

IML Reference Manual

Travis J. Galoppo
tjg2107@columbia.edu

1. Introduction

 IML is a computer language, based loosely on the C and Pascal languages, designed for easy
manipulation of RGB raster images. IML is an interpreted language, built on top of the Java platform,
and is therefore platform independent.

 At the time of this writing, absolutely no software is written in IML, as the interpreter is being
developed in parallel with this reference manual. As such, the final language is subject to vary
slightly from this version of the manual.

2. Lexical conventions

 IML distinguishes between five kinds of tokens: identifiers, keywords, numeric constants,
expression operators, and separators. Blanks, tabs, newlines, and comments (as to be described)
are ignored, other than to separate tokens.

2.1 Comments

 IML employs C style comments, starting with the characters /* and terminating with the
characters */.

2.2 Identifiers

 An identifier is a sequence of letters, digits, and underscores; identifiers must start with a letter
(underscore is not allowed), and can be any length. Upper and lower case letters are considered
different.

2.3 Keywords

 The following identifiers are reserved as keywords, and are not valid user defined identifiers:

 integer if
 real else
 string for
 null while
 return program
 end do
 image pixel
 var function
 main print

2.4 Constants

 There are both integer and real (floating point) constants:

2.4.1 Integer Constants

 An integer constant is a sequence of digits. Integer constants are always interpreted as base
10. Future versions of the language will include hexadecimal notation, similar to that of C.

2.4.2 Real Constants

 Real, or floating point, constants consist of a series of digits followed by a . followed, possibly,
by more digits. For example: 1.24 1234.5 1. are all Real numbers. Note that a number of the form
.25 is not. Also, there is no provision for C style "scientific notation".

2.5 Strings

 A string is a sequence of characters surrounded by double quotes; strings containing double
quotes must represent the double quote using two consecutive double quotes. For example "IML is
""fun"" to learn!" represents the string —> IML is "fun" to learn.

3. Types

 IML has five declarable types: integer, real, string, pixel, and image.

 Integer - 32 bit signed integer value
 real - 64 bit signed floating point value
 string - Printable sequence of characters
 pixel - 32 bit value representing red, blue, and green color components;
 each channel uses only 8 bits, so 8 bits of this type are wasted.
 image - Essentially an array of pixels; however, this type is more of a class,
 with some methods associated to it.

4. Conversions

 The following conversion are valid between types.

4.1 Integer and Real

 Integers may be converted to reals without loss of accuracy; reals may be converted to
integers, any fractional part will be lost. Behavior is undefined if the value of the real exceeds 2^31-1.

4.2 Integer and Pixel

 Integers and pixels may be freely converted, as may be useful for manual masking and
manipulation of color channels.

5. Expressions

 Expressions consist of identifiers (including function calls) and operators. The following list of
operators are defined in IML, from highest precedence to lowest:

()
-

ID

Grouping
Unary minus
Indentifier/Function call

!
~

Logical NOT
Bitwise NOT

*
/

%

Multiplication
Division
Modulus

+
-

Addition
Subtraction

<<
>>

Bitwise shift left
Bitwise shift right

>
>=
<

<=

Greater than
Greater than or equal
Less than
Less than or equal

==
!=

Logical equality
Logical inequality

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

= Assignment

6. Declarations

 Declarations of variables and functions are described in this section in a pseudo-ANTLR type
notation; both are derived from Pascal syntax.

6.1 Variable Declarations

 Variable declarations take the form of

 var ID [, ID]* : type ;

 where ID is any valid identifier as described in section 2.2, and 'type' is any of the five
declarable types described in section 3.

6.2 Function Declarations

 Function declarations take the form of

 function ID ((PARAM_LIST)?) : type

 where PARAM_LIST takes the form of

 PARAM (, PARAM)*

 where PARAM is further defined as

 ID : type

 where ID is any valid identifier as described in section 2.2, and 'type' is any valid IML type as
defined in section 3.

7. Statements

 This section described the various statements permissible in IML.

7.1 Expressions

 Expression statements, such as assignments or function calls, take the form of

 expression ;

7.2 Compound Statements

 Sequences of statements can be grouped together to form a single logical statement by
enclosing them in braces:

 { (statement ;)* }

7.3 Conditional Statement

 There are two forms of the conditional statement:

 if (expression) then statement1

 and

 if (expression) then statement1 else statement2

 In either case, 'expression' is evaluated, and if it is non-zero then 'statement1' is executed; in
the latter case, if 'expression' evaluates to zero, then 'statement2' is executed. "Else ambiguity" is
resolved by connecting the else with the nearest "elseless if".

7.4 While Statement

 The while statement takes the form of

 while (expression) statement

 'expression' is evaluated at the beginning of each iteration, and statement is executed if the
result is non-zero; iteration terminates when 'expression' evaluates to zero.

7.5 Do Statement

 The do statement takes the form

 do statement while (expression) ;

 'expression' is evaluated at the end of each iteration, and statement is executed if the result is
non-zero; iteration terminates when 'expression' evaluates to zero. 'statement' is guaranteed to
execute at least one time.

7.6 For Statement

 The for statement takes the form of

 for (expr1 ; expr2 ; expr3) statement

 and is equivalent to

 expr1;
 while(expr2){
 statement;
 expr3;
 }

7.7 Return statement

 Functions return to their caller via the return statement, which takes the form

 return (expression)? ;

 The value of expression will be returned to the caller, assuming the function is declared to
return a value of matching type. It is an error for a function not declared as null to omit 'expression',
as well as it is an error for a function declared as null to include 'expression'.

7.8 Print Statement

 The print statement takes the form of

 print expression (, expression)* ;

 Each expression will be evaluated and output on the same line.

8. Scope rules

 IML allows for global variable declarations between the program statement and the first
function declaration; these globals will be available to every function so long as such function does
not declare a local variable by the same name. Variables declared within a function, including
parameters, are local to that function and can not be accessed via any other function; such variables
can have the same name as global variables, thereby making the global inaccessible within that
function.

9. Program structure

 The overall structure of an IML program is as follows:

 program ID ;
 <global variable block>
 <function definition block>
 main()
 end.

 Program execution always begins at the first statement in the main function.

9.1 Example

 The following sample program demonstrates how to invert an image

 program InvertImage:

 function InvertPixel(p : pixel) : pixel
 {
 var np : pixel;
 np.red = 255 - p.red;
 np.green = 255 - p.green;
 np.blue = 255 - p.blue;
 return np;
 }

 main()
 {
 var img : image;
 var j, k : integer;

 img = image::open("myimage.jpg");

 for(j=0; j<img.height; j = j + 1){
 for(k=0; k<img.width; k = k + 1){
 img[k,j] = InvertPixel(img[k,j]);
 }
 }

 img.save("myimage_neg.jpg");
 }

 end.

