
Organic Form Language
Eric Larson

Overview

Self-similar organic forms of unlimited complexity are used in
computer graphics for generating organic images such as those of
plants, and also generating patterns such as fractals. For this
purpose, Organic Form Language, or "OrgForm", was designed. An
interpretor will translate OrgForm code, into line drawings.

OrgForm was inspired by L-systems, which is a mathematical way of
defining organic forms, and by functional languages such as Scheme,
which simplifies the building of complicated programs. L-systems
were pressed into use as a programming language, though it was
originally intended as mathematic formula notation. Functional
languages are an intuitive way of representing recursion, which is the
predominate characteristic of L-systems. By bringing these concepts
together, OrgForm makes building more sophisticated organic forms
easier.

Concept

Every OrgForm program starts with a call to a rule. The program is
executed in iterations. During each iteration, each call to a rule is
replaced by that rule's definition.

For example, here is pseudo-code of a program which builds a plant.
First it makes a branch, but in subsequent iterations, that branch
grows into more branches.

rule: branch = branch, turn right, branch

0 iterations:
branch

1 iteration:
branch, turn right, branch

2 iteration:
branch, turn right, branch, turn right, branch, turn right, branch

The programmer selects the number of iterations that the program
will run. When the program has executed the final iteration, the
result is translated into graphics. In the above example, branch may
mean "draw a line segment".

In OrgForm, the above information would be captured in the
following program.

Start:branch
Iterations:2

Rule:branch
Right

 branch;
 branch;
 ;
 Final: Draw

Notice that the function calls are each put on a new line. This is just
to make the code more clear. In OrgForm, single carriage returns are
ignored. The branch function could also have been defined as
follows.

Rule:branch Right branch; branch;; Final:Draw

Design Concerns

Functions

To make OrgForm a powerful language, it is necessary to be able to

represent as many organic shapes as possible. A possible bench-mark
is to create a language which can represent all the organic shapes
representable in L-systems. One way to reach this bench-mark is to
design OrgForm with analogies to the two features which give L-
systems its expressiveness, iteration and state frames.

State frames are groups of states which may be pushed and popped.
There are two separate types, one for states which involve "time", and
one for all other states.

Iteration in L-systems provides a way to increment the growth of all
portions of the form simultaneously. Because the parts of organisms
grow simultaneously, iteration provides a means for modeling the
growth of plants.

Both of these features of L-systems provide users with abstraction.
Because of state frames, users do not need to concern themselves
with modifying the states for all the components of forms. Iteration
means that users do not need to describe every sequence of the
growth of forms. Both iteration and state frames are natural
analogies to functions. The problem is finding a way to map multiple
function-like behaviors onto a functional language which only has one
type of function.

The solution is to have two types of functions. One is a "rule", the
other is a "function". Using keywords, the programmer declares a
defined method to be of either type.

To imply the inheritance of state frames, the order of execution of the
functions if from left to right, ignoring spaces, tabs, and single
carriage returns. Each function call takes one argument, which is
whatever function is to its immediate right. The function being called
is executed, then it executes the function that it took as a parameter.

For example, the following line will call my_func_1 first, which will
execute, possibly changing state values, and then call my_func_2.
 my_func_1
 my_func_2

The only exception is if a “:” or a “;” is between the function calls.
These symbols tell the assembler to pass the call on the right to the
function preceding the function call to the left. In the following
example my_func_1 will take and execute both my_func_2 and
my_func_3, and my_func_2 will not execute my_func_3. Any state
changes caused by my_func_2 will not effect my_func_3.

 my_func_1
 my_func_2;
 my_func_3

Notice that function calls that which are are

To define a function, use the key word "Function:".

Function:my_func_1
 my_func2;
 my_func1

To express the difference between a function which has a state frame,
and a iteration stage, which may or may not have a frame, OrgForm
provides the keyword "Rule:".

Rule:my_rule_1
 my_func2;
 my_func1

If the rule has a frame, just define a function which is called by the
rule.

Simplicity

To make the language easy to learn, complete English words are used
instead of symbols when sensible. There are only eleven keywords
and four special symbols.

The only thing that a programmer may define in OrgForm are
branches and functions. These names must be all lower-case letters,
numbers, and under-scores ("_").

Every statement in an OrgForm program will have an effect on the
programs state.

The only drawing concepts are lines and the angles between them.
There is no concept of a point or location. Because the language is
only concerned with forms, points are not needed.

All keywords begin with upper-case letters.

Keywords

Drawing and moving commands

“Right”, “Left”, “Draw”, “Forward”

“Iterations”, Number of times the program will resolve rules.
“Start”, The first rule or function call the program will make.
“Final”, The value that the given rule will resolve after the final
iteration.

“Color”, The color code.
“Thickness”, The thickness of the line.
“Length”, How far a “Draw” or a “Forward” command will move.

“Rule”, A new rule declaration.
“Function”, A new function declaration.

Special Characters

":", Set a value.
"+", Increase a value. Only used after “Color|Thickness|Length”.
"-", Decrease a value. Only used after “Color|Thickness|Length”.
“,”, Revert state back except time.
";", Revert the entire state back.
“#”, Comment.

Example OrgForm Code

#Program: Alfonse

#Builds a mult-color bristled plant which leans to the right.

#Setup initial environment
Iterations:5
Angle:22.5
Color:12
Start:base

Rule:base
 color:12 branch
 base,
 Left Left

 left2_bristles,
 branch
 right2_bristles,
 Right

#Make a bristle at a sharp left angle
Function:left2_bristles
 Left Left
 bristles

#Make a bristle at a sharp left right
Function:right2_bristles
 Right Right
 bristles

#Make upper part of plant
Rule:upper
 Color:1
 branch
 upper,
 Right Right
 left2_bristles,
 branch
 right2_bristles,
 base

Rule:bristles
 make_bristle,

#Seperate from Rule “bristles” so bristles will always revert
the state back to what it was before it was called.
Function:make_bristle
 Color:4
 Right Forward Left Forward Left Forward Right transpose
Right Forward Left Forward Left Forward

Rule:branch
 Forward

 left_bristles;
 right_bristle,
 Forward

Function:left_bristles
 transpose Left Left bristles

Function:right_bristles
 transpose Right Right bristles

#Needs to be refined
Function:transpose
 Left Left Left

The graphical result will roughly be like this.

