1. Consider the following Prolog program.

 takes(jane_doe, his201).
 takes(jane_doe, cs254).
 takes(ajit_chandra, art302).
 takes(ajit_chandra, cs254).
 classmates(X,Y) :- takes(X,Z), takes(Y,Z).

 What does the query classmates(jane_doe,X) return? Give details of how the search procedure produces this result.

2. Consider the following C-like program.

 int w = 3;
 int x = 10;

 int incw() { return ++w; }
 int incx() { return ++x; }

 void foo(y, z) {
 printf("%d\n", y + y);
 x = 1;
 printf("%d\n", z);
 }

 int main() {
 foo(incw(), incx());
 return 0;
 }

 What does it print if the language uses

 (a) Applicative-order evaluation?
 (b) Normal-order evaluation?

3. In an assembly-language-like notation (e.g., use MIPS or a pseudocode of your own choosing), write what a good optimizing compiler would produce for the following two switch statements:

 switch (a) {
 case 1: x = 3; break;
 case 2: x = 5; break;
 case 3: x = 15; break;
 case 4: x = 20; break;
 case 5: x = 23; break;
 default: x = 28; break;
 }

 switch (b) {
 case 1: x = 3; break;
 case 10: x = 5; break;
 case 100: x = 15; break;
 case 1000: x = 20; break;
 default: x = 25; break;
 }

4. For a 32-bit little-endian processor with the usual alignment rules, show the memory layout and size in bytes of the following C types.

 union {
 struct {
 int a; /* 32-bit */
 char b; /* 8-bit */
 } s;
 }

 struct {
 char a;
 short b;
 int c;
 char d;
 } s1;

 struct {
 char a;
 char d;
 short b;
 int c;
 } s2;