
Language Reference Manual for the

Reinforcement Learning Language

Michael Groble (michael.groble@motorola.com)

October 17, 2006

1 Lexical conventions

The rll language has lexical elements for whitespace, identi�ers, keywords, lit-
erals, operators and delimiters.

1.1 Whitespace

Similar to Python [1], there are some cases where whitespaces are signi�cant
in rll speci�cations. In particular, indentation is used to delineate blocks of
statements. To handle this concept, the language uses the tokens NEWLINE,
INDENT and DEDENT.

There is also a distinction between physical source lines and logical source
lines. A backslash acts as a logical line continuation character. A physical line
ending in a backslash will be joined with the next physical line to represent a
single logical line. Logical line continuations also exist for content between the
delimiter pairs (), {} and []. The following code example is treated as a single
logical line.

a = [1;

2]

The NEWLINE token represents the end of a logical line. The example above
therefore consists of the following tokens a = [1 ; 2] NEWLINE.

1.2 Comments

Comments start with a # character and continue to the end of the physical line.

1.3 Identi�ers

Identi�ers are sequences of letters (both upper and lower case), numbers and
the underscore character _. The �rst character of an identi�er must be a letter.
Identi�ers are case sensitive.

1

1.4 Keywords

The following are keywords in the rll language.
actions diagram else elsif environment episode for if in

mdp not random reward set states valid while

1.5 Literals

There are three types of literals in rll, integer numbers, �oting point numbers
and strings. Integers are sequences of digits. Floating point numbers are de�ned
as in C. String literals are delimited by double quotes, for example �a string�.

1.6 Operators

The following tokens are used as operators.
+ - * / = += -= *= /= < > == != <= >= && || ! '

1.7 Delimiters

The following tokens are used as delimiters.
() [] { } < > : , ;

2 Types

integer an integer value

�oating point a �oating point value

string a string

array a �xed dimension array

set a set

function a function

state a named discrete scalar or single-dimension array

action a named discrete scalar or single-dimension array

reward a named �oating point scalar

mdp a markov decision process

2

3 Expressions

3.1 Assignable Expressions

Assignable expressions are those expressions that may exist on the left hand side
of an assignment (also known as �lvalues�). In rll, atomic assignable expressions
consist of an identi�er, optionally followed by the ' operator, optionally followed
by an array index.

The ' operator is valid only for state types and is used to denote the updated
value of the state.

An array index is an integer surrounded by square brackets. The following
is an example using both.

s'[1] = s[1] + 2

Function calls may return multiple values. The individual return values are
separated by commas and the entire group is enclosed in angle brackets, for
example.

<s'[0],returns> = f()

3.2 Primary Expressions

Primary expressions consist of atomic assignable expressions, literals, parenthe-
sized expressions, function calls, anonymous sets and anonymous arrays.

Function calls consist of an identi�er followed by a possibly empty list of
arguments surrounded by parentheses. The argument list can consist of both
positional and named arguments, all separated by commas. Positional argu-
ments may be any expression while a named argument is an identi�er followed
by = followed by an expression. For example.

sarsa(Racetrack, 0.6, episodes = 1000)

Anonymous sets are a comma delimited list of expressions surrounded by curly
braces, for example.

{1,10,a}

Anonymous arrays consist of semicolon delimited rows surrounded by square
brackets. Each row is a comma separated list of expressions. Each row must
have the same number of elements.

[a, 1; 0, b]

3.3 Unary Expressions

Unary expressions are primary expressions pre�xed by one of the operators !

+ - denoting logical negation, unary positive and unary negative respectively.

3

3.4 Multiplicative Expression

A multiplicative expression consists of a sole unary expression or two unary
expressions separated by one of the binary operators * / denoting multiplication
and division respectively.

3.5 Additive Expression

An additive expression consists of a sole multiplicative expression or two mul-
tiplicative expressions separated by one of the binary operators + - denoting
addition and subtraction respectively.

3.6 Boolean Relation Expression

A boolean relation expression consists of a sole additive expression or two ad-
ditive expressions separated by one of the binary operators > < >= <= or the
keywords in or not in. These represent the logical relations greater than, less
than, greater than or equal, less than or equal, in (set membership) and not in
(set exclusion) respectively.

3.7 Boolean Equality Expression

A boolean equality expression consists of a sole boolean relation expression or
two boolean relation expressions separated by one of the binary operators ==

!= representing equals to or not equals to respectively.

3.8 Boolean And Expression

A boolean and expression consists of a sole boolean equality expression or two
boolean equality expressions separated by the binary operator && representing
logical and.

3.9 Boolean Or Expression

A boolean or expression consists of a sole boolean and expression or two boolean
and expressions separated by the binary operator || representing logical or.

3.10 Expression

An expression consists of a sole boolean or expression or a ternary expression
of the form

booleanOrExpression if booleanOrExpression else booleanOrExpression

The middle expression is the test condition. The �rst expression is the value
of the expression if the test is true, the last expression is the value if the test is
false.

4

4 Statements

At the top level, there are two types of statements in rll, one type for de�ning
markov decision processes and one type for de�ning procedural statements.

4.1 MDP Statements

4.1.1 MDP De�nition

An MDP de�nition consists of a line of the form
mdp identi�er (parameter list)

followed by an indented block of statements which consist of state decla-
ration, action declaration, reward declaration, diagram declaration, constraint
declaration, episode declaration, environment declaration or random declara-
tion.

Parameter list is a comma separated list of named parameters with default
values, for example.

mdp Gamblers(maxCapital = 100, pSuccess = 0.5)

4.1.2 State Declaration

A state declaration consists of the keyword states followed by an identi�er
followed by an optional dimension (an integer surrounded by square brackets).
An MDP de�nition may have multiple state declarations in which case the MDP
consists of all states. For example, the following creates an MDP with a total
of four states by naming two di�erent two-dimensional vectors.

states position[2]

states velocity[2]

4.1.3 Action Declaration

An action declaration consists of the keyword actions followed by an identi�er
followed by an optional dimension. As with states, multiple action declarations
can exist in an MDP de�nition.

4.1.4 Reward Declaration

A reward declaration consists of the keyword reward followed by an identi�er.
Only a single reward declaration can exist in an MDP de�nition.

4.1.5 Diagram Declaration

A diagram declaration is used to create a graphical representation of a 2 dimen-
sional gridworld. A diagram declaration consists of the keyword diagram on a
line followed by an indented block of string literals. For example

5

diagram

" A B "

" "

" . "

" . "

" S "

" . "

" . "

" ...X "

The non-space characters in a diagram are interpreted as special ident�ers.
Taken in a set literal, the set {�.�} consists of those 14 positions which are
marked with that character. A diagram declaration is an optional element of
an MDP de�nition.

4.1.6 Constraint Declaration

A constraint declaration is used to de�ne the set of valid states and actions. A
constraint declaration consists of the keyword valid followed by either states
or actions and then an anonymous set expression. An MDP de�nition must
have both a states constraint and an actions constraint.

4.1.7 Episode Declaration

An episode declaration is used to de�ne episodic nature of the MDP. It consists
of the keyword episode on a line followed by an indented block of statements
consisting of set declarations or random declarations. An episode declaration is
an optional element of an MDP de�nition.

4.1.8 Environment Declaration

An environment declaration is used to de�ne the state and reward update func-
tions of the MDP. It consists of the keyword environment on a line followed by
an indented block of statements consisting of set declarations, random declara-
tions and assignment statements. An MDP de�nition must have one environ-
ment declaration. The assignment statements in the environment declaration
must assign values to the reward identi�er and must assign values to the next
state value for each of the state variables.

4.1.9 Set Declaration

A set declaration is of the form set identifier = expression NEWLINE.

4.1.10 Random Declaration

A random declaration declares a random variable with a particular distribution
and is of the form random identifier = expression NEWLINE.

6

4.1.11 Assignment Statement

An assignment statement is of the form assignableExpression op expression

NEWLINE where op may be any of the assignment operators = += -= *= /=.

4.2 Procedural Statements

The procedural statements include the assignment statement described above
and add the following.

4.2.1 Function Call Statement

A function call statement is simply a function call expression followed by a
NEWLINE.

4.2.2 For Statement

A for statement consists of a line for (iteratorExpression) NEWLINE fol-
lowed by an indented block of procedural statements. An iterator expression
is an expression of the form identifier = expression : expression , or of
the form identifier in set . In the �rst case, the iterator takes on the values
in the range from the �rst expression to the second. In the second case, the
iterator takes on each of the values in the set. The indented block of statements
is executed once for each iterator value.

4.2.3 While Statement

A while statement consists of the line while (expression) NEWLINE followed
by an indented block of procedural statements. The block is executed while the
expression evaluates to true.

4.2.4 If Statement

An if statement consists of three di�erent types of chunks, an if chunk followed
by an arbitrary number of elsif chunks followed by an optional else chunk. An if
chunk is of the form if (expression) NEWLINE followed by an indented block
of procedural statements. An elsif chunk is of the form elsif (expression

) NEWLINE followed by an indented block of procedural statements. An else
chunk is of the form else NEWLINE followed by an indented block of procedural
statements.

5 Built-in Functions

There are a number of pre-de�ned functions available in both MPD de�nitions
and procedural statements. Mathematical functions are available in both and
consist of

7

max(a,b) maximum value of a and b

min(a,b) minimum value of a and b

abs(a) absolute value of a

The mathematical operators work on both scalar and array types. On arrays,
the operations are performed element-wise.

Discrete random variable distributions are available in MPD de�nitions and
consist of

uniform(n) uniform distribution from 0 to n-1

binomial(p) binomial distribution with probability of success p

poisson(n) poisson distribution with expectation n

References

[1] Guido van Rossum. The Python Programming Language.
http://www.python.org/.

A ANTLR de�nition of parser and lexer

options {

language="Cpp";

}

class RllParser extends Parser;

options {

k=2;

buildAST = true;

}

tokens {

FILE;

PARAMS;

ARGS;

MDP_BODY;

SET;

ARRAY;

ROW;

DIM;

CALL;

LHS_LIST;

INDEX;

DECL;

UNARY_PLUS;

UNARY_MINUS;

PS_LIST;

8

ITER;

NARG;

}

fileInput

: (NEWLINE | statement)* EOF!

{#fileInput = #([FILE,"FILE"], fileInput); }

;

statement

: mdpDefinition

| proceduralStatement

;

proceduralStatementList

: (proceduralStatement)+

{#proceduralStatementList = #([PS_LIST,"PS_LIST"], proceduralStatementList);}

;

proceduralStatement

: assignmentStatement

| functionCallStatement

| forStatement

| whileStatement

| ifStatement

;

mdpDefinition

: "mdp"^ ID OPEN_PAREN! (parameterList)? CLOSE_PAREN! NEWLINE!

INDENT! mdpStatementList DEDENT!

;

parameterList

: parameter (COMMA! parameter)*

{#parameterList = #([PARAMS,"PARAMS"],parameterList);}

;

parameter

: ID^ (ASSIGN^ expression)?

;

mdpStatementList

: (mdpStatement)+

{#mdpStatementList = #([MDP_BODY,"MDP_BODY"],mdpStatementList);}

;

mdpStatement

: stateDeclaration

| actionDeclaration

| rewardDeclaration

| diagramDeclaration

| constraintDeclaration

| episodeDeclaration

| environmentDeclaration

| randomDeclaration

9

;

stateDeclaration

: "states"^ variableDeclaration NEWLINE!

;

actionDeclaration

: "actions"^ variableDeclaration NEWLINE!

;

rewardDeclaration

: "reward"^ ID NEWLINE!

;

constraintDeclaration

: "valid"^ ("states" | "actions") set NEWLINE!

;

episodeDeclaration

: "episode"^ NEWLINE!

INDENT! (episodeStatement)+ DEDENT!

;

diagramDeclaration

: "diagram"^ NEWLINE!

INDENT! (STRING_LITERAL NEWLINE!)+ DEDENT!

;

environmentDeclaration

: "environment"^ NEWLINE!

INDENT! (environmentStatement)+ DEDENT!

;

episodeStatement

: setDeclaration

| randomDeclaration

;

setDeclaration

: "set"^ ID ASSIGN! expression NEWLINE!

;

environmentStatement

: setDeclaration

| randomDeclaration

| assignmentStatement

;

randomDeclaration

: "random"^ variableDeclaration ASSIGN! expression NEWLINE!

;

forStatement

: "for"^ OPEN_PAREN! iteratorExpression CLOSE_PAREN! NEWLINE!

INDENT! proceduralStatementList DEDENT!

;

whileStatement

10

: "while"^ OPEN_PAREN! expression CLOSE_PAREN! NEWLINE!

INDENT! proceduralStatementList DEDENT!

;

ifStatement

: "if"^ OPEN_PAREN! expression CLOSE_PAREN! NEWLINE!

INDENT! proceduralStatementList DEDENT!

("elsif" OPEN_PAREN! expression CLOSE_PAREN! NEWLINE!

INDENT! proceduralStatementList DEDENT!)*

("else" NEWLINE!

INDENT! proceduralStatementList DEDENT!)?

;

assignmentStatement

: assignableExpression

(ASSIGN^

| PLUS_ASSIGN^

| MINUS_ASSIGN^

| STAR_ASSIGN^

| SLASH_ASSIGN^

)

expression NEWLINE!

;

expression

: booleanOrExpression ("if"^ booleanOrExpression "else" booleanOrExpression)?

;

booleanOrExpression

: booleanAndExpression (LOGICAL_OR^ booleanAndExpression)*

;

booleanAndExpression

: booleanEqualityExpression (LOGICAL_AND^ booleanEqualityExpression)*

;

booleanEqualityExpression

: booleanRelationExpression ((EQUAL^|NOT_EQUAL^) booleanRelationExpression)*

;

booleanRelationExpression

: additiveExpression ((LESS_THAN^

|GREATER_THAN^

|LESS_OR_EQUAL^

|GREATER_OR_EQUAL^

|"in"^

|"not"^ "in") additiveExpression)*

;

additiveExpression

: multiplicativeExpression ((PLUS^|MINUS^) multiplicativeExpression)*

;

multiplicativeExpression

: unaryExpression ((STAR^|SLASH^) unaryExpression)*

11

;

unaryExpression

: LOGICAL_NOT^ valueExpression

| (PLUS^ {#PLUS->setType(UNARY_PLUS);}

|MINUS^ {#MINUS->setType(UNARY_MINUS);}) valueExpression

| valueExpression

;

valueExpression

: atomicAssignableExpression

| functionCall

| set

| array

| INT

| FLOAT

| STRING_LITERAL

| OPEN_PAREN^ expression CLOSE_PAREN!

;

assignableExpression

: atomicAssignableExpression

| assignableExpressionList

;

atomicAssignableExpression

: atomicIndexableAssignableExpression

(OPEN_BRACK! expression CLOSE_BRACK! {#atomicAssignableExpression = #([INDEX,"INDEX"], atomicAssignableExpression);})?

;

atomicIndexableAssignableExpression

: ID (TICK^)?

;

assignableExpressionList

: LESS_THAN! atomicAssignableExpression (COMMA! atomicAssignableExpression)* GREATER_THAN!

{#assignableExpressionList = #([LHS_LIST,"LHS_LIST"], assignableExpressionList);}

;

iteratorExpression

: ID ASSIGN! rangeExpression {#iteratorExpression = #([ITER,"ITER"], iteratorExpression);}

| ID "in"! set {#iteratorExpression = #([ITER,"ITER"], iteratorExpression);}

;

rangeExpression

: expression COLON^ expression

;

functionCallStatement

: functionCall NEWLINE!

;

functionCall

: ID OPEN_PAREN! (argumentList)? CLOSE_PAREN!

{#functionCall = #([CALL,"CALL"],functionCall);}

;

12

argumentList

: argument (COMMA! argument)*

{#argumentList = #([ARGS,"ARGS"],argumentList);}

;

argument

: positionalArgument

| namedArgument

;

positionalArgument

: expression

;

namedArgument

: ID ASSIGN! expression {#namedArgument = #([NARG,"NARG"], #namedArgument);}

;

variableDeclaration

: ID^ (variableDimension)?

;

variableDimension

: OPEN_BRACK! INT CLOSE_BRACK!

{#variableDimension = #([DIM,"DIM"],variableDimension);}

;

array

: OPEN_BRACK! arrayRow (SEMI! arrayRow)* CLOSE_BRACK!

{#array = #([ARRAY,"ARRAY"], array);}

;

set

: OPEN_CURLY! expression (COMMA! expression)* CLOSE_CURLY!

{#set = #([SET,"SET"], set);}

;

arrayRow

: expression (COMMA! expression)*

{#arrayRow = #([ROW,"ROW"], arrayRow);}

;

/*

The following lexer was based on the Python lexer created by Terence Parr

and Loring Craymer. In particular the constructs used to correctly

handle Python's way of using indentation to delimit compound statements

I converted it to C++ and modified it to support the rll language.

Mike Groble Oct 1 2006

*/

/*

[The "BSD licence"]

Copyright (c) 2004 Terence Parr and Loring Craymer

All rights reserved.

13

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR �AS IS� AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF

THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

class RllLexer extends Lexer;

options {

k=2;

testLiterals=false; // have to test in identifier rule

}

{

/** Handles context-sensitive lexing of implicit line joining such as

* the case where newline is ignored in cases like this:

* a = [3,

* 4]

*/

private:

int implicitLineJoiningLevel;

public:

void init() {

implicitLineJoiningLevel = 0;

}

}

OPEN_PAREN: '(' {implicitLineJoiningLevel++;};

CLOSE_PAREN: ')' {implicitLineJoiningLevel--;};

OPEN_BRACK: '[' {implicitLineJoiningLevel++;};

CLOSE_BRACK: ']' {implicitLineJoiningLevel--;};

OPEN_CURLY: '{' {implicitLineJoiningLevel++;};

CLOSE_CURLY: '}' {implicitLineJoiningLevel--;};

COLON: ':';

COMMA: ',';

SEMI: ';';

PLUS: '+';

14

MINUS: '-';

STAR: '*';

SLASH : '/';

ASSIGN: '=';

PLUS_ASSIGN: "+=";

MINUS_ASSIGN: "-=";

STAR_ASSIGN: "*=";

SLASH_ASSIGN: "/=";

LESS_THAN: '<';

GREATER_THAN: '>';

EQUAL: "==";

NOT_EQUAL: "!=";

LESS_OR_EQUAL: "<=";

GREATER_OR_EQUAL: ">=";

LOGICAL_AND: "&&";

LOGICAL_OR: "||";

LOGICAL_NOT: '!';

TICK: '\�;

NUMBER

: '.' Int (Exponent)? {$setType(FLOAT);}

| Int ('.' (Int)? (Exponent)? {$setType(FLOAT);}

| Exponent {$setType(FLOAT);}

| /*nothing*/ {$setType(INT);})

;

protected

Int

: ('0'..'9')+

;

protected

Exponent

: ('e' | 'E') ('+' | '-')? Int

;

ID

options {

testLiterals = true;

}

: ('a'..'z' | 'A'..'Z') ('a'..'z' | 'A'..'Z' | '_' | '0'..'9')*

;

STRING_LITERAL

options {

testLiterals = false;

}

: '"'! (~('"'|'\n'|'\r'))* '"'!

;

/** Consume a newline and any whitespace at start of next line */

CONTINUED_LINE

: '\\' ('\r')? '\n' (' '|'\t')* { newline(); $setType(antlr::Token::SKIP); }

;

15

/** Grab everything before a real symbol. Then if newline, kill it

* as this is a blank line. If whitespace followed by comment, kill it

* as it's a comment on a line by itself.

*

* Ignore leading whitespace when nested in [..], (..), {..}.

*/

LEADING_WS

{

int spaces = 0;

}

: {getColumn()==1}?

// match spaces or tabs, tracking indentation count

(' ' { spaces++; }

| '\t' { spaces += 8; spaces -= (spaces % 8); }

| '\014' // formfeed is ok

)+

{

if (implicitLineJoiningLevel>0) {

// ignore ws if nested

$setType(antlr::Token::SKIP);

}

else {

std::string s(spaces,' ');

$setText(s);

}

}

// kill trailing newline or comment

({implicitLineJoiningLevel==0}? ('\r')? '\n' {newline();}

{$setType(antlr::Token::SKIP);}

| // if comment, then only thing on a line; kill so we

// ignore totally also wack any following newlines as

// they cannot be terminating a statement

'#' (~'\n')* ('\n' {newline();})+

{$setType(antlr::Token::SKIP);}

)?

;

/** Comments not on line by themselves are turned into newlines because

sometimes they are newlines like

b = a # end of line comment

or

a = [1, # weird

2]

This rule is invoked directly by nextToken when the comment is in

first column or when comment is on end of nonwhitespace line.

The problem is that then we have lots of newlines heading to

the parser. To fix that, column==1 implies we should kill whole line.

Consume any newlines following this comment as they are not statement

terminators. Don't let NEWLINE token handle them.

*/

COMMENT

16

{

int startCol = getColumn();

}

: '#' (~'\n')* // let NEWLINE handle \n unless column = 1 for '#'

{ $setType(antlr::Token::SKIP); }

({startCol==1}? ('\n' {newline();})+)?

;

/** Treat a sequence of blank lines as a single blank line. If

* nested within a (..), {..}, or [..], then ignore newlines.

* If the first newline starts in column one, they are to be ignored.

*/

NEWLINE

{

int startCol = getColumn();

}

: (options{greedy=true;}:('\r')? '\n' {newline();})+

{if (startCol==1 || implicitLineJoiningLevel>0)

$setType(antlr::Token::SKIP);

}

;

WS

: (' '|'\t')+ {$setType(antlr::Token::SKIP);}

;

17

