

SIMPLEX
SYNTAX FOR INTERNATIONAL MONETARY,

PROPERTY, AND LIQUIDITY EXCHANGE

Steven Chen Gilbert Hom Kelvin Jiang Eric Zhang
{stc2104, gch2102, kxj1, ehz2101}@columbia.edu

 1
WORKING

DRAFT

INTRODUCTION

The financial services industry is dynamic and extremely competitive. From making
investment choices to providing advice to Fortune 500 corporations, one’s reputation depends on
the ability to make wise, precise and timely decisions. SIMPLEX is designed to assist financial
professionals quickly produce accurate and precise financial analysis under intense deadline
pressure.

SIMPLEX allows financial professionals to focus on analysis rather than on intricacies in

programming languages such as Java and C++. The language is syntactically intuitive and uses
terminology and conventions familiar to professionals in the industry. Furthermore, users of
SIMPLEX will appreciate the built-in features which again, allow the user to focus on the analysis
and not on formatting output, memorizing formulas, determining data types or learning a
significant amount of syntax. Overall, SIMPLEX is a flexible and intuitive programming language
which can be used across many platforms and serves as a powerful tool for financial professionals.

BACKGROUND
Financial models serve as the foundation upon which financial analysis occurs. Financial

models are used to calculate and/or estimate financial figures. They can be used to predict future
earnings of a company, the result of a potential merger/acquisition, and the amount of debt a
company can take on, among other things. Good models are designed in such a fashion that,
should a user change an initial assumption, the change in the assumption should flow through the
model without having to update anything else. Furthermore, good models can be easily modified
and expanded to provide greater functionality and flexibility.

MOTIVATING SCENARIOS
An investment banking analyst has been asked to determine the pro forma effect of the merger

between two large media companies. A homeowner wants to determine the best mortgage that fits
his/her financial situation. A student wants to keep track of her student loans and the payments
needed to repay those loans. An entrepreneur needs to estimate the growth of the sales of his
company for a presentation to potential investors. An economist wants to determine the effect of a
rise in interest rates by the Fed. A foreign exchange trader wants exploit currency arbitrage
situations. These are all scenarios in which SIMPLEX will be able to provide a path to an answer or
a solution.

While Microsoft Excel is powerful and considered the industry standard when it comes to

financial analysis, it is fairly expensive. For students and young entrepreneurs who want to
perform their own financial analysis, Microsoft Excel is most likely unaffordable. SIMPLEX will
give its users the power to create everything from expansive financial models to quick financial
calculations at virtually no cost. Overall, SIMPLEX serves as an economical alternative to Microsoft
Excel without compromising any features required to generate meaningful financial analysis.

 2
WORKING

DRAFT

FUNDAMENTAL FEATURES
Data Types

A significant feature of SIMPLEX is the use of different currencies as data types. For example,
US Dollars, Euros, Japanese Yen and other currencies will be set as data types. The reason
motivating this feature is to ensure that different currencies cannot be mathematically manipulated
without first applying the appropriate currency exchange rate. This ensures apples-to-apples
comparisons. In addition SIMPLEX will include a data type called ‘rate.’ Users will program
rates—such as interest rates—as 7.50 rather than 0.075. It is more intuitive to think of rates in terms
of their actual number (7.50%) rather than their decimal equivalent (0.075).

In order to keep track of time, SIMPLEX will support ‘years,’ ‘months’ and ‘days’ data types.
Lastly, for all other purposes, the programming language will have a generic string and number
data type.

Currency Manipulation
SIMPLEX will automatically import currency exchange rate data in order to perform

manipulations between currencies. This is a valuable feature because it prevents the user from
having to enter all applicable exchange rate ratios into his/her program. A unique feature of
SIMPLEX will include support to quickly typecast currencies. For example, if it was necessary to
convert a value from US Dollars to Euros, the user could simply type (Euros) in front of a US
Dollar variable name. This automatically applies the appropriate exchange rate to the value of the
variable being converted.

Appropriately Formatted Output

In order to differentiate between currencies when values are displayed, the accompanying
symbol (e.g. $, ¥, €, £, etc.) is also printed. Rather than having a minus sign in front of negative
values, which are often small and hard to see, negative values will be shown with parenthesis
around them. Also, values being printed will always have the appropriate amount of significant
digits shown. For example, US Dollars are represented as having 2 decimal places and never more.
This feature ensures that no superfluous data is shown.

Built-In Functions

Due to the mathematical complexity of some formulas, SIMPLEX will contain several
frequently used functions including payment, present value, future value and internal rate of
return functions.

Mathematical Expressions

SIMPLEX offers the convenience of being able to perform and evaluate mathematical
expressions through the use of operators, not procedures and functions. This mimics the format of
evaluating mathematical expressions in graphical calculators and Microsoft Excel. Having this
feature focuses the user’s attention to the program and not syntax. For example Math.pow(3,2)
is the Java operation to raise 3 to the second power. The syntax to perform the same operation in
SIMPLEX is 2^3.

 3
WORKING

DRAFT

User-Defined Functions
A rudimentary equations solver will be incorporated into the compiler. Users can use this

solver to define functions which take parameters of linear equations and solve for the missing
variable. This way, long and common strings of arithmetic can be condensed into a user defined
function. The user can then call the function in the program, leaving one of the arguments
undefined, and the function will return the value of the missing variable.

Portability

An essential component of SIMPLEX is its ability to be run on several computing platforms. To
achieve this feature, SIMPLEX code is translated into Java, which is then able to run on computers
with the Java Virtual Machine installed.

 4
WORKING

DRAFT

SYNTAX SAMPLE

// Mortgage Calculator written in SIMPLEX

// Declaration of Variables

USD totalMortgage;

years numYears;

number paymentsPerYear;

rate interestRate;

USD payment;

// Get Inputs from User

Input(“Enter Total Mortgage amount: “, totalMortgage);

Input(“Enter interest rate: “, interestRate);

Input(“Enter Payments Per Year: “, paymentsPerYear);

Input(“Enter Number of years: “, numYears);

// Calculate Payment manually

payment = totalMortgage * (interestRate / paymentsPerYear);

payment = payment * ((1+interestRate)^(numYears*paymentsPerYear));

payment = payment / ((1+interestRate)^(numYears*paymentsPerYear)-1);

// calculate and output amortization schedule

number currentPeriod = 0;

USD beginningBalance = totalMortgage;

USD endingBalance;

USD interestPayment;

USD amort;

print ("PERIOD BEGINNING BALANCE INTEREST PAYMENT AMORTIZATION ENDING BALANCE");

print ("------ ----------------- ---------------- ------------ --------------");

while (currentPeriod >= (numYears*paymentsPerYear))

{

 interestPayment = (beginningBalance * (interestRate / paymentsPerPeriod));

 amort = (payment - interestPayment);

 endingBalance = (beginningBalance - amort);

 print (period, " ", beginningBalance, " ", interestPayment, " ", amort, " ",

endingBalance);

 beginningBalance = endingBalance;

 currentPeriod++;

}

// end of program

 5
WORKING

DRAFT

JAVA IMPLEMENTATION

import java.lang.Math;

// Mortgage Calculator written in JAVA

public class MortgageCalculator

{

 // instance variables

 double amount;

 int years;

 int paymentsPerYear;

 double interestRate;

 int numberOfPeriods;

 double payment;

 double interestRatePerPeriod;

 /**

 * Constructor for objects of class MortgageCalculator

 */

 public MortgageCalculator(double amount, int years, int paymentsPerYear, double interestRate)

 {

 this.amount = amount;

 this.years = years;

 this.paymentsPerYear = paymentsPerYear;

 this.interestRate = interestRate;

 numberOfPeriods = years * paymentsPerYear;

 interestRatePerPeriod = (interestRate / (double)paymentsPerYear);

 interestRatePerPeriod = interestRatePerPeriod / 100;

 }

 public double calcPayment()

 {

 // calc payment based on number of payments per year (formula)

 double paymentNumerator, paymentDenominator;

 paymentNumerator = amount * interestRatePerPeriod;

 paymentNumerator = paymentNumerator * (Math.pow((1 + interestRatePerPeriod),

numberOfPeriods));

 paymentDenominator = (Math.pow((1 + interestRatePerPeriod), numberOfPeriods)) -1;

 payment = (paymentNumerator / paymentDenominator);

 payment = roundCurrency(payment);

 return payment;

 }

 public void printPerPeriod()

 {

 int counter;

 double balance;

 double interestPayment;

 double amort;

 balance = amount;

 roundCurrency(balance);

 for (counter = 1; counter <= numberOfPeriods; counter++)

 {

 System.out.print("Period " + counter + "\t");

 System.out.print("$" + balance + "\t");

 System.out.print("$" + payment + "\t");

 interestPayment = roundCurrency(interestRatePerPeriod * balance);

 6
WORKING

DRAFT

 System.out.print("$" + interestPayment + "\t");

 amort = roundCurrency(payment - interestPayment);

 System.out.print("$" + amort + "\t");

 balance = roundCurrency(balance - amort);

 System.out.print("$" + balance + "\n");

 }

 }

 public double roundCurrency(double in)

 {

 double out;

 long temp;

 // multiply by 100, round, then divide by 100 again

 in = in * 100;

 temp = Math.round(in);

 out = ((double)temp / 100);

 return out;

 }

}

