
Firedrl Language Reference Manual

MJR 10/20/05 Page 1 of 13

FIREDRL
Language Reference Manual

COMS 4115
Programming Languages and Translators

Marvin J. Rich
e-mail: mjrich@us.ibm.com

Firedrl Language Reference Manual

MJR 10/20/05 Page 2 of 13

1.0 Introduction

The purpose of this manual is to convey the syntax and semantics of the FIREDRL language
(Firewall Integrity Review Exploit Detection Report Language). Syntax and examples of valid
instances of each statement are provided. A BNF format grammar utilize to specify each state-
ment syntax in a concise manner. The semantics associated with each statement is also provided.

2.0 Lexical Conventions

Each statement in the Firedrl language consists of a set of fundamental tokens, where the
sequence of tokens uniquely identify a valid statement. This section defines the set of tokens and
keywords used to formulate valid Firedrl language statements during lexical analysis. Lexical
tokens will be capitalized in order to easily distinguish them in the BNF grammar for language
statements.

2.1 Separators:
Blanks (whitespace), tabs, new line, and carriage return are ignored when the language is
scanned during lexical analysis. These separators are used to separate tokens, and to provide a
measure of flexibility in the input format for readability (can have an arbitrary number of con-
secutive separator characters between tokens).

 BNF Grammar:

 WS : (blank | tab | newline | carage_return | newline carage-return)
blank : ‘ ‘
tab : ‘\t’
newline : ‘\n’
carage_return : ‘\r’

Other single character separators also exist as follows:
SEMI : ‘ ‘
COMMA : ‘\t’
COLON : ‘\n’
LPAREN : ‘(‘
RPAREN : ‘)’
LBRKT : ‘{‘
RBRKT : ‘}’
SLASH : ‘/’
POUND : ‘#’
STAR : ‘*’
DOT : ‘.’

Firedrl Language Reference Manual

MJR 10/20/05 Page 3 of 13

2.2 Constants:
Integers are the only numeric constants defined in the Firedrl language. An integer constant is
defined as a string of one or more decimal digits from ‘0’ to ‘9’:

 BNF Grammar:

 INT : (DIGIT)+
DIGIT : ‘0’ ... ‘9’

2.3 Identifiers:
Indentifiers are used to label network objects and local variables in Firedrl. A valid identifier
must consist of an initial alphabetic character, followed by zero or more alphabetic, decimal,
or ‘_’ characters.

 BNF Grammar:

 ID: ALPHA (ALPHA | DIGIT | ‘_’)*
ALPHA : (‘a’ .. ‘z’ | ‘A’..’Z’)

Examples:

 This_is_valid
 atemp_name
 A
 B1_B2

2.3 Operators:
Operators indicate the transformation or comparison of objects or data.. The ‘:=’ operator is
used to define host and network objects in Firedrl’s network domain. The ‘@=’ operator is
used to assign hosts to a network. The ‘<-’ operator is used to assign packet filtering rules to a
host. Regular variable assignments utilize the ‘=’ operator. The standard set of comparison
operators are also defined (‘>’,’<‘,’==’, ‘<=’, ‘>=’) . The iteration operator ‘+=’ supports
aggregation of host and network attributes within a loop.

Grammar:

DEFINE : ‘:=’
EQ : ‘=’

H_ASSIGN : ‘@=’
R_ASSIGN : ‘<-’
VAR_ASSIGN : ‘=’
CMPR : (‘<‘ | ‘>’ | ‘==’ | ‘<=’ | ‘>=’)
INCR_ASSIGN : ‘+=’

Firedrl Language Reference Manual

MJR 10/20/05 Page 4 of 13

2.4 Comments:
Line comments are ignored in Firedrl (treated like white space). A line comment starts with a
“//” two character sequence. Upon encountering this character sequence, the remaining line
text is ignored, including the initial ‘//’ token. The remaining line text is defined to be any
characters up to and including the end of line character(s). Therefore if a comment shares a
line with a language statement, it should follow the statement.

Grammar:

comment : com_token restline
com_token : ‘//’
restline : (~(‘\n’ | ‘\r’))* (‘\n’ | ‘\r’)

Example:

 //This is a standalone comment
 <language stmt> // This comment shares line with a statement

2.5 Keywords:
The following keywords are reserved, and should not be used as an identifier name:

do for if host network attack

Firedrl Language Reference Manual

MJR 10/20/05 Page 5 of 13

3.0 Syntax Notation
A Firedrl language consists of one or more statements. Each statement can be in one of eight pos-
sible categories. This section will define the syntax of the statement or statements supported in
each of the eight statement categories.

Grammar:

lang : (stmt)+
stmt : host | network | rule | loop
 decision | assignment | probe | report

3.1 Host Declaration Statement:
A host statement defines one or more hosts that reside in the network configuration. Each host
is defined by an identifier and at least one associated host interface address. If a host has more
than one host interface address, then each host address must be qualified by the network
name it is associated with. A host address consists of a “dot.Int” notation, where one can
specify from 1 to 4 blocks of 8 bits. Each 8 bit block is separated by a dot if more than 8 bits
are specified. The host interface address only requires enough bits encoded to represent the
address right justified in a full 32 bit notation. An implicit cardinality is associated with each
hostname such that the language supports looping through hostnames. The cardinality is
assigned in the order the hosts are defined.

 BNF Grammar:

 host : “host_def” DEFINE hostname (COMMA hostname)* SEMI
hostname : (ID COLON intfc | ID COLON intfc SLASH ID)
intfc : INT (DOT INT (DOT INT (DOT INT)?)?)?

Examples:

 host_def := HostA:45;
 host_def := HostB:2.25, HostR1:2.27/Net1:32/Net2;

The first example defines a single host, HostA, with a single interface address of decimal 45.
The second example defines two hosts, HostB and HostR1. HostB has a single interface
address of two 8 bit integers 2.25. HostR1 has two interfaces defined where the first, 2.27,
is associated with network Net1 and the second interface, 32, is associated with network
Net2.

Firedrl Language Reference Manual

MJR 10/20/05 Page 6 of 13

3.2 Network Declaration Statement:
A network statement defines one or more networks that comprise the total network configura-
tion. Each network is defined by an identifier and a associated 32 bit network address. The
network address consists of a 32 bit “quad-dot” notation followed by a slash and an integer
number. The 32 bits are defined in four blocks of 8 bits, separated by dots, with a decimal
encode of each of the 8 bits. The most significant bits designate the network address, and the
least significant bits are set to zero. The integer value after the network address defines the
number of bits, from most significant bit, that make up the network address. If a host has more
than one host interface address, then each host address must be qualified by the network
name it is associated with. A host address consists of a “dot.Int” notation, where one can
specify up to 4 dotted integers (just need to define sufficient integers to represent the host
address right justified in a full quad “dot.int” IP address). An implicit cardinality is associated
with each network name such that the language supports looping through network names. The
cardinality is assigned in the order the network names are defined.

 BNF Grammar:

 network : “net_def” DEFINE netwkname (COMMA netwkname)* SEMI
netwkname : ID COLON ipaddr SLASH INT
ipaddr : INT DOT INT DOT INT DOT INT

Example:

 net_def := Internet:1.73.0.0/16,NetworkA:1.73.2.0/24;

This example defines two networks. The network called Internet has a network address of
1.73.x.x since the network is defined for the first 16 bits. The network called NetworkA has a
network address of 1.73.2.x since the first 24 bits define the network address.

Firedrl Language Reference Manual

MJR 10/20/05 Page 7 of 13

3.3 Rule Statements:
The functionality of each firewall is defined by rules that are attributed to the host interface.
These rules must be defined before they can be assigned to a host interface. There are three
types of rules based on the target protocols of TCP, UDP and ICMP respectively. Each rule
has fields specific to the protocol that designate what is to be allowed or blocked. A ‘*’ in the
source or destination address matches all IP addresses. The source and destination ports can
be optionally specify logical comparison of port values. The connect field for TCP rules spec-
ifies which control bits are allowed to be set.

 BNF Grammar:

 rule : “rule” ID ‘DEFINE LPAREN
 (tcp_rule | udp_rule | icmp_rule)

 RPAREN SEMI
 tcp_rule : “TCP” direction src_addr dest_addr src_port dest_port
 connect action
 udp_rule : “UDP” direction src_addr dest_addr src_port dest_port action
 icmp_rule : “ICMP” direction src_addr dest_addr type action
 direction : (“in” | “out”)
 src_addr : “src=” (ipaddr | STAR)
 dest_addr : “dest=” (ipaddr | STAR)
 src_port : “src_port=” ((CMPR)? INT | STAR)
 dest_port : “src_port=” ((CMPR)? INT | STAR)
 connect : INT
 type : INT
 action : (“allow” | “block”)

Examples:

 rule Rule1 := TCP in * 1..74.2.45 * >1024 block;
 rule Rule3 := ICMP out 1.74.2.45 * 3 block;

Rule1 specifies that incoming TCP packets to ipaddr 1.74.2.45 with port greater than 1024
should be blocked. Rule2 specifies that ICMP type 3 responses from 1.74.2.45 should be
blocked.

Firedrl Language Reference Manual

MJR 10/20/05 Page 8 of 13

3.4 Loop Statements:
Loop statements allow for iterations. In addition to looping on a variable, a network and host
loop is also defined. The network and host loops take advantage of the implicit cardinality
assigned to network and host definitions, to loop through network or host names. A block of
statements can be executed under each loop construct.

 BNF Grammar:

 loop : (net_loop | host_loop | do_loop)
net_loop : “for” “network” LPAREN ID (“to” ID)? RPAREN

LBRKT (stmt)* RBRKT
host_loop : “for” “host” LPAREN ID (“to” ID)? RPAREN

LBRKT (stmt)* RBRKT
do_loop : “do” LPAREN ID EQ INT (“to” INT (“by” INT)?)? RPAREN

LBRKT (stmt)* RBRKT

Examples:

 for network(NetworkA to NetworkZ) { } //Loop through network names
 for host(host1 to host10) {.....} //Loop through host names
 do (var = 1 to 5) {.....} //Generic variable loop

3.5 Decision Statements:
Decision statements allow alternate segments of code to execute based on the outcome of a
test predicate. Under a network loop context, a network if statement is defined. Under a host
loop context, a host if statement is defined. The network and host if statement allows for
unique code to execute, based on the network or host currently iterated on.

 BNF Grammar:

 decision : (net_if | host_if | var_if)
net_if : “if” LPAREN “network” CMPR ID RPAREN

LBRKT (stmt)* RBRKT (“else” LBRKT (stmt)* RBRKT)?
host_if : “if” LPAREN “host” CMPR ID RPAREN

LBRKT (stmt)* RBRKT (“else” LBRKT (stmt)* RBRKT)?
var_if : “if” LPAREN ID CMPR INT RPAREN

LBRKT (stmt)* RBRKT (“else” LBRKT (stmt)* RBRKT)?

Firedrl Language Reference Manual

MJR 10/20/05 Page 9 of 13

Examples:

 if (network == NetworkQ) { } //if loop network name equals NetworkQ
 if (host >= HostZ) {.....} //if loop host name >= HostZ
 if (var > 5) {.....} //Regular variable if statement

3.6 Assignment Statements:
Assignments are made to networks and hosts. Networks are assigned hosts and hosts are
assigned rules. Rules actually apply to interfaces. Therefore if a host has more than one inter-
face, the assignment should be made within a network loop (the associated interface to apply
the rule will then be known). Increment assignments (e.g. +=) are also allowed. Types must be
compatible in the assignments. A network must be assigned a hostname. A host must be
assigned a rule name.

 BNF Grammar:

 assignment : (net_assign | host_assign | incr_add)
net_assign : ID H_ASSIGN ID (PLUS ID)* SEMI
host_assign : ID R_ASSIGN ID (PLUS ID)* SEMI
incr_add : ID INCR_ASSIGN ID SEMI

Examples:

 Network1 @= hostB; // assign hostB to network Network1
 hostB <- Rule2; // assig Rule2 to hostB
 for (Network1) { hostc <- Rule3; } //hostc interface for Network1 assigned Rule3
 Network1 += hostC; // add hostC to Network1

Firedrl Language Reference Manual

MJR 10/20/05 Page 10 of 13

3.7 Probe Statements:
Probe statements initiate packet tests of the network configuration. They work in concert with
variable control statements to send packets of various formats to illicit response from firewalls
in the network. The three types of probe packets are TCP, UDP and ICMP packets respec-
tively. Variables can be substituted for iteration ranges within loops.

 BNF Grammar:

 probe : (tcp_pkt | udp_pkt | icmp_pkt)
tcp_pkt : “snd_tcp” LPAREN “src=” v_ipaddr POUND v_int

“dest=” v_ipaddr POUND v_int
“cntl=” v_int

RPAREN SEMI
udp_pkt : “snd_udp” LPAREN “src=” v_ipaddr POUND v_int

“dest=” v_ipaddr POUND v_int
RPAREN SEMI

icmp_pkt : “snd_icmp” LPAREN “src=” v_ipaddr
“dest=” v_ipaddr
“type=” v_int

RPAREN SEMI
v_ipaddr : v_int DOT v_int DOT v_int DOT v_int
v_int : (INT | ID)

Examples:

 snd_tcp(src=1.74.5.3#4756 dest=1.24.5.2#80 cntl=0); //fixed tcp packet
 snd_icmp(src=1.74.5.4 dest=1.75.2.1 type= 4); //fixed icmp packet
 snd_tcp(src=1.74.5.3#2072 dest=1.24.5.C#80 cntl=0); //variable destination address
 snd_icmp(src=1.74.5.4 dest=1.23.2.1 type=D). //variable type field

3.8 Report Statement:
The report statement provides the capability to observe the affects of exploits attempted via
probe statements. One can target reports to a specific host or obtain reports for all hosts. The
report can be specific to a particular protocol, as well as a specific traffic direction. A special
ID called “attack” is used to target reports from the initiator of packets to the network.

 BNF Grammar:

 report : “report” “target=” (STAR | “attack” | ID)
“protocol=” (STAR | “TCP” | “UDP” | “ICMP”)
“direction=” (STAR | “snd” | “rcv”)

 SEMI

Firedrl Language Reference Manual

MJR 10/20/05 Page 11 of 13

Examples:

 report target=* protocol=TCP direction= *; //report all TCP activity on all hosts
 report target=HostA protocol=ICMP direction=rcv; //report ICMP pkts received on HostA

4.0 BNF Summary

lang : (stmt)+
stmt : host | network | rule | loop
 decision | assignment | probe | report

 host : “host_def” DEFINE hostname (COMMA hostname)* SEMI
hostname : (ID COLON intfc | ID COLON intfc SLASH ID)
intfc : INT (DOT INT (DOT INT (DOT INT)?)?)?

 network : “net_def” DEFINE netwkname (COMMA netwkname)* SEMI
netwkname : ID COLON ipaddr SLASH INT
ipaddr : INT DOT INT DOT INT DOT INT

 rule : “rule” ID ‘DEFINE LPAREN
 (tcp_rule | udp_rule | icmp_rule)

 RPAREN SEMI
 tcp_rule : “TCP” direction src_addr dest_addr src_port dest_port
 connect action
 udp_rule : “UDP” direction src_addr dest_addr src_port dest_port action
 icmp_rule : “ICMP” direction src_addr dest_addr type action
 direction : (“in” | “out”)
 src_addr : “src=” (ipaddr | STAR)
 dest_addr : “dest=” (ipaddr | STAR)
 src_port : “src_port=” ((CMPR)? INT | STAR)
 dest_port : “src_port=” ((CMPR)? INT | STAR)
 connect : INT
 type : INT
 action : (“allow” | “block”)

 loop : (net_loop | host_loop | do_loop)
net_loop : “for” “network” LPAREN ID (“to” ID)? RPAREN

LBRKT (stmt)* RBRKT
host_loop : “for” “host” LPAREN ID (“to” ID)? RPAREN

LBRKT (stmt)* RBRKT
do_loop : “do” LPAREN ID EQ INT (“to” INT (“by” INT)?)? RPAREN

LBRKT (stmt)* RBRKT

Firedrl Language Reference Manual

MJR 10/20/05 Page 12 of 13

 decision : (net_if | host_if | var_if)
net_if : “if” LPAREN “network” CMPR ID RPAREN

LBRKT (stmt)* RBRKT (“else” LBRKT (stmt)* RBRKT)?
host_if : “if” LPAREN “host” CMPR ID RPAREN

LBRKT (stmt)* RBRKT (“else” LBRKT (stmt)* RBRKT)?

var_if : “if” LPAREN ID CMPR INT RPAREN
LBRKT (stmt)* RBRKT (“else” LBRKT (stmt)* RBRKT)?

 assignment : (net_assign | host_assign | incr_add)
net_assign : ID H_ASSIGN ID (PLUS ID)* SEMI
host_assign : ID R_ASSIGN ID (PLUS ID)* SEMI
incr_add : ID INCR_ASSIGN ID SEMI

 probe : (tcp_pkt | udp_pkt | icmp_pkt)
tcp_pkt : “snd_tcp” LPAREN “src=” v_ipaddr POUND v_int

“dest=” v_ipaddr POUND v_int
“cntl=” v_int

RPAREN SEMI
udp_pkt : “snd_udp” LPAREN “src=” v_ipaddr POUND v_int

“dest=” v_ipaddr POUND v_int
RPAREN SEMI

icmp_pkt : “snd_icmp” LPAREN “src=” v_ipaddr
“dest=” v_ipaddr
“type=” v_int

RPAREN SEMI
v_ipaddr : v_int DOT v_int DOT v_int DOT v_int
v_int : (INT | ID)

 report : “report” “target=” (STAR | “attack” | ID)
“protocol=” (STAR | “TCP” | “UDP” | “ICMP”)
“direction=” (STAR | “snd” | “rcv”)

 SEMI

Firedrl Language Reference Manual

MJR 10/20/05 Page 13 of 13

 ID: ALPHA (ALPHA | DIGIT | ‘_’)*
ALPHA : (‘a’ .. ‘z’ | ‘A’..’Z’)

 INT : (DIGIT)+
DIGIT : ‘0’ ... ‘9’

DEFINE : ‘:=’
EQ : ‘=’
H_ASSIGN : ‘@=’
R_ASSIGN : ‘<-’
VAR_ASSIGN : ‘=’
CMPR : (‘<‘ | ‘>’ | ‘==’ | ‘<=’ | ‘>=’)
INCR_ASSIGN : ‘+=’

SEMI : ‘ ‘
COMMA : ‘\t’
COLON : ‘\n’
LPAREN : ‘(‘
RPAREN : ‘)’
LBRKT : ‘{‘
RBRKT : ‘}’
SLASH : ‘/’
POUND : ‘#’
STAR : ‘*’
DOT : ‘.’

