
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

SIMPLEX 
LANGUAGE REFERENCE MANUAL 

 
 
 
 

Steven Chen  Gilbert Hom  Kelvin Jiang  Eric Zhang 
{stc2104, gch2102, kxj1, ehz2101}@columbia.edu 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

INTRODUCTION 
SIMPLEX (Syntax for International Monetary, Property, and Liquidity Exchange) is a light-weight, C-

like language that greatly simplifies the development of financial applications.  It provides special money, 
date, and percentage types that are required by almost every financial system, and also makes software 
development more accessible to financial analysts through more intuitive expression and operator syntax.  
It is portable, compact, and easy to learn.  SIMPLEX programs are case sensitive and can be written easily 
using any ASCII text editor.  

 
 

LEXICAL CONVENTIONS 
There are 5 types of tokens in SIMPLEX. They are: identifiers, keywords, constants, operators and 

separators. Identifiers must be separated by whitespace and are greedy, meaning they consume as much 
input as they can match. The details of each type of tokens are discussed below. 

 
Whitespace 

Whitespace is ignored by the SIMPLEX compiler. The purpose of whitespace is to separate out 
different tokens and allow users to follow the code in an easier fashion. Whitespace includes indentations, 
tabs, spaces and line terminators (including support for DOS, UNIX and MAC standards). 

 
Comments 

Comments are also ignored by the SIMPLEX compiler. Single-line comments begin with // and end 
at the end of the line. Multiple-line comments begin with /* and continue until */ is reached.  

 
Identifiers 

Identifiers in SIMPLEX are constructed using any alphanumeric combination of characters and the 
underscore character but cannot begin with a numerical digit. Furthermore, identifiers cannot take the 
same name as keywords. As mentioned earlier, SIMPLEX is case sensitive; thus, upper and lower case 
characters are different from each other.  

 
Keywords 

There is a small set of words reserved in SIMPLEX for essential functions. These keywords cannot be 
used as names for identifiers and include the following: 
 

if  for  while  else  number 
rate  USD  EUR  CAD  GBP 
AUD  CHF  CNY  MXN  SOS 
YEN  year  month  day  void   
continue break  return string main 

 

Please note that this list of keywords includes 10 standard currencies described later. 

 
Number Constants 

A number is constructed with digits and can be followed, optionally, by a decimal point and more 
digits.  Scientific notation is not accepted. Unlike many other programming languages such as Java and 
C++, the user does not have to differentiate between integers and floating point numbers.  

  
String Constants 

A string is constructed with any combination of ASCII characters enclosed by double quotes.  
For example, “Steven Chen” is considered to be a string constant since it is a series of ASCII characters 
surrounded by double quotes on both the left and right side. Certain characters must be ‘escaped’ 



 2 

meaning that a backslash must be placed immediately to the left of the character. Characters that must be 
escaped include double quotes (“), newlines, backslash characters and tabs. 
 
Separators 

The following characters are used in SIMPLEX as separators: 
{} – Code block separator 
() – Grouping separator and parameter list separator 
;  - Statement Delimiter 
,  - List Delimiter 

 
 

DATA TYPES 
SIMPLEX requires explicit type specification— meaning that identifier types must be declared prior 

to the compilation of the program. The variable is declared in the following manner: 
 

data-type identifier; 

 
The variable can also be initialized with a constant value on the same line as the declaration:  

 
data-type identifier = value; 

 

Currencies 

One of the unique aspects of SIMPLEX is the use of currencies as data types. The following 10 
currencies are the standard currencies included with SIMPLEX. Later versions of SIMPLEX will include 
additional currencies. 
 

USD YEN EUR CAD GBP 
AUD  CHF CNY MXN SOS 

 
Currency values are constructed the same way as number constants (described in the Lexical 

Conventions section). The user does not have to include the currency symbol (e.g. $, ¥, €, £, etc.) since the 
compiler will take care of this. 
 
Number 

Numbers consist of signed 64-bit floating point numbers. The data type of a number variable is 
number. 

 
Dates 

There are three Date data types: year, month and day.  They can be initialized the same way as a 
number and have built in casts defined: a year casts to 12 months and 365 days.  A month casts to 30 days. 

 
Rate 

A fairly unique feature to SIMPLEX is support for a ‘rate’ data type. For example, 5% is typically 
entered into programming languages as 0.05. However, SIMPLEX allows the user to simply enter the rate 
as 5. Rate values are constructed the same way as number constants (described in the Lexical 
Conventions section). The Rate data type is identified by rate. 

 
String 

The string data type allows the programmer to store arbitrary sequences of characters in a variable.  
String variables are initialized with string constants (described in the Lexical Conventions section). 

 
 



 3 

EXPRESSIONS 
The following section discusses expressions used in SIMPLEX. Expression operators are listed in 

order of highest to lowest level of precedence. Operators in the same section are considered to have equal 
precedence and evaluate from left to right.  Using any operator on a type without an implicit cast defined 
(i.e. multiplication on two strings) will result in a compile time error. 

 
Primary Expressions 

A primary expression is the simplest form of an expression and is typically used to represent a single 
value. Primary expressions include identifiers, constants and procedure calls. Furthermore, parenthesized 
expressions are considered to be primary expressions. Primary expressions are of highest precedence in 
SIMPLEX. 

 
Unary Expressions 

The next level of operator precedence in SIMPLEX consists of unary expressions. Unary expressions 
consist of one operator and an identifier. Operators include: !, ++, --, %, unary +, unary -, 
and (type). These operators are described below. 

 
!expression 

The result of this unary expression is the logical negation of the expression. Thus, the negation 
returns a one when the expression returns a zero and returns a zero when the expression is non-zero. 

 
expression++ 

The result of this unary expression is addition of 1 to the expression. This operator can only be 
applied to number, currency, rate and date data types. This operator mimics the functionality of the post-
increment operator in C.  A pre-increment operator is not available in SIMPLEX. 

 
expression-- 

The result of this unary expression is subtraction of 1 to the expression. This operator can only be 
applied to number, currency, rate and date data types. Again, a pre-increment version of this operator is 
not defined. 

 
expression% 

Unlike most programming languages where the % symbol is used for the modulus operation, 
SIMPLEX reserves the % symbol as denoting the division of the expression by 100. This expedites the 
conversion of numerical percentages to decimal values, a very common operation in financial 
applications.  
 
+expression 

The result of the unary + operator is the expression itself. 
 
-expression 

The result of the unary - operator is the negation of the expression. 
 
(type)expression 

The result of the cast operation is the conversion of the data type of the expression into the data type 
specified in the parenthesis. Casting allows for conversions between data types of the same class. For 
example, an expression of type month can be cast into a day since both month and day are in the date 
data type class.  When the programmer asks for an undefined cast (casting a month into USD, for 
example) the value is simply cast into a number type, then to the desired data type.  The compiler may 
produce a warning if this occurs. 
 
 
 



 4 

Multiplicative Operators 
The three multiplicative operators, * for multiplication, / for division, and ^ for exponentiation, can 

be used to perform multiplicative operations. They are grouped left to right and can be applied to 
numbers, rates and currency data types. 
 
Additive Operators 

The two additive operators, + for addition and – for subtraction, can be used to perform additive 
operations. They are grouped left to right and can be applied to numbers, rates and currency data types.   
The addition operator can also be used to concatenate strings. 

 
Assignment Operators 

The assignment operator, “=”, stores the value returned by the expression on its right side into the 
identifier on its left side. It has the lowest precedence, and is associative from right to left. This allows 
multiple assignments to be made on the same line, in the following manner: 

 
identifier1 = identifier2 = identifier3 = expression; 

 

In this statement, the low precedence and right to left associatively of the assignment operator 
ensures that the entire expression is evaluated first.  Next, the value of the expression is assigned to 
identifier3, then identifier2, then identifier1.   

 
Relational and Equality Expressions 

The following table summarizes the 6 relational operators available. 

 
Operator Description

> Greater Than

< Less Than

>= Greater Than or Equal To

<= Less Than or Equal To

== Equal To

!= Not Equal To  
 

Relational and equality expressions are constructed as follows: 
 

expression operator expression 

 
Relational expressions return either zero or one, indicating whether the expression was false or true, 

respectively. 
 
Logical Expressions 

There are two logical operators available in SIMPLEX. The logical AND operator, denoted by && 
takes higher precedence than the logical inclusive OR operator, which is denoted by ||. These operators 
are generally applied to relational and equality expressions, and other logical expressions.  The values are 
evaluated, and the logical expression returns true or false (1 or 0, respectively).  Logical expressions may 
be grouped with parenthesis like any other binary operation.  The exclusive OR operator is not defined.  
Logical expressions treat zero as false, and non-zero values as true. 
 
Operator Shorthand 

All additive and multiplicative operators have a shorthand form that allows for easy manipulation of 
the result variable in the expression.  For example, to add 5 to the variable x, one could write x = x+5.  



 5 

The shorthand notation allows the user to write x += 5 instead.  This shorthand works with +, -, *, /, 
and ^. 
 
 

OPERATOR PRECEDENCE 
The following table shows the precedence of operators in SIMPLEX from highest to lowest: 

Operators Associativity

(expression) Left to Right

!, ++, --, %, unary +, unary -, (type) Right to Left

^, *, / Left to Right

+, - Left to Right

<, <=, >=, >, ==, != Left to Right

&& Left to Right

|| Left to Right

=, +=, -=, *=, /= Right to Left  
  
 

STATEMENTS 
A statement is a line of code which is terminated by a semicolon and represents an executable 

instruction to the compiler.  There are several types of statements, including assignment, jump, procedure 
call, and return statements.  Compound statements—blocks of multiple statements, are also possible. 

 
Assignment Statements 

The assignment statement is simply an assignment expression followed by a semicolon.  For an 
example, see the ‘Assignment Expression’ section above. 
 
Jump Statements 

The break statement is used to break the inner most loop during execution. The break statement can 
be used in both while and for loops. The statement is invoked by simple typing: 

 
break; 

 
The continue statement is used to exit out of the current iteration of a loop. The break statement can 

be used in both while and for loops. The statement is invoked by simply typing 
 

continue; 

 
Subprocedure Call Statements 

Subprocedures, both user-defined and built-in, can be called by typing the name of the function, an 
open parenthesis, a list of parameters, and a close parenthesis. 
 
Return Statements 

The return statement is used to return a value to the caller of a subprocedure. The statement takes 
the following form: 
 

return (expression); 

 
The value of the expression is returned to the caller of the function.  If the function has a return type, 

then it must have at least one return statement in its top level code block.  
 



 6 

Statement Blocks 
Statement blocks are used when more than one statement or compound statement should be 

considered a single statement overall. A left brace bracket is used to denote the beginning of a block and a 
right brace bracket used to denote the end of a block. 
 
  { 
   statement1 
   statement2 
   . 
   . 
   . 
  } 

 
In the following compound statements, ‘statement’ can be either a single statement, or a statement block. 

 
Conditional Statements 

Conditional statements are used to control the flow of a program. A simple conditional statement 
takes the following form: 
 

if (expression) statement 
 

or 
 

if (expression) statement1 else statement2 

 
In the first form, if the expression returns a non-zero value, then the statement is executed. The 

second form adds one more component to the conditional. Like before, if the expression evaluates to a 
non-zero value, statement1 is executed; however, statement2 is executed otherwise. Conditional 
statements can be nested, allowing for special syntax like ‘else if’.  
 
Iterative Statements 

Iterative statements are used for executing a certain statement or group of statements for multiple 
iterations known as loops. 
 

while loops are used to execute statements based on a condition. They take the following form: 
 

while (expression) statement 

 
As long as the expression evaluates to non-zero value, the statement is repeated until the condition 

returns a zero value. Infinite loops occur when the condition never evaluates to false. 
 

for loops are used to execute based on number of iterations. For loops take the following form: 
 

for (expression1 ; expression2 ; expression3) statement 
 

The first expression, expression1 is used to initialize the loop. The second expression, 
expression2 is used to specify a testing condition to exit the loop. The third expression, expression3 
is used to increment the variable initialized in expr1, which is performed after every iteration of the for 
loop.  All three expressions may be omitted if desired.    

 
 
 
 
 



 7 

PROCEDURES 
Procedures take the following form in SIMPLEX: 
 
type-specifier procedure-identifier (identifier-list) 
{ 
 statement 
}  

 

The type-specifier is the data type that the procedure should return. The procedure-identifier is an 
identifier that names the procedure. The identifier-list is an optional list of arguments (separated by 
commas) that are passed by value.  
 
 

PROGRAM STRUCTURE 
SIMPLEX programs can be simply written in ASCII text files. The structure of a SIMPLEX program is 

as follows: global variables should be declared at the beginning of the file. Followed by the global 
variables should be procedures. Lastly, a procedure called main serves as the starting point for program 
execution. 
 

 


