
LPL: Log Processing Language

Language Reference Manual

Eugene Kozhukalo
genek81@gmail.com

COMS 4115
03/02/2006

1. Introduction

LPL is a simple, intuitive language for parsing and processing log files. It
provides the user with flexibility to write a parser for and extract data from
virtually any kind of log files. Syntactically, it is a mix of familiar Python/Java
conventions with a few Awk constructs, which produces a combination of high-
level convenience and simple yet powerful text processing facilities. ANTLR is
used to specify its grammar, and Java is used to implement the grammar.

2. Lexical Conventions

2.1 Tokens and Whitespace

Parser tokens include identifiers, keywords, operators, literals, and other
separators. Spaces, newlines and tabs constitute white space. The purpose of
white space is to separate tokens, otherwise it is ignored.

2.2 Comments

Just like whitespace, comments are ignored by the parser. They are similar to
Java. Single line comments begin with “//” and include all characters up to the
end of the line. Multi-line comments begin with “/* and terminate with “*/”.

2.3 Identifiers

An identifier in LPL consists of a letter character followed by any combination of
letters, digits, and underscores. Uppercase and lowercase letters are considered
different. Examples of identifiers: a, abc123, test_string.

2.4 Keywords

The following keywords are reserved in LPL:

begin elsif max
end input min
for datetime avg
in count sum
print if type
println else

true and false are also reserved words in LPL.

2.5 Literals

There are three types of literals: integer, string, and boolean.

An integer literal is a sequence of one or more digits beginning with an optional
sign. An integer literal may not begin with a zero if it is more than one character
long.

A string literal is a sequence of zero or more characters enclosed in double
quotes. Single character strings may be enclosed in single quotes. Certain
characters may be escaped with a backslash (\). These characters include single
and double quotes, (\', \“) and whitespace characters (\n, \r, \t, \b).

A boolean literal is one of two reserved words, true or false.

3. Types

LPL has three basic types and three user-defined types. Basic types include int,
string and bool. User-defined types include list and dictionary, which are
implemented similar to Python, and datetime.

int, string and bool types are 32-bit integers, strings of characters, and true/false
values, respectively. list and dictionary types can only contain basic types and
datetime type. The datetime type is a special type containing a timestamp. The
timestamp is parsed from a string containing time and/or date. This parsing is
performed when a datetime object is initialized, and an optional regular
expression may be specified to use during parsing.

Arithmetic and relational operations may only be performed on operands of the
same type. Lists may be dereferenced only by integers. Dictionaries may contain
key-value pairs of any of the basic and datetime types.

4. Operators

4.1 Logical

&& : logical and operator
|| : logical or operator
! : logical not operator

4.2 Arithmetical

+ : binary addition operator and string/list append operator
- : binary subtraction operator
* : binary multiplication operator
/ : binary division operator

4.3 Relational

== : relational equals operator
!= : relational not equals operator
> : relational greater than operator
>= : relational greater than or equals operator
< : relational less than operator
<= : relational less than or equals operator

4.4 Other

= : assignment operator
() : list/dictionary dereference, function call operators
. : method call operator

4.5 Operator precedence table

() . High precedence
!

* /
+ -

!= == < <= > >=
&& ||

= Low precedence

5. Expressions

Expressions include identifiers, function calls, list and dictionary element access,
and other expressions surrounded by “(“ and “)”

5.1 Identifiers

Identifiers are left-value expressions. They are bound to values resulting from
evaluating right-value expressions.

5.2 Function calls

Function calls are right-value expressions. They consist of an identifier (one of
reserved keywords) followed by a comma-separated list of arguments enclosed by
“(“ and “)”.

5.3 Element access expressions

Element access expressions are left-value expressions. They consist of a
list/dictionary identifier followed by an integer index enclosed in “(“ and “)”.

5.4 Arithmetic expressions

Arithmetic expressions consist of operands separated by arithmetic operators.
Operands can be identifiers, integer literals, function calls, or element access
expressions. Operands for “+” operator can also be string literals.

5.5 Relational expressions

Relational expressions consist of operands separated by relational operators.
Operands can be identifiers, integer literals, function calls, or element access
expressions.

5.6 Logical expressions

Logical expressions consist of operands separated by logical operators. Operands
can be identifiers, relational expressions, or boolean literals.

6. Variable declaration and assignment

LPL, like Python, is not strongly typed. That means variable declarations are not
needed. A correct type is automatically assigned at variable initialization.
Variable assignments take the form of:

<left-value expression> = < expression>;

Examples:

i = 5; // i becomes an integer with a value of 5
name = “Joe”; // name is a string with a value of “Joe”
l = (); // l is an empty list
d = {}; // d is an empty dictionary
dt = datetime(); // dt is a datetime object reflecting current date and time
c = (1,2); // c is a list containing integers 1 and 2.
ct = count(d); // ct is an integer corresponding to number of elements in d

There are a few special variables defined only in scope of a begin / end loop (see
below). They contain:
– parts of current parsed record matched by groups of current parsing string ($1

holds contents of first group, $2 of second, etc.)
– total number of records ($NR)

7. Statements

7.1 Looping

There are three looping statements provided. One is the for / in loop used to
iterate over lists and dictionaries. The syntax is as follows:

for <element identifier> in <list/dictionary identifier> {
<statement>
...

}

Another loop is the while loop. The syntax is as follows:

while (<expression>) {
<statement>
...

}

Finally, there is the begin / end loop. It is used to iterate over records parsed
from the input file. The syntax is as follows:

begin (<optional record parse string>) {
<parse string 1> : {

<statement>
...

}
<parse string 2> : {

<statement>
...

}
} end {

<statement>
...

}

7.2 Conditional

Conditional statement is comprised of if / elsif / else keywords. The syntax is as
follows:

if (<expression>) {
<statement>
...

} elsif (<expression>) {
<statement>
...

} else {
<statement>
...

}

8. Built-in Functions

There are a few built-in functions to facilitate certain tasks in LPL. They are as
follows:

input(path_to_file) – specifies input log file to be parsed
print(id) – prints contents of id
println(id) – prints contents of id plus newline
type(id) – prints the type of id

count(list) – returns number of members in list, which can be a list or a dictionary
max(list) – returns max value of members in list, which must be a list of integers
min(list) – returns min value of members in list, which must be a list of integers
avg(list) – returns average of members in list, which must be a list of integers
sum(list) – returns sum of members in list, which must be a list of integers

datetime(string) – returns a datetime object either parsed from optional string or
 created based on current date/time.

9. Sample Program
/*
 This short program parses a log file that is in following format:
 <timestamp> <java class> <message type> <message>
 For example:
 02/02/2006 12:14:55 Main.java INFO Starting program...
 02/02/2006 12:14:56 Main.java INFO Loading configuration file...
 02/02/2006 12:14:57 Main.java ERROR Configuration file not found! *#
*/

input(“C:\logs*.log”) /*specify input fileset
input file(s) may also be passed in as command line arguments */

dateTimeRE = “\d+\/\d+\/\d+\s\d+:\d+:\d+”; //declaring a regular expression for datetime
classNameRE = “[A-Za-z]+\.java”; //declaring an RE for class name
msgTypeRE = “[A-Z]+”; //declaring an RE for message type
msgContentRE = “(\w+\s*)+”; //declaring an RE for message contents
singleLogMsgRE = “(“ + dateTimeRE +

 ”)\s+(“ + classNameRE +
 ”)\s+(“ + msgTypeRE +
 ”)\s+(“ + msgContentRE + “)”; //declaring a single message RE

/* these regular expression variables are defined for convenience
 it will be possible to use the actual string represented by singleLogMsgRE
 inside the parse loop */

errorMsgList = (); //declaring an empty list

begin (“^.*\n”) { /* parse loop, optional record pattern specified (single line here)
 a record is also a single line by default
 $1...$5 are matched groups defined in singleLogMsgRE */

singleLogMsgRE: { #if a log message is found, do following actions
 if ($2 == “Main.java” && $3 == “INFO”) {

print (“Time:” $1 “Message: ” $5);
} else if (datetime($1) > datetime(“02/02/06”) {

errorMsgList = errorMsgList + $5; /* aggregate today's
 errors */

};
}

} end { //after parsing complete, do following
println “Number of errors today: “ + count(errorMsgList);
println “Error messages:”
println errorMsgList;

}

