
DJ like the nerds do it:

CodeName: MARS

defined by: Michael Sorvillo, Aaron Fernandes, Ritika Virmani, Swapneel Sheth
stuck at: {ms3311, apf2114, rv2171, sks2142}@columbia.edu

Introduction

Computer scientists love listening to music. Many are even musicians themselves. But when it comes
to creating their own music with computers, it is rather irrational to spend upwards of $600 on
software that they will not use professionally. In addition, because of the complexity of these
programs, there is a very steep learning curve. But because we all possess programming skills, MARS
enables all computer scientists to put their DJ skills to use.

MARS is an Object Oriented Programming Language with scripting features. The aim of MARS was to
create a User-friendly Domain Specific Language that is portable across multiple platforms. It will
allow a user who has had any programming experience the ability to mix and match different tracks
(audio files) on top of one another and add effects to these tracks. It will give users a simple way to
define their DJ composition logically and give them the ability to listen to and iterate on certain
sections of their composition. MARS will bring out the inner DJ that lies within every computer
scientist.

Features

1. Users make their own compositions
MARS allows the user to mix different sound files into a single composition. Files could be of
different formats like mp3 and wav. One can specify the manner in which these files are mixed
i.e., sequentially or superimposed over one another.

2. Hierarchical Structure of Compositions
Compositions are defined as a collection framework consisting of entities like sections, groups
and tracks. The framework resembles the tree below:

3. Define behavior of entities
In the composition hierarchy the default behavior of sections is to play one after the other, eg
prelude, intro, chorus, ending. The tracks can be clubbed into a group of tracks representing
base, melody etc. Each group is superimposed on each other by default. Of course, each of
these is customizable. For example, a user can specify if the melody starts after a specified
time or measure. With simple statements, individual entities can be set to play, stop and loop
for a given number of times.

4. Advanced functionality
For each entity, MARS facilitates volume control, amplitude and frequency modulation, speed
and tempo adjustments. Volume control can double the volume of an entity, set it to a value
defined by the user or match it to the value of another entity. The same applies to other
functionalities. Other advanced functionality includes the ability to chop certain tracks short
with simple conditional statements.

5. Custom Effects
User can create custom effects (eg: fade-in/fade out) and apply them to multiple entities of a
composition. The effect can be customized to start fade in at a given time or measure and
fade at a particular rate.

6. Log Maintenance
The user can generate a log, recording the various tracks, groups and sections that make up a
composition, thus facilitating well documented compositions. The log will consist of what is
happening in the user’s composition in real time.

Syntax

1. Defining a Track

t1 = "abc.mp3"
t2 = "xyz.wav"

The above syntax defines 2 tracks t1 and t2 corresponding to abc.mp3 and xyz.wav
respectively.

2. Defining a Group, Section and Adding Behavior

def group G1
 t1.loop(5)
 t2

end

def section S1
 G1

end

def section S2
 ...
 ...
end

playOrder(S2,S1)

Here, we have defined a group G1, having 2 tracks, t1 and t2. T1 has been defined to loop 5
times. By default, the 2 tracks will play simultaneously.

Sections S1 and S2 play sequentially. However, we have overridden the default behavior of the
sections, so that S2 plays before S1.

3. Defining Custom Behavior

if t2.length*20 < t1.length
t1.chop(t1.length ­t2.length*20)
t1.fadeout(5000)

end

Section 1 has tracks t1 and t2 superimposed. T2 is played in a loop 20 times (suppose t2 is a
beat which you want to loop 20 times). If the length of t1 is greater than 20 times the length
of t2, then you need to chop t1 to make it equal to the 20 times the length of t2. The chop
function here chops the track by the argument passed. Later the user applies the fadeout
effect to t2 so that the chopping doesn’t make t1 end abruptly.

	Introduction
	Features
	Syntax

