The PIPE Language: An Overview
Author: Pierre Menard

Email: Pierre.Menard@bms.com
Columbia ID: pm2146

Introduction

The earliest programmers implemented their logic noware. The barrier to entry was
a PhD in electrical engineering and a soldering iron. nThechine language was
invented which allowed more people to become programmBisthe time assembly

language was created, a programmer only had to be sligb#lge to be successful at his
craft. Nowadays, modern languages are simple enouglalgane with an interest in

computers can write a program. The evolution of programnsi such that more people
become programmers as languages get easier to use.vétpa@me say there are more
programmers today because they are needed to fix aliufye in old programs. More

programmers will be needed tomorrow to fix the bugs dayts programs.

Looking at the trends and the reasons behind them, anyneddsoeconomist would

immediately conclude that one day everyone will [ppagrammer. But before software
developers around the world can rejoice over the inalitaof this logical argument, a

programming language will be needed that even technophobes canThags where

PIPE comes in. It's the general-purpose language thatgeaedma can master!

PIPE is an acronym foPIPE |s ProgrammingEvolution”. However, since PIPE hasn't
proven itself yet, PIPE stands fd?IPE | s Pierre'sExperiment”.

Conceptual M odel

Many believe that the holy-grail of computing is Staekr's on-board computer;

Jean-Luc Menard - "Computer, open a hailing frequencye®thmulan warship."
Computer - "Sir, the Romulans are ignoring your hail."

Jean-Luc Menard - "In that case, fire photon torpeddsegtull”

Computer - "Firing torpedos..."

<explosions and earthquake-like vibrations>

Jean-Luc Menard - "Computer, what happened?"

Computer - "Photon torpedos were fired at the hull"

Jean-Luc Menard - "Not our hull, you idiot! The Romusamill! Take us out of here! Warp 9!"

Most laymen (and software professionals) view automatitagk as specifying the steps
a program must take to reach the desired state. Thierys much like procedural

programming. PIPE doesn't deviate from this conceptual mbdetfoes recognize that
the amount of ‘theory' required to learn procedural languages high for most people.

Part of the problem is that programs are representezkin tt's easier for most humans
to think in graphical terms. Rather than typing "Fingoealos at the hull of the Romulan
ship located at coordinates x,y,z", making sure to confortheostringent syntax of a

programming language, it is probably easier to drag and dpagiuae of a torpedo onto

the image of the target ship. While both are equivaldm, graphical procedure is
preferred because it does away with an unnatural andirgxagntax.

The PIPE integrated development environment (IDE) is detitg tool that graphically
represents a computer program. For example, a PIPEapmowr can drag and drop a
'loop' module into the current 'workflow'. Behind the s&=nthe user's actions are
translated into the PIPE programming language and eventnilyava. By design, the
PIPE language is not very succinct. The reason is be¢dB& syntax tries to mirror the
feel of the graphical workflow model. Indeed, this is jirgtification for creating the
PIPE programming language rather than implementing theflmar concept as an
application in a standard language. Users who are curtmug the underlying code can
look at it (and modify it) and will have a better cbarof understanding the semantics of
the textual representation.

PIPE makes no attempts to be computationally efficagk doesn't care if it's a hundred
times slower than an equivalent Java program. If aaegerson can automate a task on
their own, it's assumed a slow PIPE program will bllat least an order of magnitude
faster than manually performing the steps by hand. eGn®IPE program has been
proven useful, PIPE allows for a real programmer tdement the PIPE program in pure
Java and expose that as a PIPE module. Java codberefore be embedded into a
PIPE program. In this way, PIPE users create thealingrograms and software
professionals can make them better and faster. Hereexample program that a high-
school teacher might create;

Step 1: Drag and drop the 'open tab-delimited file' neothtib the workflow.
Answer the prompt thgks for a file name. (eg. grades.txt)

Step 2: Drag and drop the ‘column iterator' module ireanibrkflow.
Answer the prompt that &sks column name. (eg. grade)

Step 3: Drag and drop the 'branch’ module into the vawidind specify a branching condition.
The workflow now bifurcatésg. grade > 90)

Step 4: Connect a 'null’ module to the 'false' pot@fitranch’ module.

Step 5: Connect an 'export to Excel' module to the 'truebptire 'branch' module.

This program opens and reads the grade column of a tabtedlifie and exports to
Excel those lines where the grade is greater than 90.

Example Syntax

All PIPE programs begin with a START module. There @aly be one START module
per workflow. In the PIPE IDE, the START module ig ttanvas of the main working

area. At the left of the work area, there are mesluépresented in a hierarchy that a
person can drag and drop into the work area.

To implement Hello World, the PIPE programmer drags angsithe PRINT_SCREEN
module onto the work area, and types in "Hello World" nvpeompted. Here is what the
corresponding PIPE code would look like;

module START {
call module PRINT_SCREEN {
input @text is "Hello World".
}

}

The START module invokes the PRINT_SCREEN module witklltHWorld" as input
to the PRINT_SCREEN module. All variables begin with @ character. In the above
example, @text is an input variable that is used by Ri&lP_SCREEN module.

Now suppose that the Hello World program is so usefalvweawant to create a reusable
module from it. We can save the workflow as a modnégve it HELLO_WORLD as
a name. Here is the PIPE code for that;

/I user can create their own modules and share thentheittfriends
module HELLO_WORLD {
call module PRINT_SCREEN {
input @text is "Hello World".
}

Here’s a variation of Hello World that illustrates htmhandle outputs from a module;

module START {
@answer is call module GET_USER_NAME {}

call module PRINT_SCREEN {
input @text is "Hello " + @answer->@name.
}

}

module GET_USER_NAME {
output @name. // definition for outputs
call module PRINT_SCREEN {

input @text is "What is your name?".
}

/I GET_USER_INPUT is a built-in module.
@name is call module GET_USER_INPUT {}

The implementation of the built-in PRINT_SCREEN meadisl as follows;

module PRINT_SCREEN {
input @text. /I definition of input

call module JAVA {
input @code is {
System.out.printin(@text);
}

}

The PRINT_SCREEN module is implemented using the buiéémbedded Java facility.
PIPE comes bundled with several built-in modules $kate as a basis for the creation of
useful programs. The PRINT_SCREEN module is just omaasfy such modules.

