

Photogram

Programmable Photoshop® Language
Language Reference Manual

 Ohan Oda (oo2116@columbia.edu), Group Leader
Neesha Subramaniam (ns2295@columbia.edu)
 Richard Ng (rjn2003@columbia.edu)
 Seikwon Kim (sk2617@columbia.edu)

mailto:oo2116@columbia.edu
mailto:ns2295@columbia.edu
mailto:rjn2003@columbia.edu
mailto:sk2617@columbia.edu

Photogram Reference Manual

Table of Contents
1. Introduction... 3
2. Lexical Conventions ... 3

2.1 Comments ... 3
2.2 Identifiers .. 4
2.3 Keywords .. 4
2.4 Constants... 4
2.5 Other Tokens... 5

3. Input and Output of Photogram .. 6
4. Program Structure ... 6

4.1 Functions... 6
4.1.1 Statements ... 7

4.2 Globals .. 9
4.3 Macros... 9

5. Scope... 9
6. Namespace .. 9

6.1 Function Namespace... 9
6.2 Variable Namespace ... 9

7. Data Types .. 9
7.1 Primitives .. 10
7.2 Built-in Objects... 10

8. Expressions: Operators and Precedence ... 12
8.1 Parentheses.. 12
8.2 Not, Increment, and Decrement Operators: !, ++, --................................. 12
8.3 Multiplication, Division, Modulo Operators: *, /, %................................ 12
8.4 Addition and Subtraction Operators: +, -.. 12
8.5 Shift Operators: >>, <<... 12
8.6 Relation Operators: <, <=, >=, >... 13
8.7 Equality Operators: ==, != .. 13
8.8 Bit-wise And Operator: &... 13
8.9 Bit-wise Exclusive Or Operator: ^.. 14
8.10 Bit-wise Or Operator: |.. 14
8.11 And Operator: && .. 14
8.12 Or Operator: || ... 14
8.13 Assignment Operators: =, +=, -=, *=, /=, %=, &=, |=, ^= 14

9. Sample Code ... 15
10. References... 17

 - 2 -

Photogram Reference Manual

1. Introduction

Adobe® Photoshop®, the professional image-editing standard and leader of the
Photoshop digital imaging line, has been the most prominent and powerful image-editing
tool over the years. Although the software is very powerful, due to its complexity and
overwhelming graphic user interface, it is difficult for the users to achieve the results they
want without being very experienced. Additionally, even though Photoshop® provides
thousands of image-editing functions such as resizing and filtering, the capabilities of
image manipulation are limited to what the software provides (e.g. the software provides
Gaussian blur, motion blur, radial blur, and smart blur for blurring operations, but the
user cannot use their own specified blurring filter). Further more, undoing or fixing
previous undesired operations is a tedious task using Photoshop®. One common
occurrence is that a user performs several different operations on an image and finds out
later that the operation step 3 is undesirable after completing operation step 10. Now
he/she is forced to cancel/undo all of operations down to step 3, and then redoing all of
the steps from 4 to 10 after either fixing or eliminating step 3. Another example of a
tedious task in Photoshop® is making multiple collages consisting of multiple images
because applying the same operations on multiple images for multiple collages is
extremely repetitive. For a collage, the user is required to cut and paste from many
windows that contain images and it can easily reach the point where finding the desired
image is a chore. A repetitive task such as applying the same blurring filter on an entire
directory of images also requires the user to go through the same operation for each
image which is an inefficient time sink.

Thus, it will be very beneficial if there is a language that can perform image-editing
functionalities. The language will solve all of the existing issues on Photoshop addressed
above. It will significantly save the time of people performing tedious image editions.

2. Lexical Conventions

2.1 Comments

Photogram creates comments in the same style as C++ or Java®.

2.1.1 Multiple Line Comment
To create a comment spanning multiple lines, use “/*” as the start
of a multiple line comment and “*/” to terminate the comment.

2.1.2 Single Line Comment

For single line comments, use “//” to denote the beginning of the
comment and the comment is the text following “//” until a new
line character is reached.

 - 3 -

Photogram Reference Manual

Example
//This is a SINGLE LINE COMMENT
/* This is a
 MULTIPLE LINE COMMENT */

2.2 Identifiers

An identifier is a sequence of letters or digits and the first character of the
identifier must be a letter from a to z or A to Z. The identifier cannot begin
with a digit or any types of punctuation, and there is no length constraint on
the identifier.

2.3 Keywords

The following list of words contains keywords, or reserved words of
Photogram. These keywords cannot be used as ordinary identifiers. They must
be spelled exactly as follows.

if
else
while
switch
case
for
true

false
continue
break
void
return
null
new

2.4 Constants

There are three kinds of constants as follows.

2.4.1 Integer Constant
An integer constant is simply a sequence of digits. There are no
fractions or exponentials allowed.

2.4.2 Double Constant
A double constant consists of three sections, an integer part, a
decimal point followed by the fraction, and an ‘e’ followed by an
optionally signed integer exponent.

2.4.3 String Literal
A string literal is simply a sequence of characters, digits, or
symbols. The beginning of the literal is denoted by the double
quote, ' " ', and is also terminated with the same double quote.

 - 4 -

Photogram Reference Manual

Example.
Integer: 123
Double: 23.21e+21
String: "This is a string in \"Photogram\" for PLT class."

2.5 Other Tokens

Symbolic characters and sequences of symbolic characters are also used. They
must be specified exactly as follows.

NAME SYMBOL
Brace { }
Bracket []
Parentheses ()
Multiply *
Divide /
Plus +
Minus -
Modulo %
Assignment =
Plus Equal +=
Minus Equal -=
Multiply Equal *=
Divide Equal /=
Modulo Equal %=
Equal ==
Not Equal !=
Greater than or Equal >=
Less than or Equal <=
Greater than >
Less than <
NOT !
AND &&
OR ||
Bitwise-operator OR |
Bitwise-operator AND &
Bitwise-operator Exclusive OR ^
OR Equal |=
AND Equal &=
Exclusive OR Equal ^=
Left Shift <<
Right Shift >>
Plus Plus ++
Minus Minus --

 - 5 -

Photogram Reference Manual

Macro #
Concatenation ##
Semicolon ;
Comma ,
Period .

3. Input and Output of Photogram

Given a Photogram program, the input into the program are images which are
specified as an argument before running the program and the output of the
program will be also images that have been modified or created by the program as
shown in the figure below.

4. Program Structure

A Photogram program consists of three components, functions, globals and
macros as depicted in the figure below. Any one of these of these components
may be present in the program or none at all. There is no limit to the number of
any component present in a Photogram program.

4.1 Functions

Functions are the fundamental building blocks of Photogram and are
essentially blocks of statements that are executed in order. Functions take in a
list of variables that are specified by data types and return a value of a
specified data type. Functions must be specified in the following manner:

<data_type> <identifier> (<var_list>) { <statements> }

Elements enclosed within < and > should be replaced with the appropriate
components.

 - 6 -

Photogram Reference Manual

There must be one function that must be in every program and that is the main
function which is executed first whenever a program is run. This main
function can return an integer or be void, but it must also contain certain
parameters as shown below:

<int or void> main(String[] args)

4.1.1 Statements
A statement is a single instruction performed by Photogram which
could include many types of statements varying from assignment
to control flow of the program. They are usually executed in
sequence unless a control flow statement is executed at which
point the program could branch.

4.1.1.1 Selection Statement: if, else, switch, case

These statements select a flow of control for the program
and the expression must evaluate to true or false. The
selection statements must follow the following format:

if (expression) statement

if (expression) statement1 else statement2

switch (primitive)
{
case <primitive>: <statement> break;
...
default: <statement>;
}

4.1.1.2 Looping Statements: For, While
These statements are used for looping through a block of
statements. The expressions used in while loop and the
second condition of the for loop must evaluate to true or
false and the expression in the third condition of the for
loop must be an increment or decrement of some kind. The
loops must follow the following format:
for (<assignment>; <expression>; <expression>)

{
<statements>
}

while(<expression>)

 {
 <statement>
 }

 - 7 -

Photogram Reference Manual

4.1.1.3 Break statement

When this statement is executed, it immediately breaks out
of the current loop that it is in and goes executes the next
statement. The statement is simply used as:

break;

4.1.1.4 Continue Statement
When this statement is executed in a loop, it ignores the
rest of the loop and simply begins the next iteration of the
loop and the statement is used as:

continue;

4.1.1.5 Function Call Statement
This statement is used to call a function that has been
defined elsewhere and pass into the function the required
parameters. This is accomplished in the following manner:

<function identifier>(<expression list>);

4.1.1.6 Return Statement
This statement is used in a function in order to end the
function and return an expression to the statement that
called the function. The expression must evaluate to the
same data type as the function. The return statement is used
as so:

return <expression>;

4.1.1.7 Assignment Statement
This statement is used to assign a value to an identifier. The
data type of the right side must be the same as the data type
on the left side. The assignment statement is written as
shown below:

<identifier or array> <assignment operator>
<expression>;

<identifier or array> = <function call>;

4.1.1.8 Primitive Declaration Statement

This statement shows how to declare a primitive:

 - 8 -

Photogram Reference Manual

<primitive> <identifier>;

4.1.1.9 Built-in Object Declaration Statement
This statement shows how to declare a built-in object:

<built-in object> <identifier> = new <built-
inobject>(<expression list>);

4.1.1.10 Array Declaration Statement

<data type>[] = new <data type>[<number>];

4.2 Globals
Globals are used to declare global variables that can be accessed from any
function. It follows the same format as the declaration or assignment
statements in a function.

4.3 Macros
Macros are used as a method of preprocessing in including files with
additional functions or defining constants.

4.3.1 Include Macros

#include <file name>

4.3.2 Define Macros

#define <identifier> <constant>

5. Scope
Photogram uses static scoping exactly the same as Java® or C++.

6. Namespace

6.1 Function Namespace
This namespace is reserved for the names of functions used in Photogram.

6.2 Variable Namespace

This namespace is reserved for the names of variables used within functions
and the name of global variables.

7. Data Types
Photogram requires programmers to explicitly specify the data types for each
variable they use. There are two different data types, primitives and built-in
objects. Photogram supports a number of primitives just like other programming

 - 9 -

Photogram Reference Manual

languages, but only primitives useful for image manipulation were selected. There
are also a number of built-in objects that are necessary for image manipulation
however the programmer is not given the option of creating additional objects.

Photogram does not give the option for programmers to explicitly cast any data
types. Photogram will automatically cast (implicit casting) a data type depending
on what is the expected data type. (e.g. for passing parameters, if the parameter's
type is integer and the user passes a double integer, Photogram will automatically
converts it to an integer; for assignment statement, if the left value's data type is
double integer and the right value's result is an integer type, then Photogram will
automatically converts it to a double integer). This limitation is to avoid crashes
caused by incorrect casting (e.g. casting integer type to an Image object,
Image i = (int)a).

7.1 Primitives

Photogram support four types of primitives: int, double, boolean, and void.

7.1.1 int
32-bit integer

7.1.2 double
Double-precision (64-bit) IEEE floating point number

7.1.3 boolean
Boolean value: either true or false

7.1.4 void
This is only used as a return type for functions that do not return a
type

7.2 Built-in Objects

Photogram supports eight types of built-in objects: Line, Color, Pixel, Rect,
Oval, String, Image, and Font. (Note: All of the example function calls
mentioned below will be implemented using Java as our built-in library
functions)

7.2.1 Line

A line with a start point and an end point

Line line = new Line(int sx, int sy, int ex, int ey);
drawShape(line, color); // draw a line with a color

 - 10 -

Photogram Reference Manual

7.2.2 Color

A color with RGBA value; each Red, Green, Blue, and Alpha
value is in the range between 0 and 255

Color color = new Color(int r, int g, int b, int a);

7.2.3 Pixel
A pixel value with x-y position and a color

Pixel pixel = new Pixel(Color color, int x, int y);
image.setPixel(pixel); // replaces the pixel color at (x, y) in image

7.2.4 Rect
A rectangle with upper left corner point, width, and height

Rect rect = new Rect(int x, int y, int width, int height);
drawShape(rect, color); // draw a rectangle with a color

7.2.5 Oval
An oval with center point and horizontal and vertical length

Oval oval = new Oval(int x, int y, int a, int b);
drawShape(oval, color); // draw an oval with a color

7.2.6 String
A sequence of characters specified inside of two double quotation
marks “…”.

String string = { new String(“hello”) or just “hello”}
drawText(string, x, y, font, color); // draw a text at starting
location (x, y) with a specific font and color

7.2.7 Image
An image with an array of 32-bit integers

Image image = new Image{(int width, int height) or (int [][] pixels)}
image.saveAs(“new_image”, image.JPEG_FORMAT);

7.2.8 Font
A font with font family constant, font size, and special effect
constant (BOLD, ITALIC, UNDERLINE, EMBOSS, etc)

Font font = new Font(Font.ARIAL, 12, Font.PLAIN);

 - 11 -

Photogram Reference Manual

8. Expressions: Operators and Precedence

The precedence of operators in the order of decreasing precedence is described as
follows. We support comma separated expressions in Photogram.

8.1 Parentheses

The user can override the precedence rules of Photogram by using parentheses
around the expression.

8.2 Not, Increment, and Decrement Operators: !, ++, --

8.2.1 Not Operator
The logical not operator inverts the value of the expression, zero
being inverted to one and vice-versa.

8.2.2 Increment Operator
The ++ operator increments the left-value by 1.

8.2.3 Decrement Operator
The -- operator decrements the left-value by 1.

8.3 Multiplication, Division, Modulo Operators: *, /, %

8.3.1 Multiplication Operator (*)
The operator ‘*’ multiplies the two numeric tokens.

8.3.2 Division Operator (/)
The operator ‘/’ divides the first operand with the second operand.

8.3.3 Modulo Operator (%)
The operator ‘%’ provides the remainder when the first operand is
divided by the second operand.

8.4 Addition and Subtraction Operators: +, -

8.4.1 Addition Operator
The ‘+’ operator computes the sum of the first and second operand.

8.4.2 Subtraction Operator
The ‘-‘ operator subtracts the value of the second operand from the
first operand.

8.5 Shift Operators: >>, <<

 - 12 -

Photogram Reference Manual

8.5.1 Left Shift Operator

The “<<” operator shifts the bits of the first operand left by the
number of bits specified by the second operand.

8.5.2 Right Shift Operator

The “>>” operator shifts the bits of the first operand right by the
number of bits specified by the second operand.

8.6 Relation Operators: <, <=, >=, >

8.6.1 Less than Operator

The ‘<’ operator evaluates whether the first operand is less than the
second operand and returns a Boolean value 1 or 0 as the output.

8.6.2 Less than or Equal to Operator
The “<=” operator evaluates whether the first operand is less than
or equal to the second operand and returns a Boolean value 1 or 0
as the output.

8.6.3 Greater than Operator
The “>” operator evaluates whether the first operand is greater than
the second operand returns a Boolean value 1 or 0 as the output.

8.6.4 Greater than or Equal to Operator
The “>=” operator evaluates whether the first operand is greater
than or equal to the second operand and returns a Boolean value 1
or 0 as the output.

8.7 Equality Operators: ==, !=

8.7.1 Equal-to Comparison Operator:
The “==” operator evaluates whether the first operand is equal to
the second operand and returns a Boolean value 1 or 0 as the
output.

8.7.2 Not-equal-to Comparison Operator:
The “!=” operator evaluates whether the first operand is not equal
to the second operand and returns a Boolean value 1 or 0 as the
output.

8.8 Bit-wise And Operator: &
The “&” operator take the binary representation of the first and second
operand and does a bitwise AND operation on them.

 - 13 -

Photogram Reference Manual

8.9 Bit-wise Exclusive Or Operator: ^

The “^” operator take the binary representation of the first and second
operand and does a bitwise Exclusive OR operation on them.

8.10 Bit-wise Or Operator: |

The “|” operator take the binary representation of the first and second
operand and does a bitwise OR operation on them.

8.11 And Operator: &&

The “&&” operator returns a Boolean value of 1 if both the first and
second operand evaluate to “true” else it returns a “false” or 0 Boolean
value.

8.12 Or Operator: ||

The “||” operator returns a Boolean value of 1 if either the first or second
operand evaluate to “true” else it returns a “false” or 0 Boolean value.

8.13 Assignment Operators: =, +=, -=, *=, /=, %=, &=, |=, ^=

8.13.1 Assignment Operator
The ‘=’ operator assigns the expression to the right of the ‘=’ to the
identifier to the left of the ‘=’.

8.13.2 += Operator
The “+=” operator increments the first operand by the second
operand and assigns this value to the first operand.

8.13.3 -= Operator
The “-=” operator decrements the first operand by the second
operand and assigns this value to the first operand.

8.13.4 *= Operator
The “*=” operator multiplies the first operand by the second
operand and assigns this value to the first operand.

8.13.5 /= Operator
The “/=” operator divides the first operand by the second operand
and assigns this value to the first operand.

8.13.6 %= Operator
The “%=” operator computes the remainder when the first operand
is divided by the second operand and assigns this value to the first
operand.

 - 14 -

Photogram Reference Manual

8.13.7 &= Operator

The “&=” operator computes the bit-wise and operation of the first
operand and the second operand and assigns the solution to the
first operand.

8.13.8 |= Operator
The “|=” operator computes the bit-wise or operation of the first
operand and the second operand and assigns the solution to the
first operand.

8.13.9 ^= Operator
The “^=” operator computes the bit-wise exclusive or operation of
the first operand and the second operand and assigns the solution
to the first operand.

9. Sample Code
 The following sample code generates a photo montage of the famous Mona Lisa

painting using numerous other images as shown on the cover page.

void main(String[] args){
 // Open the base image for photo montage
 Image base = Open(“C:/img/mona_lisa.jpg”);

 String img_dir = “C:/montage_img_lib/”;

 // Create a photo montage of mona lisa
 Image result = photo_montage(base, img_dir, 3);

 // Saving the output image file
 result.saveAs(“C:/img /monalisa_montage.jpg”);
}

/**
 * Image base: base image for creating a photo montage
 * String img_dir: directory name where the images are stored for creating photo montage
 * int block_size: size of the smaller image blocks
 * int img_range: the number of images that will be used as the closest color; 1 means it
 * will always use one image with the closest color to the color of an
 * averaged block; 3 means it will select three images with the closest
 * color and then randomly select one image to use from these three.
 */
Image photo_montage(Image base, String img_dir, int block_size, int img_range){
 // Create the target image.
 Image result = new Image(base.getWidth(), base.getHeight());

 - 15 -

Photogram Reference Manual

 // Go through each block of block_size of the base image to calculate the average
 // RGB value of this block, and then find an image that has the closest average
 // RGB value from the given img_dir and replace this block with this selected
 // image after resizing the width and height of this image to block_size
 for(int i = 0; I < base.getHeight(); i += block_size){
 for(int j = 0; j < base.getWidth(); j += block_size){
 Rect block_rect = new Rect(i, j, block_size, block_size);
 // Get a block of pixel values from the base image
 int [][] block = base.getPixels(block_rect);

 // Calculate the average RGB value of this block
 Color avgRGB = calcAverageRGB(block);
 // Get a number of images that has the closest RGB value (closest
 // RGB distance) to this block from a image directory
 Image [] closest_imgs = matchClosestColor(avgRGB, img_dir,
 img_range);

 // Randomly select which closet image to use
 // (Note: random() is a built-in function that returns a double
 // number between 0 to 1)
 int random = ((random()*img_range)%img_range);

 // resize(Image i, int width, int height) is a built-in function
 Image replace_img = resize(closest_imgs[random], block_size,
 block_size); // built-in function

 // paste(Image dest, Image src, int x_pos, int y_pos) is a built-in
 // function and it pastes the src image to the dest image starting
 // from left-upper corner of dest’s (x_pos, y_pos) location with
 // the width and height of src image
 paste(result, replace_img, i, j);
 }
 }

 return result;
}

 - 16 -

Photogram Reference Manual

10. References

1. Zhou, Tiantian, Feng, Hanhua, Ra, Yong Man, Lee, Chang Woo. “Mx: A
programming language for scientific computation.”
http://www1.cs.columbia.edu/~sedwards/classes/2003/w4115/Mx.final.pdf ,
May 2003.

2. Ritchie, Dennis M. C Reference Manual. Bell Telephone Laboratories, 1975.

 - 17 -

http://www1.cs.columbia.edu/~sedwards/classes/2003/w4115/Mx.final.pdf

	Introduction
	Lexical Conventions
	Comments
	Identifiers
	Keywords
	Constants
	Other Tokens

	Input and Output of Photogram
	Program Structure
	Functions
	Statements
	Globals
	Macros

	Scope
	Namespace
	Function Namespace
	Variable Namespace

	Data Types
	Primitives
	Built-in Objects

	Expressions: Operators and Precedence
	Parentheses
	Not, Increment, and Decrement Operators: !, ++, --
	Multiplication, Division, Modulo Operators: *, /, %
	Addition and Subtraction Operators: +, -
	Shift Operators: >>, <<
	Relation Operators: <, <=, >=, >
	Equality Operators: ==, !=
	Bit-wise And Operator: &
	Bit-wise Exclusive Or Operator: ^
	Bit-wise Or Operator: |
	And Operator: &&
	Or Operator: ||
	Assignment Operators: =, +=, -=, *=, /=, %=, &=, |=, ^=

	Sample Code
	References

