
COMS W4115

Programming Languages and Translators

Google Earth Script Language

Language Reference Manual

10/18/2006

Carlos Icaza

cai2101@columbia.edu

Darrell Tang

tt2191@columbia.edu

Wei Chung Hsu

wh2138@columbia.edu

1. Language Conventions

1 .1. Comments

This is same as C/C++/Java comment format. We support 2 kinds of comments. First

one is multi-lines comments that starts from “/*” and end at “*/”. Second one is

single-line comment that start from “//” until the end of this line.

1.2. Identifiers (Variable, Function, and Object names)

We use the identifiers to name variables, functions and objects. The identifier is a

terminal in our grammar. The following is our identifier rule:

letter: _|A|B|...|Z|a|...|z

digit: 0|1|...|9

identifier: letter (letter | digit)*

1 .3. Numbers

A number could be an integer or floating point. It consists of digits and optional

decimal point “.” as well as digits. In order to make our language simple, we

don’t support exponent number now.

number: (digit)+ (. (digit)+)?

1 .4. Strings

A string is a sequence of characters enclosed by double quotes. Basically, the

character here means the 256 types of character in ASCII code.

String: “ (character)* “

1 .5. NULL

GECL has NULL value which is same as C/C++.

1.6. Operators

= % -- %= <=

+ || += == .

- && -= >

* ! *= <

/ ++ /= >=

1.7. Keywords

IS string While false int

Km m Nm mil polygon

struct Coord Dist dir square

If Break Return float else

continue NULL Boolean for true

circle Hexagon pentagon rectangle octagon

semicircle perspective coord overlay lookat

folder LOOKS_AT Print line feet

1.8. Tokens to terminate or separate blocks

{ } () ,

[] ;

2. Types/Objects

In GECL, we use type followed by object name to allocate an object, and we process this

object by this object name. There are several type keywords GECL support which is list in

chapter 1.7. These objects can be allocated like a standard type (i.e.: object

myObject;), but require either the IS keyword or assignment operator

to be defined.

2.1. dist

Defines a length, that can be given in miles, meters, kilometers feet and nautical miles.

Instantiated and manipulated like an int.

2.2. dir

Defines a bearing in degrees. Used to create a new coord object by moving from

another.

2.3. coord

The basic geographic object from which all others are built. Defines latitude,

longitude an elevation of a specific geographical point.

2.6. point

Creates a basic ‘pop up’ point at a certain coord, with title, comments and

URL for links or for loading photos.

2.5. Struct

This is the most important type in GECL used to construct a 3D object which could

be a building, a car or a polygon.

2.6. Place

This is the type to allocate a placemark object. The placemark consists of several

struct objects, overlays and so on, grouped so as to be related to perspective and

folder objects

2.7 Overlay

This is the type to allocate an overlay object so that we could specify the area we are

going to look at with coordinates, photo URL and rotation.

2.8. Perspective

This type specifies where and how the viewer will look at a struct, coord,

overlay, line and place object.

2.9. Folder

This type collects place, struct, point, line and overlay objects

under a single GoogleEarth ‘folder’ for easy navigation between them.

The object names will become the titles for these objects inside the folder, except for

point, which specifies its own title.

2.10. Line

This is the type to allocate a line object. The reason to have this object is because we

want to have some line mark in the Google Earth instead of using pure 3D objects.

2.11. Array

GECL has array data type which is pretty similar to C/C++/Java array data type.

However, in order to make our language easier to implement and use, we only

provide bounded array allocation, such as int a[10], which will allocated in the

compiling time.

3. Expression

Our GECL is a language that consists of several expressions. The expression could be a list of

integers, a boolean number, an identifier or a function call. The following is our expression

grammar.

expr : int-lit

| bool-lit

| identifier

| identifier = expr

| var post-op

| expr bin-op expr

| if expr then expr else expr end

| (expr)

bool-lit : T | F

int-lit : (digit)+

bin-op : arith-op | rel-op | bool-op

arith-op : + | - | * | / | %

rel-op : == | < | >

bool-op : ^ | |

post-op : ++ | -- | ~~

4. Statements

Semicolon “;” is a statement terminator in GECL. Basically, statements are executed in

sequence except specified control-flow statements. Statements can separate into several

categories listed below.

statement:

expression-statement

compound-statement

interation-statement

conditional-statement

4.1 Expression statement

expression-statement:

 expressionopt ;

An expression becomes a statement when it is followed by a semicolon.

4.1.1 Assign statement

assign-statement:

primary-expression assignment-operator expression ;

Asssign-statements are the majority of expression statements. Basically, these

statements assign the right side expression’s final value to left side.

For example:

 foo = bar + 10 ;

4.2 Compound statement

compound-statement:

 {declaration-listopt statement-listopt};

declaration-list:

declaration

declaration-list declaration

statement-list

 statement

 statement-list

A compound statement is composed of declarations and statements by put them into a

pair of brackets. The body of a function definition is a compound statement.

4.3 Iteration statement

iteration-statement:

 for (expressionopt ; expressionopt ; expressionopt) statement

Iteration statements use to loop a statement or a block of statements several times. In this

for-loop statement, three expressions seperated by semicolon are all optional. The first

expression which must have arithmetic type is evaluated once, and thus gives the initial

state for the loop. The second expression is evaluated before each iteration, and if it

becomes eqaul to zero (false), the iteration is terminate. The third expression is evalated

after each iteration and thus gives a new state for the loop.

 4.3.1 Break statement

break-statement:

 break;

 Break statement only happens inside an iteration statement. It terminates

inner-most iteration statement and gives the control to the next statement that

following the interation statement.

 4.3.2 Continue statement

continue-statement:

 continue;

 Continue statement only happens inside an iteration statement. It causes control

to pass through current loop (the smallest enclosing) and directly go to next loop’s

evaluation.

4.4 Conditional statement

 conditional-statement:

 if (expression) statement

if (expression) statement else statement

The expression part of the conditional statement must have arithmetic type. If its value

compares unequal to zero then the first statement is excuted. In the second form of

conditional statement, the second statement is executed if the expression’s value is zero.

5. Function Definition

function-definition:

 function identifier (arg1, arg2, ...) compound-statement

identifier indicates the name of the function. args are the arguments for the function

which are optional seperated by commas ‘,’. compound-statement is the block of code

that will be excuted when the function been called.

6. User defined functions

The user will be able to declare and define his own functions
using a format resembling that of C/C++/Java :

func <return type> <function name>(<parameter list>){
 <statement>
 .
 .
 .
 }

7. Built in functions

These are almost entirely the ones required to define the types, the equivalent
of constructor methods in Java.

dist
dist <object_name> = x[m | km | mi | ft | nm];
dist(x[m | km | mi | ft | nm]);

Defines a new dist object (first form), or instantiates a new one for a function
parameter if needed (second form). In both forms the distance needs to be written
like a float or int together with a modifier specifying in which measure the
distance is being
given: meters, kilometers, miles, feet or nautical miles. By default it is kilometers
(km).
 The same operations that can be performed on an int can be performed
on a dist object. Example"

 dist myNewDist = 10m + 20,5km - 30ft + myOldDist;

dir
dir <object_name> = int | string d;
dir(int | string d);

Defines a new dir object (first form), or instantiates a new one for a function
parameter if needed (second form). d can be written as a old-style point of the
compass (i.e.: N, S. NE, NNE, etc.) or the standard way, an int between 0-359.

coord
coord <object_name> IS float | string <longitude>, float |

Defines a coord object with longitude and latitude given in either the GE standard
floating point format, or in DMS (Degrees Minutes' Seconds") format, using
spaces
or any other expected symbol as separators. The elevation is given as a dist
type.
coord objects can be manipulated using an arithmetic based on navigation (see
below).

point
point <object_name> IS coord <cord>, string <title>, string
<comment>, string <URL>;

Defines a point object, which appears in Google Earth as a pop-up square with
title,
coordinates and elevation, comments, and a URL that can connect to a photo or a
website
itself.

struct
struct <object_name> IS string <shape> (arguments vary
according to
 shape given)

Defines a struct object using several in-built shapes. The arguments required
by each
shape are:

square, coord <cord>, dist <length>, dist <heigth>, string <elevation_flag> string, <tasselated_ON|OFF>;

rectangle coord <cord>, dist <length>, dist <width>, dist
<heigth>, string <elevation_flag>, string <tasselated_ON|OFF>;

triangle coord <cord>, dist <length>, dist <length2>, dist
<length3>, string <elevation_flag>, string
<tasselated_ON|OFF>;

circle coord <cord>, dist <diameter>, string

<elevation_flag> can be either A|a or R|r, for absolute or relative (to the
earth) elevation. The tasselated flag gives the option of extruding a polygon
down to the ground if it is not laying on it.

overlay
overlay <object_name> IS coord <cord1> coord <cord4> string
<URL> dir <rotation>;

Defines an overlay object, a graphic file that is laid over the map according to
the 4 coordinates
and rotation passed to the function. The URL points to the graphic file.

line
line <object_name> IS coord | coord[] <cord>.... cord <cord_n>, string

Defines a line object whose points are given either by a list of coord objects, or
by an array of such.

place
place <object_name> IS point | struct | line | overlay <object>....
 point | struct | overlay
<object_n> ;

Defines a place, or collection of point, struct, line or overlay objects
that can be associated with a persp object, so as to look at the collection from
the point of view defined by it. It can also be added/associated with a folder

object, so as to group it together in the Google Earth navigation bar. A new
instance of these objects can be added to an already existing place by using the
'add and assign' (+=) operator:

 place <object_name> += point | struct | line | overlay
<new_object>;

persp
persp <object_name> IS coord <camera_loc>, dist <range>, dir
<tilt>, dir <heading>;

Defines a persp object, which can be related to a place, line, overlay,
struct or point objects, so that clicking on them on the GoogleEarth navigation
bar makes the GE browser look at these objects from the perspective defined by
the persp object.

folder
folder <object_name> IS point | struct | line | overlay <object>...
 point | struct | line | overlay <object_n>,
string <title>;

Groups a place, line, overlay, struct or point object under a single GE
browser navigation folder, under title specified by title.

8. A special arithmetic for manipulating coord objects

To ease the finding and fixing of a determined geographical point,
and to create a coord object from it, a special arithmetic allows
the user to 'move' from one coord to a new point and create
a define a new coord object out of it, using the following format:

coord <object_name> = coord <point> + (dist <x>, dir <y>);

In this way, <object_name> would be a point defined by moving x meters (all
distances are
converted to meters once processed by the compiler) in the direction of y degrees
by the
compass, starting from point.

