
Polynomial Language Project

Darrell Bethea

Michael Dougherty

Santosh Thammana

Mohit Vazirani

Language Reference Manual
1 Lexical conventions

1.1 Comments

The characters "//" denote a single-line comment.

1.2 Identifiers

An identifier consists of letters, digits and underscores "_". However, the first character of an identifier must be
a either a letter or an underscore. Identifiers are case – sensitive.

1.3 Keywords

The following identifiers are reserved as keywords:

if else and function not
return exit while prototype or

1.4 Numbers

A number can be either an integer or a float. An integer consists of one or more digits. A float consists of one
or more digits followed by an optional decimal point (“.”), followed optionally by one or more digits or a
decimal point followed by one or more digits.

1.5 Polynomials

A polynomial constant for a polynomial in variable x is represented as a list of comma separated values enclosed
within ‘[‘ and ‘]’. A value is a co-efficient of xi if it is at position ‘i’ in the list.

1.6 Strings

A string is a sequence of characters enclosed by double quotes ‘ ” ‘. A double quote inside the string is
represented by ‘ \” ‘.

1.7 Other tokens

The following symbols or sequences of symbols are used in the language:

{ } () [] ,
; + - * / % =
>= <= > < == != :

2 Types

The language is statically typed. The following types are distinguished (at compile time):

 int : 32-bit integers

 float : 32-bit IEEE floating point format

 poly : represents a polynomial in a single variable

 string : string of characters (constants only – these cannot be stored)

 function : user-defined functions

3 Expressions

3.1 Primary expressions

Expressions include identifiers, constants, function calls, obtaining the co-efficient of a poly variable
corresponding to the i’th power, concatenation of poly variables or poly literals, obtaining the order of poly
variables or literals and any other expressions surrounded by “(“ and “)”.

 Identifier :

An identifier itself is a left-value expression. It will be evaluated to some value.

 Constant :

A constant is an explicit right-value term (such as a number, polynomial, or quote-enclosed string) that
will evaluate to itself in a given context.

 Function calls :

Syntax: funcname(arg1, arg2, …)

funcname is the name of the function, and arg1, arg2, etc. are the arguments (if there are any) passed to
the function.

Each argument must be an expression.

 Access to polynomial coefficients of a different power :

Syntax: polyname[i]

polyname is a polynomial identifier, and i is an integer.

This evaluates to the coefficient of xi in the polynomial polyname.

 Concatenation of polynomials :

Syntax: polyA : polyB

polyA and polyB are each polynomials.

This evaluates to the polynomial formed by concatenating the coefficients list of polyB to the
coefficient list of polyA. For example, “[4,3,5]:[7,6,2]” evaluates as “[4,3,5,7,6,2]”.

 Order of a polynomial :

Syntax: | polyname |

polyname is an expression which evaluates to a polynomial

This evaluates to the order of polyname, which is the highest order for which polyname has a non-zero
coefficient.

 (expr) :

The difference between expr and (expr) is that in the latter case, the precedence is increased (to
indicate that whatever concept expr reduces to should be considered an atomic element). Other than
that, the value is the same as expr.

3.2 Arithmetic expressions

Arithmetic expressions represent arithmetic done on some of the primary expressions. Primary expressions are
taken as operands according to the following rules.

 Unary arithmetic operator "-"

Syntax: -a

a is an int, float, or poly.

This returns the negative of a.

 Multiplicative operators

Syntax:

a / b (division)

a % b (modulo)

The three operators share the same precedence level and are grouped left to right. Operands of type int and float
can always be used here. If a poly is used in multiplication, it can be the first or second operand, but not both.
For division, it can only be used as the first operand. The poly type can’t be used in a modulo operation.

 Additive operators

Syntax:

a + b (addition)

a - b (subtraction)

a and b can both be either an int, float, or poly.

These have the same precedence level and are grouped left to right. They have a lower precedence level than the
multiplicative operators.

3.3 Relational expressions

Syntax:

a >= b (greater than or equal to)

a <= b (less than or equal to)

a == b (equal to)

a > b (greater than)

a < b (less than)

a != b (not equal to)

a and b can each be an int, float, or poly.

In the case that the operands are some combination of ints and floats, a simple arithmetic subtraction check is
made.

If the operands are polynomials, then the operators return either true or false depending on whether or not the
order of the first operand can be successfully related to the order of the second operand according to the rule of
the operator. If it happens that the orders are evaluated to be equal, then execution proceeds as follows:

A) In the case of an inequality operation, the coefficients of the highest order terms are compared. If they, too,
are evaluated as equal, the next highest order terms are compared, and so on, until the coefficients of the lowest
order terms are compared. If the coefficients of the lowest order coefficients are equal, the inequality is
evaluated as false. If at any time during the traversal of the polynomials the compared numbers are evaluated as
greater or less, the inequality is immediately evaluated as true or false, accordingly.

B) In the case of an equality operation, then the coefficients of the highest order terms are compared, and so on
as in the case of an inequality operation. The difference is that if at any time during the traversal of the
polynomials, the compared numbers are evaluated as greater or less, then the equality is immediately evaluated
as false.

The values 1 or 0 (representing true and false) are returned depending on the evaluation of the operators. These
operators require exactly two expressions.

3.4 Logical expressions

Logical operators include not, and, and or. They are listed in relative order of precedence, from highest to
lowest. The value true is represented by 1, and false is represented by 0. Nonzero numbers, polynomials not
equal to [0], and strings not equal to “” will evaluate to true. Numbers, polynomials, and strings which don’t fit
these criteria will evaluate to false.

not operator

Syntax: not(expr)

expr is an expression.

If expr evaluates to true, not(expr) evaluates to false, otherwise it evaluates to true.

and operator

Syntax: expr1 and expr2

expr1 and expr2 are both expressions

If expr1 and expr2 both evaluate to true, the above expression evaluates to true, and otherwise evaluates to false.

or operator

Syntax: expr1 or expr2

expr1 and expr2 are both expressions

This evaluates to true if either expr1 or expr2 evaluates to true, otherwise it evaluates to false.

4 Statements

Statements are basically elements of a program. A sequence of statements will be executed sequentially, unless
the flow-control statements indicate otherwise.

4.1 Groups of statements

When a sequence of consecutive statements is enclosed in braces (“{“ and “}”), the statements will be treated as
one entity.

4.2 Assignments

Assignment statements will consist of an identifier followed by an equal sign (“=”) followed by an expression.
The value of the expression will then be associated with the identifier.

4.3 Variable declarations

When an assignment statement is preceded by a variable type, the statement is interpreted as a variable
declaration. Variables must be declared exactly once, and they cannot be used before they are declared.
Variables must be declared at the top of a function, and at the top of the main area of a program.

4.4 Conditional statements

Syntax:

if (logExpr)
{
 statements
}

or

if (logExpr)
{
 statements
}
else
{

 statements2
}

logExpr is a logical expression.

statements and statements2 are both lists of statements.

In an if statement, if the logical expression returns true, the first set of statements is executed, otherwise the
optional second set of statements is executed. Also, any nonzero value evaluates to true, while zero evaluates to
false.

4.5 Iterative statements

Iterative statements are performed by using a while loop.

Syntax:

while (logExpr)
{
 statements
}

logExpr is a logical expression.

statements is a list of statements.

4.6 Return statements

Return statements are used to return a value from a function.

Syntax: return val;

val is the value being returned. The type of val must match the function’s return type.

4.7 Exit statements

Exit statements terminate the program.

Syntax: exit;

5 Functions

5.1 Function Prototypes

Before a function is declared, it must have a prototype.

Syntax: prototype funcname

funcname is the name of the function.

5.2 Function Declaration

Syntax:

function returntype funcname (arg1, arg2, …)
{
 statements
}

returntype is the type of value being returned (int, poly, etc.)

funcname is the name of the function

arg1, arg2, etc. are the arguments (if any) which must be passed into the function.

statements is the optional list of statements inside the function.

The list of arguments can be empty. Functions must be all defined before the main section of the program
begins. Function names can’t be overloaded. Variables must be declared at the beginning of a function.
Parameters are passed by value.

6 Internal functions

6.1 Print function

The print function takes one or more arguments and prints them to the standard output one by one:
print arg1, arg2, … ;

arg1 and arg2 are arguments to the print function.

The arguments can be variables, mathematical expressions (subtraction, addition, etc.), or quoted strings.

7 Program structure

7.1 Program Layout

The program must have prototypes first, followed by function declarations, and the main area of the program
appears last. If there are no functions, the main area would be the entire program. In function declarations, as
well as the main area, variables must be declared at the top.

