

Guitar Effects

 March 22, 2007

Navarun Jagatpal
Fred Rassam
Young Jin Yoon
Elton Chung

 1

TABLE OF CONTENTS

Guitar Effects .. 1
I. Introduction... 3
II. System Overview.. 3
III. Hardware Requirements.. 3

I. Audio Codec ... 3
II. Effects Processor... 4

1. Distortion Module... 4
2. Vibrato Module... 5
3. Chorus Module.. 6

IV. Software Requirements... 6
V. Appendix A... 8

 2

I. Introduction

It is common for electric guitar players to make use of ‘pedals’ in order to achieve
certain effects such as ‘distortion/overdrive’, ‘delay/echo’, ‘chorus’, ‘flanger’ and
‘pitch/phase shifter’. Typically these pedals make use of analog electronics to yield
the desired effects. Our goal will be to use the Altera DE2 FPGA board as a sampler
and DSP (Digital Signal Processor) to produce a few of these effects. The sampling
will be done in real-time with mono audio input from a guitar connected to a vacuum
tube preamp into the FPGA. The output will be played on a pair of speakers.

II. System Overview

The diagram fig 1 below is a top level block diagram of our guitar effects system.

16

CPU

Effects Processor
16

DAC
Buffer 1 bit1 bit

ADC
Buffer

DAC
(Not built

by the
group)

ADC
(Not built

by the
group)

 fig. 1 Top level diagram

The ADC(Audio Digital Converter) and DAC (Digital Audio Converter) will be done
by the Wolfson WM8731 audio CODEC provided by the FPGA via the sound card.
We will be designing a ADC buffer which will take the serial digital input received
from the ADC and buffering it so our Effects Processor can modify the data to the
desired effect before re-serializing the data out to the DAC through the DAC buffer.
The CPU will be used to switch the effects, increase/decrease volume and
increase/decrease the effect.

III. Hardware Requirements

I. Audio Codec

We will be using the Wolfson WM8731 audio CODEC for doing our analog
digital conversions (ADC) and digital audio conversions (DAC). The CODEC

 3

provides us with stereo and mono microphone level audio inputs as well as an
array of programmable functions ranging form mute, volume control, bias voltage
output, I2S, DSP, 16/20/24/32 bit Word Lengths and Master or Slave clocking
mode. The CODEC samples the input with a range of frequency from 8kHz-
96kHz

II. Effects Processor

16-bit
input to

DAC buffer

Distortion
Module

Vibrato
Module

Chorus
Module

Demux
E

16

16

16

16

16

16

Mux E

effect_select

parameter1

parameter2

16
16

16-bit
output
from
ADC
buffer

Memory-mapped I/O
from CPU

2
Fig. 2 Effects processor block diagram

The effects processor consists of a mux, demux and three effect modules. A 16-
bit sample input feeds into the demux which supply inputs for the three separate
effects, Distortion, Vibrato and Chorus, modules. The CPU will dictate which
effect module to use and supply a gain and phase input parameter. The output
will then be fed into a mux for aggregating the signals into a 16-bit buffer for the
DAC to process.

1. Distortion Module

 4

16-bit
output
from

Demux
E

Fig. 3 Block Diagram of Distortion Module

The 16-bit input will be fed into two separate comparators. The first comparator will
output a ‘1’ if the sample is greater than ‘N’. The second comparator outputs a ‘1’ if
the sample is less than -N. (‘parameter1’ = ‘N’), ‘N’ being the clipping level

2. Vibrato Module

Fig 4. Block Diagram of Vibrato Module

D Q

Compare

Mux

Compare

Mux

×-
16

16

16

(sample of music)

16 ×g

16-bit
input to
Mux E

parameter1
16 bits

parameter2
(parameter2 = g)

D Q
16

16 bits

(sample of music)

z
-d[n]

D Q
16

(parameter2 = g)
D Q

16

(buffer for
varying delay)

d[n] = 221cos[2πfn]+882
(lookup table)

(parameter1 = f)

16-bit 16-bit
output from
Demux E

input to
Mux E

×g

parameter1
16 bits

parameter2
16 bits

 5

The 16-bit signal will be re-evaluated with a complex cosine look-up table. A
frequency parameter will be fed in from the CPU to help with the final calculations.
The re-imaged signal will then be amplified by ‘parameter2’ which is also passed in
through the CPU.

3. Chorus Module

Fig. 5 Block Diagram of Chorus module

This module is similar to the Vibrato module except the resulting sample after re-
imaging will be added with the original signal before sending it out to the mux.

IV. Software Requirements

 The selection of which guitar effect to use will be done in software. This process
will be mapped to different keys on a keyboard and the user will have the ability to
choose which effects should take place.

D Q
16

(parameter2 = g)
D Q

16

z
-d[n]

(buffer for
varying delay)

d[n] = 221cos[2πfn]+882
(lookup table)

(parameter1 = f)

×g

 +
Adde

(sample of music)
16 16

16-bit
output from
Demux E

16-bit
input to
Mux E

16
parameter1

16 bits

parameter2
16 bits

 6

APPENDIX

 7

V. Appendix A

Verifying algorithm on C code

Because we need to verify the algorithm we used, we need to build a simple program in C
to test our algorithm to implement functionality that we have. In our C program, basically
it reads the sample from the file, applies the algorithm that we used, and then write a new
sound file with applied sample. To read the sampling from file and write sample onto the
file, we used libsndfile library from GCC. The programming interface that we used from
libsndfile is shown on Table 1.

Name Note
sf_open Open the file to get / put the sample from them

sf_read_int Read the sampling with integer type. If the file has different type for
 sampling, this function converts the sample on-the-fly.

sf_write_int Write the sampling with integer type. If the file has different type fo
r sampling, this function converts the sample on-the-fly.

sf_command Give the various configuration to the libsndfile.

Currently we have tested the distortion algorithm with the code shown below. The results
were as expected so now we are working on implementing Vibrato and Chorus.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sndfile.h>
#include <limits.h>

#define DEF_DIST_VAL (INT_MAX * 0.001)

int dist_val;

int distortion(int input);
void error(SNDFILE *reason);
void usage(char *filename);

int main(int argc, char *argv[])
{
 SNDFILE *src, *dst;
 SF_INFO src_info;
 char *src_name, *dst_name;
 char *tmp = NULL;

 sf_count_t src_cnt, dst_cnt;

 int src_data, dst_data;

 if(argc > 3 || argc < 1) usage(argv[0]);
 if(argc == 2) {

 8

 dist_val = (int)DEF_DIST_VAL;
 } else {
 dist_val = strtol(argv[2], &tmp, 10);
 if(dist_val == 0 && tmp != NULL) usage(argv[0]);
 }
 printf("<DEBUG>: MAXIMUM - %d, VAL - %d\n",INT_MAX,dist_val);
 printf("<DEBUG>: before opening the src file\n");
 // open the source file
 src_name = argv[1];
 src = sf_open(src_name, SFM_READ, &src_info);
 printf("<DEBUG>: after opening the src file\n");
 // create the name of dest file
 dst_name = (char *)malloc(strlen(src_name)+4);
 strcpy(dst_name, src_name);
 strcat(dst_name, "_dst\0");
 printf("<DEBUG>: after changing the dst filename\n");

 // open the destination file
 dst = sf_open(dst_name, SFM_WRITE, &src_info);
 printf("<DEBUG>: after opening the dst file\n");

 // set float converting into integer
 sf_command (src, SFC_SET_SCALE_FLOAT_INT_READ, NULL,
SF_TRUE);
 sf_command (src, SFC_SET_CLIPPING, NULL, SF_TRUE);
 printf("<DEBUG>: after setting the command\n");

 while(1) {
 src_cnt = sf_read_int (src, &src_data, 1);
 if(src_cnt == 0) { sf_perror(src); break;}
 else if(src_cnt < 0) error(src);
 dst_data = distortion(src_data);
 dst_cnt = sf_write_int(dst, &dst_data, 1);
 if(dst_cnt <= 0) error(dst);
 }
 printf("<DEBUG>: Complete!\n");
}

int distortion(int input)
{
 if(input > dist_val) return (dist_val * 500);
 else if(input < -dist_val) return (-dist_val * 500);
 else return (input * 500);
}

void error(SNDFILE *reason)
{
 sf_perror(reason);
 exit(EXIT_FAILURE);
}

void usage(char *filename)
{
 fprintf(stdout,"Usage : %s <file_name>
[distortion_factor]\n",filename);
 exit(EXIT_SUCCESS);
}

 9

Distortion Primer

A distortion is the alteration of the original shape (or other characteristic) of an object,
image, sound, waveform or other form of information or representation. In the world of
the guitar music, distortion is actively sought, evaluated, and appreciatively discussed in
its endless favors. Comparison between distorted wave and original wave is in Figure 2.
Basic concept of implementation of that is amplifying sound so that the tops of the

waveform clipped off in general analog circuit. However, because the sound values are
represented as samples in digital sound processing, we can get more clear sound by
clipping sampled value on the FPGA. The basic algorithm for implementing distortion is
shown as Figure 3, and block diagram for our implementation in FPGA is in Figure 4.

if (sampled value > Maximum value for distortion)
 sampled value = Maximum value for distortion
e l s e i f (s a m p l e d v a l u e < - M a x i m u m v a l u e f o r d i s t o r t i o n)
 sampled value = - Maximum value for distortion
else
 sampled value = sampled value
Figure 1

Figure 2

 10

Figure 3

In block diagram, if the sample is greater than parameter1, the first comparator outputs 1
so that the Mux can take parameter1 rather than sampled data. For the same reason, the
second comparator outputs a 1 if the sample is less than –parameter1, which chooses –
parameter1 rather than sampled data. Because of this comparison, we can make clipped
waveforms. After clipping the sound, it can be small so the human cannot catch it. So
parameter2 is multiplied by the result of clipped samples.

 11

	Guitar Effects
	I. Introduction
	II. System Overview
	III. Hardware Requirements
	I. Audio Codec
	II. Effects Processor
	1. Distortion Module
	2. Vibrato Module
	3. Chorus Module

	IV. Software Requirements
	V. Appendix A

