CSEE W4840 Embedded System Design Lab 3

Stephen A. Edwards

Due February 15, 2007 (Incomplete Draft!)

Abstract

Use Quartus and SOPC builder to create one of three mi
hardware/software designs: an FM sound synthesizer, adsou
ing video ball, or an image convolver that uses>a3kernel.

1 Introduction

This lab is about combining your own hardware and softwa
components. You have a choice of implementing one of thr
“canned” designs that we started for you: an FM sound sy
thesizer that generates pleasing-sounding notes undbo&ey

control, a bouncing video ball in which software controlg th
trajectory of a square on the screen displayed by custonovic
hardware, or a image convolver that uses FPGA hardware to

‘what iz the working directory for this project?
I.-"h0me.-"sedwards.-"c:vs.-"cIasses.-"2DD?.-"484D.-"Iab3

‘what iz the name of this project?

||ab31

‘what iz the name of the top-level design entity for this project? This name iz caze sensitive and must
exactly match the entity name in the design file.

IIab3

Use Existing Project Settings ...

celerate a X 3 convolution kernel such as a blur or edge finde
First, follow the instructions in Section 2 to gain some prac

tice building a simple system using SOPC Builder. Then, sBoc

one of the three projects described in Sections 3, 4, and 5.

2 BuildingaNios |l System with SOPC Builder

SOPC Builder is an Altera-supplied program for quickly as-
sembling Nios ll-based processor systems. It effectiveijes
VHDL for you.

< Back | Mext » | Finizh | Cancel |

Figure 1: Naming a new Quartus project

The tutorial below explains how to make a simple “bouncin
ball” LED display using SOPC Builder. Go though this tutbrig
first to see how the tools work, then start working on one of tf
three designs.

2.1 Quartus, part 1

Create a new directory (e.g., “lab3%d into it, and starquar-
tus.

Select File~New Project Wizard.

In the new project wizard dialog, select the directory (e.g
“lab3") you just created. Name the project something lik
“lab3.” The two names do not have to match, but only use I¢
ters, digits, and underscores in the project name. Seed-igur

Don't add any files to the project yet.

For for the device, select the “Cyclone 11" family and the
“EP2C35F672C6” chip. See Figure 2.

Click “Finish” to create the project.

2.2 SOPC Builder

Inside Quartus, select ToelsSOPC Builder. This will probably
ask you to start creating an SOPC builder system (if notcsel

New Project Wizard: Family & Device Settings [page 3 of 5]

Select the family and device you want ta target for compilation.

— Show in ‘Available device' list

FEamily: I Cyclone Il j Package: Ay 4
Target device
i Auto device selected by the Fitter oot i -
@ Specific device selected in ‘Available devices' list Speedgrade: |y =
Core voltage: 1.2

[+ Show advanced devices

™| HardEopy compatible ol

Available devices:

Mame | LEs | Memor... | Embed... | FLL | :I
EPZC20F458418 18752 239616 B2 4
EP2C200240C8 18752 239616 B2 4
EP2C35F484CE 33216 483840 70 4
EP2C35F484C7 33216 483840 70 4
EP2C35F484C8 33216 483840 70 4 [
EFZC35F458418 33216 483840 70 4
EP2C35FETZCE 33216 483840 70 4
EP2C3I5FETZCT 33218 483840 70 4
EP2C3I5FETZCE 33216 483840 70 4 LI
COOT2RCC7 0 2001 ADD0 AN inl A
= Eampanian device
HardEamlE j
= Limit SRR BEH b Hardtopy | device resaumces:
< Back | Mext » I Finizh | Cancel

File—New System). Name it differently than the project, e.g.,

“nios_system,” and select VHDL as the language. See Figure 3

You should now be at the SOPC Builder main window (Fig-
ure 4). Make sure the Device Family is set to Cyclone Il and

Figure 2: Selecting the device in Quartus

Create New System Altera Nios Il - cpu_0

. Core Nios T
Svstem MName: |nios_system ‘ Caches & Tightly Coupled Memories | Advanced Features | JTAG Debug Module‘ Custom Instructions |

Select a Nios || core:

Target HDL @Nios Il/e ONios II/s |ONios II/f |
. N RISC RISC RISC
C Verilog @ VHDL Nios I_I 32-bit 32-bit 32-bit
Selector Cuide Instruction Cache Instruction Cache
Family: Cyclone Il Branch Prediction Branch Prediction

f Hardware Multiply Hardware Multiply
Cancel system: S0 MH2 Hardware Divide Hardware Divide

Barrel Shifter

Data Cache
Dynamic Branch Prediction
Performance at 50 MHz |Up to 5 DMIPS Up te 25 DMIPS Up to 51 DMIPS
Logic Usage £00-700 LEs 1200-1400 LEs 1400-1800 LEs
F|gure 3 Nanﬂ'ng anew SyStem |n SO PC BU'Ider Memory Usage [Two M4Ks Two M4Ks + cache Three M4Ks + cache
Hardware Multiply: [Embedded Multipliers [Hardware Divide
Altera SOPC Bullder - nios_system
File Module System View Tools Help
Systam Contents ‘Systsm Generation
[25 Atera SOPC Buider — 5 7
A get e ¥
et Comore Clock [ource[Wz [Pipeine] Cancel Pro Next > Finish
e ents N Board: [Unspecified Board ¥ @r Etema (500 i E i
ridges I I Il
oo B Device Family: | Cyclone Il [Hard Copy Compatible l‘
osp
Display - Add Id
e [[rowee [e Figure 5: Adding an Nios Il processor in SOPC Builder
? 5
EP1SH0 lios Development B/
mer
Altera SOPC Bulds em
File Module System View Tools Help
Ilmeﬂlt::slnﬂllennnerals System Contents | More "cpu_0" Settings Nios IT | System Generation
egacy Components
s i Terger
Microcontrollers. Board: | Unspecified Board [~
Microtronix -
. Device Family: [Cyclone Il_[w] [JHardCopy Compatible LT [[1 m (1
Pt .
Peripherais
B naces [use | [Module Name [Description [input C... [Base End ra
> ‘AHB Components T - L
[E p Fag o3¢
S50 0SP £ too_cetug moce | oxon000000]_ xc0000rer
£92550 ios Development 5
Ethemet
o
) Done checking for updates.
Add. ® Check a Move Up w Move Down
B e [t] [~ omton |
[cpu.0: Exception Address must be at least 0x20 bytes higher than the Reset Address.
{2) cpu_0: Unspecified Reset Address, Exception Address
cpu_0: The reset address points to volatile memory. Execution of undefined code may occur upon reset.
" cpu_0: Changing the default reset address of exception address creates regions of unusable memory, Do not change the default addresses unless you are creating a |
Figure 4. The SOPC Builder main window. Available compg™ — ~
(o] [<po] [oer | [oene]

nents are listed on the left.
Figure 6: The system with only the Nios Il processor
that there is a single external 50 MHz clock listed. “Unsfiedi

Board”is correct. i Under the “Signals” tab, make sure all the “SRAM” sig-
Add the processor by opening Avalon Components angls are connected to the “global_signals” interface (wtfee,

double-clicking “Nios Il Processor—Altera CorporationThis gopc puilder assumes you have two bus connections on the
should bring up the Nios Il dialog in Figure 5. Select th%omponent). See Figure 9.

Nios li/e, the smallest of the three and click “Finish.” Yoorut Under the “Interfaces” tab, click “Remove Interfaces with N

need to adjust the other parameters. ~Signals.” This should leave just the “s1” interface. Turfi of
At this point (Figure 6), you have a single processor with &an receive stderr/stdout” for the “s1” interface (sintesinot
JTAG debug module connected to it. By itself, this is uselegscommunication port—it is a memory). Note that at this point
because it has no memory. you can set the speed and other parameters of the bus imterfac
We will use the off-chip 512K SRAM by creating a new comfor the component. In this case the defaults—one cycle each f
ponent (peripheral) that does the nearly-trivial tranigtafrom read and write—are what we want.
the protocol spoken by the Avalon bus (i.e., that is conrettie “Sjave addressing” is an important choice. The “Memory”
the Nios II) to that for the SRAM. setting indicates that the bus will be dynamically resizeaidco-
First, you need a VHDL file for the component callednodate the data width of the peripheral—exactly what we want
de2_sram_controller.vhd. Its contents are shown in Figure for the SRAM component. The “Register” setting disables:thi
This does almost nothing: it connects and inverts the variothe bus always appears as 32 bits wide and the peripheral is ex
Avalon signals (named avs_s1_...) for the SRAM chip and copected to align its data on 32 bit boundaries.
trols the tri-state output drivers by indicating the SRAMQ Bus Finally, under the “Component Wizard” tab, set the Compo-
should only be driven when the Avalawrite signal is asserted. nent Group to “User Logic” and click “Finish.”
Create a new SOPC Builder component by selectingYou should now have de2_sram_controller under Avalon
File—New Component. Under HDL Files, select this .vhd fileComponents/User Logic on the list on the left.
Once the filename stops flashing green (it is being checkeal), t Double-click it to add it to the system and right-click on its
dialog should indicate “de2_sram_controller” is the tepdl module name to rename it “sram.” Congratulations: your pro-
module (Figure 8). cessor system now has some memory and could actually run

library IEEE;
use IEEE.std_logic_1164.all;

entity de2_sram_controller is

hd Component Editor - de2_sram_controller

File Templates

Imroduction| HDL Files | Signals | Interfaces | SW Files | Component Wizard ‘

b About HOL Files

[File Name [Info [Synth... [Simul...
#A|de2_sram_contraller .vhd [1k, 2007 02.05.10:08:05 [[
HOL Files:
Add HDL File... | | Add Synthesis File... | | Remawve File

[~

Top Level Module |de2_sram_controller.vhd:

) avalon_slave_0: Slave must have clk signal to specify timing in cycles.
Z) avalon_slave_0: Slave must have a read or write interface, or support interrupts.

port (
signal avs_sl_clk,
avs_sl_chipselect,
avs_sl_write,
avs_sl read : in std_logic;
signal avs_sl_address : in std_logic_vector(17 downto 0);
signal avs_sl _readdata : out std_logic_vector(1l5 downto 0);
signal avs_sl writedata : in std_logic_vector(15 downto 0);
signal avs_sl_byteenable : in std_logic_vector(1l downto 0);
signal SRAM_DQ : inout std_logic_vector(1l5 downto 0);
signal SRAM_ADDR : out std_logic_vector(1l7 downto 0);
signal SRAM_UB_N,
SRAM_ILB_N,
SRAM_WE_N,
SRAM_CE_N,
SRAM_OE_N : out std_logic
);

| < Prev ‘| Next > || Finish... |

end de2_sram_controller;
architecture datapath of de2_sram_controller is
begin

SRAM_DQ <= avs_sl_writedata when avs_sl write
(others => '77);

avs_sl_readdata <= SRAM_DQ;

SRAM_ADDR <= avs_sl_address;

SRAM_UB_N <= not avs_sl_byteenable(1);

SRAM_LB_N <= not avs_sl_byteenable(0);

SRAM_WE_N <= not avs_sl_write;

SRAM_CE_N <= not avs_sl_chipselect;

SRAM_OE_N <= not avs_sl_read;

1’ else

end datapath;

Figure 7: de2_sram_controller.vhd: VHDL source for th
SRAM controller (inverters and a tristate buffer).

programs.

Note that if you later change the VHDL code for your com
ponent (e.g., during the development process), you mustlite-
the component by right-clicking the component on the lefbme
and selecting “Edit.” After this, the system will instruoby to

remove and re-add every instance of the componentin your s

tem.

Using the same procedure, create a new component ca
“led_flasher.” The VHDL for this is shown in Figure 11.
Again, remember to change the interface of the “leds” sign
to global_signals and remove interfaces with no signals.

Add an instance of your new “led_flasher” component to th
system and rename it to “leds” (instead of led_flasher_0).

For debugging output, add Avalon Compo
nents/Communication/JTAG UART. Just click “Finish” tg
accept the default parameters.

Run System-Auto-Assign Base Addresses to locate eaq
component in memory. The completed system configuration
shown in Figure 13.

Click on the “More “cpu_0" Settings” tab. Make sure thg
Reset Address and Exception Address functions are mappe
the “sram” memory module, not the “leds” module, which is nq
memory.

Finally, click on the “System Generation” tab, disable “8im
lation. Create simulator project files,” (simulation withetDE2
does not work well without models for the various off-chip p€e

Figure 8: Selecting the top-level VHDL file for a new SOPC
component

File Templates

' |
Introduction | HDL F\Ies| Signals ‘ Interfaces ‘ SW Files | Component Wizard
b About Signals el
| |Nams Intarface Signal Type Width Direction
Hlavs_s1_cl 51 il 1 linput
gg,l _s1_chipselect 51 chipselsct 1 input
Filavs, 51 witte 1 linpt
2 51 reac 1 linput
s1 address 18 linput i
Bilavs_s_readdsta s1 readdata 16 joutput
3l s1_wiitedata =1 writedata 16 input
s1_byteenable 1l byteenable 2 linjaut
e M_DQ global_signals export 16 Ibiclir
B |SRAM_ADDR global_signals export 18 loutput
dglobal_signals export 1 loutpit ||
global_signals export 1 joutput
global_signals export 1 loutput
BA|SRAM_CE_N global_signals export 1 output
A lobal_signals *|export
- B3|
) avalon_slave_0: [nterface
avalon _slave_0
new avalon slave... %
new avalon_tristate s -
new avalon master... -

Figure 9: Setting the interfaces for the signals

Component Editor - de2_sram_controller,

File Templates

Intreduction | HOL Files | S\gna\s‘ Interfaces |SW Fi\es| Compaonent Wizard

I2]

b About Interfaces

<wavalon slave "s1" (1 of 1)-

MName: Is 1

Type: é-f:wa-lon slave

= Awvalon Slave Settings
Slave addressing: EMemory(use dynamic bus sizi..,

Minimum Arbitration Shar | 1
Can receive stderr/stdout EI:‘Jo
Interleave Bursts: ir.-lo]Z‘

= Avalon Slave Timing —
Read Wait: |1

Setup: [0 — Hold: |0 Units! |cycles
P Write Wait: | 1 ' 12 IE‘
[#
| Add |nterface ‘ | Remove Interfaces With Mo Signals |
FComponem ‘de2_sram_controller” |s ok, ‘
‘ < Prev ‘ | Bext: > | ‘ Finish... |

Figure 10: Configuring the Avalon bus interfaces for the com-
ponent

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity led_flasher is

port (
signal avs_sl_clk,
avs_sl_reset_n,
avs_sl_read,
avs_sl_write,
avs_sl_chipselect : in std_logic;
signal avs_sl_address
: in std_logic_vector(4 downto 0);
signal avs_sl_readdata
: out std_logic_vector(1l5 downto 0);
signal avs_sl writedata
: in std_logic_vector (15 downto 0);

signal leds : out std_logic_vector(1l5 downto 0)
);

end led_flasher;
architecture rtl of led_flasher is
signal clk, reset_n : std_logic;

type ram_type is array(1l5 downto 0)
of std_logic_vector(1l5 downto 0);

signal RAM : ram_type;
signal ram_address, display_address
: std_logic_vector(3 downto 0);
signal counter_delay : std_logic_vector(1l5 downto 0);
signal counter : std_logic_vector(31l downto 0);

begin

clk <= avs_sl_clk;
reset_n <= avs_sl_reset_n;
ram_address <= avs_sl_address(3 downto 0);

process (clk)
begin
if clk’event and clk = ’1’ then
if reset_n = ’0’ then
avs_sl_readdata <= (others => '0’);
display_address <= (others => ’0’);
counter <= (others => '0’);
counter_delay <= (others => ’1’);
else
if avs_sl_chipselect = ’1’ then
if avs_sl_address(4) = 0’ then
if avs_sl read = ’1’ then
avs_sl_readdata <=
RAM(conv_integer (ram_address));
elsif avs_sl_write = ’1’ then
RAM(conv_integer(ram_address)) <=
avs_sl _writedata;

end if;
else
if avs_sl write = '1’ then
counter_delay <= avs_sl_writedata;
end if;
end if;
else

leds <= RAM(conv_integer(display_address));
if counter = x"00000000" then
counter <= counter_delay & x"0000";
display_address <= display_address + 1;
else
counter <= counter - 1;
end if;
end if;
end if;
end if;
end process;

end rtl;

v JTAG UART - jtag_uart 0
Configuration | Simulation
Wite FIFO (data from Avalon to JTAG)
Depth: (64 [+] IRQ Threshold: 8
[Construct using registers instead of memory blocks
Read FIFO (data from JTAG to Avalon)
Depth: (64 [+] IRQ Threshold: 8
[Construct using registers instead of memory blocks
Cancel Pr Next > | [Finish

Figure 12: Adding a JTAG UART

Altera SOPC Builder - nios_system
File Module System View Toels Help
System Contents | More "cpu_0" Settings NiesII | System Ceneration
EETE =
Interfaces and Periphers — Target
Legacy Components . Clock
Math Coprocessors Board: | Unspecified Board]El T
Memory .
M peenRirolCrs Device Family: |Cyclone Il | w| [[HardCopy Compatible
Micratronix vilyeons -
Other L
el
Peripherals Use ‘Module MNa... |Description Input ... |Base End IFQ{
7 User Logic | Eopu_o INios Il Processor - ... [clk
S nstruction_.. [Master port
ledl_flasher
I uP interfaces L data_master |Master port RQQ RQ 31
1> ‘AHB Components] fag_debug_.. [Slave port 0x00080000| 0x00DB07FF|
sram ide2_sram_cortroller 0x00000000] 0x0007FFFF,
———— leds led_flasher 000308 3F|
All Available Companents ftag_uart 0 LTAG UART il 0x00080840) 0x000B0847|| 0
oo w]o
Add.., @ Check | a Move Up ‘ ‘ w Move Down ‘
[5) cpu_0: defaulting Reset Address, Exception Address to leds
cpu_0: The reset address points to volatile memory. Execution of undefined code may occur upon reset,
‘ Exit | ‘ Prev | | Next > ‘ ‘ Generate ‘

Figure 13: The final configuration of the system

ripherals) and click “Generate.” This should fill your profe
directory with many .vhd files.

When system generation completes (this takes a whilek clic
on Exit and return to the Quartus Il GUI.

2.3 Quartus, part 2

Once SOPC Builder has generated the system, we need to im-
port it into a Quartus Il project.

First, you need to create a top-level VHDL file that instan-
tiates the Nios Il system that was just generated and whateve
hardware you want to connect to it. In this case, we only need
to wire the Nios Il to the external clock and connect the SRAM
and LEDs to their pins.

The nios_system entity was generated by the SOPC Builder
and is defined in nios_system.vhd (along with a lot of other
things). As usual, its component definition is essentialist j
the ports on the entity, which were named by SOPC Builder.

Figure 14 shows the top-level VHDL file. Put this in the
project directory.

Add all the generated VHDL files to the Quartus project. Se-
lect Project-Add/Remove Files in Project and select all the
.vhd files in the project directory. This is most easily doye b
clicking “Add All” and then removing the non-VHDL files. The
“altera_europa_support.vhd” file is also not necessary.

Figure 11: led_flasher.vhd: VHDL source for the LED flash By default, the name of the top-level entity is the name of

controller. This memory-maps a ¥86 RAM into 16 halfwords

the project2. You can use ProjeeBet as Top-Level Entity to

and a single “delay” register into another 16. When the RAl\éhange this.

is not being written, a counter steps through the contentiseof

RAM, displaying it on the LEDs. The delay register sets the
4

hold time for each address.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity lab3 is

port (
signal CLOCK_50 : in std_logic;
signal LEDR : out std_logic_vector(1l7 downto 0);

SRAM_DQ : inout std_logic_vector(1l5 downto 0);
SRAM_ADDR : out std_logic_vector(1l7 downto 0);
SRAM_UB_N, SRAM_LB_N, SRAM_WE_N,

SRAM_CE_N, SRAM_OE_N : out std_logic

);
end lab3;

architecture rtl of lab3 is

component nios_system is

port (
signal clk : in std_logic;
signal reset_n : in std_logic;
signal leds_from_the_leds
: out std_logic_vector(1l5 downto 0);
signal SRAM_ADDR_from_the_sram
: out std_logic_vector (17 downto 0);
signal SRAM_CE_N_from_the_sram : out std_logic;
signal SRAM_DQ_to_and_from_the_sram
: inout std_logic_vector (15 downto 0);
signal SRAM_LB_N_from_the_sram : out std_logic;
signal SRAM_OE_N_from_the_sram : out std_logic;
signal SRAM_UB_N_from_the_sram : out std_logic;
signal SRAM_WE_N_from_the_sram : out std_logic
);

end component;

signal counter : std_logic_vector(15 downto 0);
signal reset_n : std_logic;

begin
LEDR(17) <= ’1’;
LEDR(16) <= ’1’;

process (CLOCK_50)

begin

if CLOCK_50’event and CLOCK_50 = ’1’ then
if counter = x"ffff" then
reset_n <= ’'1’;

else

reset_n <= '0’;
counter <= counter + 1;
end if;

end if

end process;

nios : nios_system port map (

clk => CLOCK_50,
reset_n => reset_n,
leds_from_the_leds => LEDR(15 downto 0),
SRAM_ADDR_from_the_sram => SRAM_ADDR,
SRAM_CE_N_from_the_sram => SRAM_CE_N,
SRAM_DQ_to_and_from_the_sram => SRAM_DQ,
SRAM_LB_N_from_the_sram => SRAM_LB_N,
SRAM_OE_N_from_the_sram => SRAM_OE_N,
SRAM_UB_N_from_the_sram => SRAM_UB_N,
SRAM_WE_N_from_the_sram => SRAM_WE_N
);
end rtl;

Figure 14: lab3.vhd: The top-level entity

Classic Timing Analyzer Wizard: ProjectWide Defaults Classic Timing Analyzer Wizard: Default Frequency (fmax)

allclocks intis “What defaui frequency (imax) do you wantfo tis project?
project?
o Yes Defaulimax. [50 Ca

N

Resuling period: 20000 ns

Note: If you et fimas requitements for one or more clack signals, this defaul fa
assigrment will e ignored.

I tsu (setup time}: ns]

I th hold tine}: e]
T teo (clock to output delayl: e]
I tod Pin to Pin Delay}: N

<Back Next> i Cancel <Back Next> i Cancel

Figure 15: Imposing a global timing constraint

Match the pin names to locations by selecting
AssignmentssImport Assignments and choosing the
DE2_pin_assignments.csv file.

Impose a global timing constraint by choosing
Assignments-Classic Timing Analyzer Wizard.

Select an overall default frequency requirement, then set D
fault fmax to 50 MHz (Figure 15). Leave the defaults alone on
the next window, then click Finish.

Compile the project and download it to the board. Congratu-
lations! You just built a computer.

2.4 Niosll IDE

Next, create a new software project for your new computer sys
tem. Since each system is different (e.g., different menteyry
out, different peripherals), the software is tied to thetays

Run nios2-ide and switch the workspace to your project di-
rectory.

Select File-New—Nios Il C/C++ Application.

Name the new (software) project something like
lab3_software (this is arbitrary—it creates a directoryhwthis
name in your project directory).

Select the “nios_system.ptf” file in your project direct@y
the SOPC Builder System. This should set the CPU to “cpu_0."

Finally, select the “Hello World” template and click Finish

At this point, you can build and run the project on your board,
but it does not do much. Instead, replace “hello_world.c¢hi@
lab3_software directory (i.e., the name of the softwargqmio
you specified) with the code in Figure 16, which exercises the
LED flasher peripheral we added earlier.

3 AnFM Sound Synthesizer

This project is a stripped-down version of Ron Weiss, Gabrie
Glaser, and Scott Arfin'sTerrormouse project from 4840 in
spring 2004. Feel free to use it as reference and adapt what
VHDL you can, but make sure you understand what you are
using.

In 1973, John Chowing introduced the idea of FM synthesis
and the world has not sounded the same since. His basic in-
sight is that FM waveforms are easy to produce and are “nlatura
sounding.” The basic FM equation is

X(t) = sin (et + 1 sin(wmt))

wherex(t) is the amplitude at timg . is the carrier frequency
(the fundamental tone we heas)y is the modulating frequency,
andl is the modulation depth. The timbre of the sound is largely

#include jégslt‘zm hs point and should hear a tone on line out.

#include <stdio.h> Finally, we have included a PS/2 keyboard controller.
#define IOWR_LED_DATA(base, offset, data) \ 32 ThePS2 Controller

IOWR_16DIRECT(base, (offset) = 2, data)
#define IORD_LED_DATA(base, offset) \

TORD_16DIRECT (base, (offset) # 2) The file de2_ps2.vhdis the core of an Avalon peripheral that ¢
“ié&ﬁéﬁ”{ﬁgﬁ?ﬁii?‘i“;3?" 6,d3§i;)\ read data coming from a PS/2 keyboard. This is simpler than th
one you used in lab 2 (e.g., it cannot send data to the keyphoard
{i“t main() but will suffice. Use SOPC Builder to create a new component
int 1i; around it and connect the two PS/2 lines (clock and data)do th
printf("Hello Michael\n"); appropriate pins.
IOWR_LED_SPEED(LEDS_BASE, 0x0040); Important: for this peripheral, set the “Slave addressing”
for (i =0 ; 1i<8; i++) { mode to “Register.” This affects whether the peripheral ajl-
TOWR_LED_DATA(LEDS_BASE, i, 3 << (i * 2)); pear as two words (register mode) or two bytes (memory mode).
) printf("writing %x\n", 1); This peripheral presents a simple two-word interface: irgd

the first byte of the first word returns 1 if a byte is availabhela

for (1 =18 ; i <16 ; i++) { zero otherwise. Reading the first byte of the second wordmstu

TOWR_LED_DATA(LEDS_BASE, i, 3 << (32 - (1 * 2)));

printf("writing %x\n", i); the byte received from the keyboard.
Thus, if DE2_PS2_BASE is the base address of the PS/2 con-
for (i = 0 ; i <16 ; i++) { troller peripheral, you can wait for the next data byte using

printf("reading %x = %x\n", i, IORD_LED_DATA(LEDS_BASE, 1i));

unsigned char code;
intf("Goodbye\n") ,
printf("Goodbye\n") while (IORD_S8DIRECT(DE2_PS2_BASE, 0)) ; /+ Poll the status #/

return 0; code = IORD_8DIRECT(DE2_PS2_BASE, 4); /% Get received byte */

3.3 What ToDo

Figure 16: A hello_world.c file that imitates KITT from Knigh You have two things to design: an Avalon peripheral that can
Rider (yes, | lived through the 80s). It sets the cycling shéils generate an FM waveform under software control that you feed
the LED_flasher peripheral with a pattern, then reads it lhlackto the supplied WM8371 audio controller, and a C program that
verify it works as memory. translates key events from the PS/2 keyboard into commanmds f
your FM oscillator. Basically, make the PS/2 keyboard behav
)) o ~ like a dumb piano keyboard.
determined by the ratiox,/ cm, which is generally setto an in- yging the LED flasher example peripheral, build an Avalon
teger ratio (€.g.¢x = 3tm). , peripheral that presents registers that control the agicih fre-
The fundamental frequency of musical notes follow an eXPQuency, the modulation depth, and a simple volume control

nential scale. The A above middle C is 440 Hz, and going up #h/off) that lets you turn off the oscillator when no key is
octave doubles the frequency. ressed.

Western music is built on a scale of twelve semitones, each irUse a sinewave lookup table to generate the waveform. Step
equal ratio. Thus, the frequencies of a standard scale ahEOfthrough it at different rates to generate the different tone

form ¢ p/12 First, develop the oscillator functionality first using Mald
=440-2 Sim to test that your waveform is as you expect. Then, in-

wheref is the frequency in Hertzp = 0 is the A above middle tegrate it with the supplied audio codec controller and make

C,p=1isAf, p=2isB,p=3is C,p=12is the A the octave VHDL-only design that actually generates sound. Finaltid a

above,p = —12 s the A the octave below, etc. an Avalon interface to your oscillator, use SOPC Buildente+
_ _ grate a Nios I, the supplied PS/2 keyboard controller, amary
3.1 Sarting Points new component, and develop the software.

In the lab3.tar.gz file, we .have §upp|ied some .helpfullfilef A Bouncing Video Ball
you should use as a starting point. The most interesting Is

de2_wm8731_audio.vhd, which implements an interfacedo tAfter you implement this project, you will feel a much strang
Wolfson WM8371 audio codec on the DE2 board. This operategnnection with Nolan Bushnell, the inventor of the first
either in a test mode that generates a sinewave (a pure mmej;ommercially-successful videogame, Pong. Of course, you
as a parallel-to-serial converter. won't find it quite as lucrative.

We included two Verilog files that configure the WM8371: You have two things to design: an Avalon component that
de2_i2c_controller.v and de2_i2c_av_config.v. You shddd displays a small white rectangle on the screen under sagtwar
able to just instantiate them without modification. Theydsercontrol, and a C program that controls the position of thid-re
initialization commands through the two-wiréd bus. angle.

lab3_audio.vhd is a simple top-level module that instéesia Use the code in video_display.vhd as a starting point foryou
the audio controller in test mode and the tw€ Ibus compo- Avalon component. It is a simple VGA controller that disggay
nents. You can build a new Quartus project with this as aistart a large white rectangle against a blue background. It ctlyren

does not have a bus interface. You need to add one and change
its behavior so that it displays a small rectangle.

Your main challenge is building an Avalon peripheral. Use th
LED flasher from the tutorial as a basis for building a peri@ihe

First, get an Avalon peripheral working by building the =gi
ters you plan to use in the end for your video controller anatco
nect them to some LEDs to verify you can communicate from
the software to the hardware.

Once you have a working peripheral, integrate your modified
video controller with it.

5 AnlImageFilter

