CSEE W4840 Embedded System Design Lab 2

Stephen A. Edwards

Due February 9, 2006

Abstract

Write a C program to make the board behave as a simple ter-
minal emulator. Have your program use the provided UART
and character display to receive and display a stream of ASCII
characters. Handle newlines, carriage returns, and scrolling the
screen when the cursor reaches the bottom.

1 Introduction

In this lab, you will write C code that integrates two peripherals:
a UART and a text-mode video controller. The result will be
a simple system that takes characters from the serial port (you
can send them to the board by typing in a minicom window)
and displays them on the flat-panel displays. Such so-called TV
typewriters were all the rage in the early 1970s, when it first
became possible to build such systems with off-the-shelf hard-
ware.

Use an interrupt routine to receive the character from the
UART, and a main loop that copies the characters from the buffer
where the interrupt routine has placed them onto the screen.

For printable characters, your program should simply display
them and advance the cursor. Non-printing characters, specifi-
cally carriage return (control-M) and newline (control-J), should
move the cursor. Specifically, a carriage return should move the
cursor to the leftmost position on the same line, while newline
should move the cursor down a line without affecting its hori-
zontal position. This behavior is typical for terminals and is left
over from Teletype days.

If the cursor tries to go off the bottom of the screen, scroll the
characters on the screen up one line to ensure the cursor stays at
the bottom.

2 Getting Started

We have provided a skeleton project that exercises the video dis-
play and UART. Make sure it compiles, downloads, runs, and
displays video before tackling the rest of this lab.

1. Create a directory called, say, 1ab2 and cd into it.

2. Unpack the project from my home directory or download
it from the class website.

$ tar zxvf “sedwards/4840/1ab2.tar.gz

3. Start minicom in a new window.

4. Run Xilinx Platform Studio with xps system.xmp,
run “Bram Init” and download the .bit file and verify
that the initial program (c_source_files/main.c)
clears the screen, displays a welcome message, and
monitors the most-recently-received character from the
serial port. As usual, make sure you have sourced
“sedwards/xi linx.sh to set up your environment.

3 TheVideo Display

For this assignment, | created a custom OPB peripheral: a text-
mode VGA controller. On a standard 640 x 480 VGA-speed
raster (a 60 Hz frame rate), it displays an 80 x 30 character
matrix using an 8 x 16 font. It stores both the character and the
font in on-chip “block” RAMs (2.5K for the characters, 1.5K for
the font), which can be both read and written from C.

The 4K of video memory appears as a contiguous region of
memory starting at Oxfeff1000. The first 2.5K of this area stores
the character information (Actually, only the first 2400 bytes
are used for the 80 x 30 display. Each character consumes a
single byte. The remaining 160 are not used by the video sys-
tem.). This is arranged in the usual manner: Oxfeff1000 stores
the character in the upper-left corner, 0xfeff1001 holds the char-
acter immediately to its right, and each new row starts 80 bytes
after the last one. The remaining 1.5K, starting at Oxfeff1a00,
stores the font, arranged as 96 characters, each 16 bytes long.
The most significant bit of each byte of the font corresponds to
the leftmost pixel of a character and 1’s appear as white pixels.
The first character of the font (bytes Oxfeff1a00 to Oxfeff1a0f)
holds the character numbered 0x20, corresponding to an ASCI|I
space.

The video memory interface is fairly fast, but can only be
accessed a byte at a time (i.e., treating the memory as an array
of shorts or integers will not work properly).

The font RAM is initialized with a standard ASCII font (an
IBM console font from a Linux distribution), the result being
that printable strings in C can be copied directly to the screen
without translation. Character 0x20 is all black, i.e., a space,
and character 0x7f is a solid white box that could be used to
display a cursor if desired.



4 Interrupts

Your TV typewriter will accept characters at 9600 baud, mean-
ing a new character can arrive every

8 data bits 4 1 start bit+ 1 stop bit
9600 bits / second

The Microblaze runs at 50 MHz, so this gives us at most

~ 1ms

50 x 108 instructions
second

which is plenty of time to display a single character and move
the cursor. When it becomes necessary to scroll the screen, we
need to copy 80 x 30 = 2400 bytes (one per character), which
can be done quickly enough so that the next input character is
not missed.

Interrupts are the preferred solution for handling communi-
cation from a peripheral to a processor. Rather than having to
repeatedly check the peripheral, the peripheral sends an interrupt
to the processor that causes it to stop what it is doing, save its
state, and run an interrupt routine that quickly gathers data from
the peripheral before returning to the program that was running
before the interrupt occurred.

Interrupts are the solution to the scrolling problem: by mak-
ing it possible for the UART to interrupt the scrolling routine,
characters that arrive during a scroll can be saved for after the
scrolling finishes. While such an approach does not help us if
the program simply cannot keep up with its input (e.g., when
the time to process a character is longer than the time between
characters), we expect that scrolling happens fairly infrequently.

Interrupt service routines are written to run as quickly as pos-
sible and do as little work as possible. While it would be pos-
sible to have the interrupt routine itself display characters and
scroll the screen, this defeats the purpose of using an interrupt.
Instead, the interrupt routine should only check whether a new
character has arrived (other sources of interrupts might have in-
advertantly invoked the routine), get the new character from the
UART, acknowledge the interrupt so the UART is ready for the
next character, and enqueue the character into a buffer for the
main routine to handle later.

A tricky aspect of having an interrupt routine is that it may be
invoked at any time. This is not a problem provided the interrupt
routine does not modify anything the main routine is trying to
read or write, but at least something needs to be shared since
some form of communication must take place.

The danger comes, for example, when the interrupt routine
is writing a character into the buffer at the “same time” main
routine is reading a character. If the execution of these two op-
erations is not carefully interleaved, the buffer used to commu-
nicate between the two systems might become corrupted (e.g.,
appear to have a character in it when it does not).

The usual solution is to disable interrupts while accessing
memory locations that are shared with an interrupt routine. This
guarantees that the interrupt routine will not modify this mem-
ory during this time, albeit at the possible expense of increasing

-1ms = 50000 instructions,

interrupt latency—the maximum time between when a periph-
eral issues an interrupt and when the program acknowledges it.

5 TheAssignment

In“sedwards/4840/1ab2 . tar.gz, you will find a skele-
ton for this lab that includes a main.c file that enables interrupts
and registers an interrupt handler routine handler before going
into a (boring) main loop that periodically prints the number of
characters the interrupt routine has received and the most recent
character.

The interrupt routine, uart_handler(), is more interesting. The
first part of the main() function installs this function as a handler
for interrupts generated by the UART. It checks whether a new
character has come in (see the Xilinx UART lite datasheet for
documentation) and if so, saves the character and increments a
counter.

Implement a circular buffer that communicates from the in-
terrupt routine to the main character routine. Use two pointers:
one pointing to where the next character will be written into the
buffer and one pointing to the next character to be taken from
the buffer. Make the two wrap around and be sure to avoid a
buffer overflow condition. Be careful when reading from the
buffer—disable interrupts when necessary and do so for as little
time as possible.

The main routine should look like

for (G;) {
while (no character in buffer)
/* do nothing =/
get character from buffer
display character on screen
if necessary, scroll the screen

}

The interrupt routine should look like

if (there is a new character) {
get the character
clear the interrupt
if (the buffer is not full) {
write the character into the buffer
advance the buffer pointer
}
}

Show your working TV typewriter to a TA, have him sign a
printout of your solution (i.e., all .c files), and hand that it.

Shorter, elegant, readable solutions will score higher, as
usual.



