
Michael Langford
Khai Vuong
Javier Coca

George Sirois

1. AWE Language Reference Manual

1.1 Introduction

The intent of Autonomous Web Explorer (AWE) is to allow users to create simple
scripts in order to automate the browsing of web pages. The language is syntactically
small and does not contain an abundance of library functions – only enough to get
the very basics done. In this respect, the syntax is very much modeled after C. This
allows the user to pick up the syntax very quickly yet still write powerful scripts that
gather the information they need.

1.2 Structure

The structure of an AWE script is taken directly from C. The main loop of the
program is denoted by:

 void main()
 {
 //CODE
 }

Further, the programmer may declare functions in the C style with a return type,
arguments inside of the parenthesis, and return types.

 int sum(int i, int k)
 {
 return i + k;
 }

1.3 Lexical Conventions

1.3.1 Comments

Comments are in the traditional C style where a double slash ‘//’ at the beginning of
a line denotes the entire line as a comment.

1.3.2 Identifiers

A sequence of letters and numbers is considered an identifier. AWE retains C’s case
sensitivity. An identifier may not start with a number and may contain the
underscore “_” character.

1.3.3 Keywords

There are a number of identifiers which are reserved as keywords and may not be
used as user-defined identifiers:

int else return
string in break
hyperlink while if
webfile foreach collection
1.3.4 Constants

 1.3.4.1 String Constants

 A string constant is a sequence of characters surrounded by a double
 quote. There is no char type so any constant must be surrounded by
 double quotes. The forward slash “\” is used to escape special
 characters such as newlines, carriage returns, etc. A double slash “\\”
 inserts a single slash into the string constant. A newline is given by
 “\n” and a carriage return is given by “\r”.

 1.3.4.2 Integer Constants

 An integer constant is a sequence of digits (0-9).

1.3.5 Separators

 The curly brackets ({ }) denote the beginnings and endings of functions and
 allow the programmer to group code blocks in the same scope.

 The semicolon “;” denotes the end of a statement. Multiple statements may
 be placed on a single line.

 White space is ignored for anything other than the purpose of separating
 syntactic elements.

1.3.6 Operators

 AWE contains a somewhat large set of operators. They are simply listed here
 and will be discussed in more detail in the operators section.

 + - * / % =
 == != < <= > >=
 && || -> & ++ --
 ~~ !~ ^

1.4 Types

AWE has two different types – value types and standard types.

1.4.1 Value types

 Value types are integers and strings. They are essentially an area of allocated
 memory which stores a primitive type. Certain operators operate only on
 value types. Value types are:

 int

 string

 1.4.1.1 int

 An integer is 32 bits allocated in memory to store integer values.

 1.4.1.2 string

 A string is dynamically allocated and stores a sequence of Unicode
 characters.

1.4.2 Standard types

 Standard types are the more complicated types built into the language. They
 may contain several information blocks and must be manipulated using the
 built in functions. Certain assignment operators may only be used on
 standard types. Standard types are:

 hyperlink
 webfile
 collection

 1.4.2.1 hyperlink

 Contains the url of the link and the html of the page.

 1.4.2.2 webfile

 Stores a resource pointed to by a link. Contains MIME type
 information.

 1.4.2.3 collection

 Stores a collection of hyperlinks. Individual hyperlinks be accessed
 using the bracket operator as discussed in section 1.5.

1.5 Operator Definitions

Precedence and Associativity of Operators

Operators Associativity
() [] Left to right
++ -- * & - Right to left
* / % Left to right
+ - ^ Left to right
< <= > >= Left to right
== != ~~ !~ Left to right
&& Left to right
|| Left to right
= Right to left
-> Left to right
, Left to right

1.5.1 Grouping and Indexing Operators

 Grouping operators are used to modify the order of evaluation by specifying
 that everything within the operators is to be evaluated with the highest
 precedence.

 1.5.1.1 (expressions)

 Groups the contained expressions into a group of highest precedence

 Indexing operators are used to traverse collections

 1.5.1.2 collection[int OR string]

 Returns the value in the collection at index int or the first link value
 matching string. Only hyperlinks may be placed in a collection so it is
 guaranteed that there will be a link to match for each item.

1.5.2 Unary Operators

 Unary operators may only be used on integer types.

 1.5.2.1 int++

 Increments an integer value by 1.

 1.5.2.2 int—

 Decrements an integer value by 1.

 1.5.2.3 –int

 Invert the sign of an integer.

1.5.3 Multiplicative Operators

 Multiplicative operators may only be used on integer types and result in
 integers.

 1.5.3.1 (integer expression) * (integer expression)

 Multiplies the two integer expressions.

 1.5.3.2 (integer expression) / (integer expression)

 Divides the two integer expressions. Returns only the quotient.

 1.5.3.3 (integer expression) % (integer expression)

 Takes the modulus of two integers. Returns the remainder.

1.5.4 Additive Operators

 Additive operators may only be used on integer types and result in
 integers.

 1.5.4.1 (integer expression) + (integer expression)

 Adds the two integer expressions.

 1.5.4.1 (integer expression) - (integer expression)

 Subtracts the two integer expressions.

1.5.5 Assignment Operators

 Assignment operators may be performed on all types and simply copy the
 value of one expression to another.

 1.5.5.1 variable = expression

 Sets the variable to the value of the expression provided they
 are of the same type.

 1.5.5.2 webfile = *hyperlink

 Similar to C’s pointer notation, this points a webpage to a hyperlink.

 1.5.5.3 hyperlink = &webfile

 Similar to C’s pointer notation, this points a hyperlink to a webpage.

 1.5.5.4 webfile -> string

 The assignment operator makes it easy to pipe the data contained in a
 webfile to a path on disk as specified by string.

 As an example of the above 3 operators,
 *{http://www.yahoo.com/index.htm, “”} -> “C:\\downloaded”; would
 save the index file to
 C:\downloaded\http___www_yahoo_com_index_htm
 where all non alphanumeric characters are replaced by underscores.

1.5.6 Comparison Operators

 Most comparison operators may only be used on integer types. There are a
 limited number which may be used on string types.

 1.5.6.1 (integer expression) == (integer expression)

 Evaluates to 0 if both integers are equal. Evaluates to 1 otherwise
 since there is no Boolean type.

 1.5.6.2 (integer expression) != (integer expression)

 Evaluates to 1 if both integers are equal. Evaluates to 0 otherwise.

 1.5.6.3 (integer expression a) < (integer expression b)

 Evaluates to 1 if a is less than b. Evaluates to 0 otherwise.

 1.5.6.4 (integer expression a) <= (integer expression b)

 Evaluates to 1 if a is less than or equal to b. Evaluates to 0 otherwise.

 1.5.6.5 (integer expression a) > (integer expression b)

 Evaluates to 1 if a is greater than b. Evaluates to 0 otherwise.

 1.5.6.6 (integer expression a) >= (integer expression b)

 Evaluates to 1 if a is greater than or equal to b. Evaluates to 0
 otherwise.

 1.5.6.7 (integer expression) && (integer expression)

 Performs the logical AND of two integer expressions. With no Boolean
 type, 0 is false, and any other value is considered true. Result is given
 as 0 or 1.

 1.5.6.8 (integer expression) || (integer expression)

 Performs the logical OR of two integer expressions. With no Boolean
 type, 0 is false, and any other value is considered true. Result is given
 as 0 or 1.

 1.5.6.9 (string expression a) ~~ (string expression b)

 Returns 1 if expression a matches the REGEX given in expression b, or
 0 otherwise.

 1.5.6.10 (string expression a) !~ (string expression b)

 Returns 0 if expression a matches the REGEX given in expression b, or
 1 otherwise.

 1.5.6.11 (string expression) ^ (string expression)

 Returns the concatenation of the two strings.

1.6 Flow Control

 1.6.1 The while statement

 while (condition is true)

 {
 //Execute this
 }

 The while loop evaluates the logical syntax of the condition in the
 parenthesis. If it evaluates to true, the code in the braces begins
 execution. When the end brace is reached and the condition is
 reevaluated. If there is only a single line of code to be executed, it
 may directly follow the while statement with no braces.

 1.6.2 The for statement

 for(variable = int; variable comparison int2; variable ++ or variable --
 {
 //Execute
 }

 The for statement allows the programmer to assign an integer value to
 variable. Then, as long as “variable comparison int2” returns true, the loop
 executes. At the end of the loop, the variable is incremented or decremented
 and the evaluation is made again. The loop continues until the middle
 condition is no longer satisfied.

 1.6.3 The foreach statement

 foreach(type name in collection)
 {
 //Do something with name
 }

 The foreach statement allows the programmer to easily traverse a collection.
 For each item in the collection of type type, it is assigned to the local variable
 “name” and the loop is run.

 1.6.4 The if else construct

 if (condition 1)
 {
 //statement 1
 }
 else if (condition 2)
 {
 //statement 2
 }
 else
 {
 //statement 3
 }

 The if else construct first evaluates condition 1 for truth. If it is true,
 statement 1 is executed. If not, it checks condition 2. If condition 2 is true,

 statement 2 is executed. Finally, if neither condition is met, statement 3 is
 executed. Note that the else if and else are optional, and the programmer
 may chain together as many else ifs as he or she wishes.

 1.6.5 The return [argument] statement

 Calling return in a function immediately breaks execution and returns the
 value of argument to the point where the function was called. For void
 functions, return may be called with no argument.

 1.6.6 The break statement

 Calling break automatically jumps execution out of the lowest-level loop that
 the program is executing.

1.7 Declaration Syntax

 1.7.1 Value type variables

 Value type variables are declared as type identifier; or type identifier = value;
 Where value can be an expression which returns the correct value type. Value
 may also be a constant (string or int).

 1.7.2 Standard type variables

 Standard type variables are declared as type identifier; or type identifier =
 value; If they are assigned to a value, its type must match the identifier type.

 While there are no constants for standard type variables, they can be created
 on the fly.

 For example:

 hyperlink link1 = *{“http://www.yahoo.com/index.htm”,””};

 This is a link to Yahoo’s index file. The * denotes the creation of a link
 from a webpage, the first string is the link to the page, and the second
 string is the optional title the programmer may assign.

 collection collection1 = {};

 This is an empty collection. Collections may only contain hyperlinks. To
 add links, place them between the braces separated by commas.

1.8 Standard Library

The following functions are built in to the language:

 1.8.1 string url (hyperlink)

 Returns the url of the given hyperlink as a string.
 1.8.2 string text (hyperlink)

 Returns the text of the given hyperlink as a string.

 1.8.3 int count (collection)

 Returns the length of the given collection as an int.

 1.8.4 void add(collection, hyperlink)

 Adds a hyperlink to a collection.

 1.8.5 void remove (collection, hyperlink)

 Removess a hyperlink from a collection.

 1.8.6 void clear(collection)

 Removes all hyperlinks from a collection.

 1.8.7 int status(webfile)

 Returns the status of the http request of the given file (200, 404,
 etc.) as an int.

 1.8.8 int isSuccess (webfile)

 Returns int 1 if the status of the given file is 200. Returns int 0
 otherwise.

 1.8.9 string type (webfile)

 Returns the MIME type of the webfile as a string.

 1.8.10 int isHtml (webfile)

 Returns int 1 if the type of the given file is text/html. Returns int 0
 otherwise.

 1.8.11 int isImage (webfile)

 Returns int 1 if the type of the given file is image. Returns int 0
 otherwise.

 1.8.12 string html (webfile)

 Returns the html source code of the given webfile as a string.

 1.8.13 string title (webfile)

 Returns the title of the given webfile as a string.

 1.8.14 string text (webfile)

 Returns only the displayed text of the given webfile as a string.

 1.8.15 collection links (webfile)

 Returns a collection of all the links on the given webfile as a collection.

 1.8.16 collection images (webfile)

 Returns a collection of all the links which lead to images on the given
 webfile as a collection.

 1.8.17 void print (string)

 Prints the given string to the console.

 1.8.18 void save (string, string filename)

 Saves the given string to path filename.

 1.8.19 int indexOf (string string1, string string2, int start, int length)

 Returns the index of string2 in string1 in the given bounds as an int.

 1.8.20 int length (string)

 Returns the length of the given string as an int.

 1.8.21 string replace (string string1, string string2, string string3)

 Returns a copy of string1 in which all instances of string2 have been
 replaced by string3.

 1.8.22 string delete (string string1, int start, int length)

 Returns a copy of the given string without the given bounds.

 1.8.23 string subString (string string1, int start, int length)

 Returns a substring from the given string within the given bounds.

1.9 Regular Expressions

 1.9.1 Regular Expression Syntax

 As seen in section 1.5.6, there is a need for a regular expression
 syntax. The syntax for a full regular expression parser would probably
 be longer than this document, so we have decided to use the basics of
 the Javascript RegEx syntax found here:
 http://msdn.microsoft.com/library/default.asp?url=/library/en-
 us/script56/html/js56jsgrpRegExpSyntax.asp
 We will not be using backreferences or pattern capture/lookahead, but
 the basics are the same.

