SML: Specialized Matrix Language
White Paper

Patty Ho
pph2103@columbia.edu
COMSWA4115

Spring 2005

Columbia University

I ntroduction

Special mathematical functions and calculationsheEaquite difficult or cumbersome to
implement in programming languages. For exampémymmatrix operations tend to
require long lines of code involving multiple copief the same matrix, nested loops, and
two dimensional arrays. The driving force behiqe&8alized Matrix Language (SML) is
to help alleviate these difficulties by giving us@r programming language with built-in
matrix functions as an abbreviated way to handl&irn@perations.

Background

A matrix is an ordered set of numbers listed regigar form. They have many uses in
the field of mathematics, including the transforioatof coordinates and the solution of
linear systems of equations. There are many dpasathat are often applied when
dealing with matrices. Some of the most commosldumatrix operations are:
arithmetic (addition, subtraction, and scalar/matnultiplication), inverse, determinant,
and transpose.

An example of a matrix:

1234
56738
9012

Goal

SML is a programming language intended for math&maaits and those who deal with
matrices on a regular basis, whether they are equead with programming or not. The
main goal is to provide an easy-to-learn, highlleeticient, and convenient tool to
assist with performing various matrix operations.

Simple

Since SML is not a general purpose language, @pesc rather limited, but it also means
that it is not as complicated as those generalgagrftanguage. Designed specifically for
performing various matrix operations, SML proviaesst of the common matrix
functionalities using simple, intuitive, and easyl¢arn syntax. People who are already
familiar with matrix operations should be able tmlerstand and learn SML with ease,
even those who has little or no programming expege

High Leve

Low level languages tend to be more difficult t@lerstand and have very few helper
functions or libraries to . To achieve the goabeing an intuitive and easy-to-use
language, SML is designed to be a high level lagguarherefore, users do not need to
worry about low level details such as internal dafaresentation or tedious algorithm
implementations.

| nter preted

For convenience, SML allows commands to be evaduatel executed on the fly, which
means that it is an interpreted language. Thigde&gves the users the option of either
executing commands one by one on the command fitteanterpreter or supplying an
SML program file as the argument for execution wbaling the SML interpreter.

Portable

The portability of Java allows a program to runamly machine that has Java Virtual
Machine on it. As a result, by using a Java inmetgy, an SML program can also be
easily ported to and executed on any machine g®mtM on it.

Robust

Programs written in SML are very robust because $hkcks for possible problems
early to avoid run-time errors. The simple des§the language, such as having only a
couple of data types, also helps the robustne®edénguage by preventing any type
casting or conversion problems. Any lexical, sgtita or semantic error will be caught
by the lexer, the parser, and the semantics chedkee SML interpreter will then check
for any mathematical errors in terms of matrix @pens, such as adding matrixes of
different sizes, multiplying un-multipliable mates, invalid values for matrix, etc.
Problems like these stop the execution and aretegpback to the user via error
messages.

Data Types

There are only two data types in SML — matricesraadl numbers. Conveniently, there
is no need to explicitly specify the data typetresdata type is recognized automatically
by the existence or lack of existence of the “[tl &]f symbols in the initialization of the
value. Furthermore, all real numbers are represgeas floating point numbers to handle
any potential decimal data and/or calculations.

Main Features
SML provides many matrix operations with easy builfunctions including:

Addition

Scalar Multiplication
Matrix Multiplication
Transpose

Inverse

Determinant
Concatenation

Identity Matrix
Gauss-Jordan Procedure

©CoNo~wWNE

SML also provides a lot of helper functions suclsetsing a particular element, row, or
column, getting a particular element, row, or calj@nd adding or removing a row or
column.

Furthermore, SML also supports common programmangrol flow constructs in a
slightly different syntax:

if ... fi

elseif ... fiesle
else ... esle
for ... rof
while ... elihw

agrwnrE

Sample Code

Here is an example of how a simple SML program toak like (with explanations to
each line of code on the right):

a=[1,2,3;4,5,6;7,8,9] [/l matrix initiadtzon

b=[1,0,0;0,1,0;0,0, 1 // matrix initiadiion

c=a+b /[addition

b=2*Db /I scalar multiplication

d=a*b // matrix multiplication

print(fa+ b =", c) /[print text “a + b = “ fodiwed by the value of ¢
print(b) /I print the value of b

print(fa* b =%, d, “(mat.)") // print text “a * b=*, followed by the value of d, followed
by the text “(mat.)”

trans(a) /I compute & print transpose of matrix a
inv(a) /I compute & print inverse of matrix a
det(a) I/l compute & print determinant of matix

print(“We’re outta here!”) /I print text “We're ota here!”

Summary

SML is a specialized language that focuses onlgnatrix operations. It is not meant to
be a general-purpose language. SML provides afaksmechanical way to perform
matrix operations and thus reduce potential "huo@dculation errors.”" Those who deal
with matrix operations regularly but have littleray programming experience will find
SML easy to learn and useful in helping with compteatrix operations.

