter mimics the common scenario of a system with
separate control and data paths. Typically, the control path is slow,
because the controller itself is relatively slow, and it is used only in short
bursts to set up data transfers. On the other hand, the data path is fast so
that, after the controller initiates a transfer, data moves as quickly as
possible from source to destination.

Figure 11-1 on page 11-2 shows a simplified block diagram of the system
structure. In this design, a Nios® II processor acts as the controller
operating at 50 MHz. A DMA controller operating at 100 MHz manages
the data path, and reads and writes data buffers that also operate at 100
MHz. The figure focuses on the multi-clock nature of the system, and
shows the connections between master and slave ports.

11-1

Quartus Il Handbook, Volume 4

Figure 11-1. Simplified Block Diagram of the Example Design

Arbitrator

[l
Arbitﬁ‘ator N Arbitrator
\

CPU DMA
50 MHz Control :l 100 MHz
P S
Instr Data Read Write
M M M M
A W \ A
. Control ! / _ Data
| Path ! \ Path
Y | \ 2N
N [\
N | N
System Clock- N
Interconnect Domain
Fabric Crossing
Logic

|
A A \
\
\
\ 4 \ 4V
Ls | Ls | Ls |
SDRAM Read Write
Controller Buffer Buffer
50 MHz 100 MHz 100 MHz
Connection to Input Output
SDRAM Stream Stream
containing
Program and
Data @ Avalon-MM Master Port

Avalon-MM Slave Port

11-2

Figure 11-1 does not show example design features that are not directly
related to the issue of multiple clocks, such as a JTAG UART
communication peripheral and timer peripheral used by the Nios II

processor.

Hardware & Software Requirements

To use the design example(s) in this chapter, you must have the following:

B Design files for the example design — A hyperlink to the design files

is located with this chapter on the SOPC Builder literature page. Visit

www.altera.com/sopcbuilder.

Altera Corporation
November 2006

Creating the Multi-Clock Hardware System

Creating the
Multi-Clock
Hardware
System

Altera Corporation
November 2006

Quartus® II Software version 4.2 or higher — Both Quartus II Web
Edition and the fully licensed version will work with the example
design.

Nios IT Embedded Design Suite (EDS) version 1.1 or higher — Both
the evaluation edition and the fully licensed version will work with
the example design.

Nios development board and an Altera® USB-Blaster™ download
cable (Optional) — You can use any of the following Nios
development boards:

Stratix® II Edition

Stratix Edition

Stratix Professional Edition
Cyclone™ Edition

If you do not have a development board, you can follow the
hardware development steps, but you will not be able to download
the complete system to a working board.

You can download the Quartus II Web Edition software and the Nios II
EDS Evaluation Edition for free from the Altera Download Center at
www.altera.com.

=

Before you begin, you must install the Quartus II software and
Nios II EDS.

In this section, you will start with an example hardware design provided
with the Nios IT EDS and create a multi-clock system. You will perform

the following steps:

1. Copy the hardware design files to a new directory

2. Modify the design in SOPC Builder to create a multi-clock hardware
system

3. Update the Quartus II design to use the new clock domain

4. Compile the hardware design in the Quartus II software, and

download the hardware design to a target board

11-3

Quartus Il Handbook, Volume 4

11-4

Copy the Hardware Design Files to a New Directory

The hardware design used in this chapter is based on the standard
hardware example design included with the Nios II EDS. Copy the
design files by performing the following steps:

1. Inyour host computer file system, locate the following directory:

<Nios II EDS install path>\examples\<verilog or vhdl>\<board
version>\standard

Each development board has a VHDL and Verilog version of the
design. You can use either one. Table 11-1 shows the names of the

directories for the available Nios development boards.

Table 11-1. Design File Directories

Nios Development Board Tutorial Directory
Stratix |l Edition nioslI_stratixll_2s60_es
Stratix Edition niosll_stratix_1s10 or nioslI_stratix_1s10_es

Stratix Professional Edition | niosll_stratix_1s40

Cyclone Edition niosll_cyclone_1c20

For demonstration purposes, the figures in this chapter show the
case of the Verilog design on the Nios Development Board, Cyclone
Edition.

2. Copy the standard directory to a new location. This document will
refer to the newly-created directory as <hardware files directory>.

Modify the Design in SOPC Builder

This section walks you through the process of implementing a multi-
clock system in SOPC Builder. In this section you will do the following;:

1. Open the system in SOPC Builder.

2. Add a DMA controller and two 4 Kbyte on-chip memory
components.

3. Connect DMA master ports to memory slave ports.
4. Make clock domain assignments.

5. Regenerate the system.

Altera Corporation
November 2006

Creating the Multi-Clock Hardware System

Altera Corporation
November 2006

Open the System in SOPC Builder

To open the system in SOPC Builder, perform the following steps:
1. Start the Quartus II software.

2. Choose Open Project (File menu).

3. Browse to <hardware files directory>.

4. Select standard.qpf and click Open.

5. Choose SOPC Builder (Tools menu) to start SOPC Builder.

The SOPC Builder window appears, displaying the contents of the
system, which you will use as a starting point for your design.

Add DMA Controller & Memory Components

Perform the following steps to add the DMA controller and memory
components to the system:

1. Inthe SOPC Builder list of available components, select DMA in the
Other group, and click Add. The DMA configuration wizard
displays.

2. In the DMA configuration wizard, click Finish to accept the default
settings. You return to the SOPC Builder System Contents tab
which displays the new DMA component, named dma_0.

Errors are displayed in the SOPC Builder messages window. You can
ignore these messages for now, because you will fix the errors in later
steps.

3. In the list of available components, select On-Chip Memory (RAM
or ROM) in the Memory group, and click Add. The On-Chip
Memory configuration wizard appears.

4. Inthe On-Chip Memory configuration wizard, click Finish to accept
the default settings. You return to the SOPC Builder System
Contents tab, which displays the new memory component.

5. Right-click the new memory component and choose Rename.

6. Type read buffer* torename the component.

7. Repeat steps 3 and 4 to add another On-Chip Memory component to

the system.

11-5

Quartus Il Handbook, Volume 4

8.

9.

CAUTION

Right-click the new memory component and choose Rename.
Type write buffer* torename the component.
You must name the DMA and memory components exactly as

specified above (dma_0, read_buffer, and write_buffer). If you
name the components differently, later steps will fail.

Connect DMA Master Ports to Memory Slave Ports

Now that you have added the DMA controller and the memory
components to the system, you must connect their master and slave ports
appropriately. Perform the following steps:

1.

Hover the mouse pointer over the connections panel in the SOPC
Builder System Contents tab to display the potential master port
connections for the DMA. See Figure 11-2.

Connect the DMA read master port (dma_0/read_master) to the
read_buffer memory.

Connect the DMA write master port (dma_0/write_master) to the
write_buffer memory.

Disconnect the Nios II processor instruction master
(cpu/instruction_master) from both the on-chip memories' slave
ports. For this example design, the processor does not use these
memories to fetch instructions.

Verify that the Nios II processor data master (cpu/data_master) is
connected to the DMA slave port (dma/control_port_slave).

Figure 11-2 shows the state of the connections panel after all components
have been correctly connected.

Figure 11-2. Correct Connections Between Master & Slave Ports

¥] C—C-fF sdram SDRAM Controller clk
v B dma_o Dt clk
—t read_master haster port
werite_master Master port
control_port_slave Slave port
E h read_buffer On-Chip Mermary (RAM or ROM) clk
E write_buffer On-Chip Mermary (RAM ar ROR) clk
[A tove Un] [W taove Down]

After the DMA controller is connected properly to the on-chip memories,
the error messages disappear from the SOPC Builder messages window.

11-6

Altera Corporation
November 2006

Creating the Multi-Clock Hardware System

Make Clock Domain Assignments

In this section you will specify a 100 MHz clock input, and assign the
DMA and memory components to the new clock domain. Then you will
generate the system. Perform the following steps:

1. On the System Contents tab under Clock MHz, click the cell
labeled click to add to enter a new clock entry.

2. Type fastclk for the name of the new clock, as shown in Figure 11-3.

3. Type 100 for the speed of fastclk, as shown in Figure 11-3.

Figure 11-3. Clock Settings

Clock (MHz)

clk 0.0
fastclk

4. Inthe Clock list for the DMA component, select fastclk to assign the
100 MHz clock to the DMA component, as shown in Figure 114.

5. Repeat step 4 for the read_buffer and write_buffer components, as
shown in Figure 11-4.

Figure 11-4. Assigning a Different Clock to the DMA & Memory Components

‘1 sdram SDRAM Controller clk & O
B dma_o Dt tastclk
—t read_master haster port
s~ write_master Master port
control_port_slave Slave port 0x0l
{#] read_buffer On-Chip Mermary (RAM or ROM) fastclk 0x0
i3] write_buffer On-Chip Metmory (RAM or ROM) clk v | DxD
A& tove Up] [W tove Do ol

6. Click Generate to start generating the system.

7. After system generation completes successfully, exit SOPC Builder
and return to the Quartus II software.

Altera Corporation 11-7
November 2006

Quartus Il Handbook, Volume 4

11-8

Update the Quartus Il Design

At this point, you have created an SOPC Builder system that uses
multiple clock domains. In this section you will do the following:

1. Update the system module symbol.

2. Update PLL settings to generate a 100 MHz clock.
3. Connect the 100 MHz clock to the system module.
4. Compile the Design and download it to the board.

To complete this section, you must be familiar with the Quartus II Block
Editor.

Update the System Module Symbol

The file standard.bdf is the top-level Block Diagram File (BDF) for the
Quartus II project. The BDF contains a symbol for the SOPC Builder
system module, named std_<FPGA>, where <FPGA> refers to the FPGA
on the target development board.

The SOPC Builder system module requires an additional clock input for
the 100 MHz clock domain, and therefore you need to update the symbol
for the system module. To remove the old symbol and insert an updated
symbol, perform the steps below.

In the following steps you will disconnect and then reconnect all
connections to the system module, including connections to
FPGA pins. You must make these connections exactly, or else
the design will not work in hardware, potentially damaging the
development board. If possible, print the BDF as a reference to
help you reconnect pins to the system module later.

CAUTION

1. In the BDF, select the symbol std_<FPGA> and delete it.

2. Click-and-drag to select all of the pins that previously connected to
the right-hand-side of the symbol.

3. DPress the right-arrow key ten times to move the pins to the right,
creating space for the new symbol.

4. Double click in the space where the symbol used to be to insert a
new symbol. The Symbol window appears.

5. Expand the Project folder under Libraries.

Altera Corporation
November 2006

Creating the Multi-Clock Hardware System

6. Select the std_<FPGA> symbol, and click OK. See Figure 11-5.

Figure 11-5. Selecting & Inserting the New Symbol

Symbol

Libraries:

]

ext_ram_hus_byteenablen[3..0]

ElE Project
EF connector_pll

£ reset_counter
sdram

£ delay_reset_block iof_n_to_the_land1c111

- rezet_n_to_the_lan81c111
F O c/alera’quartus42/libranes, i

ext_ram_bhus_data[31..0]
ext_ram_hus_readn

iowy_n_to_the_lan91c111

read_n_to_the_ext_ram

zelect_n_to_the_ext_flash
zelect_n_to_the_ext_ram
werite_n_to_the_ext_flash

werite_n_to_the_ext_ram

LCD_E_from_the_lod_dizplay
LCD_RE_from_the_lcd_display

Mame:

LCD_RwW_from_the_lcd_display

|std_Tc20

™ Bepeat-inzert mode
I Insert symbol as block
-

Megawizard Plug-In Manager...

J LCD _data_to_and_from_the_lcd_display[7..0]

out_port_from_the_led_pio[7..0]

bidir_port_to_and_from_the_reconfio_request_pio

zs_addr_from_the_sdram[11..0]
| zs_ha_from_the_sdram[1..0]

oK

zs_cas_n_from_the_sdram
zs_cke_from_the_sdram

LCancel |

Altera Corporation
November 2006

7. Move the mouse to position the symbol between the pin symbols,

then click the left mouse button to place the symbol.

8. Look at the symbol, and notice the new clock input, clk_fastclk, and

the old clock input, which is now named clk_clk.

9. Reconnect all previous connections to the std_<FPGA> symbol,

except for the clock inputs clk_clk and clk_fastclk. You will connect
the clock inputs in later steps.

11-9

Quartus Il Handbook, Volume 4

Figure 11-6 shows the new symbol reconnected to all signals except for
the clocks.

Figure 11-6. Updated Symbol Without Clock Connections

LRI ueEyea_fese
e . .

std_1c20

—|elk_ck
elk_tastohk

wsed in asynch mode

et _n

in_port_to_the_button_piaf3..0]

JL S

i Gonfigured to ahways
= relativily quick compls in
performance out.of fe Mos i
alethe olowing Frisical |

ionalfogic.

Guartus | campile tine
a1 Oniine Heip, ©

ra_from_tie_lang1c111 be_n_to_the_ext_rami3.0] QUTALT P SRAT BE HE. 0]
ext_ram_bus_address[22. 0] i {17 T
e _ram_bus_bytesncblen(3. 0] T R BE]
ext_ram_bus_data[31.0] (il FSEORTH T
ext_ram_bus_readn ———HUTEUT _—— FLASH OE N
ior_n_to_the_lang1e111 T BT TR
iow_n_to_the_Jand1e111 e e 2 e T
read_n_to_the_ext_ram R R
reset_n_to_the_landeitl (—
select_n_to_the_ext_flash I A
select_n_to_the_ext_ram T P SR
write_n_to_the_ext_flash I F R R
wiite_n_to_the_ext_ram i T S e
LED_E_trom_the_lcd_displey AT R E
LED_RE_from_the_lod_cisplay G TR R
LCD_RW_trom_the_lcd_sispley i i o1
LED_ats_to_snd_from_the_iod_display(7..0] i CEBE

out_part_from_the_led_giof7..0]

bidr_port_to_and_from_the_recontig_request_pio

zs_addr_from_the_sdram[11_0] UTRUT " SDRAV_ALT 0]
z5_ha_from_the_sdram(1.0] TR "SORAW BA[T.]
25_cas_n_from_the_sdram R s SRR RS
z5_cke_from_the_sdram TR SR
25_cs_n_from_the_sdram R SR S

z5_dof_to_and_from_the_scram(31.0] f— SHRET BH0 T

25_dom_from_the_sdram(3.1] i ULEUT " SHRA M3 6]

zs_ras_n_from_the_scram WTPUT_—— SDRAM_RAS_N
25_we_n_from_the_sdram R = SRR e

out_part_from_the_seven_seq_pio[15..0]

d_to_the_uart! txd_from_the_uartt

Update PLL Settings to Generate a 100 MHz Clock

Perform the following steps to modify the PLL instance in the BDF to
generate a 100 MHz clock:

1.

11-10

Locate the symbol sdram_pll in the BDE.

Right-click the symbol and select MegaWizard® Plug-in Manager
to configure the PLL settings. The MegaWizard Plug-In Manager for
the ALTCLKLOCK function displays.

At this point, the Quartus II software might display a benign
warning: Delay shifts (time delay elements) are no
longer supported in the Stratix PLLs. If you see this
message, click OK.

Altera Corporation
November 2006

Creating the Multi-Clock Hardware System

3. Click Next until you reach page 6 of 15 of the wizard flow, shown in
Figure 11-7.

4. Click Use this clock.
5. Select Enter output clock frequency.
6. Under Requested settings, type 100 and select MHz.

Figure 11-7 shows the ALTCLKLOCK MegaWizard Plug-In Manager
with the correct settings.

Figure 11-7. ALTCLKLOCK Settings to Generate a 100MHz Clock

MegaWizard Plug-In Manager. - ALTCLKLOCK [page 6 of 15]

1 - Core Output Clock. Jump to page for & Clock c1 -

Able to implement in Enhanced PLL

[v* Use this clock Requested settings Actual settings

sdram_pll (% Enter output clock frequency: 100.000 MHz = 100,000000
" Enter output clock parameters:
M inclkD frequency: 50.000 MHz &
Oparaton e, Hormal ot Clock multiphcation factor = = 2
i << Copy
Clk [Fiatie] Ph o[0 (%) Clock division factor :l 1
0 | 1/1] 0.00 | s0.00
el | 21| 0.00 | s0.00
en | /1 | om0 | soon Clock phase shilt 0.00 :I ps v 000
St
Clock duty cycle () E 50.00
More Details >>

CO|Cl C2 C3 Cc4 €5

E0 E1 E2 E3

Documentation Cancel \ < ﬁackl Newt > \ Einish |

7. Click Finish to jump to the final stage (page 15 of 15) of the wizard
flow.

8. Click Finish again to return to the Quartus II software.

9. Right-click the sdram_pll symbol and choose Update Symbol or
Block. The Update Symbol or Block dialog appears.

10. Click OK to update the selected instance of the symbol.
The PLL is now configured correctly to generate a 100 MHz output clock.

a®® For further information on using the PLLs in Altera devices, see the
handbook for the target device family.

Altera Corporation 11-11
November 2006

Quartus Il Handbook, Volume 4

Connect the 100 MHz Clock to the System Module

You now must connect the clock signals to the SOPC Builder system
module. The easiest way to accomplish this is to symbolically link the
PLL outputs to the system module inputs using conduit aliases. This
section will guide you through the process of making one connection, and
leave the remaining connections to you as an exercise.

To connect the 100 MHz clock signal from the PLL to the system module,
perform the following steps:

1. Move the mouse pointer over node c1 on sdram_pll until the
pointer changes to a cross-hairs.

2. Click and drag right to add a conduit (i.e. a connection line) to node
cl.

3. Click on the conduit line to select it.
4. Type dmaclk and press Enter.

5. Move the mouse pointer over node clk_fastclk on std_<FPGA>
until the pointer changes to a cross-hairs.

6. Click and drag left to add a conduit to node clk_fastclk.
7. Click on the conduit line to select it.
8. Type dmaclk and press Enter.

The two nodes are now linked symbolically (by the name dmaclk) via a
conduit alias.

Follow the instructions below to complete the remaining clock
connections. Depending on which Nios development board you are
targeting, the remaining PLL connections to the PLL(s) are slightly
different. This section gives instructions to accommodate all Nios
development boards.

Be sure to use the instructions that apply to your board, or else

T the design will fail in hardware.

11-12 Altera Corporation
November 2006

Creating the Multi-Clock Hardware System

Altera Corporation
November 2006

For the Nios Development Board, Stratix II Edition, Stratix Professional
Edition, and Stratix Edition, connect the PLL according to Table 11-2.

Table 11-2. PLL Connections

Node on sdram_pll Connects to
c0 clk_clk on std_<FPGA>
cl clk fastclk on std_<FPGA>
e0 PLD CLKOUT pin

The BDF for the Nios Development Board, Cyclone Edition contains a
second PLL symbol named connector_pll in addition to sdram_pll.
Connect both PLLs according to Table 11-3.

Table 11-3. PLL Connections for the Nios Development Board, Cyclone
Edition

Node Connects to
c0 on sdram_pll Nothing
c1 on sdram_pll clk fastclk on std_<FPGA>
€0 on sdram_pll SDRAM CLK pin
c0 on connector_pll clk clkonstd_<FPGA>
€0 on connector_pll PLD CLKOUT pin

11-13

Quartus Il Handbook, Volume 4

Figure 11-8 shows an example of the BDF for the Nios Development

Board, Cyclone Edition with all connections completed using conduit
aliases.

Figure 11-8. Symbolic Conduit Aliases Connecting PLL(s) o System Module

SDRAM PLL
sdram_pll This PLL intreduces a phase-shift which eompensates

for beard-leved delays-in the clock petwork. - Other boards
rray reguive diferent setkings. - -

e 1 jncka frequency 50000 M-z =0, divcie R R
Cperation Mocle: Normal cl D
1] QUTPOT T SpREM CLK
Cik_[Ratia [Ph (da) [C (%1 p——

e | 1 | 000 | s000
of |24 | ooo [sooo) | ool B
en | 14 |-6300 | s000

| instt T R e e e D DI
ST T I e e e I I I I I
: ERERESER R N
e |0 frequency: 50,000 Mz oy svsele
Operation Mace: Narmal el

g —————————————————— |

—| elk_clk
— clk_fastclk

std_1c2l

reset_n

TRE[] T T E’EE T

—!irq_from_the_lan915111

in_port_to_the_buttan_pia[3..0]

be_n_to_the_ext_ram[3..0] AUTEUT " SRAM_BE RE 0]
ext_ram_bus_address[22..0] UTEDT [FEE_A(22 1]
ext_ram_bus_t [3.0] BT = EET B 3
. . R T e RS R
select_n_te_the_ext ram | UTRUT SRaNCE_N P

11-14

Compile the Design & Download to the Board

To compile the design and download it to the target board, perform the
following steps:

1. Chose Save (File menu) to save changes to the BDE.
2. Choose Start Compilation (Processing menu) to start compiling the
hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation will
finish successfully after several minutes, and generate a new FPGA
configuration file for the project.

Altera Corporation
November 2006

Running Software to Exercise the Multi-Clock Hardware

Running
Software to
Exercise the
Multi-Clock
Hardware

Altera Corporation
November 2006

=" You can only perform the remaining steps in this chapter if you
have a development board.

To download the hardware design to the board, perform the following
steps:

1. Connect your host computer to the development board via an
Altera download cable, such as the USB Blaster.

2. Choose Programmer (Tools menu) to open the Quartus II
Programmer.

3. Use the Programmer window to download the following FPGA
configuration file to the board:
<Hardware files directory>\standard.sof.

You have completed all the steps to create a multi-clock hardware design
and download it to hardware. This design is based on the Nios II
processor, and therefore you will have to run a software program on the
processor to exercise the hardware.

In this section, you will run a program on the Nios II processor to exercise
the multi-clock domain hardware. This program sets up and initiates a
DMA transfer using the Nios II processor, and measures the time for the
DMA transfer to complete.

I There is nothing special about this program that makes it
specific to multi-clock domain systems. Because the system
interconnect fabric abstracts the details of clock domain
crossing, the Nios II processor benefits from the fast
performance of the DMA controller without needing to be
aware of the system clock domain properties.

You will perform the following steps:

1. Install the example software design files.

2. Create a new Nios II IDE project using the software files.

3. Build and run the program.

4. Analyze the results.

To complete this section, you must have performed all prior steps, and

successfully configured the target board with your multi-clock hardware
design.

11-15

Quartus Il Handbook, Volume 4

11-16

Install the Example Software Design Files

In this section, you will install the example software design files on your
computer. You can download the example design files from the Altera
web site. Before you proceed installing the files, download the file
multi_clock.zip associated with the URL for this chapter.

The file multi_clock.zip contains the following C-language source files:

B dma_xfer.c — Containsmain ().

B init.c, init.h — Contain initialization routines to set up memory
buffers, and initialize the timer.

B settings_check.h — Provides basic error checking to verify that the
hardware contains the necessary DMA and memory components.

The file multi_clock.zip contains example software files packaged as a
Nios IT IDE software template. Perform the following steps to install the
files:

1. Extract the contents of multi_clock.zip into a new directory called
multi_clock.

2. Move the multi_clock directory under the following directory:
<Nios II EDS install path>\examples\software

The files are packaged as a Nios II IDE template only to minimize the
number of steps required for you to run the software. Using a template is
not a necessary part of writing software for multi-clock domain systems.
Using the template automatically provides the following functionality in
the Nios II IDE, which you otherwise would have to perform manually:
1. Imports source files into a new project directory.

2. Sets up the system library settings.

3. Sets up the project settings.

Create a New Nios Il IDE Project

To create a new Nios II IDE project using the provided example files,
perform the following steps:

1. Start the Nios II IDE.

2. Choose New > Nios II C/C++ Application (File menu) to start a
new project. The first page of the New Project wizard appears.

Altera Corporation
November 2006

Running Software to Exercise the Multi-Clock Hardware

3. Under Select Project Template, select Multi-Clock Domain
Tutorial.

4. Ensure that Specify Location is turned off.

5. Click Browse under Select Target Hardware. The Select Target
Hardware dialog box appears.

6. Browse to the <hardware files directory> directory where you created
the hardware design earlier.

7. Select the file std_<FPGA> .ptf.

8. Click Open to return to the New Project wizard. The SOPC Builder
System field is now specified and the CPU field now contains the
name of the CPU in the system, as shown in Figure 11-9.

9. Click Finish.

Figure 11-9. New Project Wizard Filled in with Correct Settings

Mame: | multi_clock_0

¥ Use Default Location

Select Target Hardware

bt =l 0 [= O il o mics L cyclone 1 c20iskandard mulkiclockistd 1c20.ptf Browse. ..
=l

CPL: cpu

Select Project Template

Counk Binary - Drescription

Dhrystone) Measures the time of a DMA transfer,

Hello Freestanding

Hello LED Details

Hello Micro/0s-11

H:IIE W!;rrlod ! Use this design in combination with chapter ‘Building
Syskems with Multiple Clock Domains' in the SOPC

Hello World Small ;

Mernary Test Builder volume of the Quartus IT handbook,

Jomain Tukorial

MicroCOS-11 Message Box
MicroC/O5-I1 Tukarial
Web Server -

Mext = | Einish | Cancel

Altera Corporation 11-17
November 2006

Quartus Il Handbook, Volume 4

11-18

After the IDE successfully creates the new project, the Nios II C/C++
Projects view contains two new projects, multi_clock_0 and
multi_clock_0_syslib, in addition to Nios II Device Drivers, as shown in
Figure 11-10.

Figure 11-10. New Projects Displayed in the Nios Il C/C++ Projects View

- 1o multi_clock_ﬁu_syslib [std_1c20]
+-128 Mios II Device Drivers

Build & Run the Program

In this section, you will build the software in the Nios I IDE and run it on
a development board. In short, the program does the following:

B Initializes the read and write memory bulffers, filling the read
memory buffer with random values.

B Performs timer initialization to accurately measure how long a DMA
transaction will take.

B Sets up a DMA transaction to copy the contents of the read buffer to
the write buffer.

B Starts the timer, initiates the DMA transaction, and waits for the
DMA to generate an interrupt.

B Stops the timer when the DMA transaction finishes.

B Verifies that the write buffer contents are correct.

B Reports the duration of the DMA transaction.

To build and run the program, perform the following steps:

1. Inthe Nios I C/C++ Projects view, select the multi_clock_0 project.

2. Choose Run As > Nios II Hardware (Run menu) to build the
program, download it to the board, and run it. The IDE
automatically builds the program before attempting to run it. The
build process can take several minutes. After the build completes,
the IDE will download the program to the target board and run it.

3. View the results in the Console view.

The Console view will display results similar to the following:

nios2-terminal: starting in terminal mode (Control-C
exits)

Altera Corporation
November 2006

Conclusion

Conclusion

Altera Corporation
November 2006

Hello from Nios ITI!
Starting DMA transfer...

Starting a DMA transfer of 4096 bytes of data.
DMA transfer completed.

It took 34.3600006104 useconds to complete the
transfer.

Comparing send and receive buffer data...

Data Matches.

Program completed successfully.

See the Nios II IDE online help for more information on building and
downloading projects.

In this example, the DMA achieved approximately 120 MBytes per
second (4096 bytes / 34.36 usec). The source (read) and destination (write)
buffer memories have zero wait states, and therefore can perform a
maximum of one transfer per clock cycle. For successive 32-bit transfers
at 100 MHz, the theoretical maximum DMA transfer performance is 400
MBytes per second. The 34.36 usec time includes the following processor
overhead, which accounts for the difference between 400 and 120:

B Time spent in the DMA driver setting up the DMA transfer.

B Time spent in the interrupt handler after the DMA flags that it has
completed the transfer.

B Time spent entering the DMA callback function to capture the finish
time.

Congratulations! You have completed all tutorial steps in this chapter to
create a multi-clock domain system with SOPC Builder and exercise the
system in hardware.

11-19

Quartus Il Handbook, Volume 4

Document

Table 11-4 shows the revision history for this document.

Revision History

Table 11-4. Document Revision History

Date & Document
] Changes Made Summary of Changes
Version
November 2006, | No changes from previous release. -
v6.1.0
May 2006, v6.0.0 | Chapter 11 was previously chapter 10. No change to content. -
October 2005, Chapter 10 was previously chapter 8. No change to content. -
v5.1.0
May 2005, v5.0.0 | No change from previous release. -
February 2005, Initial release. -
v1.0
11-20 Altera Corporation

November 2006

	Quartus II Version 6.1 Handbook Volume 4: SOPC Builder
	Contents
	Chapter Revision Dates
	About this Handbook
	How to Contact Altera
	Typographic Conventions

	Section I. SOPC Builder Features
	1. Introduction to SOPC Builder
	Overview
	Architecture of SOPC Builder Systems
	SOPC Builder Components
	SOPC Builder Ready Components
	User-Defined Components

	System Interconnect Fabric

	Functions of SOPC Builder
	Defining & Generating the System Hardware
	Creating a Memory Map for Software Development
	Creating a Simulation Model & Testbench

	Getting Started
	Document Revision History

	2. Tour of the SOPC Builder User Interface
	Starting SOPC Builder
	Starting a New SOPC Builder System
	Working with SOPC Builder Systems

	System Contents Tab
	Adding a Component to the System
	Specifying Connections, Base Address, Clock & IRQ
	Connection Panel
	Table of Active Components

	Creating User-Defined Components

	System Dependency Tabs
	Board Settings Tab
	System Generation Tab
	System Generation Tab Options
	SDK Option
	HDL Option
	Simulation Option

	Starting System Generation

	Other Tools
	Preferences
	Document Revision History

	3. System Interconnect Fabric for Memory-Mapped Interfaces
	Introduction
	High-Level Description
	Fundamentals of Implementation
	Functions of System Interconnect Fabric

	Address Decoding
	Datapath Multiplexing
	Wait-State Insertion
	Pipelining for High Performance
	Pipeline Management
	Endian Conversion
	Native Address Alignment & Dynamic Bus Sizing
	Native Address Alignment
	Dynamic Bus Sizing
	Wider Master
	Narrower Master

	Arbitration for Multimaster Systems
	Traditional Shared Bus Architectures
	Slave-Side Arbitration
	Arbitrator Details
	Arbitration Rules
	Fairness-Based Shares
	Round-Robin Scheduling
	Burst Transfers
	Minimum Share Value
	Setting Arbitration Parameters in the SOPC Builder GUI

	Burst Management
	Clock Domain Crossing
	Description of Clock Domain-Crossing Logic
	Location of Clock Domain Crossing Logic
	Duration of Transfers Crossing Clock Domains
	Implementing Multiple Clock Domains in the SOPC Builder GUI

	Interrupt Controller
	Software Priority
	Hardware Priority
	Assigning IRQs in the SOPC Builder GUI

	Reset Distribution
	Document Revision History

	4. SOPC Builder Components
	Introduction
	Sources of Components
	Location of the Component Hardware
	Components That Include Logic Inside the System Module
	Components That Interface to Logic Outside the System Module

	Structure & Contents of a Component Directory
	class.ptf File
	cb_generator.pl File
	hdl Directory
	Other Component Files

	Component Directory Location
	Document Revision History

	5. Component Editor
	Introduction
	Component Editor Output
	Starting the Component Editor
	HDL Files Tab
	Signals Tab
	Naming Signals for Automatic Type and Interface Recognition
	Example: Verilog Module With Automatically Recognized Signal Names

	Templates for Interfaces to External Logic

	Interfaces Tab
	SW Files Tab
	Component Wizard Tab
	Identifying Information
	Parameters

	Saving a Component
	Re-Editing a Component
	Document Revision History

	6. Archiving SOPC Builder Projects
	Introduction
	Scope
	Required Files
	SOPC Builder Design Files
	Nios II Application Software Project Files
	Nios II System Library Project

	File Write Permissions
	Document Revision History

	7. Board Description Editor
	Introduction
	Board Descriptions
	Uses for Board Descriptions
	Board Description Editor

	Creating a Board Description
	Pins Flow
	Steps for the Pins Flow
	Creating a PCB Model from the Netlist

	Flash Flow
	Board Description Editor Output
	Board Description File Structure
	Using Board Descriptions

	Starting the Board Description Editor
	Intro Tab
	Netlist Tab
	Devices Tab
	Device List
	Filtered Nets, Pass Throughs & Device Groups
	Creating Pass Throughs
	Creating Device Groups

	Filtering False Target Devices
	Previewing Pins Visible to the Pin Mapper

	Nets Tab
	Pass Throughs Tab
	Groups Tab
	Flash Memory Tab
	Files Tab
	Board Description Name and Version
	System Template

	Saving & Exiting the Board Description Editor
	Document Revision History

	8. Pin Mapper
	Introduction
	Design Flow
	Applying Pin Assignments to the Quartus II Project
	Pin Name Requirements

	Pin Mapper GUI
	Source Signals Column
	Target Device Column
	Target Pin Column
	Vector Signals
	Differential Signals
	Signals with Multiple Destinations
	Assign in Quartus II

	Pin Mappings Status

	Document Revision History

	Section II. Building Systems with SOPC Builder
	9. Building Memory Subsystems Using SOPC Builder
	Introduction
	Example Design
	Example Design Structure
	Example Design Starting Point

	Hardware & Software Requirements

	Design Flow
	Component-Level Design in SOPC Builder
	SOPC Builder System-Level Design
	Simulation
	Quartus II Project-Level Design
	Board-Level Design
	Simulation Considerations
	Generic Memory Models
	Vendor-Specific Memory Models
	Verilog HDL
	VHDL

	On-Chip RAM & ROM
	Component-Level Design for On-Chip Memory
	Memory Type
	Size
	Read Latency

	SOPC Builder System-Level Design for On-Chip Memory
	Simulation for On-Chip Memory
	Quartus II Project-Level Design for On-Chip Memory
	Board-Level Design for On-Chip Memory
	Example Design with On-Chip Memory

	EPCS Serial Configuration Device
	Component-Level Design for an EPCS Device
	SOPC Builder System-Level Design for an EPCS Device
	Simulation for an EPCS Device
	Quartus II Project-Level Design for an EPCS Device
	Board-Level Design for an EPCS Device
	Example Design with an EPCS Device

	SDRAM
	Component-Level Design for SDRAM
	SOPC Builder System-Level Design for SDRAM
	Simulation for SDRAM
	Quartus II Project-Level Design for SDRAM
	Connecting & Assigning the SDRAM-Related Pins
	Accommodating Clock Skew

	Board-Level Design for SDRAM
	Example Design with SDRAM

	Off-Chip SRAM & Flash Memory
	Component-Level Design for SRAM & Flash Memory
	Avalon Tristate Bridge
	Flash Memory
	SRAM

	SOPC Builder System-Level Design for SRAM & Flash Memory
	Simulation for SRAM & Flash Memory
	Quartus II Project-Level Design for SRAM & Flash Memory
	Board-Level Design for SRAM & Flash Memory
	Aligning the Least-Significant Address Bits
	Aligning the Most-Significant Address Bits

	Example Design with SRAM & Flash Memory
	Adding the Avalon Tristate Bridge
	Adding the Flash Memory Interface
	Adding the SRAM Interface
	SOPC Builder System Contents Tab
	Connecting & Assigning Pins in the Quartus II Project
	Connecting FPGA Pins to Devices on the Board

	Document Revision History

	10. Developing Components for SOPC Builder
	Introduction
	SOPC Builder Components & the Component Editor
	Assumptions About the Reader
	Hardware & Software Requirements

	Component Development Flow
	Typical Design Steps
	Hardware Design
	Software Design
	Example: Register Map for a Component

	Verifying the Component
	Unit Verification
	System-Level Verification

	Design Example: Pulse-Width Modulator Slave
	Install the Design Files
	Review the Example Design Specifications
	PWM Design Files
	Functional Specification
	PWM Task Logic
	Register File
	Avalon-MM Interface
	Software API

	Package the Design Files into an SOPC Builder Component
	Open the Quartus II Project & Start the Component Editor
	HDL Files Tab
	Signals Tab
	Interfaces Tab
	Software Files (SW Files) Tab
	Component Wizard Tab
	Save the Component

	Instantiate the Component in Hardware
	Add a PWM Component to the SOPC Builder System
	Modify the Quartus II Design to Use the PWM Output
	Compile the Hardware Design & Download to the Target Board

	Exercise the Hardware Using Nios II Software
	Start the Nios II IDE & Create a New IDE Project
	Compile the Software Project & Run on the Target Board

	Sharing Components
	Document Revision History

	11. Building Systems with Multiple Clock Domains
	Introduction
	Example Design Overview
	Hardware & Software Requirements

	Creating the Multi-Clock Hardware System
	Copy the Hardware Design Files to a New Directory
	Modify the Design in SOPC Builder
	Open the System in SOPC Builder
	Add DMA Controller & Memory Components
	Connect DMA Master Ports to Memory Slave Ports
	Make Clock Domain Assignments

	Update the Quartus II Design
	Update the System Module Symbol
	Update PLL Settings to Generate a 100 MHz Clock
	Connect the 100 MHz Clock to the System Module

	Compile the Design & Download to the Board

	Running Software to Exercise the Multi-Clock Hardware
	Install the Example Software Design Files
	Create a New Nios II IDE Project
	Build & Run the Program

	Conclusion
	Document Revision History

