
Programming Languages and
Translators
COMS W4115

Pieter Bruegel, The Tower of Babel, 1563

Prof. Stephen A. Edwards
Fall 2006

Columbia University
Department of Computer Science

Instructor

Prof. Stephen A. Edwards
sedwards@cs.columbia.edu
http://www1.cs.columbia.edu/˜sedwards/
462 Computer Science Building
Office Hours: 3–4 PM Tuesday, 4–5 PM Wednesday

Schedule

Tuesdays and Thursdays, 11:00 AM to 12:15 PM

1127 Mudd

Lectures: September 5 to December 7

Midterm: October 26

Final: December 7 (in-class)

Final project report: December 19

Holidays: November 7 (Election day), November 23
(Thanksgiving)

Objectives

Theory of language design

• Finer points of languages

• Different languages and paradigms

Practice of Compiler Construction

• Overall structure of a compiler

• Automated tools and their use

• Lexical analysis to assembly generation

Required Text

Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques,
and Tools.
Addison-Wesley, 2006. Second
Edition.

Assignments and Grading

40% Programming Project

20% Midterm (near middle of term)

30% Final (at end of term)

10% Individual homework

Project is most important, but most students do well on it.
Grades for tests often vary more.

Prerequisite: Java Fluency

You and your group will write perhaps 5000 lines of Java;
you will not have time to learn it.

We will be using a tool that generates fairly complicated
Java and it will be necessary to understand the output.

Prerequisite: COMS W3157
Advanced Programming

Teams will build a large software system

Makefiles, version control, test suites

Testing will be as important as development

Prerequisite:
COMS W3261 Computability and
Models of Computation

You need to understand grammars

We will be working with regular and context-free
languages

Class Website

Off my home page,
http://www1.cs.columbia.edu/˜sedwards/

Contains syllabus, lecture notes, and assignments.

Schedule will be continually updated during the semester.

Collaboration

Collaborate with your team on the project.

Exception: CVN students do the project by themselves.

Do your homework by yourself.

Tests: Will be closed book with a one-page “cheat sheet”
of your own devising.

Don’t cheat on assignments: If you’re dumb enough to
cheat, I’m smart enough to catch you.

The Project

The Project

Design and implement your own little language.

Five deliverables:

1. A proposal describing and motivating your language

2. A language reference manual defining it formally

3. A compiler or interpreter for your language running on
some sample programs

4. A final project report

5. A final project presentation

Teams

Immediately start forming four-person teams to work on
this project.

Each team will develop its own langauge.

Suggested division of labor: Front-end, back-end, testing,
documentation.

All members of the team should be familiar with the whole
project.

Exception: CVN students do the project by themselves.

First Three Tasks

1. Decide who you will work with

You’ll be stuck with them for the term; choose wisely.

2. Elect a team leader

Languages come out better from dictatorships, not
democracies. Besides, you’ll have someone to blame.

3. Select a weekly meeting time

Harder than you might think. Might want to discuss
with a TA you’d like to have so it is convenient for
him/her as well.

Project Proposal

Describe the language that you plan to implement.

Explain what problem your language can solve and how it
should be used. Describe an interesting, representative
program in your language.

Give some examples of its syntax and an explanation of
what it does.

2–4 pages

Language Reference Manual

A careful definition of the syntax and semantics of your
language.

Follow the style of the C language reference manual
(Appendix A of Kernighan and Ritchie, The C
Programming Langauge; see the class website).

Final Report Sections

1. Introduction: the proposal

2. Language Tutorial

3. Language Reference Manual

4. Project Plan

5. Architectural Design

6. Test Plan

7. Lessons Learned

8. Complete listing

Due Dates

Proposal September 26 soon

Reference Manual October 19

Final Report December 19

Design a language?

A small, domain-specific language.

Think of awk or php, not Java or C++.

Examples from earlier terms:

Quantum computing language

Geometric figure drawing language

Projectile motion simulation langauge

Matlab-like array manipulation language

Screenplay animation language

Other language ideas

Simple animation language

Model train simulation language

Escher-like pattern generator

Music manipulation language (harmony)

Web surfing language

Mathematical function manipulator

Simple scripting language (à lá Tcl)

Petri net simulation language

What’s in a
Language?

Components of a language: Syntax

How characters combine to form words, sentences,
paragraphs.

The quick brown fox jumps over the lazy dog.

is syntactically correct English, but isn’t a Java program.

class Foo {

public int j;

public int foo(int k) { return j + k; }

}

Is syntactically correct Java, but isn’t C.

Specifying Syntax

Usually done with a context-free grammar.

Typical syntax for algebraic expressions:

expr → expr + expr

| expr − expr

| expr ∗ expr

| expr/expr

| digit

| (expr)

Components of a language:
Semantics

What a well-formed program “means.”

The semantics of C says this computes the nth Fibonacci
number.

int fib(int n)
{

int a = 0, b = 1;
int i;
for (i = 1 ; i < n ; i++) {

int c = a + b;
a = b;
b = c;

}
return b;

}

Semantics

Something may be syntactically correct but semantically
nonsensical.

The rock jumped through the hairy planet.

Or ambiguous

The chickens are ready for eating.

Semantics

Nonsensical in Java:

class Foo {

int bar(int x) { return Foo; }

}

Ambiguous in Java:

class Bar {

public float foo() { return 0; }

public int foo() { return 0; }

}

Specifying Semantics

Doing it formally beyond the scope of this class, but
basically two ways:

• Operational semantics

Define a virtual machine and how executing the
program evolves the state of the virtual machine

• Denotational semantics

Shows how to build the function representing the
behavior of the program (i.e., a transformation of
inputs to outputs) from statements in the language.

Most language definitions use an informal operational
semantics written in English.

Great Moments in
Programming Language Evolution

Assembly

Before: numbers
55
89E5
8B4508
8B550C
39D0
740D
39D0
7E08
29D0
39D0
75F6
C9
C3
29C2
EBF6

After: Symbols
gcd: pushl %ebp

movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax
je .L9

.L7: cmpl %edx, %eax
jle .L5
subl %edx, %eax

.L2: cmpl %edx, %eax
jne .L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

FORTRAN

Before
gcd: pushl %ebp

movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax
je .L9

.L7: cmpl %edx, %eax
jle .L5
subl %edx, %eax

.L2: cmpl %edx, %eax
jne .L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

After: Expressions, control-flow
10 if (a .EQ. b) goto 20

if (a .LT. b) then
a = a - b

else
b = b - a

endif
goto 10

20 end

COBOL

From cafepress.com

Added type declarations, record types, file manipulation

data division.
file section.
* describe the input file
fd employee-file-in

label records standard
block contains 5 records
record contains 31 characters
data record is employee-record-in.

01 employee-record-in.
02 employee-name-in pic x(20).
02 employee-rate-in pic 9(3)v99.
02 employee-hours-in pic 9(3)v99.
02 line-feed-in pic x(1).

LISP, Scheme, Common LISP

Functional, high-level languages

(defun gnome-doc-insert ()
"Add a documentation header to the current function.

Only C/C++ function types are properly supported currently ."
(interactive)
(let (c-insert-here (point))

(save-excursion
(beginning-of-defun)
(let (c-arglist

c-funcname
(c-point (point))
c-comment-point
c-isvoid
c-doinsert)

(search-backward "(")
(forward-line -2)
(while (or (looking-at "ˆ$")

(looking-at "ˆ * }")
(looking-at "ˆ \\ * ")
(looking-at "ˆ#"))

(forward-line 1))

APL

Powerful operators, interactive language

Source: Jim Weigang, http://www.chilton.com/˜jimw/gsrand.html

Algol, Pascal, Clu, Modula, Ada

Imperative, block-structured language, formal syntax
definition, structured programming
PROC insert = (INT e, REF TREE t)VOID:

NB inserts in t as a side effect
IF TREE(t) IS NIL THEN t := HEAP NODE := (e, TREE(NIL), TREE(NI L))
ELIF e < e OF t THEN insert(e, l OF t)
ELIF e > e OF t THEN insert(e, r OF t)
FI;

PROC trav = (INT switch, TREE t, SCANNER continue, alternati ve)VOID:
traverse the root node and right sub-tree of t only.
IF t IS NIL THEN continue(switch, alternative)
ELIF e OF t <= switch THEN

print(e OF t);
traverse(switch, r OF t, continue, alternative)

ELSE # e OF t > switch #
PROC defer = (INT sw, SCANNER alt)VOID:

trav(sw, t, continue, alt);
alternative(e OF t, defer)

FI;

Algol-68, source http://www.csse.monash.edu.au/˜lloyd/tildeProgLang/Algol68/treemerge.a68

SNOBOL, Icon

String-processing languages
LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@’
SP.CH = "+-,=. * ()’/& "
SCOTA = SP.CH
SCOTA ’&’ =
Q = "’"
QLIT = Q FENCE BREAK(Q) Q
ELEM = QLIT | ’L’ Q | ANY(SCOTA) | BREAK(SCOTA) | REM
F3 = ARBNO(ELEM FENCE)
B = (SPAN(’ ’) | RPOS(0)) FENCE
F1 = BREAK(’ ’) | REM
F2 = F1
CAOP = (’LCL’ | ’SET’) ANY(’ABC’) |

+ ’AIF’ | ’AGO’ | ’ACTR’ | ’ANOP’
ATTR = ANY(’TLSIKN’)
ELEMC = ’(’ FENCE * F3C ’)’ | ATTR Q | ELEM
F3C = ARBNO(ELEMC FENCE)
ASM360 = F1 . NAME B

+ (CAOP . OPERATION B F3C . OPERAND |
+ F2 . OPERATION B F3 . OPERAND)
+ B REM . COMMENT

SNOBOL: Parse IBM 360 assembly. From Gimpel’s book, http://www.snobol4.org/

BASIC

Programming for the masses

10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"

20 INPUT A$

30 IF A$ = "5" THEN PRINT "GOOD JOB, YOU GUESSED IT"

40 IF A$ = "5" GOTO 100

50 PRINT "YOU ARE WRONG. TRY AGAIN"

60 GOTO 10

100 END

Simula, Smalltalk, C++, Java, C#

The object-oriented philosophy

class Shape(x, y); integer x; integer y;
virtual: procedure draw;
begin

comment -- get the x & y coordinates --;
integer procedure getX;

getX := x;
integer procedure getY;

getY := y;

comment -- set the x & y coordinates --;
integer procedure setX(newx); integer newx;

x := newx;
integer procedure setY(newy); integer newy;

y := newy;
end Shape;

C

Efficiency for systems programming

int gcd(int a, int b)

{

while (a != b) {

if (a > b) a -= b;

else b -= a;

}

return a;

}

ML, Miranda, Haskell

Purer functional language
structure RevStack = struct

type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =

(case s
of [] => true

| _ => false)
fun top (s:’a stack): =

(case s
of [] => raise Empty

| x::xs => x)
fun pop (s:’a stack):’a stack =

(case s
of [] => raise Empty

| x::xs => xs)
fun push (s:’a stack,x: ’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

sh, awk, perl, tcl, python

Scripting languages:glue for binding the universe together

class() {
classname=‘echo "$1" | sed -n ’1 s/ * :. * $//p’‘
parent=‘echo "$1" | sed -n ’1 s/ˆ. * : * //p’‘
hppbody=‘echo "$1" | sed -n ’2,$p’‘

forwarddefs="$forwarddefs
class $classname;"

if (echo $hppbody | grep -q "$classname()"); then
defaultconstructor=

else
defaultconstructor="$classname() {}"

fi
}

VisiCalc, Lotus 1-2-3, Excel

The spreadsheet style of programming

A B

1 Hours 23

2 Wage per hour $ 5.36

3

4 Total Pay = B1 * B2

SQL

Database queries

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM(’t-shirt’, ’polo’, ’dress’) NOT NULL,
color ENUM(’red’, ’blue’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL

REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO shirt VALUES
(NULL, ’polo’, ’blue’, LAST_INSERT_ID()),
(NULL, ’dress’, ’white’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’blue’, LAST_INSERT_ID());

SQL T-Shirt

From thinkgeek.com

Prolog

Logic Language

edge(a, b). edge(b, c).

edge(c, d). edge(d, e).

edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :-

edge(X, Z), path(Z, Y).

