
Edward Young
ey52@columbia.edu
COMSW4115 PLT

The Text Processing Language (TPL)

An Overview

Introduction

Text Processing Language (TPL) is a text-processing language that is designed to provide
very simple text file manipulation tools. Text file manipulation programs are very useful
when dealing with a large number of text files. Two particular instances come to mind:

• Web Developers who have many text files that are written in HTML, PHP, or
some other scripting language.

• Systems Administrators who deal with text based configuration files and log files.

Text files which contain ASCII text are used in almost every aspect of computing.
Common examples are HTML web pages, Java source files, and Apache Web Server log
files. Many times, a user who has to deal with these files might want to manipulate many
of these files at once. Opening and manipulating each of these files can be tedious. The
ability to write a simple program using TPL to handle the tedious tasks can be time-
saving.

Why Another Language?

TPL is designed with a “right tool for the right job” mentality. It is not intended to
replace powerful programming languages such as C, C++, or Java. Instead, it is intended
to be another tool in a programmer’s toolbox dealing primarily with text file
manipulation.

Another text-processing language that is available today is AWK. While AWK is very
simple and powerful, some of the syntax may be confusing for those who are just
beginning to learn the language. For example, some of the built in variables such as NR
or NF may be difficult to decipher since only two upper case letters are used to describe
the variables. Variables with such similar names may be easily confused. TPL uses
descriptive variable names such as NUM_ROWS or NUM_FIELDS in order to make
reading the code easier. This requires more typing but the ease of maintenance will
increase if the variable names are more descriptive.

Goal
TPL is designed to be a simple language that anyone should be able to learn. The text
processing capabilities can enable a programmer to perform normally tedious tasks with a

simple program. Inexperienced programmers can use TPL to write useful programs
without having to learn all of the caveats of a larger programming language such as
C/C++ or Java. The programming syntax is simple enough for anyone to learn.

Simple
TPL will be modeled after procedural languages such as C/C++. Programs can be
anything from "one-liners" to 100 line programs. Those who are familiar with procedural
languages will be able to make the transition from writing large programs to small simple
programs using TPL. For example, the "Hello World" program in C would normally take
5 lines of code:

#include<stdio.h>

main()
{
 printf("Hello World");
}

In TPL, the "Hello World" program can be reduced to:

print ("Hello World");

These two programs are very similar in that they both call a "print" function to print the
string "Hello World" to the console. Since TPL is has a specific focus on text processing,
some complexity can be taken out. A main() function is not needed since TPL programs
will not be compiled. They will simply be run through the TPL interpreter. TPL
programs can be simple scripts or somewhat complex programs using many functions.

Anyone who has programmed in C/C++ or Java will be able to learn TPL quickly due to
the intuitive syntax and semantics. An inexperienced programmer will also be able to
learn TPL quickly.

Procedural
TPL programs are procedural. They focus on writing functions which perform small
tasks and then combining these functions together to create programs. This is different
from Object Oriented Programming in that the data is not represented as objects. When
processing text, such abstraction probably is not needed. If it is, it is better to use a
language such as C++ or Java which provide the full benefits of Object Oriented
Programming.

Interpreted
TPL programs will need the TPL program to run. The TPL program is a java program
that will interpret the TPL program and provide the output. An example of running a
TPL program:

java TPL nightly_batch.tpl

Interpreted programs may not run as fast as compiled programs but speed usually is not
an issue with text file manipulation. The main importance is the accuracy of the result
provided by the program. Unless the program takes a very long time, the programmer
might not care if he or she has to wait 5 minutes for a TPL program to search and replace
certain variable names in 100 PHP files. This would probably save the programmer
hours of work. The programmer also would not have to worry about user error since the
computer performed the search and replace. Some additional benefits of TPL being an
interpreted language are that the programs are portable and architecture independent.

Architecture Neutral and Portable
Java is currently available on Windows, Macintosh, Solaris, and Linux. Therefore, the
TPL interpreter can be installed on any of these platforms as well. A TPL program that
was first written on a Windows machine can also be used on a Linux machine without
modification. Since TPL programs are interpreted by a Java program, TPL programs will
hold many of the same benefits and advantages as Java programs.

Domain Specific
TPL is meant for only for the manipulation of text files. Programming languages such as
C/C++ or Java are meant to be multipurpose. You can write databases, applications, and
even computer games with those languages. TPL will not do any of those. It is only
meant to provide a powerful tools for text file processing. Here are some examples of
situations where a language like TPL can be applied:

• Programmers: They may have text in dozens of source code files that need to be
changed. Instead of opening and editing each and every file, they can write a TPL
program to search through all of the programs and do the replace automatically.

An example:

A PHP web programmer just found out that a column name in a database table
has changed. He has 10 files which contain a reference to that column name.
Instead of opening and searching each file, he simply writes the following TPL
program:

$dir = “.”;
$files = getFileList($dir);
for($i=0;$i<count($files);$i++) {
 if(!isDir($files[$i])) {
 // columnA is search text
 // columnB is the replacement text
 replace(“columnA”, “columnB”, $files[$i]);
 }
}

• Systems Administrators: Systems administrators can find a text processing
language to be very helpful. Often Systems Administrators deal with text file
configuration and log files. An administrator can spend a lot of time modifying or
reading these files. It can be helpful for an administrator to write a program that
can automate some of his or her tasks.

An example:

A Linux Systems Administrator wants to get a daily report of errors in the
/var/logs/messages log and various other logs such as Apache and Tomcat. He
will search for the string “ERROR” and “WARNING” and output the count to a
file. He can run the job when he needs to and then check the results. If there are
no warnings or errors, he will not have to examine any log files and he would
have probably saved himself about half an hour or more by not having to open
each individual log.

$logs[0] = “/var/log/messages”;
$logs[1] = “/var/log/httplog”;
$logs[2] = “/var/log/tomcatlog”;
$logs[3] = “/var/log/otherlog”;

$output_file = “/home/admin/daily_report.txt”;

for($i=0;$i<count($logs);$i++) {
 $warning_count =
 string_count(“WARNING”,$logs[$i]);
 $error_count = string_count(“ERROR”,$logs[$i]);
 write_line($logs[$i]);
 write_line($output_file, $warning_count);
 write_line($output_file, $error_count);
 write_line();
}

Summary
TPL is a good tool for any programmer to have. With its ease of use and portability, the
language can be used across many platforms and by many different people. Text
processing will be made easier and less of a chore if a well written TPL program is used.

	The Text Processing Language (TPL)
	An Overview
	Introduction
	Why Another Language?
	Goal
	Simple
	Procedural
	Interpreted
	Architecture Neutral and Portable
	Domain Specific
	Summary

