
Big River Poker Simulator
Erik S. Peterssen - esp2114@columbia.edu

Abstract
Historically, poker has been viewed by many as a game for the undesirable and
destitute. Its players have been forced into the crowded back-quarters of bars
and gasoline-soaked garages. Some viewed the game as one of many get-rich-
quick schemes provided by casinos. The mere name conjured up an image of
slovenly men hunched over a table smoking cigars and drinking beer.

Recently, due to the popularity of Texas Hold’em, poker is on its way to wide-
scale acceptance. Its players, now esteemed white collar professionals, are
looking for a battle of wits. Evidence of this can be seen in television
programming. Popular shows on ESPN, Bravo, and the Travel Channel
chronicle the games of celebrities and professional poker players alike.

This interest has spilled over into the digital world. Gaming websites and
instruction pages are proliferating at substantial rates. Gaming stocks are
heavily traded in the securities markets. Even the government is taking an
interest by reviewing the legality of these sites. Gaming entities are looking for
fast development times and stable solutions to meet this increasing interest.

Solution
Poker has turned into a hot commodity and fans are looking to 'Buy-In.’
Development of poker applications is becoming competitive as different entities
are struggling to absorb the influx of new fans who are quick to spend their
money for self-improvement. Time-to-market is a critical component of
development in this type of market. Reliable applications need to be written
economically. Big River delivers a stable yet versatile solution to desinging poker
simulators. The game is designed around Texas Hold’em but is easily
configured for most other poker games. Games such as five card draw, seven
card stud are easily simulated by Big River.

Goals
Big River design poker simulators containing configurable and intuitive players
with different playing styles and emotional compositions in attempt to recreate
real-life games. Players can be “designed” to bluff or to be careless with their
money as such players are often the most difficult to play against. Different
games can be created with a higher-level knowledge of programming. If the
creators know the game of poker and can follow instructions, they game design a
useful poker simulation application.

Data Types and Attributes with Implementation Details
Player

 Name
 Style

o Honest-Bluffing
o Passive-Aggressive
o Tight-Loose

 Defaults?
 Active: In the game or sitting out
 Money

o Active
o Reserve

 Persistence?

Table
 Number of seats

o Vector of chairs
 Pointers to Player(s)

 Community Cards
o Vector of pointers to Deck Card(s)

 Pot
o It is possible to have several pots. This might be a vector or a

class.

Hand
 Aces high, low, both.
 # hole cards

o Vector or pointers to Deck Card(s)

Muck: The graveyard. Card(s) retire here.
 Vector of pointers to Deck Card(s)
 Asterisk to denote all (*).

Deck: Contains Standard 52 deck Card(s) with the following functionality:
 Draw() returns a pointer to a card to be consumed by a Hand, Table, or

Muck.
o Random card generator % 52

 Shuffle()
o Mostly likely some random selection routine.

 Asterisk to denote all (*).

Card: Created on combinations of the following:
 Suit (enum)

o Spades
o Clubs

o Hearts
o Diamonds

 Number (enum)
o Ace (A)
o King (K)
o Queen (Q)
o Jack (J)
o Ten (T)
o Nine (9)
o Eight (8)
o Seven (7)
o Six (6)
o Five (5)
o Four (4)
o Three (3)
o Two (2)

 Color (enum)
o Red (R)
o Black (B)

 Visible (enum)
o Open (O)
o Closed (C)

Rules
 Split Pot allowed
 Best hand out of 5, 7, …
 Standard Poker

o Straight Flush
o Full House
o Flush
o Straight
o Three of a Kind
o Two Pair
o Pair
o High Card

 Best Hand, Worst Hand, Both

Language Restrictions
 All Card(s) in the Deck must be in a Hand or on the Table, or Muck(ed).
 A Deck cannot be shuffle(d) while there are outstanding references to its

Card(s).
 A Table has Players.
 A player has a hand.
 A hand consists of (pointers to) Card(s)*.
 A Table has Card(s)*.
 A Muck has Card(s)*.

The above three* are mutually exclusive at the individual Card level.

Sample Code
table { // Establish the table and table components

 // table attributes
 seats<4>
 ccards<2>
 pot<-1> // specifies no limit

 // game attributes/sequence
 game {
 deal+1 // dealer increments by one each deal
 bet
 hole<2r> // deal 2 hole cards to each player (round-robin)

 bet
 burn<1> // always burn one card before flipping cards
 community<3>

 bet
 burn<1>
 hole<1>

 bet
 burn<1>
 hole<1>
 bet
 }

 rules {
 split<0> // no high/low
 hand<5> // best 5 cards
 aces<-+> // aces both low and high
 }

 // players at table
 player {
 name<Sally>

 style.honest<5>
 style.passive<5>
 style.tight<5>

 money.active<50>
 money.reserve<50>
 }

 // players at table
 player {
 name<Eduardo>

 style.honest<9>
 style.passive<8>
 style.tight<8>

 money.active<50>
 money.reserve<50>

 }

 // players at table
 player {
 name<John>

 style.honest<3> // bluffer
 style.passive<7> // plays a decent amount of hands
 style.tight<9> // bets heavily

 money.active<50>
 money.reserve<50>
 }

 player {} // This is the user

}

