
 1

B E C Y

Tabular – data manipulation
language

Reference
Manual

Authors:

Bong Koh bdk2109@columbia.edu
Eunchul Bae eb2263@columbia.edu
Cesar Vichdo cv2139@columbia.edu
Yongju Bang yb2149@columbia.edu

 2

1. Introduction

The language Becy is a scripting language to manipulate and present tabular data. The
ultimate goal of such a language is to provide a simple and flexible scripting language
tailored for numerical manipulations of lists of data. Since the goal of Becy is
efficiency, it includes many shortcut constructs including implicitly typed variables,
abbreviated conditional statement syntax, shortened loop manipulation syntax, and
included basic mathematical functions. Data files formatted in tab-separated values will
have inherent access included within the language. Upon processing of a data file, a
program in the language will also be able to generate a formatted HTML file for use
with a typical browser through included presentation functions.

This manual describes the syntax and the semantics of Becy. The language constructs
will be explained by the usual extended BNF(EBNF) using special notation. The “?”
and “[]” means an optional item. The ‘+’ and ‘*’ means repeat 1 or more times, and 0 or
more times, respectively. Non-terminals are shown in italics, keywords are shown in
bold, and other terminal symbols are enclosed in single quotes like ‘.’ and ‘;’.

2 - Lexical Conventions

2.1 comments
Comments starts with the characters /* and ends with the characters */.

2.2 Identifiers (Names)
Identifiers in Becy can be any string of letters, digits, and underscores, not beginning
with a digit. This coincides with the definition of identifiers in most languages. Becy is
case-sensitive. Upper and lower case letters are considered differently.

2.3 Keywords
The following keywords are reserved and cannot be used as identifiers:

 false function local
 return true table

2.4 Constants

2.4.1 Numerical constants
Numerical constant is a sequence of digits. It may be written with an optional
fraction part. Examples of valid numerical constants are

 3 3.0 3.1416

2.4.2 Character constants
Character constants are 1 or 2 characters enclosed in single quotes “ ‘ “. It may
contain the number and single symbol. Like C, 2 characters with backslash “\”
within matched single quotes are considered special flag.

\n --- newline

 3

\r --- carriage return
\t --- horizontal tab
\v --- vertical tab

2.5 Literal Strings
String will be defined as a sequence of characters confined within matched double
quotes. Literals may contain nested “ “” ” pairs. It may run for several lines and don’t
interpret any special flag.

2.6 Other tokens

 + - * / ^ = ||
 != <= >= < > ==
 () { } && %
 ; : , .

3. Values and types.

There are four basic types in Becy: boolean, number, string, and table. Variables will
not have explicit type declaration since an indicator such as “@”and “$” will be used
preceding any variable. (see. 4.1)

3.1 Boolean
Boolean is the type of the values false and true. In Becy, both null and false make a
condition false.

3.2 Number
Number basically represents real numbers. There is no explicit type declaration.
(see. 4.1)

3.4 String
String represents a sequence of characters. There is no explicit type declaration.
(see. 4.1)

3.5 Table
The type table implements associative lists. The lists can be indexed by numbers
with special symbol as well as any evaluated values (see. 4.2). Like indices, the
table can contain values of all type. The value of a table field can be of any type.
Thus tables may also carry not only built-in methods but also user-defined methods.

Tables are the sole data structuring mechanism in Becy; they may be used to
represent ordinary arrays, symbol tables, sets, and some sort of records, etc. To
represent records, Becy uses the field name as well as special symbols for an index.
There is a convenient ways to create tables in Becy.

#tablename_(startrow TO endrow. startcolumn TO endcolumn)

For example :

 4

#table1_(x1TOx100.y1TOy50)
This will create a table with 50 columns and 100 rows.

4. Variables

4.1 Basic types of variables
Variables are places that stores values. Becy will utilize two basic types of variables,
numbers and strings. However, it will not have explicit type declaration since it will
use an indicator character preceding any variable. For numerical variables, the
character will be the ‘$’ character and ‘@’ character will be used for string variables.
For example, to declare and assign a new string variable and a new numerical
variable the values “hello” and 1234, one would write:

@string_var1 = “hello”;
$num_var1 = 1234;

Also for table type, ‘#’ character will be used. For example :

#table1_x1.y2 = 10

it means the value of the first column and the 2nd row is 10.

4.2 User-defined variables
All user-defined variables’ identifiers must begin with a letter though as variables
with numerical identifiers have a special purpose in Becy. These variables will be
reserved for built-in “shortcut” variables for columns and rows of data. A text file with
tab-separated data will naturally be organized into columns and rows lending easily
to a matrix structure. The entire column can be represented through the
appropriate indicator character and the number of the column, indexed from the
leftmost column s tarting at 1.
For example, if the dataset contained:

 Column 1 Column 2 Column 3
Row1 Jimbob 44 123
Row2 Jane 32 117

$y1 refers to all the data in “Column 1” => “Jimbob”, “Jane”
$x1 refers to all the data in “Row 1” => 44, 123

Becy would also provide immediate access to specific entries in the table through a
dot notation:
$y1.x1 refers to “Jimbob”.

5. Statements

 5

Becy supports almost conventional set of statements but in a special form. Basically,
the statements are executed in sequence. This set includes assignment, control
structures, looping structure, function calls, and table constructors.

5.1 Statement block
Statements can be enclosed by curly brackets. Nested statements are also allowed
with matched curly brackets. Any statements within curly brackets are grouped and
run together in a sequential manner.

5.2 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually, expression statements are assignments or function calls

5.2.1 Assignment
Assignment can take only one form using the symbol “=”. This assignment is a
direct assignment in the form of:

left-value expression = right-value express;

Left-value must always be a variable whereas the right side can be a constant,
variable, the result of an operation or any combination of them. It is necessary to
emphasize that the assignation operation always takes place from right to left and
never at the inverse.

5.2.2 Function call
Functions in Becy require explicitly identified invoking list objects. (see 6)

5.3 Compound statement
The compound statement is provided in Becy as following form:

compound-statement: {statement-list}
statement-list: statement statement-list

5.4 Conditional statement
Becy will also contain support for conditionals only in this manner;

 (expression) ? statement1 : statement2 ;

If true, then first statement is evaluated, otherwise second statement.

5.5 Loop statement
Like any other languages, Becy will provide a looping structure. However, since lists
are a vital component of Becy’s design, its looping syntax reflects the necessity for a
convenient method to use lists;

listname.func_name(startrow TO endrow);

 6

5.6 Return statement
Return statement can be used within function body. It returns either a variable’s
value or a number including null value to the caller. It is mandatory that the
statement is ended with a semicolon. A basic return statement as follows:

return ;
return (expression) ;

6. Functions

Functions in Becy require explicitly identified invoking list objects. Thus, the general
syntax for using a function follows this format:

list_name.func_name (parameter_list);

6.1 Included mathematical functions
Basic mathematical functions on groups of data will be supported by Becy;

list_name.average($column_number);
list_name.sd($column_number);
list_name.median($column_number);
list_name.var($column_number);
list_name.sum($column_number);
list_name.max($column_number);
list_name.min($column_number);

list_name.round($column_number, $row_number);
list_name.sqrt($column_number, $row_number);
list_name.trunc($column_number, $row_number);
list_name.fact($column_number, $row_number);

6.2 Included display functions

list_name.print();
list_name.table(); …

6.3 Included data definition, and import functions
Basic data definition and import functions on groups of data such as defining data
sources loading a data source will be supported by Becy. All such functions follow
the typical function call syntax but will use curly braces ‘{’ and ‘}’ instead of
parenthesis:

Definition:
list_name{
 data_col1_row1 data_col2_row1,

 7

 data_col1_row2 data_col2_row2
};

Import:
 list_name{include “file_name.txt”};

6.4 Manipulation functions.
Adding and removing from the source will provided as follows:

Addition:
 list_name.push{bob 10 3, kim 6 2};
 list_name.push{include “file_name.txt”};

Deletion:
 list_name.remove_row{row1, row2 . . . rown};
 list_name.remove_col{ col1, col2 . . . coln };

6.5 User-defined Functions

Declaration:
function func_name {

 statement1;
 …
 statementn;
 [return value];
}

Invocation:
listname.func1(); listname.func2(); …

7. Expressions

7.1 Arithmetic Operators
Becy supports the usual arithmetic operators: Unary arithmetic operators “+” and “-”
can be prefixed to an expression. The binary “+” (addition), “-” (subtraction), “*”
(multiplication), “/” (division), and “^” (exponentiation); If the operands are numbers,
operations except exponentiation have the usual meaning.

7.2 Relational Operators
The relational operators in Becy are

 == != < > <= >=

These operators always result in false or true. Equality “==” first compares the type
of its operands. If the types are different, then the result is false. Otherwise, the
values of the operands are compared. Numbers and strings are compared in the

 8

usual way. These operations can be applied to tables only if both tables have same
numbers of fields, and ‘corresponding’ fields have the same type.

The operator “!=” is exactly the negation of equality “==”.
The order operators work as follows. If both arguments are numbers, then they are
compared as such. Otherwise, if both arguments are strings, then their values are
compared according to the current locale.

7.3 Logical Operators
The logical operators in Becy are

 && ||

Like the control structures all logical operators consider both false and null as false
and anything else as true. The conjunction operator “&&”returns its first argument if
this value is false or null; otherwise, returns its second argument. The disjunction
operator “||” returns its first argument if this value is different from null and false;
otherwise, “||” returns its second argument. Both “&&” and “||”use short-cut
evaluation, that is, the second operand is evaluated only if necessary.

7.4 Precedence and Associative.
Operator precedence in Becy follows the below, from lower to higher priority:

 ||
 &&
 < > <= >= != ==
 + -
 * /
 ̂

You can use parentheses to change the precedence in an expression.
Exponentiation “^” operators are right associative. All other binary operators are left
associative.

7.5 Table constructor

#tablename_(startrow TO endrow. startcolumn TO endcolumn)

8. Scope rules

8.1 Lexical scope
Becy is a lexically scoped language. The scope of variables begins at the first
statement after their declaration and lasts until the end of the innermost block that
includes the declaration.

It is an error to re-declare identifiers already declared in the current context, unless
the new declaration specifies the same type and storage class as already possessed
by the identifiers.

 9

8.2 Example of lexical scope

$number = 10;
@name = ‘lucas’;

 function age {
 $number=5;

return $number;
}

 $number2=$numer+10;

9. Examples

/*
This is an example of code
*/

/* Adding values to the list*/
list{jean 10 2, peter 8 1, josh 9 3,
 amber 9 6}

/* Sum of grade1 */
$sum = list.sum($2.2TO5);

/* Average of grade 1 */
$avg1 = list.average($2.2TO5)

/* Average of grade 2 */
$avg2 = list.average($3.2TO5)

/* conditional expresion*/

NAME

GRADE1 GRADE2

jean 10 2
peter 8 1

josh 9 3

amber 9 6

 10

$max_avg = ($avg1>$avg2)?$avg1:$avg2

/* function example*/
function max($n1,$n2){
 $max=$n1;
 ($avg1<$avg2)?$max=$n2;
 return $max;
}

$max_avg = list.max($avg1,$avg2);

10. Grammar

/*
 grammar.g : the lexer and the parser, in ANTLR grammar.
*/

class BecyAntlrLexer extends Lexer;

options{
 testLiterals = false;
 k = 2;
}

protected
ALPHA : 'a'..'z' | 'A'..'Z' | '_' ;

protected
DIGIT : '0'..'9';

WS : (' ' | '\t')+ { $setType(Token.SKIP); }
 ;

NL : ('\n' | ('\r' '\n') => '\r' '\n' | '\r')
 { $setType(Token.SKIP); newline(); }
 ;

COMMENT : ("/*" (
 options {greedy=false;} :
 (NL)
 | ~('\n' | '\r')
)* "*/"
 | "//" (~('\n' | '\r'))* (NL)
) { $setType(Token.SKIP); }
 ;

LPAREN : '(';

 11

RPAREN : ')';
MULT : '*';
PLUS : '+';
MINUS : '-';
DIV : '/';
MOD : '%';
SEMI : ';';
LBRACE : '{';
RBRACE : '}';
ASGN : '=';
COMMA : ',';
GE : ">=";
LE : "<=";
GT : '>';
LT : '<';
EQ : "==";
AND : "&&";
OR : "||";
NEQ : "!=";
COLON : ':';
AT : '@';
DOLLAR : '$';
DOT : '.';
QUES : '?';

ID options { testLiterals = true; }
 : ALPHA (ALPHA|DIGIT)*
 ;

/* NUMBER example:
 1, 1., 1.1
*/

NUMBER : (DIGIT)+ ('.' (DIGIT)*)? ;

STRING : '"'!
 (~('"' | '\n')
 | ('"'!'"')
)*
 '"'!
 ;

class BecyAntlrParser extends Parser;

options{
 k = 2;
 buildAST = true;
}

 12

program
 : (statement | func_def | data_def)* EOF!
 ;

statement
 : assignment
 | condition
 | func_call
 | return
 ;

assignment
 : variable ASGN^ arith_expr SEMI!
 | variable ASGN^ variable SEMI!
 | variable ASGN^ NUMBER SEMI!
 | variable ASGN^ STRING SEMI!
 ;

variable
 : DOLLAR! ID
 | AT! ID
 ;

arith_expr
 : LPAREN! arith_term PLUS^ arith_term RPAREN!
 | LPAREN! arith_term MINUS^ arith_term RPAREN!
 | arith_term
 ;

arith_term
 : LPAREN! factor MULT^ factor RPAREN!
 | LPAREN! factor DIV^ factor RPAREN!
 | factor
 ;

factor
 : (PLUS^ | MINUS^) NUMBER
 | func_call
 | variable
 ;

condition
 : LPAREN! bool_expr RPAREN! QUES^ statement COLON! statement SEMI!
 ;

bool_expr
 : LPAREN! logic_term OR^ logic_term RPAREN!
 | logic_term

 13

 ;

logic_term
 : LPAREN! logic_factor AND^ logic_factor RPAREN!
 | logic_factor
 ;

logic_factor
 : arith_expr (GE^ | LE^ | GT^ | LT^ | EQ^ | NEQ^) arith_expr
 | 'true'
 | 'false'
 ;

func_call
 : ID DOT! ID LPAREN! expr_list RPAREN! SEMI!
 | ID DOT! ID LBRACE! data RBRACE! SEMI!
 ;

expr_list
 : (arith_expr (COMMA! arith_expr)*)?
 ;

data
 : (ID^ | NUMBER^)+
 | "include"^ STRING
 ;

data_dec
 : ID^ LBRACE! data RBRACE! SEMI!
 ;

func_dec
 : "function"^ ID LBRACE! statement* return? RBRACE! SEMI!
 ;

return
 : "return"^ (expression)? SEMI!
 ;

