
Language Reference Manual - DSPLWiki

Language Reference Manual

From DSPLWiki

Jump to: navigation, search

Contents

● 1 Introduction
● 2 Lexical Conventions

❍ 2.1 Tokens
❍ 2.2 Comments
❍ 2.3 Identifiers
❍ 2.4 Keywords
❍ 2.5 Constants

■ 2.5.1 Integer Constants
■ 2.5.2 Floating Constants
■ 2.5.3 Complex Constants

❍ 2.6 String Literals
● 3 Syntax Notation
● 4 Meaning of Identifiers

❍ 4.1 Basic Types
❍ 4.2 Derived Types

● 5 Objects and Lvalues
● 6 Conversions
● 7 Expressions

❍ 7.1 Primary Expressions
❍ 7.2 C-library Call Expressions
❍ 7.3 Postfix Expressions
❍ 7.4 Unary Operators

■ 7.4.1 Logical Negation Operator
❍ 7.5 Casts
❍ 7.6 Convolutional Operator
❍ 7.7 Multiplicative Operators
❍ 7.8 Additive Operators
❍ 7.9 Relational Operators
❍ 7.10 Equality Operators

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (1 of 13)10/19/2006 10:38:47 AM

Language Reference Manual - DSPLWiki

❍ 7.11 Logical AND Operator
❍ 7.12 Logical OR Operator
❍ 7.13 Assignment Expression

● 8 Declarations
❍ 8.1 Type Specifiers
❍ 8.2 Declarators
❍ 8.3 Meaning of Declarators

■ 8.3.1 Array Declarators
❍ 8.4 Initialization

● 9 Statements
❍ 9.1 Expression Statement
❍ 9.2 Compound Statement
❍ 9.3 Selection Statement
❍ 9.4 Iteration Statement

● 10 Grammar

[edit]

Introduction

Digital Signal Processing Language was created and designed for the purpose of providing an efficient
language that can easily be compiled to make use of vector instructions that have been introduced in
Intel’s recent instruction sets. The language receives its name from the strong applicability these
improvements have to many operations common in digital signal processing.

Since the introduction of Intel’s MMX technology processor families, Intel has introduced four
extensions into their architectures that support single-instruction multiple-data (SIMD). These
extensions provide a group of instructions that perform SIMD operations on packed integer and/or
packed floating-point data elements. Using these instructions enhances the performance of compatible
processors for a variety of uses, including advanced 2-D and 3-D graphics, motion video, image
processing, speech recognition, audio synthesis, telephony, and video conferencing.[1]

[edit]Lexical Conventions

A program consists of a series of tokens which are grouped together to create declarations and
statements. A program begins with a left brace "{" and ends with a right brace "}".

[edit]Tokens

Like C, there are six classes of tokens: identifiers, keywords, constants, string literals, operators, and

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (2 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=1
ftp://download.intel.com/design/Pentium4/manuals/25366520.pdf
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=2
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=3

Language Reference Manual - DSPLWiki

other spearators. White-space, which includes blanks, horizontal and vertical tabs, newlines, formfeeds,
and comments, are used to separate tokens and are otherwise ignored.

[edit]Comments

The characters "/*" introduce a comment, and "*/" terminate a comment. In addition, the characters "//"
introduce a single-line comment, thus the next newline terminates the comment. Comments do not nest,
and do not occur within string or characer literals.

[edit]Identifiers

Identifiers are sequences of letters, digits, and/or underscores. The first character must be a letter or
underscore. Upper and lower case letters are different.

[edit]Keywords

The following identifiers are reserved as keywords and may not be used as identifiers:

● byte
● ccall
● complex
● else
● float
● for
● if
● int
● string
● ubyte
● uint
● while

[edit]Constants

There are several kinds of constants, including integers, characters, floating point numbers, double-
precision floating point numbers, and complex numbers.

[edit]Integer Constants

Integer constants consist of a sequence of digits. The associated keyword is int. In order to specify an
unsigned integer constant, create a signed int and then type cast to uint. To specify a signed byte, type
caste to byte. To specify an unsigned byte, type cast to ubyte.

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (3 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=4
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=5
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=6
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=7
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=8

Language Reference Manual - DSPLWiki

[edit]Floating Constants

Floating constants consist of a sequence of digits, a decimal point, and a sequence of digits. The
associated keyword is float

[edit]Complex Constants

Complex constants consist of an opening brace character '{', a float (representing the real component), a
comma, a float (representing the imaginary component), and a closing brace character '}'. The associated
type is complex.

[edit]String Literals

String literals, also known as string constants, are a sequences of characters surrounded by double-
quotes. Strings may consist of any character except for the double-quote, which must be escaped (\").
String literals are associated with the keyword string, and are implemented as arrays of type char. A
null byte /0 is appended to the end so that programs can find the string's end.

[edit]Syntax Notation

In the syntax notation used for this LRM, ANTLR-like code is used.

[edit]Meaning of Identifiers

Identifiers refer to objects. An object is a location in storage, and its interpretation depends on its storage
type. The type determines the meaning of the values found in the identified object. The lifetime of all
objects in DSPL is permanent and global; there is no scoping of variables.

[edit]Basic Types

There are several fundamental types. Strings are any combination of characters except for the double-
quote, which must be escaped (\"). There are signed (int) and unsigned (uint) integers, which are 4
bytes long. There are signed (byte) and unsigned (ubyte) bytes, which are 1 byte long. Floating-point
numbers (float) are 4 bytes long. Complex numbers (complex float) are pairs of 4-byte floats.

[edit]Derived Types

Besides the basic types, there may also be arrays any numeric basic type.

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (4 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=9
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=10
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=11
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=12
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=13
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=14
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=15

Language Reference Manual - DSPLWiki

[edit]Objects and Lvalues

An object is a named region of storage, whereas an lvalue is an expression refrring to an object.

[edit]Conversions

No operators will automatically convert their operands to be compatible with each other; explicit
typecasting must take place on the part of the user. When explicitly casting, only casts between int,
uint, byte, and ubyte are allowed.

[edit]Expressions

The precedence of expression operators is the same as the order of the major subsections of this section,
with higher precedence first. Left- or right- associativity is specified in each subsection for the operators
discussed therein.

The handling of overflow, divide check, and other exceptions in expression evaluation will result in
termination of a program, along with a message attempting to dictate where the exception ocurred.

[edit]Primary Expressions

Primary expressions are identifiers, constants, strings, or expressions in parentheses:

primary-expression:
 identifier
 | constant
 | string
 | '(' expression ')'

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type
is specified by its declaration. An identifer is an lvalue if it refers to an object and if its type is
arithmetic.

A constant is a primary expression. Its type depends on its form as discussed earlier.

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression.

[edit]C-library Call Expressions

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (5 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=16
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=17
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=18
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=19
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=20

Language Reference Manual - DSPLWiki

C-library call expressions call functions from the C libray using objects existing in the current program.

ccall-expression:
 primary-expression
 | "ccall" string '(' (argument-expression-list)? ')'

argument-expression-list:
 assignment-expression
 | argument-expression-list ',' assignment-expression

[edit]Postfix Expressions

The operators in postfix expressions group left to right.

postfix-expression:
 ccall-expression
 | postfix-expression '[' expression ']'

The only postfix expression defined in DSPL is for array references. A postfix expression followed by
an expression in square brackets is a postfix expression denoting a subscripted array reference. The post-
fix expression must resolve to the lvalue of an array object, and the expression in the brackets must
resolve to a non-negative integer.

[edit]Unary Operators

Expressions with unary operators group right-to-left.

post-fix expression:
 post-fix expression
 | unary-operator cast-expression

unary-operator:
 '!'

[edit]Logical Negation Operator

The operands of the ! operator must have arithmetic type (can not be an array of arithmetic type), and
the result is 1 if the value of its operand compares equal to 0, and 0 otherwise. The type returned is int.

[edit]Casts

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (6 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=21
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=22
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=23
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=24

Language Reference Manual - DSPLWiki

A unary expression preceded by the parenthesized name of a type causes conversion of the value of the
expression to the names type.

cast-expression:
 unary-expression
 | '(' type-name ')' cast-expression

[edit]Convolutional Operator

The convolutional operator ~ groups left to right.

convolutional-expression:
 unary-expression
 convolutional-expression '~' unary-expression

The operands of ~ must have array types. The two arrays needn't be of the same length. The
convolutional operator performs the mathematical operation of calculating the convolution of the arrays.

[edit]Multiplicative Operators

The multiplicative operators *, /, and % group left-to-right.

multiplicative-expressions:
 unary-expression
 | multiplicative-expression '*' unary-expression
 | multiplicative-expression '/' unary-expression
 | multiplicative-expression '%' unary-expression

The operands of * and / must have arithmetic type or array of arithmetic type; the operands of '%' must
have type of int or arrays of int. If performed on arrays, the two arrays must be of same length and
type, and the result is an array for which each element is the result of the operation on the corresponding
elements of the original arrays' elemennts.

The binary * operator denotes multiplication.

The binary / operator yields the quotient, and the % operator the remainder, of division of the first
operand by the second; if the second operand is 0, the result is undefined.

[edit]Additive Operators

The additive operators + and - group left-to-right. The operands have arithmetic type or be arrays of

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (7 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=25
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=26
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=27

Language Reference Manual - DSPLWiki

arthimetic types.

additive-operator:
 multiplicative-expression
 | additive-expression '+' multiplicative-expression
 | additive-expression '-' multiplicative-expression

The result of the + operator is the sum of the operands. The result of the - operator is the difference of
the operands. The same rules apply when arrays are used as operands as described above for
multiplicative operators.

[edit]Relational Operators

The relational operators group left-to-right, but this fact is not useful; a<b<c is parsed as (a<b)<c,
and a<b evaluates to either 0 or 1.

relational-expression:
 additive-expression
 | relational-expression '<' additive-expression
 | relational-expression '>' additive-expression
 | relational-expression '<=' additive-expression
 | relational-expression '>=' additive-expression

The operators <<code> (less), <code>> (greater), <= (less or equal), >= (greather or equal) all
yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. If arrays are used
as operands, the relation must hold true for all elements in order to evaluate true.

[edit]Equality Operators

equality-expression:
 relational-expression
 | equality-expression '==' relational-expression
 | equality-expression '!=' relational-expression

The == (equal to) and the != (not equal to) operators are analogous to the relational operators except for
their lower precedence.

[edit]Logical AND Operator

The && operator groups left-to-right.

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (8 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=28
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=29
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=30

Language Reference Manual - DSPLWiki

logical-AND-expression:
 equality-expression
 | logical-AND-expression '&&' equality-expression

The && operator returns 1 if both its operands compare unequal to zero, 0 otherwise. It guarantees left-to-
right evaluation: the first operand is evaluated, including all side effects; if it is equal to 0, the value of
the expression is 0. Otherwise, the right operand is evaluated, and if it is equal to 0, the expression's
value is 0, otherwise 1. The operands must evaluate to and integer value.

[edit]Logical OR Operator

The || operator groups left-to-right.

logical-OR-expression:
 logical-AND-expression
 | logical-OR-expression '||' logical-AND-expression

The || operator returns 1 if either of its operands compare unequal to zero, and 0 otherwise. Like &&,
|| guarantees left-to-right: the first operand is evaluated, including all side effects; if it is unequal to 0,
the value of the expression is 1. Otherwise, the right operand is evaluated, and if it is unequal to 0, the
expression's value is 1, otherwise 0. The operands must be integers.

[edit]Assignment Expression

The assignment operator groups left-to-right.

assignment-expression:
 conditional-expression
 | unary-expression '=' assignment-expression

The = operator requires an lvalue as left operand, and the lvalue must be modifiable. In DSPL, this
means it may be an array, as well as a primitive type. The value of the expression replaces that of the
object referred to by the lvalue. Both operands must have the same type, whether they are both the same
primitive type or arrays of the same primitive type.

[edit]Declarations

Declarations specify the interpretation given to each identifier; they do not necessarily reserve storage
associated with the identifier. Declarations that reserve storage are called definitions. Declarations have
the form

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (9 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=31
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=32
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=33

Language Reference Manual - DSPLWiki

declaration:
 declaration-specifiers (init-declarator)? ';'

The declarator in the init-declarator contains the identifier being declared; the declaration-specifiers
consist of a sequence of type specifiers.

declaration-specifiers:
 type-specifier (declaration-specifiers)?

init-declarator:
 declarator
 | declarator '=' initializer

Declarators will be discussed later; they contain the names being declared. A declaration has one and
only one declarator.

[edit]Type Specifiers

The type specifiers are

type-specifier:
 "char"
 | ("complex")? "int"
 | ("complex")? "float"
 | "string"

One type-specifier may be given in a declaration.

[edit]Declarators

Declarators have the syntax:

declarator:
 identifier
 | declarator '[' constant-expression ']'

[edit]Meaning of Declarators

A declarator appears after a type specifier. The declarator declares a unique main identifier. The type
depends on the form of the declarator. A declarator is read as an assertion that when its identifier appears
in an expression of the same form as the declarator, it yields an object of the specified type. Thus, a

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (10 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=34
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=35
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=36

Language Reference Manual - DSPLWiki

declaration has the form "T D," where T is a type and D is a declarator.

[edit]Array Declarators

In a declaration T D where D has the form

 D1[constant-expression]

and the type of the identifier in the declaration T D1 is "type modifier T," the type of the identifier of D
is "type-modifier array of T." The constant-expression must be a positive int.

An array may be constructed from an arithmetic type. Multi-dimensional arrays are not supported.

[edit]Initialization

When an object is declared, its init-declarator may specify an initial value for the identifier being
declared. The initalizer is preceded by =, and is an expression:

initializer:
 assignment-expression

The expression for an object need not be a constant expression, but must merely have appropriate type
for assignment to the object. Initializer lists for arrays are not supported.

[edit]Statements

Except as described, statements are executed in sequence. Statements are executed for their effect, and
do not have values. They fall into several groups.

statement:
 expression-statement
 | compound-statement
 | selection-statement
 | iteration-statement

[edit]Expression Statement

Most statements are expression statements, which have the form

expression-statement:

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (11 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=37
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=38
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=39
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=40

Language Reference Manual - DSPLWiki

 (expression)? ';'

Most expression statements are assignments. All side effects from the expression are completed before
the next statement is executed. If the expression is missing, the construction is called a null statement; it
is often used to supply an empty body to an iteration statement.

[edit]Compound Statement

So that several statements can be used where one is expected, the compout statement (also called
"block") is provided.

compound-statement:
 '{' (declaration-list)? (statement-list)? '}'

declaration-list:
 declaration
 | declaration-list declaration

statement-list:
 statement
 statement-list statement

DSPL does not support scoping, so careful attention should be paid to the inclusion of declarations in
block statements that may be repeated.

[edit]Selection Statement

The selection statement choose one of several flows of control.

selection-statement:
 "if" '(' expression ')' statement
 | "if" '(' expression ')' statement "else" statement

In both forms of the if statement, the expression, which must have an int type, is evaluated, including
all side-effects, and if it compares unqual to 0, the first substatement is executed. In the second form, the
second substatement is executed if the expression is 0. The else ambiguity is resolved by connecting
an else with the last encountered else-less if at the same block nesting level.

[edit]Iteration Statement

The iteration statement specify looping.

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (12 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=41
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=42
file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=43

Language Reference Manual - DSPLWiki

iteration-statement:
 "while" '(' expression ')' statement

In the while statement, the substatement is executed repeatedly so long as the value of the expresion
remains unequal to 0; the expression must be of type int. The test, including all side effects from the
expression, occurs before each execution of the statement.

[edit]Grammar

metaV's Grammar

file:///C|/Documents%20and%20Settings/David/Desktop/LRM.html (13 of 13)10/19/2006 10:38:47 AM

file:///school/plt/wiki/index.php?title=Language_Reference_Manual&action=edit§ion=44
file:///school/plt/wiki/index.php?title=The_Grammar

	Local Disk
	Language Reference Manual - DSPLWiki

