
Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

Xilinx Device Drivers Documentation

Generated on 29 May 2003 for Xilinx Device Drivers

Device Driver Summary
A summary of each device driver is provided together with links to its layer 1, high level header file and
its layer 0, low level header file. A description of the device driver layers is provided in the Device
Driver Programmer Guide. In addition, building block components are described below.

ATM Controller

The Asynchronous Transfer Mode (ATM) Controller driver resides in the atmc subdirectory.
Details of the layer 1 high level driver can be found in the xatmc.h header file. Details of the layer
0 low level driver can be found in the xatmc_l.h header file.

Ethernet 10/100 MAC

The Ethernet 10/100 MAC driver resides in the emac subdirectory. Details of the layer 1 high
level driver can be found in the xemac.h header file. Details of the layer 0 low level driver can be
found in the xemac_l.h header file.

Ethernet 10/100 MAC Lite

The Ethernet 10/100 MAC Lite driver resides in the emaclite subdirectory. Details of the layer 0
low level driver can be found in the xemaclite_l.h header file.

External Memory Controller

The External Memory Controller driver resides in the emc subdirectory. Details of the layer 1
high level driver can be found in the xemc.h header file. Details of the layer 0 low level driver can
be found in the xemc_l.h header file.

General Purpose I/O

The General Purpose I/O driver resides in the gpio subdirectory. Details of the layer 1 high level
driver can be found in the xgpio.h header file. Details of the layer 0 low level driver can be found
in the xgpio_l.h header file.

Gigabit Ethernet MAC

The 1 Gigabit Ethernet MAC driver resides in the gemac subdirectory. Details of the layer 1 high
level driver can be found in the xgemac.h header file. Details of the layer 0 low level driver can be
found in the xgemac_l.h header file.

HDLC

The HDLC driver resides in the hdlc subdirectory. Details of the layer 1 high level driver can be
found in the xhdlc.h header file. Details of the layer 0 low level driver can be found in the
xhdlc_l.h header file.

Intel StrataFlash

The Intel StrataFlash driver resides in the flash subdirectory. Details of the layer 1 high level
driver can be found in the xflash.h header file. Details of the layer 0 low level driver can be found
in the xflash_intel_l.h header file.

Inter-Integrated Circuit (IIC)

The IIC driver resides in the iic subdirectory. Details of the layer 1 high level driver can be found
in the xiic.h header file. Details of the layer 0 low level driver can be found in the xiic_l.h header
file.

Interrupt Controller

The Interrupt Controller driver resides in the intc subdirectory. Details of the layer 1 high level
driver can be found in the xintc.h header file. Details of the layer 0 low level driver can be found
in the xintc_l.h header file.

OPB Arbiter

The OPB Arbiter driver resides in the opbarb subdirectory. Details of the layer 1 high level driver
can be found in the xopbarb.h header file. Details of the layer 0 low level driver can be found in
the xopbarb_l.h header file.

OPB to PLB Bridge

The OPB to PLB bridge driver resides in the opb2plb subdirectory. Details of the layer 1 high
level driver can be found in the xopb2plb.h header file. Details of the layer 0 low level driver can

be found in the xopb2plb_l.h header file.

PCI Bridge

The PCI bridge driver resides in the pci subdirectory. Details of the layer 1 high level driver can
be found in the xpci.h header file. Details of the layer 0 low level driver can be found in the
xpci_l.h header file.

PLB Arbiter

The PLB arbiter driver resides in the plbarb subdirectory. Details of the layer 1 high level driver
can be found in the xplbarb.h header file. Details of the layer 0 low level driver can be found in
the xplbarb_l.h header file.

PLB to OPB Bridge

The PLB to OPB bridge driver resides in the plb2opb subdirectory. Details of the layer 1 high
level driver can be found in the xplb2opb.h header file. Details of the layer 0 low level driver can
be found in the xplb2opb_l.h header file.

Rapid I/O

The Rapid I/O driver resides in the rapidio subdirectory. Details of the layer 0 low level driver
can be found in the xrapidio_l.h header file.

Serial Peripheral Interface (SPI)

The SPI driver resides in the spi subdirectory. Details of the layer 1 high level driver can be found
in the xspi.h header file. Details of the layer 0 low level driver can be found in the xspi_l.h header
file.

System ACE

The System ACE driver resides in the sysace subdirectory. Details of the layer 1 high level driver
can be found in the xsysace.h header file. Details of the layer 0 low level driver can be found in
the xsysace_l.h header file.

Timer/Counter

The Timer/Counter driver resides in the tmrctr subdirectory. Details of the layer 1 high level
driver can be found in the xtmrctr.h header file. Details of the layer 0 low level driver can be
found in the xtmrctr_l.h header file.

UART Lite

The UART Lite driver resides in the uartlite subdirectory. Details of the layer 1 high level driver
can be found in the xuartlite.h header file. Details of the layer 0 low level driver can be found in
the xuartlite_l.h header file.

UART 16450/16550

The UART 16450/16550 driver resides in the uartns550 subdirectory. Details of the layer 1 high
level driver can be found in the xuartns550.h header file. Details of the layer 0 low level driver
can be found in the xuartns550_l.h header file.

Watchdog Timer/Timebase

The Watchdog Timer/Timebase driver resides in the wdttb subdirectory. Details of the layer 1
high level driver can be found in the xwdttb.h header file. Details of the layer 0 low level driver
can be found in the xwdttb_l.h header file.

 Building Block Components
Common

Common components reside in the common subdirectory and comprise a collection of header files
and ".c" files that are commonly used by all device drivers and application code. Included in this
collection are: xstatus.h , which contains the identifiers for Xilinx status codes; xparameters.h ,
which contains the identifiers for the driver configurations and memory map; and xbasic_types.h ,
which contains identifiers for primitive data types and commonly used constants.

CPU/CPU_PPC405

CPU components reside in the cpu[_ppc405] sudirectory and comprise I/O functions specific to a
processor. These I/O functions are defined in xio.h. These functions are used by drivers and are
not intended for external use.

IPIF

IPIF components reside in the ipif subdirectory and comprise functions related to the IP Interface
(IPIF) interrupt control logic. Since most devices are built with IPIF, drivers utilize this common
source code to prevent duplication of code within the drivers. These functions are used by drivers
and are not intended for external use.

DMA

DMA components reside in the dma subdirectory and comprise functions used for Direct Memory
Access (DMA). Both simple DMA and scatter-gather DMA are supported.

Packet FIFO

Packet FIFO components reside in the packet_fifo subdirectory and comprise functions used for
packet FIFO control. Packet FIFOs are typically used by devices that process and potentially
retransmit packets, such as Ethernet and ATM. These functions are used by drivers and are not
intended for external use.

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc.h File Reference

Detailed Description

The implementation of the XAtmc component, which is the driver for the Xilinx ATM controller.

The Xilinx ATM controller supports the following features:

● Simple and scatter-gather DMA operations, as well as simple memory mapped direct I/O interface (FIFOs).
● Independent internal transmit and receive FIFOs
● Internal loopback
● Header error check (HEC) generation and checking
● Cell buffering with or without header/User Defined
● Parity generation and checking
● Header generation for transmit cell payloads
● Physical interface (PHY) data path of 16 bits
● Basic statistics gathering such as long cells, short cells, parity errors, and HEC errors

The driver does not support all of the features listed above. Features not currently supported by the driver are:

● Simple DMA (in polled or interrupt mode)
● Direct I/O (FIFO) operations in interrupt mode (polled mode does use the FIFO directly)

It is the responsibility of the application get the interrupt handler of the ATM controller and connect it to the
interrupt source.

The driver services interrupts and passes ATM cells to the upper layer software through callback functions. The
upper layer software must register its callback functions during initialization. The driver requires callback functions
for received cells, for confirmation of transmitted cells, and for asynchronous errors. The frequency of interrupts
can be controlled with the packet threshold and packet wait bound features of the scatter-gather DMA engine.

The callback function which performs processing for scatter-gather DMA is executed in an interrupt context and is
designed to allow the processing of the scatter-gather list to be passed to a thread context. The scatter-gather
processing can require more processing than desired in an interrupt context. Functions are provided to be called
from the callback function or thread context to get cells from the send and receive scatter-gather list.

Some errors that can occur in the device require a device reset. These errors are listed in the SetErrorHandler

function header. The upper layer's error handler is responsible for resetting the device and re-configuring it based
on its needs (the driver does not save the current configuration).

DMA Support

The Xilinx ATMC device is available for both the IBM On-Chip Peripheral Bus (OPB) and Processor Local Bus
(PLB). This driver works for both. However, a current limitation of the ATMC device on the PLB is that it does
not support DMA. For this reason, the DMA scatter-gather functions (e.g., XAtmc_SgSend()) of this driver will
not function for the PLB version of the ATMC device.

Note:
Xilinx drivers are typically composed of two components, one is the driver and the other is the adapter. The
driver is independent of OS and processor and is intended to be highly portable. The adapter is OS-specific
and facilitates communication between the driver and the OS.

This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any
needs for dynamic memory management, threads or thread mutual exclusion, virtual memory, or cache
control must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a JHL 07/31/01 First release
 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
 an v1.23b of the IPIF driver

#include "xstatus.h"

#include "xparameters.h"

#include "xdma_channel.h"
#include "xbasic_types.h"

#include "xpacket_fifo_v2_00_a.h"

Go to the source code of this file.

Data Structures

struct XAtmc
struct XAtmc_Config
struct XAtmc_Stats

Configuration options

These options are used in XAtmc_SetOptions() to configure the device.

#define XAT_LOOPBACK_OPTION
#define XAT_POLLED_OPTION
#define XAT_DISCARD_SHORT_OPTION
#define XAT_DISCARD_PARITY_OPTION
#define XAT_DISCARD_LONG_OPTION
#define XAT_DISCARD_HEC_OPTION
#define XAT_DISCARD_VXI_OPTION
#define XAT_PAYLOAD_ONLY_OPTION
#define XAT_NO_SEND_PARITY_OPTION

Cell status

These constants define the status values for a received cell. The status is available when polling to receive a cell or
in the buffer descriptor after a cell is received using DMA scatter-gather.

#define XAT_CELL_STATUS_LONG
#define XAT_CELL_STATUS_SHORT
#define XAT_CELL_STATUS_BAD_PARITY
#define XAT_CELL_STATUS_BAD_HEC
#define XAT_CELL_STATUS_VXI_MISMATCH
#define XAT_CELL_STATUS_NO_ERROR

Typedefs for callbacks

Callback functions.

typedef void(* XAtmc_SgHandler)(void *CallBackRef, Xuint32 CellCount)
typedef void(* XAtmc_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Functions

XStatus XAtmc_Initialize (XAtmc *InstancePtr, Xuint16 DeviceId)
XStatus XAtmc_Start (XAtmc *InstancePtr)

XStatus XAtmc_Stop (XAtmc *InstancePtr)
void XAtmc_Reset (XAtmc *InstancePtr)

XStatus XAtmc_SelfTest (XAtmc *InstancePtr)
XAtmc_Config * XAtmc_LookupConfig (Xuint16 DeviceId)

XStatus XAtmc_SgSend (XAtmc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XAtmc_SgRecv (XAtmc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XAtmc_SgGetSendCell (XAtmc *InstancePtr, XBufDescriptor **PtrToBdPtr, int

*BdCountPtr)
XStatus XAtmc_SgGetRecvCell (XAtmc *InstancePtr, XBufDescriptor **PtrToBdPtr, int

*BdCountPtr)
XStatus XAtmc_PollSend (XAtmc *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XAtmc_PollRecv (XAtmc *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr, Xuint32

*CellStatusPtr)
XStatus XAtmc_SetOptions (XAtmc *InstancePtr, Xuint32 Options)
Xuint32 XAtmc_GetOptions (XAtmc *InstancePtr)
XStatus XAtmc_SetPhyAddress (XAtmc *InstancePtr, Xuint8 Address)
Xuint8 XAtmc_GetPhyAddress (XAtmc *InstancePtr)

XStatus XAtmc_SetHeader (XAtmc *InstancePtr, Xuint32 Direction, Xuint32 Header)
Xuint32 XAtmc_GetHeader (XAtmc *InstancePtr, Xuint32 Direction)
XStatus XAtmc_SetUserDefined (XAtmc *InstancePtr, Xuint8 UserDefined)
Xuint8 XAtmc_GetUserDefined (XAtmc *InstancePtr)

XStatus XAtmc_SetPktThreshold (XAtmc *InstancePtr, Xuint32 Direction, Xuint8 Threshold)
XStatus XAtmc_GetPktThreshold (XAtmc *InstancePtr, Xuint32 Direction, Xuint8 *ThreshPtr)
XStatus XAtmc_SetPktWaitBound (XAtmc *InstancePtr, Xuint32 Direction, Xuint32 TimerValue)
XStatus XAtmc_GetPktWaitBound (XAtmc *InstancePtr, Xuint32 Direction, Xuint32 *WaitPtr)

void XAtmc_GetStats (XAtmc *InstancePtr, XAtmc_Stats *StatsPtr)
void XAtmc_ClearStats (XAtmc *InstancePtr)

XStatus XAtmc_SetSgRecvSpace (XAtmc *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)
XStatus XAtmc_SetSgSendSpace (XAtmc *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)

void XAtmc_InterruptHandler (void *InstancePtr)
void XAtmc_SetSgRecvHandler (XAtmc *InstancePtr, void *CallBackRef, XAtmc_SgHandler

FuncPtr)
void XAtmc_SetSgSendHandler (XAtmc *InstancePtr, void *CallBackRef, XAtmc_SgHandler

FuncPtr)
void XAtmc_SetErrorHandler (XAtmc *InstancePtr, void *CallBackRef, XAtmc_ErrorHandler

FuncPtr)

Define Documentation

#define XAT_CELL_STATUS_BAD_HEC

 XAT_CELL_STATUS_LONG Cell was too long
 XAT_CELL_STATUS_SHORT Cell was too short
 XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
 XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
 XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
 header values
 XAT_CELL_STATUS_NO_ERROR Cell received without errors

#define XAT_CELL_STATUS_BAD_PARITY

 XAT_CELL_STATUS_LONG Cell was too long
 XAT_CELL_STATUS_SHORT Cell was too short
 XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
 XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
 XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
 header values
 XAT_CELL_STATUS_NO_ERROR Cell received without errors

#define XAT_CELL_STATUS_LONG

 XAT_CELL_STATUS_LONG Cell was too long
 XAT_CELL_STATUS_SHORT Cell was too short
 XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
 XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
 XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
 header values
 XAT_CELL_STATUS_NO_ERROR Cell received without errors

#define XAT_CELL_STATUS_NO_ERROR

 XAT_CELL_STATUS_LONG Cell was too long
 XAT_CELL_STATUS_SHORT Cell was too short
 XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
 XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
 XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
 header values
 XAT_CELL_STATUS_NO_ERROR Cell received without errors

#define XAT_CELL_STATUS_SHORT

 XAT_CELL_STATUS_LONG Cell was too long
 XAT_CELL_STATUS_SHORT Cell was too short
 XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
 XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
 XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
 header values
 XAT_CELL_STATUS_NO_ERROR Cell received without errors

#define XAT_CELL_STATUS_VXI_MISMATCH

 XAT_CELL_STATUS_LONG Cell was too long
 XAT_CELL_STATUS_SHORT Cell was too short
 XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
 XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
 XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
 header values
 XAT_CELL_STATUS_NO_ERROR Cell received without errors

#define XAT_DISCARD_HEC_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_DISCARD_LONG_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_DISCARD_PARITY_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_DISCARD_SHORT_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_DISCARD_VXI_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_LOOPBACK_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_NO_SEND_PARITY_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_PAYLOAD_ONLY_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

#define XAT_POLLED_OPTION

 XAT_LOOPBACK_OPTION Enable sent data to be received
 XAT_POLLED_OPTION Enables polled mode (no interrupts)
 XAT_DISCARD_SHORT_OPTION Discard runt/short cells
 XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
 XAT_DISCARD_LONG_OPTION Discard long cells
 XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
 XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
 VCI/VPI fields
 XAT_PAYLOAD_ONLY_OPTION Buffer payload only
 XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells

Typedef Documentation

typedef void(* XAtmc_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Callback when data is sent or received with scatter-gather DMA.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions,

and passed back to the upper layer when the callback is invoked.
ErrorCode indicates the error that occurred.

typedef void(* XAtmc_SgHandler)(void *CallBackRef, Xuint32 CellCount)

Callback when data is sent or received with scatter-gather DMA.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions,

and passed back to the upper layer when the callback is invoked.
CellCount is the number of cells sent or received.

Function Documentation

void XAtmc_ClearStats (XAtmc * InstancePtr)

Clears the XAtmc_Stats structure for this driver.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
None.

Note:
None.

Xuint32 XAtmc_GetHeader (XAtmc * InstancePtr,
Xuint32 Direction

)

Gets the send or receive ATM header in the ATM controller. The ATM controller attachs the send header to
cells which are to be sent but contain only the payload.

If the ATM controller is configured appropriately, it will compare the header of received cells against the
receive header and discard cells which don't match in the VCI and VPI fields of the header.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates whether we're retrieving the send header or the receive header.

Returns:
The ATM header currently being used by the ATM controller for attachment to transmitted cells or the
header which is being compared against received cells. An invalid specified direction will cause this
function to return a value of 0.

Note:
None.

Xuint32 XAtmc_GetOptions (XAtmc * InstancePtr)

Gets Atmc driver/device options. The value returned is a bit-mask representing the options. A one (1) in the bit-
mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
The 32-bit value of the Atmc options. The value is a bit-mask representing all options that are currently
enabled. See xatmc.h for a detailed description of the options.

Note:
None.

Xuint8 XAtmc_GetPhyAddress (XAtmc * InstancePtr)

Gets the PHY address for this driver/device.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
The 5-bit PHY address (0 - 31) currently being used by the ATM controller.

Note:
None.

XStatus XAtmc_GetPktThreshold (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint8 * ThreshPtr

)

Gets the value of the packet threshold register for this driver/device. The packet threshold is used for interrupt
coalescing when the ATM controller is configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
ThreshPtr is a pointer to the byte into which the current value of the packet threshold register will be

copied. An output parameter. A value of 0 indicates the use of packet threshold by the
hardware is disabled.

Returns:
❍ XST_SUCCESS if the packet threshold was retrieved successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

XStatus XAtmc_GetPktWaitBound (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint32 * WaitPtr

)

Gets the packet wait bound register for this driver/device. The packet wait bound is used for interrupt coalescing
when the ATM controller is configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
WaitPtr is a pointer to the byte into which the current value of the packet wait bound register will be

copied. An output parameter. Units are in milliseconds in the range 0 - 1023. A value of 0
indicates the packet wait bound timer is disabled.

Returns:
❍ XST_SUCCESS if the packet wait bound was retrieved successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

void XAtmc_GetStats (XAtmc * InstancePtr,
XAtmc_Stats * StatsPtr

)

Gets a copy of the XAtmc_Stats structure, which contains the current statistics for this driver.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current statistics will
be copied.

Returns:
None. Although the output parameter will contain a copy of the statistics upon return from this function.

Note:
None.

Xuint8 XAtmc_GetUserDefined (XAtmc * InstancePtr)

Gets the 2nd byte of the User Defined data in the ATM controller for the channel which is sending data. The
ATM controller will attach the header to all cells which are being sent and do not have a header. The header of
a 16 bit Utopia interface contains the User Defined data which is two bytes. The first byte contains the HEC
field and the second byte is available for user data. This function only allows the second byte to be retrieved.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
The second byte of the User Defined data.

Note:
None.

XStatus XAtmc_Initialize (XAtmc * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific ATM controller instance/driver. The initialization entails:

● Initialize fields of the XAtmc structure
● Clear the ATM statistics for this device
● Initialize the IPIF component with its register base address
● Configure the FIFO components with their register base addresses.
● Configure the DMA channel components with their register base addresses. At some later time, memory

pools for the scatter-gather descriptor lists will be passed to the driver.
● Reset the ATM controller

The only driver function that should be called before this Initialize function is called is GetInstance.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

DeviceId is the unique id of the device controlled by this XAtmc instance. Passing in a device id
associates the generic XAtmc instance to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started

Note:
None.

void XAtmc_InterruptHandler (void * InstancePtr)

Interrupt handler for the ATM controller driver. It performs the following processing:

● Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be: the
ATM controller, the send packet FIFO, the receive packet FIFO, the send DMA channel, or the receive
DMA channel. The packet FIFOs only interrupt during "deadlock" conditions. All other FIFO-related
interrupts are generated by the ATM controller.

● Call the appropriate handler based on the source of the interrupt.

Parameters:
InstancePtr contains a pointer to the ATMC controller instance for the interrupt.

Returns:
None.

Note:
None.

XAtmc_Config* XAtmc_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table AtmcConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId contains the unique device ID that for the device. This ID is used to lookup the configuration.

Returns:
A pointer to the configuration for the specified device, or XNULL if the device could not be found.

Note:
None.

XStatus XAtmc_PollRecv (XAtmc * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr,
Xuint32 * CellStatusPtr

)

Receives an ATM cell in polled mode. The device/driver must be in polled mode before calling this function.
The driver receives the cell directly from the ATM controller packet FIFO. This is a non-blocking receive, in
that if there is no cell ready to be received at the device, the function returns with an error. The buffer into
which the cell will be received must be word-aligned.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Atmc cell will be copied.
ByteCountPtr is both an input and an output parameter. It is a pointer to the size of the buffer on entry

into the function and the size the received cell on return from the function.
CellStatusPtr is both an input and an output parameter. It is a pointer to the status of the cell which is

received. It is only valid if the return value indicates success. The status is necessary
when cells with errors are not being discarded. This status is a bit mask which may
contain one or more of the following values with the exception of
XAT_CELL_STATUS_NO_ERROR which is mutually exclusive. The status values are:

● XAT_CELL_STATUS_NO_ERROR indicates the cell was received without any errors
● XAT_CELL_STATUS_BAD_PARITY indicates the cell parity was not correct
● XAT_CELL_STATUS_BAD_HEC indicates the cell HEC was not correct
● XAT_CELL_STATUS_SHORT indicates the cell was not the correct length
● XAT_CELL_STATUS_VXI_MISMATCH indicates the cell VPI/VCI fields did not match the expected

header values

Returns:
❍ XST_SUCCESS if the cell was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_NO_DATA if tThere is no cell to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the cell is too small for the cell waiting in

the FIFO.

Note:
The input buffer must be big enough to hold the largest ATM cell. The buffer must also be 32-bit
aligned.

XStatus XAtmc_PollSend (XAtmc * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Sends an ATM cell in polled mode. The device/driver must be in polled mode before calling this function. The
driver writes the cell directly to the ATM controller packet FIFO, then enters a loop checking the device status
for completion or error. The buffer to be sent must be word-aligned.

It is assumed that the upper layer software supplies a correctly formatted ATM cell based upon the
configuration of the ATM controller (attaching header or not).

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the ATM cell to be sent.
ByteCount is the size of the ATM cell. An ATM cell for a 16 bit Utopia interface is 54 bytes with a 6

byte header and 48 bytes of payload. This function may be used to send short cells with or
without headers depending on the configuration of the ATM controller.

Returns:
❍ XST_SUCCESS if the cell was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_PFIFO_NO_ROOM if there is no room in the FIFO for this cell
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun

Note:
There is the possibility that this function will not return if the hardware is broken (i.e., it never sets the
status bit indicating that transmission is done). If this is of concern to the user, the user should provide
protection from this problem - perhaps by using a different timer thread to monitor the PollSend thread.

The input buffer must be big enough to hold the largest ATM cell. The buffer must also be 32-bit
aligned.

void XAtmc_Reset (XAtmc * InstancePtr)

Resets the ATM controller. It resets the the DMA channels, the FIFOs, and the ATM controller. The reset does
not remove any of the buffer descriptors from the scatter-gather list for DMA. Reset must only be called after
the driver has been initialized.

The configuration after this reset is as follows:

● Disabled transmitter and receiver
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation
● PHY address of 0

The upper layer software is responsible for re-configuring (if necessary) and restarting the ATM controller after
the reset.

When a reset is required due to an internal error, the driver notifies the upper layer software of this need through
the ErrorHandler callback and specific status codes. The upper layer software is responsible for calling this
Reset function and then re-configuring the device.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
None.

Note:
The reset is accomplished by setting the IPIF reset register. This takes care of resetting all hardware
blocks, including the ATM controller.

XStatus XAtmc_SelfTest (XAtmc * InstancePtr)

Performs a self-test on the ATM controller device. The test includes:

● Run self-test on DMA channel, FIFO, and IPIF components
● Reset the ATM controller device, check its registers for proper reset values, and run an internal loopback

test on the device. The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default
configuration. The caller is responsible for re-configuring the device after the self-test is run.

It should be noted that data caching must be disabled when this function is called because the DMA self-test
uses two local buffers (on the stack) for the transfer test.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
❍ XST_SUCCESS if self-test was successful
❍ XST_PFIFO_BAD_REG_VALUE if the FIFO failed register self-test
❍ XST_DMA_TRANSFER_ERROR if DMA failed data transfer self-test
❍ XST_DMA_RESET_REGISTER_ERROR if DMA control register value was incorrect after a

reset
❍ XST_REGISTER_ERROR if the ATM controller failed register reset test
❍ XST_LOOPBACK_ERROR if the ATM controller internal loopback failed
❍ XST_IPIF_REG_WIDTH_ERROR if an invalid register width was passed into the function
❍ XST_IPIF_RESET_REGISTER_ERROR if the value of a register at reset was invalid
❍ XST_IPIF_DEVICE_STATUS_ERROR if a write to the device status register did not read back

correctly
❍ XST_IPIF_DEVICE_ACK_ERROR if a bit in the device status register did not reset when acked
❍ XST_IPIF_DEVICE_ENABLE_ERROR if the device interrupt enable register was not updated

correctly by the hardware when other registers were written to
❍ XST_IPIF_IP_STATUS_ERROR if a write to the IP interrupt status register did not read back

correctly
❍ XST_IPIF_IP_ACK_ERROR if one or more bits in the IP status register did not reset when acked
❍ XST_IPIF_IP_ENABLE_ERROR if the IP interrupt enable register was not updated correctly

when other registers were written to

Note:
Because this test uses the PollSend function for its loopback testing, there is the possibility that this
function will not return if the hardware is broken (i.e., it never sets the status bit indicating that
transmission is done). If this is of concern to the user, the user should provide protection from this
problem - perhaps by using a different timer thread to monitor the self-test thread.

void XAtmc_SetErrorHandler (XAtmc * InstancePtr,
void * CallBackRef,
XAtmc_ErrorHandler FuncPtr

)

Sets the callback function for handling errors. The upper layer software should call this function during
initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are
potentially slow operations within the callback which should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus error or
bus timeout. The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock condition in the
packet FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable ATM controller error occurred, usually an overrun or
underrun. The handler must reset and re-configure the device.

● XST_ATMC_ERROR_COUNT_MAX indicates the counters of the ATM controller have reached the
maximum value and that the statistics of the ATM controller should be cleared.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the
adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XAtmc_SetHeader (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint32 Header

)

Sets the send or receive ATM header in the ATM controller. If cells with only payloads are given to the
controller to be sent, it will attach the header to the cells. If the ATM controller is configured appropriately, it
will compare the header of received cells against the receive header and discard cells which don't match in the
VCI and VPI fields of the header.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the direction, send(transmit) or receive, for the header to set.
Header contains the ATM header to be attached to each transmitted cell for cells with only

payloads or the expected header for cells which are received.

Returns:
❍ XST_SUCCESS if the PHY address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

XStatus XAtmc_SetOptions (XAtmc * InstancePtr,
Xuint32 OptionsFlag

)

Set Atmc driver/device options. The device must be stopped before calling this function. The options are
contained within a bit-mask with each bit representing an option. A one (1) in the bit-mask turns an option on,
and a zero (0) turns the option off. See xatmc.h for a detailed description of the available options.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

OptionsFlag is a bit-mask representing the Atmc options to turn on or off

Returns:
❍ XST_SUCCESS if options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
This function is not thread-safe and makes use of internal resources that are shared between the Start,
Stop, and SetOptions functions, so if one task might be setting device options while another is trying to
start the device, protection of this shared data (typically using a semaphore) is required.

XStatus XAtmc_SetPhyAddress (XAtmc * InstancePtr,
Xuint8 Address

)

Sets the PHY address for this driver/device. The address is a 5-bit value. The device must be stopped before
calling this function.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Address contains the 5-bit PHY address (0 - 31).

Returns:
❍ XST_SUCCESS if the PHY address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XAtmc_SetPktThreshold (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint8 Threshold

)

Sets the packet count threshold register for this driver/device. The device must be stopped before setting the
threshold. The packet count threshold is used for interrupt coalescing, which reduces the frequency of interrupts
from the device to the processor. In this case, the scatter-gather DMA engine only interrupts when the packet
count threshold is reached, instead of interrupting for each packet.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
Threshold is the value of the packet threshold count used during interrupt coalescing. A value of 0

disables the use of packet threshold by the hardware.

Returns:
❍ XST_SUCCESS if the threshold was successfully set
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_DMA_SG_COUNT_EXCEEDED if the threshold must be equal to or less than the number

of descriptors in the list
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

XStatus XAtmc_SetPktWaitBound (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint32 TimerValue

)

Sets the packet wait bound register for this driver/device. The device must be stopped before setting the timer
value. The packet wait bound is used during interrupt coalescing to trigger an interrupt when not enough
packets have been received to reach the packet count threshold.

The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
TimerValue is the value of the packet wait bound used during interrupt coalescing. It is in milliseconds

in the range 0 - 1023. A value of 0 disables the packet wait bound timer.

Returns:
❍ XST_SUCCESS if the packet wait bound was set successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

void XAtmc_SetSgRecvHandler (XAtmc * InstancePtr,
void * CallBackRef,
XAtmc_SgHandler FuncPtr

)

Sets the callback function for handling received cells in scatter-gather DMA mode. The upper layer software
should call this function during initialization. The callback is called when a number of cells, determined by the
DMA scatter-gather packet threshold, are received. The number of received cells is passed to the callback
function. The callback function should communicate the data to a thread such that the scatter-gather list
processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer descriptors for
each received cell from the list and should attach a new buffer to each descriptor. It is important that the
specified number of cells passed to the callback function are handled by the scatter-gather list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are other
potentially slow operations within the callback, these should be done at task-level.

Parameters:

InstancePtr is a pointer to the XAtmc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This helps the
application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XAtmc_SetSgRecvSpace (XAtmc * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This function
should only be called once, during initialization of the Atmc driver. The memory space must be word-aligned.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XAtmc_Initialize function because the DMA channel components must be initialized before the memory
space is set.

void XAtmc_SetSgSendHandler (XAtmc * InstancePtr,
void * CallBackRef,
XAtmc_SgHandler FuncPtr

)

Sets the callback function for handling confirmation of transmitted cells in scatter-gather DMA mode. The
upper layer software should call this function during initialization. The callback is called when a number of
cells, determined by the DMA scatter-gather packet threshold, are sent. The number of sent cells is passed to the
callback function. The callback function should communicate the data to a thread such that the scatter-gather
list processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer descriptors for
each sent cell from the list and should also free the buffers attached to the descriptors if necessary. It is
important that the specified number of cells passed to the callback function are handled by the scatter-gather list
processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are
potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This helps the
application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XAtmc_SetSgSendSpace (XAtmc * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This function
should only be called once, during initialization of the Atmc driver. The memory space must be word-aligned.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XAtmc_Initialize function because the DMA channel components must be initialized before the memory
space is set.

XStatus XAtmc_SetUserDefined (XAtmc * InstancePtr,
Xuint8 UserDefined

)

Sets the 2nd byte of the User Defined data in the ATM controller for the channel which is sending data. The
ATM controller will attach the header to all cells which are being sent and do not have a header. The header of
a 16 bit Utopia interface contains the User Defined data which is two bytes. The first byte contains the HEC
field and the second byte is available for user data. This function only allows the second byte to be set.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

UserDefined contains the second byte of the User Defined data.

Returns:
❍ XST_SUCCESS if the user-defined data was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XAtmc_SgGetRecvCell (XAtmc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
int * BdCountPtr

)

Gets the first buffer descriptor of the oldest cell which was received by the scatter-gather DMA channel of the
ATM controller. This function is provided to be called from a callback function such that the buffer descriptors
for received cells can be processed. The function should be called by the application repetitively for the number
of cells indicated as an argument in the callback function. This function may also be used when only payloads
are being sent and received by the ATM controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the first buffer
descriptor of the cell. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the number of
buffer descriptors for the cell. This input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor pointed to by
PtrToBdPtr and a count of the number of buffer descriptors for the cell pointed to by BdCountPtr are
both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list because there

are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XAtmc_SgGetSendCell (XAtmc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
int * BdCountPtr

)

Gets the first buffer descriptor of the oldest cell which was sent by the scatter-gather DMA channel of the ATM
controller. This function is provided to be called from a callback function such that the buffer descriptors for
sent cells can be processed. The function should be called by the application repetitively for the number of cells
indicated as an argument in the callback function. This function may also be used when only payloads are being
sent and received by the ATM controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the first buffer
descriptor of the cell. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the number of
buffer descriptors for the cell. this input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor pointed to by
PtrToBdPtr and a count of the number of buffer descriptors for the cell pointed to by BdCountPtr are
both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list because there

are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XAtmc_SgRecv (XAtmc * InstancePtr,
XBufDescriptor * BdPtr

)

Adds this descriptor, with an attached empty buffer, into the receive descriptor list. The buffer attached to the
descriptor must be word-aligned. This is used by the upper layer software during initialization when first setting
up the receive descriptors, and also during reception of cells to replace filled buffers with empty buffers. The
contents of the specified buffer descriptor are copied into the scatter-gather transmit list. This function can be
called when the device is started or stopped.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list

because a locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the

DMA channel believes there are no new descriptors to commit.

Note:
None.

XStatus XAtmc_SgSend (XAtmc * InstancePtr,
XBufDescriptor * BdPtr

)

Sends an ATM cell using scatter-gather DMA. The caller attaches the cell to one or more buffer descriptors,
then calls this function once for each descriptor. The caller is responsible for allocating and setting up the
descriptor. An entire ATM cell may or may not be contained within one descriptor. The contents of the buffer
descriptor are copied into the scatter-gather transmit list. The caller is responsible for providing mutual
exclusion to guarantee that a cell is contiguous in the transmit list. The buffer attached to the descriptor must be
word-aligned.

The driver updates the descriptor with the device control register before being inserted into the transmit list. If
this is the last descriptor in the cell, the inserts are committed, which means the descriptors for this cell are now
available for transmission.

It is assumed that the upper layer software supplies a correctly formatted ATM cell based upon the
configuration of the ATM controller (attaching header or not). The ATM controller must be started before
calling this function.

Parameters:

InstancePtr is a pointer to the XAtmc instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.

Returns:
❍ XST_SUCCESS if the buffer was successfully sent
❍ XST_DEVICE_IS_STOPPED if the ATM controller has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list

because a locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the

DMA channel believes there are no new descriptors to commit. If this is ever encountered, there
is likely a thread mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there
are to be multiple threads that can call it.

XStatus XAtmc_Start (XAtmc * InstancePtr)

Starts the ATM controller as follows:

● If not in polled mode enable interrupts
● Enable the transmitter
● Enable the receiver
● Start the DMA channels if the descriptor lists are not empty

It is necessary for the caller to connect the interrupt servive routine of the ATM controller to the interrupt
source, typically an interrupt controller, and enable the interrupt in the interrupt controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has not yet

been created for the send or receive channel.
❍ XST_DMA_SG_LIST_EMPTY iff configured for scatter-gather DMA and no buffer descriptors

have been put into the list for the receive channel.

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to start the device, the

user is required to provide protection of this shared data (typically using a semaphore).

XStatus XAtmc_Stop (XAtmc * InstancePtr)

Stops the ATM controller as follows:

● Stop the DMA channels (wait for acknowledgment of stop)
● Disable the transmitter and receiver
● Disable interrupts if not in polled mode

It is the callers responsibility to disconnect the interrupt handler of the ATM controller from the interrupt
source, typically an interrupt controller, and disable the interrupt in the interrupt controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to stop the device, the
user is required to provide protection of this shared data (typically using a semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

 XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
 AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
 SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
 OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
 APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
 THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
 AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
 FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
 WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
 IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
 REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
 INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 FOR A PARTICULAR PURPOSE.

 (c) Copyright 2003 Xilinx Inc.
 All rights reserved.

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

Xilinx Device Drivers Data Structures
Here are the data structures with brief descriptions:

XAtmc

XAtmc_Config

XAtmc_Stats

XEmac

XEmac_Config

XEmac_Stats

XEmc

XEmc_Config

XENV_TIME_STAMP

XFlash_Config

XFlashGeometry

XFlashPartID

XFlashProgCap

XFlashProperties

XFlashTag

XFlashTiming

XGemac

XGemac_Config

XGemac_SoftStats

XGemac_Stats

XGpio

XHdlc

XHdlc_Config

XHdlc_Stats

XIic

XIic_Config

XIicStats

XIntc

XIntc_Config

XOpb2Plb

XOpb2Plb_Config

XOpbArb

XOpbArb_Config

XPci

XPciError

XPlb2Opb

XPlb2Opb_Config

XPlbArb

XPlbArb_Config

XSpi

XSpi_Config

XSpi_Stats

XSysAce

XSysAce_CFParameters

XSysAce_Config

XTmrCtr

XTmrCtr_Config

XTmrCtrStats

XUartLite

XUartLite_Buffer

XUartLite_Config

XUartLite_Stats

XUartNs550

XUartNs550_Config

XUartNs550Format

XUartNs550Stats

XWdtTb

XWdtTb_Config

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

Xilinx Device Drivers File List
Here is a list of all documented files with brief descriptions:

atmc/v1_00_c/src/xatmc.c

atmc/v1_00_c/src/xatmc.h [code]

atmc/v1_00_c/src/xatmc_cfg.c

atmc/v1_00_c/src/xatmc_g.c

atmc/v1_00_c/src/xatmc_i.h [code]

atmc/v1_00_c/src/xatmc_l.c

atmc/v1_00_c/src/xatmc_l.h [code]

channel_fifo/v1_00_a/src/xchannel_fifo_v1_00_a.h [code]

common/v1_00_a/src/xbasic_types.c

common/v1_00_a/src/xbasic_types.h [code]

common/v1_00_a/src/xenv.h [code]

common/v1_00_a/src/xenv_linux.h [code]

common/v1_00_a/src/xenv_none.h [code]

common/v1_00_a/src/xenv_vxworks.h [code]

common/v1_00_a/src/xparameters.h [code]

common/v1_00_a/src/xstatus.h [code]

common/v1_00_a/src/xutil.h [code]

common/v1_00_a/src/xutil_memtest.c

cpu/v1_00_a/src/xio.c

cpu/v1_00_a/src/xio.h [code]

cpu_ppc405/v1_00_a/src/xio.c

cpu_ppc405/v1_00_a/src/xio.h [code]

cpu_ppc405/v1_00_a/src/xio_dcr.c

cpu_ppc405/v1_00_a/src/xio_dcr.h [code]

emac/v1_00_c/src/xemac.c

emac/v1_00_c/src/xemac.h [code]

emac/v1_00_c/src/xemac_g.c

emac/v1_00_c/src/xemac_i.h [code]

emac/v1_00_c/src/xemac_intr.c

emac/v1_00_c/src/xemac_intr_dma.c

emac/v1_00_c/src/xemac_intr_fifo.c

emac/v1_00_c/src/xemac_l.c

emac/v1_00_c/src/xemac_l.h [code]

emac/v1_00_c/src/xemac_multicast.c

emac/v1_00_c/src/xemac_options.c

emac/v1_00_c/src/xemac_phy.c

emac/v1_00_c/src/xemac_polled.c

emac/v1_00_c/src/xemac_selftest.c

emac/v1_00_c/src/xemac_stats.c

emaclite/v1_00_a/src/xemaclite_l.c

emaclite/v1_00_a/src/xemaclite_l.h [code]

emc/v1_00_a/src/xemc.c

emc/v1_00_a/src/xemc.h [code]

emc/v1_00_a/src/xemc_g.c

emc/v1_00_a/src/xemc_i.h [code]

emc/v1_00_a/src/xemc_l.h [code]

emc/v1_00_a/src/xemc_selftest.c

flash/v1_00_a/src/xflash.c

flash/v1_00_a/src/xflash.h [code]

flash/v1_00_a/src/xflash_cfi.c

flash/v1_00_a/src/xflash_cfi.h [code]

flash/v1_00_a/src/xflash_g.c

flash/v1_00_a/src/xflash_geometry.c

flash/v1_00_a/src/xflash_geometry.h [code]

flash/v1_00_a/src/xflash_intel.c

flash/v1_00_a/src/xflash_intel.h [code]

flash/v1_00_a/src/xflash_intel_l.c

flash/v1_00_a/src/xflash_intel_l.h [code]

flash/v1_00_a/src/xflash_properties.h [code]

gemac/v1_00_c/src/xgemac.c

gemac/v1_00_c/src/xgemac.h [code]

gemac/v1_00_c/src/xgemac_g.c

gemac/v1_00_c/src/xgemac_i.h [code]

gemac/v1_00_c/src/xgemac_intr.c

gemac/v1_00_c/src/xgemac_intr_dma.c

gemac/v1_00_c/src/xgemac_intr_fifo.c

gemac/v1_00_c/src/xgemac_l.h [code]

gemac/v1_00_c/src/xgemac_options.c

gemac/v1_00_c/src/xgemac_polled.c

gemac/v1_00_c/src/xgemac_selftest.c

gemac/v1_00_c/src/xgemac_stats.c

gpio/v1_00_a/src/xgpio.c

gpio/v1_00_a/src/xgpio.h [code]

gpio/v1_00_a/src/xgpio_extra.c

gpio/v1_00_a/src/xgpio_g.c

gpio/v1_00_a/src/xgpio_i.h [code]

gpio/v1_00_a/src/xgpio_l.h [code]

gpio/v1_00_a/src/xgpio_selftest.c

hdlc/v1_00_a/src/xhdlc.c

hdlc/v1_00_a/src/xhdlc.h [code]

hdlc/v1_00_a/src/xhdlc_dmasg.c

hdlc/v1_00_a/src/xhdlc_g.c

hdlc/v1_00_a/src/xhdlc_i.h [code]

hdlc/v1_00_a/src/xhdlc_l.c

hdlc/v1_00_a/src/xhdlc_l.h [code]

hdlc/v1_00_a/src/xhdlc_options.c

hdlc/v1_00_a/src/xhdlc_selftest.c

hdlc/v1_00_a/src/xhdlc_stats.c

iic/v1_01_c/src/xiic.c

iic/v1_01_c/src/xiic.h [code]

iic/v1_01_c/src/xiic_g.c

iic/v1_01_c/src/xiic_i.h [code]

iic/v1_01_c/src/xiic_intr.c

iic/v1_01_c/src/xiic_l.c

iic/v1_01_c/src/xiic_l.h [code]

iic/v1_01_c/src/xiic_master.c

iic/v1_01_c/src/xiic_multi_master.c

iic/v1_01_c/src/xiic_options.c

iic/v1_01_c/src/xiic_selftest.c

iic/v1_01_c/src/xiic_slave.c

iic/v1_01_c/src/xiic_stats.c

intc/v1_00_b/src/xintc.c

intc/v1_00_b/src/xintc.h [code]

intc/v1_00_b/src/xintc_g.c

intc/v1_00_b/src/xintc_i.h [code]

intc/v1_00_b/src/xintc_intr.c

intc/v1_00_b/src/xintc_l.c

intc/v1_00_b/src/xintc_l.h [code]

intc/v1_00_b/src/xintc_lg.c

intc/v1_00_b/src/xintc_options.c

intc/v1_00_b/src/xintc_selftest.c

opb2plb/v1_00_a/src/xopb2plb.c

opb2plb/v1_00_a/src/xopb2plb.h [code]

opb2plb/v1_00_a/src/xopb2plb_g.c

opb2plb/v1_00_a/src/xopb2plb_i.h [code]

opb2plb/v1_00_a/src/xopb2plb_l.h [code]

opb2plb/v1_00_a/src/xopb2plb_selftest.c

opbarb/v1_02_a/src/xopbarb.c

opbarb/v1_02_a/src/xopbarb.h [code]

opbarb/v1_02_a/src/xopbarb_g.c

opbarb/v1_02_a/src/xopbarb_l.h [code]

packet_fifo/v2_00_a/src/xpacket_fifo_v2_00_a.h [code]

pci/v1_00_a/src/xpci.h [code]

pci/v1_00_a/src/xpci_config.c

pci/v1_00_a/src/xpci_g.c

pci/v1_00_a/src/xpci_intr.c

pci/v1_00_a/src/xpci_l.h [code]

pci/v1_00_a/src/xpci_selftest.c

pci/v1_00_a/src/xpci_v3.c

plb2opb/v1_00_a/src/xplb2opb.c

plb2opb/v1_00_a/src/xplb2opb.h [code]

plb2opb/v1_00_a/src/xplb2opb_g.c

plb2opb/v1_00_a/src/xplb2opb_i.h [code]

plb2opb/v1_00_a/src/xplb2opb_l.h [code]

plb2opb/v1_00_a/src/xplb2opb_selftest.c

plbarb/v1_01_a/src/xplbarb.c

plbarb/v1_01_a/src/xplbarb.h [code]

plbarb/v1_01_a/src/xplbarb_g.c

plbarb/v1_01_a/src/xplbarb_i.h [code]

plbarb/v1_01_a/src/xplbarb_l.h [code]

plbarb/v1_01_a/src/xplbarb_selftest.c

ps2_ref/v1_00_a/src/xps2.c

ps2_ref/v1_00_a/src/xps2.h [code]

ps2_ref/v1_00_a/src/xps2_g.c

ps2_ref/v1_00_a/src/xps2_i.h [code]

ps2_ref/v1_00_a/src/xps2_intr.c

ps2_ref/v1_00_a/src/xps2_l.c

ps2_ref/v1_00_a/src/xps2_l.h [code]

ps2_ref/v1_00_a/src/xps2_options.c

ps2_ref/v1_00_a/src/xps2_stats.c

rapidio/v1_00_a/src/xrapidio_l.c

rapidio/v1_00_a/src/xrapidio_l.h [code]

spi/v1_00_b/src/xspi.c

spi/v1_00_b/src/xspi.h [code]

spi/v1_00_b/src/xspi_g.c

spi/v1_00_b/src/xspi_i.h [code]

spi/v1_00_b/src/xspi_l.h [code]

spi/v1_00_b/src/xspi_options.c

spi/v1_00_b/src/xspi_selftest.c

spi/v1_00_b/src/xspi_stats.c

sysace/v1_00_a/src/xsysace.c

sysace/v1_00_a/src/xsysace.h [code]

sysace/v1_00_a/src/xsysace_compactflash.c

sysace/v1_00_a/src/xsysace_g.c

sysace/v1_00_a/src/xsysace_intr.c

sysace/v1_00_a/src/xsysace_jtagcfg.c

sysace/v1_00_a/src/xsysace_l.c

sysace/v1_00_a/src/xsysace_l.h [code]

sysace/v1_00_a/src/xsysace_selftest.c

tmrctr/v1_00_b/src/xtmrctr.c

tmrctr/v1_00_b/src/xtmrctr.h [code]

tmrctr/v1_00_b/src/xtmrctr_g.c

tmrctr/v1_00_b/src/xtmrctr_i.h [code]

tmrctr/v1_00_b/src/xtmrctr_intr.c

tmrctr/v1_00_b/src/xtmrctr_l.c

tmrctr/v1_00_b/src/xtmrctr_l.h [code]

tmrctr/v1_00_b/src/xtmrctr_options.c

tmrctr/v1_00_b/src/xtmrctr_selftest.c

tmrctr/v1_00_b/src/xtmrctr_stats.c

touchscreen_ref/v1_00_a/src/xtouchscreen.c

touchscreen_ref/v1_00_a/src/xtouchscreen.h [code]

touchscreen_ref/v1_00_a/src/xtouchscreen_g.c

touchscreen_ref/v1_00_a/src/xtouchscreen_i.h [code]

touchscreen_ref/v1_00_a/src/xtouchscreen_intr.c

touchscreen_ref/v1_00_a/src/xtouchscreen_l.c

touchscreen_ref/v1_00_a/src/xtouchscreen_l.h [code]

uartlite/v1_00_b/src/xuartlite.c

uartlite/v1_00_b/src/xuartlite.h [code]

uartlite/v1_00_b/src/xuartlite_g.c

uartlite/v1_00_b/src/xuartlite_i.h [code]

uartlite/v1_00_b/src/xuartlite_intr.c

uartlite/v1_00_b/src/xuartlite_l.c

uartlite/v1_00_b/src/xuartlite_l.h [code]

uartlite/v1_00_b/src/xuartlite_selftest.c

uartlite/v1_00_b/src/xuartlite_stats.c

uartns550/v1_00_b/src/xuartns550.c

uartns550/v1_00_b/src/xuartns550.h [code]

uartns550/v1_00_b/src/xuartns550_format.c

uartns550/v1_00_b/src/xuartns550_g.c

uartns550/v1_00_b/src/xuartns550_i.h [code]

uartns550/v1_00_b/src/xuartns550_intr.c

uartns550/v1_00_b/src/xuartns550_l.c

uartns550/v1_00_b/src/xuartns550_l.h [code]

uartns550/v1_00_b/src/xuartns550_options.c

uartns550/v1_00_b/src/xuartns550_selftest.c

uartns550/v1_00_b/src/xuartns550_stats.c

wdttb/v1_00_b/src/xwdttb.c

wdttb/v1_00_b/src/xwdttb.h [code]

wdttb/v1_00_b/src/xwdttb_g.c

wdttb/v1_00_b/src/xwdttb_i.h [code]

wdttb/v1_00_b/src/xwdttb_l.h [code]

wdttb/v1_00_b/src/xwdttb_selftest.c

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

Xilinx Device Drivers Data Fields
a | b | c | d | e | f | h | i | l | m | n | p | r | s | t | u | v | w | x

Here is a list of all documented struct and union fields with links to the structures/unions they belong to:

- a -

● AbsoluteBlock : XFlashGeometry
● AbsoluteOffset : XFlashGeometry
● AckBeforeService : XIntc_Config
● ArbitrationLost : XIicStats
● AtmcInterrupts : XAtmc_Stats

- b -

● BaseAddr : XWdtTb_Config, XFlash_Config
● BaseAddress : XUartNs550_Config, XTmrCtr_Config, XSysAce_Config, XSpi_Config,

XPlbArb_Config, XPlb2Opb_Config, XOpbArb_Config, XOpb2Plb_Config, XIntc_Config,
XIic_Config, XHdlc_Config, XGemac_Config, XFlashGeometry, XEmac_Config,
XAtmc_Config

● BaudRate : XUartNs550Format, XUartLite_Config
● BufferSize : XSysAce_CFParameters
● BufferType : XSysAce_CFParameters
● BusBusy : XIicStats
● BytesTransferred : XSpi_Stats

- c -

● Capabilities : XSysAce_CFParameters
● CharactersReceived : XUartNs550Stats, XUartLite_Stats
● CharactersTransmitted : XUartNs550Stats, XUartLite_Stats

● CommandSet : XFlashPartID
● CurNumCylinders : XSysAce_CFParameters
● CurNumHeads : XSysAce_CFParameters
● CurSectorsPerCard : XSysAce_CFParameters
● CurSectorsPerTrack : XSysAce_CFParameters

- d -

● DataBits : XUartNs550Format, XUartLite_Config
● DblWord : XSysAce_CFParameters
● DeviceID : XFlashPartID
● DeviceId : XWdtTb_Config, XUartNs550_Config, XUartLite_Config, XTmrCtr_Config,

XSysAce_Config, XSpi_Config, XPlbArb_Config, XPlb2Opb_Config, XOpbArb_Config,
XOpb2Plb_Config, XIntc_Config, XIic_Config, XHdlc_Config, XGemac_Config,
XFlash_Config, XEmc_Config, XEmac_Config, XAtmc_Config

● DeviceSize : XFlashGeometry
● DmaErrors : XHdlc_Stats, XGemac_SoftStats, XGemac_Stats, XEmac_Stats, XAtmc_Stats
● DmaMode : XSysAce_CFParameters
● DmaRegBaseAddr : XPci
● DmaType : XPci

- e -

● EmacInterrupts : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● EraseBlock_Ms : XFlashTiming
● EraseChip_Ms : XFlashTiming
● EraseQueueSize : XFlashProgCap

- f -

● FifoErrors : XHdlc_Stats, XGemac_SoftStats, XGemac_Stats, XEmac_Stats, XAtmc_Stats
● FwVersion : XSysAce_CFParameters

- h -

● Has10BitAddr : XIic_Config
● HasCounters : XEmac_Config
● HasFifos : XSpi_Config

● HasMii : XGemac_Config, XEmac_Config
● HdlcInterrupts : XHdlc_Stats

- i -

● IicInterrupts : XIicStats
● InputClockHz : XUartNs550_Config
● Interrupts : XTmrCtrStats
● IpIfDmaConfig : XHdlc_Config, XGemac_Config, XEmac_Config, XAtmc_Config
● IsError : XPciError
● IsReady : XPci

- l -

● LbaSectors : XSysAce_CFParameters
● LocalBusReadAddr : XPciError
● LocalBusReason : XPciError
● LocalBusWriteAddr : XPciError

- m -

● ManufacturerID : XFlashPartID
● MaxSectors : XSysAce_CFParameters
● MemoryLayout : XFlashGeometry
● ModeFaults : XSpi_Stats
● ModelNo : XSysAce_CFParameters
● ModemInterrupts : XUartNs550Stats
● MultipleSectors : XSysAce_CFParameters

- n -

● NumBanks : XEmc_Config
● Number : XFlashGeometry
● NumBlocks : XFlashGeometry
● NumBytesPerSector : XSysAce_CFParameters
● NumBytesPerTrack : XSysAce_CFParameters
● NumCylinders : XSysAce_CFParameters
● NumEccBytes : XSysAce_CFParameters

● NumEraseRegions : XFlashGeometry
● NumHeads : XSysAce_CFParameters
● NumInterrupts : XSpi_Stats
● NumMasters : XPlbArb_Config, XPlb2Opb_Config, XOpbArb_Config
● NumParts : XFlash_Config
● NumSectorsPerCard : XSysAce_CFParameters
● NumSectorsPerTrack : XSysAce_CFParameters
● NumSlaveBits : XSpi_Config

- p -

● Parity : XUartNs550Format
● ParityOdd : XUartLite_Config
● PartID : XFlashProperties
● PartMode : XFlash_Config
● PartWidth : XFlash_Config
● PciReadAddr : XPciError
● PciReason : XPciError
● PciSerrReadAddr : XPciError
● PciSerrReason : XPciError
● PciSerrWriteAddr : XPciError
● PciWriteAddr : XPciError
● PioMode : XSysAce_CFParameters
● PowerDesc : XSysAce_CFParameters
● ProgCap : XFlashProperties

- r -

● ReceiveBreakDetected : XUartNs550Stats
● ReceiveFifoSize : XHdlc_Config
● ReceiveFramingErrors : XUartNs550Stats, XUartLite_Stats
● ReceiveInterrupts : XUartNs550Stats, XUartLite_Stats
● ReceiveOverrunErrors : XUartNs550Stats, XUartLite_Stats
● ReceiveParityErrors : XUartNs550Stats, XUartLite_Stats
● RecvAbortedFrames : XHdlc_Stats
● RecvAlignmentErrors : XHdlc_Stats, XEmac_Stats
● RecvBytes : XIicStats, XHdlc_Stats, XGemac_Stats, XEmac_Stats
● RecvBytesMSL : XGemac_Stats

● RecvCells : XAtmc_Stats
● RecvCollisionErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvCollisionErrorsMSL : XGemac_Stats
● RecvFcsErrors : XHdlc_Stats, XGemac_Stats, XEmac_Stats
● RecvFcsErrorsMSL : XGemac_Stats
● RecvFrames : XHdlc_Stats, XGemac_Stats, XEmac_Stats
● RecvFramesMSL : XGemac_Stats
● RecvHecErrors : XAtmc_Stats
● RecvInterrupts : XIicStats, XHdlc_Stats, XGemac_SoftStats, XGemac_Stats, XEmac_Stats,

XAtmc_Stats
● RecvLengthFieldErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvLongCells : XAtmc_Stats
● RecvLongErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvMissedFrameErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvOverrunErrors : XHdlc_Stats, XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvOverruns : XSpi_Stats
● RecvParityErrors : XAtmc_Stats
● RecvShortCells : XAtmc_Stats
● RecvShortErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvUnderrunErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● RecvUnexpectedHeaders : XAtmc_Stats
● RegBaseAddr : XUartLite_Config, XPci, XEmc_Config
● RepeatedStarts : XIicStats

- s -

● SecurityStatus : XSysAce_CFParameters
● SendBytes : XIicStats
● SendInterrupts : XIicStats
● SerialNo : XSysAce_CFParameters
● Signature : XSysAce_CFParameters
● Size : XFlashGeometry
● SlaveModeFaults : XSpi_Stats
● SlaveOnly : XSpi_Config
● SlotLengthErrors : XGemac_SoftStats, XGemac_Stats
● StatusInterrupts : XUartNs550Stats
● StopBits : XUartNs550Format

- t -

● TimeMax : XFlashProperties
● TimeTypical : XFlashProperties
● TotalIntrs : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● TranslationValid : XSysAce_CFParameters
● TransmitFifoSize : XHdlc_Config
● TransmitInterrupts : XUartNs550Stats, XUartLite_Stats
● TxErrors : XIicStats

- u -

● UseParity : XUartLite_Config

- v -

● VendorUnique : XSysAce_CFParameters
● VendorUniqueBytes : XSysAce_CFParameters

- w -

● WriteBuffer_Us : XFlashTiming
● WriteBufferAlignmentMask : XFlashProgCap
● WriteBufferSize : XFlashProgCap
● WriteSingle_Us : XFlashTiming

- x -

● XmitBytes : XHdlc_Stats, XGemac_Stats, XEmac_Stats
● XmitBytesMSL : XGemac_Stats
● XmitCells : XAtmc_Stats
● XmitExcessDeferral : XGemac_Stats, XEmac_Stats
● XmitExcessDeferralMSL : XGemac_Stats
● XmitFrames : XHdlc_Stats, XGemac_Stats, XEmac_Stats
● XmitFramesMSL : XGemac_Stats
● XmitInterrupts : XHdlc_Stats, XGemac_SoftStats, XGemac_Stats, XEmac_Stats,

XAtmc_Stats
● XmitLateCollisionErrors : XGemac_Stats, XEmac_Stats

● XmitLateCollisionErrorsMSL : XGemac_Stats
● XmitOverrunErrors : XGemac_SoftStats, XGemac_Stats, XEmac_Stats
● XmitUnderrunErrors : XGemac_Stats, XEmac_Stats
● XmitUnderrunErrorsMSL : XGemac_Stats
● XmitUnderruns : XSpi_Stats

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

Xilinx Device Drivers Globals
l | x

Here is a list of all documented functions, variables, defines, enums, and typedefs with links to the
documentation:

- l -

● LOOPBACK_BYTE_COUNT : xhdlc_selftest.c

- x -

● XAssert() : xbasic_types.h, xbasic_types.c
● XASSERT_NONVOID : xbasic_types.h
● XASSERT_NONVOID_ALWAYS : xbasic_types.h
● XASSERT_VOID : xbasic_types.h
● XASSERT_VOID_ALWAYS : xbasic_types.h
● XAssertCallback : xbasic_types.h
● XAssertSetCallback() : xbasic_types.h, xbasic_types.c
● XAssertStatus : xbasic_types.h, xbasic_types.c
● XAT_CELL_STATUS_BAD_HEC : xatmc.h
● XAT_CELL_STATUS_BAD_PARITY : xatmc.h
● XAT_CELL_STATUS_LONG : xatmc.h
● XAT_CELL_STATUS_NO_ERROR : xatmc.h
● XAT_CELL_STATUS_SHORT : xatmc.h
● XAT_CELL_STATUS_VXI_MISMATCH : xatmc.h
● XAT_DISCARD_HEC_OPTION : xatmc.h
● XAT_DISCARD_LONG_OPTION : xatmc.h
● XAT_DISCARD_PARITY_OPTION : xatmc.h
● XAT_DISCARD_SHORT_OPTION : xatmc.h
● XAT_DISCARD_VXI_OPTION : xatmc.h
● XAT_LOOPBACK_OPTION : xatmc.h

● XAT_NO_SEND_PARITY_OPTION : xatmc.h
● XAT_PAYLOAD_ONLY_OPTION : xatmc.h
● XAT_POLLED_OPTION : xatmc.h
● XAtmc_ClearStats() : xatmc_cfg.c, xatmc.h
● XAtmc_ConfigTable : xatmc_i.h, xatmc_g.c
● XAtmc_ErrorHandler : xatmc.h
● XAtmc_GetHeader() : xatmc_cfg.c, xatmc.h
● XAtmc_GetOptions() : xatmc_cfg.c, xatmc.h
● XAtmc_GetPhyAddress() : xatmc_cfg.c, xatmc.h
● XAtmc_GetPktThreshold() : xatmc_cfg.c, xatmc.h
● XAtmc_GetPktWaitBound() : xatmc_cfg.c, xatmc.h
● XAtmc_GetStats() : xatmc_cfg.c, xatmc.h
● XAtmc_GetUserDefined() : xatmc_cfg.c, xatmc.h
● XAtmc_Initialize() : xatmc_cfg.c, xatmc.h
● XAtmc_InterruptHandler() : xatmc.h, xatmc.c
● XAtmc_LookupConfig() : xatmc_cfg.c, xatmc.h
● XAtmc_mDisable : xatmc_l.h
● XAtmc_mEnable : xatmc_l.h
● XAtmc_mIsRxEmpty : xatmc_l.h
● XAtmc_mIsSgDma : xatmc_i.h
● XAtmc_mIsTxDone : xatmc_l.h
● XAtmc_mReadReg : xatmc_l.h
● XAtmc_mWriteReg : xatmc_l.h
● XAtmc_PollRecv() : xatmc.h, xatmc.c
● XAtmc_PollSend() : xatmc.h, xatmc.c
● XAtmc_RecvCell() : xatmc_l.h, xatmc_l.c
● XAtmc_Reset() : xatmc_cfg.c, xatmc.h
● XAtmc_SelfTest() : xatmc_cfg.c, xatmc.h
● XAtmc_SendCell() : xatmc_l.h, xatmc_l.c
● XAtmc_SetErrorHandler() : xatmc_cfg.c, xatmc.h
● XAtmc_SetHeader() : xatmc_cfg.c, xatmc.h
● XAtmc_SetOptions() : xatmc_cfg.c, xatmc.h
● XAtmc_SetPhyAddress() : xatmc_cfg.c, xatmc.h
● XAtmc_SetPktThreshold() : xatmc_cfg.c, xatmc.h
● XAtmc_SetPktWaitBound() : xatmc_cfg.c, xatmc.h
● XAtmc_SetSgRecvHandler() : xatmc_cfg.c, xatmc.h
● XAtmc_SetSgRecvSpace() : xatmc_cfg.c, xatmc.h
● XAtmc_SetSgSendHandler() : xatmc_cfg.c, xatmc.h

● XAtmc_SetSgSendSpace() : xatmc_cfg.c, xatmc.h
● XAtmc_SetUserDefined() : xatmc_cfg.c, xatmc.h
● XAtmc_SgGetRecvCell() : xatmc.h, xatmc.c
● XAtmc_SgGetSendCell() : xatmc.h, xatmc.c
● XAtmc_SgHandler : xatmc.h
● XAtmc_SgRecv() : xatmc.h, xatmc.c
● XAtmc_SgSend() : xatmc.h, xatmc.c
● XAtmc_Start() : xatmc_cfg.c, xatmc.h
● XAtmc_Stop() : xatmc_cfg.c, xatmc.h
● Xboolean : xbasic_types.h
● XEM_BROADCAST_OPTION : xemac.h
● XEM_FDUPLEX_OPTION : xemac.h
● XEM_FLOW_CONTROL_OPTION : xemac.h
● XEM_INSERT_ADDR_OPTION : xemac.h
● XEM_INSERT_FCS_OPTION : xemac.h
● XEM_INSERT_PAD_OPTION : xemac.h
● XEM_LOOPBACK_OPTION : xemac.h
● XEM_OVWRT_ADDR_OPTION : xemac.h
● XEM_POLLED_OPTION : xemac.h
● XEM_PROMISC_OPTION : xemac.h
● XEM_STRIP_PAD_FCS_OPTION : xemac.h
● XEM_UNICAST_OPTION : xemac.h
● XEmac_ClearStats() : xemac_stats.c, xemac.h
● XEmac_ConfigTable : xemac_i.h, xemac_g.c
● XEmac_ErrorHandler : xemac.h
● XEmac_FifoHandler : xemac.h
● XEmac_FifoRecv() : xemac_intr_fifo.c, xemac.h
● XEmac_FifoSend() : xemac_intr_fifo.c, xemac.h
● XEmac_GetInterframeGap() : xemac_options.c, xemac.h
● XEmac_GetMacAddress() : xemac.h, xemac.c
● XEmac_GetOptions() : xemac_options.c, xemac.h
● XEmac_GetPktThreshold() : xemac_intr_dma.c, xemac.h
● XEmac_GetPktWaitBound() : xemac_intr_dma.c, xemac.h
● XEmac_GetStats() : xemac_stats.c, xemac.h
● XEmac_Initialize() : xemac.h, xemac.c
● XEmac_IntrHandlerDma() : xemac_intr_dma.c, xemac.h
● XEmac_IntrHandlerFifo() : xemac_intr_fifo.c, xemac.h
● XEmac_LookupConfig() : xemac.h, xemac.c

● XEmac_mDisable : xemac_l.h
● XEmac_mEnable : xemac_l.h
● XEmac_mIsDma : xemac.h
● XEmac_mIsRxEmpty : xemac_l.h
● XEmac_mIsSgDma : xemac.h
● XEmac_mIsSimpleDma : xemac.h
● XEmac_mIsTxDone : xemac_l.h
● XEmac_mPhyReset : xemac_l.h
● XEmac_mReadReg : xemac_l.h
● XEmac_mSetControlReg : xemac_l.h
● XEmac_mSetMacAddress : xemac_l.h
● XEmac_MulticastAdd() : xemac_multicast.c, xemac.h
● XEmac_MulticastClear() : xemac_multicast.c, xemac.h
● XEmac_mWriteReg : xemac_l.h
● XEmac_PhyRead() : xemac_phy.c, xemac.h
● XEmac_PhyWrite() : xemac_phy.c, xemac.h
● XEmac_PollRecv() : xemac_polled.c, xemac.h
● XEmac_PollSend() : xemac_polled.c, xemac.h
● XEmac_RecvFrame() : xemac_l.h, xemac_l.c
● XEmac_Reset() : xemac.h, xemac.c
● XEmac_SelfTest() : xemac_selftest.c, xemac.h
● XEmac_SendFrame() : xemac_l.h, xemac_l.c
● XEmac_SetErrorHandler() : xemac_intr.c, xemac.h
● XEmac_SetFifoRecvHandler() : xemac_intr_fifo.c, xemac.h
● XEmac_SetFifoSendHandler() : xemac_intr_fifo.c, xemac.h
● XEmac_SetInterframeGap() : xemac_options.c, xemac.h
● XEmac_SetMacAddress() : xemac.h, xemac.c
● XEmac_SetOptions() : xemac_options.c, xemac.h
● XEmac_SetPktThreshold() : xemac_intr_dma.c, xemac.h
● XEmac_SetPktWaitBound() : xemac_intr_dma.c, xemac.h
● XEmac_SetSgRecvHandler() : xemac_intr_dma.c, xemac.h
● XEmac_SetSgRecvSpace() : xemac_intr_dma.c, xemac.h
● XEmac_SetSgSendHandler() : xemac_intr_dma.c, xemac.h
● XEmac_SetSgSendSpace() : xemac_intr_dma.c, xemac.h
● XEmac_SgHandler : xemac.h
● XEmac_SgRecv() : xemac_intr_dma.c, xemac.h
● XEmac_SgSend() : xemac_intr_dma.c, xemac.h
● XEmac_Start() : xemac.h, xemac.c

● XEmac_Stop() : xemac.h, xemac.c
● XEmacLite_mIsRxEmpty : xemaclite_l.h
● XEmacLite_mIsTxDone : xemaclite_l.h
● XEmacLite_RecvFrame() : xemaclite_l.h, xemaclite_l.c
● XEmacLite_SendFrame() : xemaclite_l.h, xemaclite_l.c
● XEmacLite_SetMacAddress() : xemaclite_l.h, xemaclite_l.c
● XEmc_GetAccessSpeed() : xemc.h, xemc.c
● XEmc_GetPageMode() : xemc.h, xemc.c
● XEmc_Initialize() : xemc.h, xemc.c
● XEmc_LookupConfig() : xemc.h, xemc.c
● XEmc_mDisableFastAccess : xemc_l.h
● XEmc_mDisablePageMode : xemc_l.h
● XEmc_mEnableFastAccess : xemc_l.h
● XEmc_mEnablePageMode : xemc_l.h
● XEmc_mGetControlReg : xemc_l.h
● XEmc_mGetOffset : xemc_l.h
● XEmc_mSetControlReg : xemc_l.h
● XEmc_SelfTest() : xemc_selftest.c, xemc.h
● XEmc_SetAccessSpeed() : xemc.h, xemc.c
● XEmc_SetPageMode() : xemc.h, xemc.c
● XENV_MEM_COPY : xenv_vxworks.h, xenv_none.h, xenv_linux.h
● XENV_MEM_FILL : xenv_vxworks.h, xenv_none.h, xenv_linux.h
● XENV_TIME_STAMP : xenv_none.h, xenv_linux.h
● XENV_TIME_STAMP_DELTA_MS : xenv_vxworks.h, xenv_none.h, xenv_linux.h
● XENV_TIME_STAMP_DELTA_US : xenv_vxworks.h, xenv_none.h, xenv_linux.h
● XENV_TIME_STAMP_GET : xenv_vxworks.h, xenv_none.h, xenv_linux.h
● XENV_USLEEP : xenv_vxworks.h, xenv_none.h, xenv_linux.h
● XFALSE : xbasic_types.h
● XFL_CFI_ADVANCE_PTR16 : xflash_cfi.h
● XFL_CFI_ADVANCE_PTR8 : xflash_cfi.h
● XFL_CFI_POSITION_PTR : xflash_cfi.h
● XFL_CFI_READ16 : xflash_cfi.h
● XFL_CFI_READ8 : xflash_cfi.h
● XFL_GEOMETRY_BLOCK_DIFF : xflash_geometry.h
● XFL_GEOMETRY_BLOCKS_LEFT : xflash_geometry.h
● XFL_GEOMETRY_INCREMENT : xflash_geometry.h
● XFL_GEOMETRY_IS_ABSOLUTE_VALID : xflash_geometry.h
● XFL_GEOMETRY_IS_BLOCK_VALID : xflash_geometry.h

● XFL_MANUFACTURER_ID_INTEL : xflash.h
● XFL_MAX_ERASE_REGIONS : xflash_geometry.h
● XFL_NON_BLOCKING_ERASE_OPTION : xflash.h
● XFL_NON_BLOCKING_WRITE_OPTION : xflash.h
● XFlash : xflash.h
● XFlash_ConfigTable : xflash_g.c
● XFlash_DeviceControl() : xflash.h, xflash.c
● XFlash_Erase() : xflash.h, xflash.c
● XFlash_EraseBlock() : xflash.h, xflash.c
● XFlash_EraseBlockResume() : xflash.h, xflash.c
● XFlash_EraseBlockSuspend() : xflash.h, xflash.c
● XFlash_EraseChip() : xflash.h, xflash.c
● XFlash_EraseResume() : xflash.h, xflash.c
● XFlash_EraseSuspend() : xflash.h, xflash.c
● XFlash_GetBlockStatus() : xflash.h, xflash.c
● XFlash_GetGeometry() : xflash.h, xflash.c
● XFlash_GetOptions() : xflash.h, xflash.c
● XFlash_GetProperties() : xflash.h, xflash.c
● XFlash_GetStatus() : xflash.h, xflash.c
● XFlash_Initialize() : xflash.h, xflash.c
● XFlash_IsReady() : xflash.c
● XFlash_Lock() : xflash.h, xflash.c
● XFlash_LockBlock() : xflash.h, xflash.c
● XFlash_LookupConfig() : xflash.h, xflash.c
● XFlash_Read() : xflash.h, xflash.c
● XFlash_ReadBlock() : xflash.h, xflash.c
● XFlash_Reset() : xflash.h, xflash.c
● XFlash_SelfTest() : xflash.h, xflash.c
● XFlash_SetOptions() : xflash.h, xflash.c
● XFlash_Unlock() : xflash.h, xflash.c
● XFlash_UnlockBlock() : xflash.h, xflash.c
● XFlash_Write() : xflash.h, xflash.c
● XFlash_WriteBlock() : xflash.h, xflash.c
● XFlash_WriteBlockResume() : xflash.h, xflash.c
● XFlash_WriteBlockSuspend() : xflash.h, xflash.c
● XFlash_WriteResume() : xflash.h, xflash.c
● XFlash_WriteSuspend() : xflash.h, xflash.c
● XFlashCFI_ReadCommon() : xflash_cfi.h, xflash_cfi.c

● XFlashGeometry_ConvertLayout() : xflash_geometry.h, xflash_geometry.c
● XFlashGeometry_ToAbsolute() : xflash_geometry.h, xflash_geometry.c
● XFlashGeometry_ToBlock() : xflash_geometry.h, xflash_geometry.c
● XFlashIntel_DeviceControl() : xflash_intel.h, xflash_intel.c
● XFlashIntel_Erase() : xflash_intel.h, xflash_intel.c
● XFlashIntel_EraseAddr() : xflash_intel_l.h, xflash_intel_l.c
● XFlashIntel_EraseBlock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_EraseBlockResume() : xflash_intel.h, xflash_intel.c
● XFlashIntel_EraseBlockSuspend() : xflash_intel.h, xflash_intel.c
● XFlashIntel_EraseChip() : xflash_intel.h, xflash_intel.c
● XFlashIntel_EraseResume() : xflash_intel.h, xflash_intel.c
● XFlashIntel_EraseSuspend() : xflash_intel.h, xflash_intel.c
● XFlashIntel_GetBlockStatus() : xflash_intel.h, xflash_intel.c
● XFlashIntel_GetGeometry() : xflash_intel.h, xflash_intel.c
● XFlashIntel_GetOptions() : xflash_intel.h, xflash_intel.c
● XFlashIntel_GetProperties() : xflash_intel.h, xflash_intel.c
● XFlashIntel_GetStatus() : xflash_intel.h, xflash_intel.c
● XFlashIntel_Initialize() : xflash_intel.h, xflash_intel.c
● XFlashIntel_Lock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_LockAddr() : xflash_intel_l.h, xflash_intel_l.c
● XFlashIntel_LockBlock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_mSendCmd : xflash_intel_l.h
● XFlashIntel_Read() : xflash_intel.h, xflash_intel.c
● XFlashIntel_ReadAddr() : xflash_intel_l.h, xflash_intel_l.c
● XFlashIntel_ReadBlock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_Reset() : xflash_intel.h, xflash_intel.c
● XFlashIntel_SelfTest() : xflash_intel.h, xflash_intel.c
● XFlashIntel_SetOptions() : xflash_intel.h, xflash_intel.c
● XFlashIntel_Unlock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_UnlockAddr() : xflash_intel_l.h, xflash_intel_l.c
● XFlashIntel_UnlockBlock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_WaitReady() : xflash_intel_l.h, xflash_intel_l.c
● XFlashIntel_Write() : xflash_intel.h, xflash_intel.c
● XFlashIntel_WriteAddr() : xflash_intel_l.h, xflash_intel_l.c
● XFlashIntel_WriteBlock() : xflash_intel.h, xflash_intel.c
● XFlashIntel_WriteBlockResume() : xflash_intel.h, xflash_intel.c
● XFlashIntel_WriteBlockSuspend() : xflash_intel.h, xflash_intel.c
● XFlashIntel_WriteResume() : xflash_intel.h, xflash_intel.c

● XFlashIntel_WriteSuspend() : xflash_intel.h, xflash_intel.c
● Xfloat32 : xbasic_types.h
● Xfloat64 : xbasic_types.h
● XGE_AUTO_NEGOTIATE_OPTION : xgemac.h
● XGE_BROADCAST_OPTION : xgemac.h
● XGE_FDUPLEX_OPTION : xgemac.h
● XGE_FLOW_CONTROL_OPTION : xgemac.h
● XGE_INSERT_FCS_OPTION : xgemac.h
● XGE_INSERT_PAD_OPTION : xgemac.h
● XGE_LOOPBACK_OPTION : xgemac.h
● XGE_POLLED_OPTION : xgemac.h
● XGE_PROMISC_OPTION : xgemac.h
● XGE_STRIP_PAD_FCS_OPTION : xgemac.h
● XGE_UNICAST_OPTION : xgemac.h
● XGemac_ClearStats() : xgemac_stats.c, xgemac.h
● XGemac_ConfigTable : xgemac_i.h, xgemac_g.c
● XGemac_ErrorHandler : xgemac.h
● XGemac_FifoHandler : xgemac.h
● XGemac_FifoRecv() : xgemac_intr_fifo.c, xgemac.h
● XGemac_FifoSend() : xgemac_intr_fifo.c, xgemac.h
● XGemac_GetInterframeGap() : xgemac_options.c, xgemac.h
● XGemac_GetMacAddress() : xgemac.h, xgemac.c
● XGemac_GetOptions() : xgemac_options.c, xgemac.h
● XGemac_GetPktThreshold() : xgemac_intr_dma.c, xgemac.h
● XGemac_GetPktWaitBound() : xgemac_intr_dma.c, xgemac.h
● XGemac_GetStats() : xgemac_stats.c, xgemac.h
● XGemac_Initialize() : xgemac.h, xgemac.c
● XGemac_IntrHandlerDma() : xgemac_intr_dma.c, xgemac.h
● XGemac_IntrHandlerFifo() : xgemac_intr_fifo.c, xgemac.h
● XGemac_LookupConfig() : xgemac.h, xgemac.c
● XGemac_mDisable : xgemac_l.h
● XGemac_mEnable : xgemac_l.h
● XGemac_mIsDma : xgemac.h
● XGemac_mIsRxEmpty : xgemac_l.h
● XGemac_mIsSgDma : xgemac.h
● XGemac_mIsSimpleDma : xgemac.h
● XGemac_mIsTxDone : xgemac_l.h
● XGemac_mPhyReset : xgemac_l.h

● XGemac_mReadReg : xgemac_l.h
● XGemac_mSetControlReg : xgemac_l.h
● XGemac_mSetMacAddress : xgemac_l.h
● XGemac_mWriteReg : xgemac_l.h
● XGemac_PollRecv() : xgemac_polled.c, xgemac.h
● XGemac_PollSend() : xgemac_polled.c, xgemac.h
● XGemac_Reset() : xgemac.h, xgemac.c
● XGemac_SelfTest() : xgemac_selftest.c, xgemac.h
● XGemac_SetErrorHandler() : xgemac_intr.c, xgemac.h
● XGemac_SetFifoRecvHandler() : xgemac_intr_fifo.c, xgemac.h
● XGemac_SetFifoSendHandler() : xgemac_intr_fifo.c, xgemac.h
● XGemac_SetInterframeGap() : xgemac_options.c, xgemac.h
● XGemac_SetMacAddress() : xgemac.h, xgemac.c
● XGemac_SetOptions() : xgemac_options.c, xgemac.h
● XGemac_SetPktThreshold() : xgemac_intr_dma.c, xgemac.h
● XGemac_SetPktWaitBound() : xgemac_intr_dma.c, xgemac.h
● XGemac_SetSgRecvHandler() : xgemac_intr_dma.c, xgemac.h
● XGemac_SetSgRecvSpace() : xgemac_intr_dma.c, xgemac.h
● XGemac_SetSgSendHandler() : xgemac_intr_dma.c, xgemac.h
● XGemac_SetSgSendSpace() : xgemac_intr_dma.c, xgemac.h
● XGemac_SgHandler : xgemac.h
● XGemac_SgRecv() : xgemac_intr_dma.c, xgemac.h
● XGemac_SgSend() : xgemac_intr_dma.c, xgemac.h
● XGemac_Start() : xgemac.h, xgemac.c
● XGemac_Stop() : xgemac.h, xgemac.c
● XGpio_ConfigTable : xgpio_i.h, xgpio_g.c
● XGPIO_DATA_OFFSET : xgpio_l.h
● XGpio_DiscreteClear() : xgpio_extra.c, xgpio.h
● XGpio_DiscreteRead() : xgpio.h, xgpio.c
● XGpio_DiscreteSet() : xgpio_extra.c, xgpio.h
● XGpio_DiscreteWrite() : xgpio.h, xgpio.c
● XGpio_Initialize() : xgpio.h, xgpio.c
● XGpio_LookupConfig() : xgpio.h, xgpio.c
● XGpio_mGetDataReg : xgpio_l.h
● XGpio_mReadReg : xgpio_l.h
● XGpio_mSetDataReg : xgpio_l.h
● XGpio_mWriteReg : xgpio_l.h
● XGpio_SelfTest() : xgpio_selftest.c, xgpio.h

● XGpio_SetDataDirection() : xgpio.h, xgpio.c
● XGPIO_TRI_OFFSET : xgpio_l.h
● XHD_OPTION_CRC_32 : xhdlc.h
● XHD_OPTION_CRC_DISABLE : xhdlc.h
● XHD_OPTION_LOOPBACK : xhdlc.h
● XHD_OPTION_POLLED : xhdlc.h
● XHD_OPTION_RX_16_ADDR : xhdlc.h
● XHD_OPTION_RX_BROADCAST : xhdlc.h
● XHD_OPTION_RX_FILTER_ADDR : xhdlc.h
● XHD_OPTION_RX_REMOVE_ADDR : xhdlc.h
● XHdlc_ClearStats() : xhdlc_stats.c, xhdlc.h
● XHdlc_ConfigTable : xhdlc_i.h, xhdlc_g.c
● XHdlc_ErrorHandler : xhdlc.h
● XHdlc_GetAddress() : xhdlc_options.c, xhdlc.h
● XHdlc_GetOptions() : xhdlc_options.c, xhdlc.h
● XHdlc_GetStats() : xhdlc_stats.c, xhdlc.h
● XHdlc_Initialize() : xhdlc.h, xhdlc.c
● XHdlc_InterruptHandler() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_LookupConfig() : xhdlc.h, xhdlc.c
● XHdlc_mDisable : xhdlc_l.h
● XHdlc_mEnable : xhdlc_l.h
● XHdlc_mReadReg : xhdlc_l.h
● XHdlc_mSetAddressReg : xhdlc_l.h
● XHdlc_mSetRxControlReg : xhdlc_l.h
● XHdlc_mSetTxControlReg : xhdlc_l.h
● XHdlc_mWriteReg : xhdlc_l.h
● XHdlc_Recv() : xhdlc.h, xhdlc.c
● XHdlc_RecvFrame() : xhdlc_l.h, xhdlc_l.c
● XHdlc_Reset() : xhdlc.h, xhdlc.c
● XHdlc_SelfTest() : xhdlc_selftest.c, xhdlc.h
● XHdlc_Send() : xhdlc.h, xhdlc.c
● XHdlc_SendFrame() : xhdlc_l.h, xhdlc_l.c
● XHdlc_SetAddress() : xhdlc_options.c, xhdlc.h
● XHdlc_SetErrorHandler() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SetOptions() : xhdlc_options.c, xhdlc.h
● XHdlc_SetSgRecvHandler() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SetSgRecvSpace() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SetSgSendHandler() : xhdlc_dmasg.c, xhdlc.h

● XHdlc_SetSgSendSpace() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SgGetRecvFrame() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SgGetSendFrame() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SgHandler : xhdlc.h
● XHdlc_SgRecv() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_SgSend() : xhdlc_dmasg.c, xhdlc.h
● XHdlc_Start() : xhdlc.h, xhdlc.c
● XHdlc_Stop() : xhdlc.h, xhdlc.c
● XII_ADDR_TO_RESPOND_TYPE : xiic.h
● XII_ADDR_TO_SEND_TYPE : xiic.h
● XII_ARB_LOST_EVENT : xiic.h
● XII_BUS_NOT_BUSY_EVENT : xiic.h
● XII_GENERAL_CALL_EVENT : xiic.h
● XII_GENERAL_CALL_OPTION : xiic.h
● XII_MASTER_READ_EVENT : xiic.h
● XII_MASTER_WRITE_EVENT : xiic.h
● XII_REPEATED_START_OPTION : xiic.h
● XII_SEND_10_BIT_OPTION : xiic.h
● XII_SLAVE_NO_ACK_EVENT : xiic.h
● XIic_ClearStats() : xiic_stats.c, xiic.h
● XIic_ConfigTable : xiic_i.h, xiic_g.c
● XIic_GetAddress() : xiic.h, xiic.c
● XIic_GetOptions() : xiic_options.c, xiic.h
● XIic_GetStats() : xiic_stats.c, xiic.h
● XIic_Handler : xiic.h
● XIic_Initialize() : xiic.h, xiic.c
● XIic_InterruptHandler() : xiic_intr.c, xiic.h
● XIic_IsSlave() : xiic.c
● XIic_LookupConfig() : xiic.h, xiic.c
● XIic_MasterRecv() : xiic_master.c, xiic.h
● XIic_MasterSend() : xiic_master.c, xiic.h
● XIic_MultiMasterInclude() : xiic_multi_master.c, xiic.h
● XIic_Recv() : xiic_l.h, xiic_l.c
● XIic_Reset() : xiic.h, xiic.c
● XIic_SelfTest() : xiic_selftest.c, xiic.h
● XIic_Send() : xiic_l.h, xiic_l.c
● XIic_SetAddress() : xiic.h, xiic.c
● XIic_SetOptions() : xiic_options.c, xiic.h

● XIic_SetRecvHandler() : xiic.h, xiic.c
● XIic_SetSendHandler() : xiic.h, xiic.c
● XIic_SetStatusHandler() : xiic.h, xiic.c
● XIic_Start() : xiic.h, xiic.c
● XIic_StatusHandler : xiic.h
● XIic_Stop() : xiic.h, xiic.c
● XIN_REAL_MODE : xintc.h
● XIN_SIMULATION_MODE : xintc.h
● XIN_SVC_ALL_ISRS_OPTION : xintc.h
● XIN_SVC_SGL_ISR_OPTION : xintc.h
● Xint16 : xbasic_types.h
● Xint32 : xbasic_types.h
● Xint8 : xbasic_types.h
● XIntc_Acknowledge() : xintc.h, xintc.c
● XIntc_ConfigTable : xintc_i.h, xintc_g.c
● XIntc_Connect() : xintc.h, xintc.c
● XIntc_DefaultHandler() : xintc_l.h, xintc_l.c
● XIntc_Disable() : xintc.h, xintc.c
● XIntc_Disconnect() : xintc.h, xintc.c
● XIntc_Enable() : xintc.h, xintc.c
● XIntc_GetOptions() : xintc_options.c, xintc.h
● XIntc_Initialize() : xintc.h, xintc.c
● XIntc_InterruptHandler() : xintc_intr.c, xintc.h
● XIntc_LookupConfig() : xintc.h, xintc.c
● XIntc_LowLevelInterruptHandler() : xintc_l.h, xintc_l.c
● XIntc_mAckIntr : xintc_l.h
● XIntc_mDisableIntr : xintc_l.h
● XIntc_mEnableIntr : xintc_l.h
● XIntc_mGetIntrStatus : xintc_l.h
● XIntc_mMasterDisable : xintc_l.h
● XIntc_mMasterEnable : xintc_l.h
● XIntc_SelfTest() : xintc_selftest.c, xintc.h
● XIntc_SetOptions() : xintc_options.c, xintc.h
● XIntc_SimulateIntr() : xintc_selftest.c, xintc.h
● XIntc_Start() : xintc.h, xintc.c
● XIntc_Stop() : xintc.h, xintc.c
● XIntc_VoidInterruptHandler() : xintc_intr.c, xintc.h
● XInterruptHandler : xbasic_types.h

● XIo_Address : xio.h
● XIo_DcrIn() : xio_dcr.h, xio_dcr.c
● XIo_DcrOut() : xio_dcr.h, xio_dcr.c
● XIo_EndianSwap16() : xio.h, xio.c
● XIo_EndianSwap16OLD() : xio.c
● XIo_EndianSwap32() : xio.h, xio.c
● XIo_EndianSwap32OLD() : xio.c
● XIo_In16 : xio.h, xio.c, xio.h
● XIo_In32 : xio.h, xio.c, xio.h
● XIo_In8 : xio.h, xio.c, xio.h
● XIo_InSwap16() : xio.h, xio.c
● XIo_InSwap32() : xio.h, xio.c
● XIo_Out16 : xio.h, xio.c, xio.h
● XIo_Out32 : xio.h, xio.c, xio.h
● XIo_Out8 : xio.h, xio.c, xio.h
● XIo_OutSwap16() : xio.h, xio.c
● XIo_OutSwap32() : xio.h, xio.c
● XNULL : xbasic_types.h
● XO2P_NO_ERROR : xopb2plb.h
● XO2P_READ_ERROR : xopb2plb.h
● XO2P_WRITE_ERROR : xopb2plb.h
● XOA_DYNAMIC_PRIORITY_OPTION : xopbarb.h
● XOA_PARK_BY_ID_OPTION : xopbarb.h
● XOA_PARK_ENABLE_OPTION : xopbarb.h
● XOpb2Plb_ClearErrors() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_ConfigTable : xopb2plb_i.h, xopb2plb_g.c
● XOpb2Plb_DisableInterrupt() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_DisableLock() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_EnableInterrupt() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_EnableLock() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_GetErrorAddress() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_GetErrorStatus() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_Initialize() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_IsError() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_LookupConfig() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_mGetBearReg : xopb2plb_l.h
● XOpb2Plb_mGetBesrReg : xopb2plb_l.h
● XOpb2Plb_mGetControlReg : xopb2plb_l.h

● XOpb2Plb_mSetControlReg : xopb2plb_l.h
● XOpb2Plb_Reset() : xopb2plb.h, xopb2plb.c
● XOpb2Plb_SelfTest() : xopb2plb_selftest.c, xopb2plb.h
● XOpbArb_ConfigTable : xopbarb_g.c
● XOpbArb_GetOptions() : xopbarb.h, xopbarb.c
● XOpbArb_GetParkId() : xopbarb.h, xopbarb.c
● XOpbArb_GetPriorityLevel() : xopbarb.h, xopbarb.c
● XOpbArb_Initialize() : xopbarb.h, xopbarb.c
● XOpbArb_LookupConfig() : xopbarb.h, xopbarb.c
● XOpbArb_mClearParkMasterNot : xopbarb_l.h
● XOpbArb_mClearPriorityRegsValid : xopbarb_l.h
● XOpbArb_mDisableDynamic : xopbarb_l.h
● XOpbArb_mDisableParking : xopbarb_l.h
● XOpbArb_mEnableDynamic : xopbarb_l.h
● XOpbArb_mEnableParking : xopbarb_l.h
● XOpbArb_mGetControlReg : xopbarb_l.h
● XOpbArb_mGetPriorityReg : xopbarb_l.h
● XOpbArb_mSetControlReg : xopbarb_l.h
● XOpbArb_mSetParkedMasterId : xopbarb_l.h
● XOpbArb_mSetParkMasterNot : xopbarb_l.h
● XOpbArb_mSetPriorityReg : xopbarb_l.h
● XOpbArb_mSetPriorityRegsValid : xopbarb_l.h
● XOpbArb_ResumePriorityLevels() : xopbarb.h, xopbarb.c
● XOpbArb_SelfTest() : xopbarb.h, xopbarb.c
● XOpbArb_SetOptions() : xopbarb.h, xopbarb.c
● XOpbArb_SetParkId() : xopbarb.h, xopbarb.c
● XOpbArb_SetPriorityLevel() : xopbarb.h, xopbarb.c
● XOpbArb_SuspendPriorityLevels() : xopbarb.h, xopbarb.c
● XP2O_DRIVING_BEAR_MASK : xplb2opb.h
● XP2O_ERROR_READ_MASK : xplb2opb.h
● XP2O_ERROR_TYPE_MASK : xplb2opb.h
● XP2O_LOCK_ERR_MASK : xplb2opb.h
● XPci_AckRead() : xpci_intr.c, xpci.h
● XPci_AckSend() : xpci_intr.c, xpci.h
● XPCI_BUSNO_BUS_MASK : xpci_l.h
● XPCI_BUSNO_OFFSET : xpci_l.h
● XPCI_BUSNO_SUBBUS_MASK : xpci_l.h
● XPCI_CAR_OFFSET : xpci_l.h

● XPCI_CDR_OFFSET : xpci_l.h
● XPci_ConfigIn() : xpci.h
● XPci_ConfigIn16() : xpci_config.c, xpci.h
● XPci_ConfigIn32() : xpci_config.c, xpci.h
● XPci_ConfigIn8() : xpci_config.c, xpci.h
● XPci_ConfigOut() : xpci.h
● XPci_ConfigOut16() : xpci_config.c, xpci.h
● XPci_ConfigOut32() : xpci_config.c, xpci.h
● XPci_ConfigOut8() : xpci_config.c, xpci.h
● XPci_ConfigPack() : xpci.h
● XPCI_DMA_TYPE_NONE : xpci_l.h
● XPCI_DMA_TYPE_SG : xpci_l.h
● XPCI_DMA_TYPE_SIMPLE : xpci_l.h
● XPci_ErrorClear() : xpci.h
● XPci_ErrorGet() : xpci.h
● XPci_GetBusNumber() : xpci.h
● XPci_GetDmaImplementation() : xpci.h
● XPCI_HDR_BAR0 : xpci_l.h
● XPCI_HDR_BAR1 : xpci_l.h
● XPCI_HDR_BAR2 : xpci_l.h
● XPCI_HDR_BAR3 : xpci_l.h
● XPCI_HDR_BAR4 : xpci_l.h
● XPCI_HDR_BAR5 : xpci_l.h
● XPCI_HDR_BAR_ADDR_MASK : xpci_l.h
● XPCI_HDR_BAR_PREFETCH_NO : xpci_l.h
● XPCI_HDR_BAR_PREFETCH_YES : xpci_l.h
● XPCI_HDR_BAR_SPACE_IO : xpci_l.h
● XPCI_HDR_BAR_SPACE_MEMORY : xpci_l.h
● XPCI_HDR_BAR_TYPE_ABOVE_4GB : xpci_l.h
● XPCI_HDR_BAR_TYPE_BELOW_1MB : xpci_l.h
● XPCI_HDR_BAR_TYPE_BELOW_4GB : xpci_l.h
● XPCI_HDR_BAR_TYPE_MASK : xpci_l.h
● XPCI_HDR_BAR_TYPE_RESERVED : xpci_l.h
● XPCI_HDR_BIST : xpci_l.h
● XPCI_HDR_CACHE_LINE_SZ : xpci_l.h
● XPCI_HDR_CAP_PTR : xpci_l.h
● XPCI_HDR_CARDBUS_PTR : xpci_l.h
● XPCI_HDR_CLASSCODE : xpci_l.h

● XPCI_HDR_COMMAND : xpci_l.h
● XPCI_HDR_DEVICE : xpci_l.h
● XPCI_HDR_INT_LINE : xpci_l.h
● XPCI_HDR_INT_PIN : xpci_l.h
● XPCI_HDR_LATENCY : xpci_l.h
● XPCI_HDR_MAX_LAT : xpci_l.h
● XPCI_HDR_MIN_GNT : xpci_l.h
● XPCI_HDR_NUM_BAR : xpci_l.h
● XPCI_HDR_REVID : xpci_l.h
● XPCI_HDR_ROM_BASE : xpci_l.h
● XPCI_HDR_STATUS : xpci_l.h
● XPCI_HDR_SUB_DEVICE : xpci_l.h
● XPCI_HDR_SUB_VENDOR : xpci_l.h
● XPCI_HDR_TYPE : xpci_l.h
● XPCI_HDR_VENDOR : xpci_l.h
● XPCI_IAR_OFFSET : xpci_l.h
● XPCI_INHIBIT_LOCAL_BUS_R : xpci_l.h
● XPCI_INHIBIT_LOCAL_BUS_W : xpci_l.h
● XPCI_INHIBIT_MASK : xpci_l.h
● XPCI_INHIBIT_OFFSET : xpci_l.h
● XPCI_INHIBIT_PCI_R : xpci_l.h
● XPCI_INHIBIT_PCI_W : xpci_l.h
● XPci_InhibitAfterError() : xpci.h
● XPci_Initialize() : xpci.h
● XPci_InterruptClear() : xpci_intr.c, xpci.h
● XPci_InterruptDisable() : xpci_intr.c, xpci.h
● XPci_InterruptEnable() : xpci_intr.c, xpci.h
● XPci_InterruptGetEnabled() : xpci_intr.c, xpci.h
● XPci_InterruptGetHighestPending() : xpci_intr.c, xpci.h
● XPci_InterruptGetPending() : xpci_intr.c, xpci.h
● XPci_InterruptGetStatus() : xpci_intr.c, xpci.h
● XPci_InterruptGlobalDisable() : xpci_intr.c, xpci.h
● XPci_InterruptGlobalEnable() : xpci_intr.c, xpci.h
● XPci_InterruptPciClear() : xpci_intr.c, xpci.h
● XPci_InterruptPciDisable() : xpci_intr.c, xpci.h
● XPci_InterruptPciEnable() : xpci_intr.c, xpci.h
● XPci_InterruptPciGetEnabled() : xpci_intr.c, xpci.h
● XPci_InterruptPciGetStatus() : xpci_intr.c, xpci.h

● XPCI_IR_LM_BR_W : xpci_l.h
● XPCI_IR_LM_BRANGE_W : xpci_l.h
● XPCI_IR_LM_BRD_W : xpci_l.h
● XPCI_IR_LM_BRT_W : xpci_l.h
● XPCI_IR_LM_MA_W : xpci_l.h
● XPCI_IR_LM_PERR_R : xpci_l.h
● XPCI_IR_LM_PERR_W : xpci_l.h
● XPCI_IR_LM_SERR_R : xpci_l.h
● XPCI_IR_LM_SERR_W : xpci_l.h
● XPCI_IR_LM_TA_R : xpci_l.h
● XPCI_IR_LM_TA_W : xpci_l.h
● XPCI_IR_MASK : xpci_l.h
● XPCI_IR_PI_SERR_R : xpci_l.h
● XPCI_IR_PI_SERR_W : xpci_l.h
● XPCI_LMA_R_OFFSET : xpci_l.h
● XPCI_LMA_W_OFFSET : xpci_l.h
● XPCI_LMADDR_BR_W : xpci_l.h
● XPCI_LMADDR_BRANGE_W : xpci_l.h
● XPCI_LMADDR_BRD_W : xpci_l.h
● XPCI_LMADDR_BRT_W : xpci_l.h
● XPCI_LMADDR_MA_W : xpci_l.h
● XPCI_LMADDR_MASK : xpci_l.h
● XPCI_LMADDR_OFFSET : xpci_l.h
● XPCI_LMADDR_PERR_R : xpci_l.h
● XPCI_LMADDR_PERR_W : xpci_l.h
● XPCI_LMADDR_SERR_R : xpci_l.h
● XPCI_LMADDR_SERR_W : xpci_l.h
● XPCI_LMADDR_TA_R : xpci_l.h
● XPCI_LMADDR_TA_W : xpci_l.h
● XPci_LookupConfig() : xpci.h
● XPci_mAckRead : xpci_l.h
● XPci_mAckSend : xpci_l.h
● XPci_mConfigIn : xpci_l.h
● XPci_mConfigOut : xpci_l.h
● XPci_mIntrClear : xpci_l.h
● XPci_mIntrDisable : xpci_l.h
● XPci_mIntrEnable : xpci_l.h
● XPci_mIntrGlobalDisable : xpci_l.h

● XPci_mIntrGlobalEnable : xpci_l.h
● XPci_mIntrPciClear : xpci_l.h
● XPci_mIntrPciDisable : xpci_l.h
● XPci_mIntrPciEnable : xpci_l.h
● XPci_mIntrPciReadIER : xpci_l.h
● XPci_mIntrPciReadISR : xpci_l.h
● XPci_mIntrPciWriteISR : xpci_l.h
● XPci_mIntrReadID : xpci_l.h
● XPci_mIntrReadIER : xpci_l.h
● XPci_mIntrReadIPR : xpci_l.h
● XPci_mIntrReadISR : xpci_l.h
● XPci_mIntrWriteISR : xpci_l.h
● XPci_mLocal2Pci : xpci_l.h
● XPci_mPci2Local : xpci_l.h
● XPci_mReadReg : xpci_l.h
● XPci_mReset : xpci_l.h
● XPci_mSpecialCycle : xpci_l.h
● XPci_mWriteReg : xpci_l.h
● XPCI_PIA_R_OFFSET : xpci_l.h
● XPCI_PIA_W_OFFSET : xpci_l.h
● XPCI_PIADDR_ERRACK_R : xpci_l.h
● XPCI_PIADDR_ERRACK_W : xpci_l.h
● XPCI_PIADDR_MASK : xpci_l.h
● XPCI_PIADDR_OFFSET : xpci_l.h
● XPCI_PIADDR_RANGE_W : xpci_l.h
● XPCI_PIADDR_RETRY_W : xpci_l.h
● XPCI_PIADDR_TIMEOUT_W : xpci_l.h
● XPCI_PREOVRD_OFFSET : xpci_l.h
● XPci_Reset() : xpci.h
● XPCI_SC_DATA_OFFSET : xpci_l.h
● XPci_SelfTest() : xpci_selftest.c, xpci.h
● XPCI_SERR_R_OFFSET : xpci_l.h
● XPCI_SERR_W_OFFSET : xpci_l.h
● XPci_SetBusNumber() : xpci.h
● XPci_SpecialCycle() : xpci_intr.c, xpci.h
● XPCI_STATCMD_66MHZ_CAP : xpci_l.h
● XPCI_STATCMD_BACK_EN : xpci_l.h
● XPCI_STATCMD_BUSM_EN : xpci_l.h

● XPCI_STATCMD_DEVSEL_FAST : xpci_l.h
● XPCI_STATCMD_DEVSEL_MED : xpci_l.h
● XPCI_STATCMD_DEVSEL_MSK : xpci_l.h
● XPCI_STATCMD_ERR_MASK : xpci_l.h
● XPCI_STATCMD_INT_DISABLE : xpci_l.h
● XPCI_STATCMD_INT_STATUS : xpci_l.h
● XPCI_STATCMD_IO_EN : xpci_l.h
● XPCI_STATCMD_MEM_EN : xpci_l.h
● XPCI_STATCMD_MEMWR_INV_EN : xpci_l.h
● XPCI_STATCMD_MPERR : xpci_l.h
● XPCI_STATCMD_MSTABRT_RCV : xpci_l.h
● XPCI_STATCMD_OFFSET : xpci_l.h
● XPCI_STATCMD_PARITY : xpci_l.h
● XPCI_STATCMD_PERR_DET : xpci_l.h
● XPCI_STATCMD_SERR_EN : xpci_l.h
● XPCI_STATCMD_SERR_SIG : xpci_l.h
● XPCI_STATCMD_SPECIALCYC : xpci_l.h
● XPCI_STATCMD_STEPPING : xpci_l.h
● XPCI_STATCMD_TGTABRT_RCV : xpci_l.h
● XPCI_STATCMD_TGTABRT_SIG : xpci_l.h
● XPCI_STATCMD_VGA_SNOOP_EN : xpci_l.h
● XPCI_STATV3_DATA_XFER : xpci_l.h
● XPCI_STATV3_DISC_WDATA : xpci_l.h
● XPCI_STATV3_DISC_WODATA : xpci_l.h
● XPCI_STATV3_MASK : xpci_l.h
● XPCI_STATV3_MASTER_ABRT : xpci_l.h
● XPCI_STATV3_NORM_TERM : xpci_l.h
● XPCI_STATV3_OFFSET : xpci_l.h
● XPCI_STATV3_PCI_RETRY_R : xpci_l.h
● XPCI_STATV3_PCI_RETRY_W : xpci_l.h
● XPCI_STATV3_TGT_ABRT : xpci_l.h
● XPCI_STATV3_TGT_TERM : xpci_l.h
● XPCI_STATV3_TRANS_END : xpci_l.h
● XPCI_STATV3_WRITE_BUSY : xpci_l.h
● XPci_V3StatusCommandGet() : xpci_v3.c, xpci.h
● XPci_V3TransactionStatusClear() : xpci_v3.c, xpci.h
● XPci_V3TransactionStatusGet() : xpci_v3.c, xpci.h
● XPlb2Opb_ClearErrors() : xplb2opb.h, xplb2opb.c

● XPlb2Opb_ConfigTable : xplb2opb_i.h, xplb2opb_g.c
● XPlb2Opb_DisableInterrupt() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_EnableInterrupt() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_GetErrorAddress() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_GetErrorByteEnables() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_GetErrorStatus() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_GetMasterDrivingError() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_GetNumMasters() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_Initialize() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_IsError() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_LookupConfig() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_mGetByteEnableReg : xplb2opb_l.h
● XPlb2Opb_mGetControlReg : xplb2opb_l.h
● XPlb2Opb_mGetErrorAddressReg : xplb2opb_l.h
● XPlb2Opb_mGetErrorDetectReg : xplb2opb_l.h
● XPlb2Opb_mGetErrorTypeReg : xplb2opb_l.h
● XPlb2Opb_mGetLockBitReg : xplb2opb_l.h
● XPlb2Opb_mGetMasterDrivingReg : xplb2opb_l.h
● XPlb2Opb_mGetReadWriteReg : xplb2opb_l.h
● XPlb2Opb_mSetControlReg : xplb2opb_l.h
● XPlb2Opb_mSetErrorDetectReg : xplb2opb_l.h
● XPlb2Opb_Reset() : xplb2opb.h, xplb2opb.c
● XPlb2Opb_SelfTest() : xplb2opb_selftest.c, xplb2opb.h
● XPlbArb_ClearErrors() : xplbarb.h, xplbarb.c
● XPlbArb_ConfigTable : xplbarb_i.h, xplbarb_g.c
● XPlbArb_DisableInterrupt() : xplbarb.h, xplbarb.c
● XPlbArb_EnableInterrupt() : xplbarb.h, xplbarb.c
● XPlbArb_GetErrorAddress() : xplbarb.h, xplbarb.c
● XPlbArb_GetErrorStatus() : xplbarb.h, xplbarb.c
● XPlbArb_GetNumMasters() : xplbarb.h, xplbarb.c
● XPlbArb_Initialize() : xplbarb.h, xplbarb.c
● XPlbArb_IsError() : xplbarb.h, xplbarb.c
● XPlbArb_LookupConfig() : xplbarb.h, xplbarb.c
● XPlbArb_mDisableInterrupt : xplbarb_l.h
● XPlbArb_mEnableInterrupt : xplbarb_l.h
● XPlbArb_mGetControlReg : xplbarb_l.h
● XPlbArb_mGetPearAddrReg : xplbarb_l.h
● XPlbArb_mGetPearByteEnReg : xplbarb_l.h

● XPlbArb_mGetPesrLockReg : xplbarb_l.h
● XPlbArb_mGetPesrMDriveReg : xplbarb_l.h
● XPlbArb_mGetPesrMerrReg : xplbarb_l.h
● XPlbArb_mGetPesrRnwReg : xplbarb_l.h
● XPlbArb_mReset : xplbarb_l.h
● XPlbArb_mSetPesrMerrReg : xplbarb_l.h
● XPlbArb_Reset() : xplbarb.h, xplbarb.c
● XPlbArb_SelfTest() : xplbarb_selftest.c, xplbarb.h
● XPs2_ClearStats() : xps2_stats.c
● XPs2_DisableInterrupt() : xps2_intr.c, xps2.h
● XPs2_EnableInterrupt() : xps2_intr.c, xps2.h
● XPs2_GetLastErrors() : xps2_options.c, xps2.h
● XPs2_GetStats() : xps2_stats.c
● XPs2_Initialize() : xps2.h, xps2.c
● XPs2_InterruptHandler() : xps2_intr.c, xps2.h
● XPs2_IsSending() : xps2_options.c, xps2.h
● XPs2_LookupConfig() : xps2.h, xps2.c
● XPs2_mClearIntr : xps2_l.h
● XPs2_mDisableIntr : xps2_l.h
● XPs2_mEnableIntr : xps2_l.h
● XPs2_mGetIntrStatus : xps2_l.h
● XPs2_mGetStatus : xps2_l.h
● XPs2_mIsIntrEnabled : xps2_l.h
● XPs2_mIsReceiveEmpty : xps2_l.h
● XPs2_mIsTransmitFull : xps2_l.h
● XPs2_mReset : xps2_l.h
● XPs2_ReceiveBuffer() : xps2_i.h, xps2.c
● XPs2_Recv() : xps2.h, xps2.c
● XPs2_RecvByte() : xps2_l.h, xps2_l.c
● XPs2_Send() : xps2.h, xps2.c
● XPs2_SendBuffer() : xps2_i.h, xps2.c
● XPs2_SendByte() : xps2_l.h, xps2_l.c
● XPs2_SetHandler() : xps2_intr.c, xps2.h
● XRapidIo_mGetLinkStatus : xrapidio_l.h
● XRapidIo_mReadReg : xrapidio_l.h
● XRapidIo_mReset : xrapidio_l.h
● XRapidIo_mWriteReg : xrapidio_l.h
● XRapidIo_RecvPkt() : xrapidio_l.h, xrapidio_l.c

● XRapidIo_SendPkt() : xrapidio_l.h, xrapidio_l.c
● XSA_BMR_16BIT_MASK : xsysace_l.h
● XSA_BMR_OFFSET : xsysace_l.h
● XSA_CF_SECTOR_SIZE : xsysace_l.h
● XSA_CLR_LBA_MASK : xsysace_l.h
● XSA_CLR_OFFSET : xsysace_l.h
● XSA_CR_CFGADDR_MASK : xsysace_l.h
● XSA_CR_CFGADDR_SHIFT : xsysace_l.h
● XSA_CR_CFGDONEIRQ_MASK : xsysace_l.h
● XSA_CR_CFGMODE_MASK : xsysace_l.h
● XSA_CR_CFGPROG_MASK : xsysace_l.h
● XSA_CR_CFGRESET_MASK : xsysace_l.h
● XSA_CR_CFGSEL_MASK : xsysace_l.h
● XSA_CR_CFGSTART_MASK : xsysace_l.h
● XSA_CR_DATARDYIRQ_MASK : xsysace_l.h
● XSA_CR_ERRORIRQ_MASK : xsysace_l.h
● XSA_CR_FORCECFGADDR_MASK : xsysace_l.h
● XSA_CR_FORCECFGMODE_MASK : xsysace_l.h
● XSA_CR_FORCELOCK_MASK : xsysace_l.h
● XSA_CR_LOCKREQ_MASK : xsysace_l.h
● XSA_CR_OFFSET : xsysace_l.h
● XSA_CR_RESETIRQ_MASK : xsysace_l.h
● XSA_DATA_BUFFER_SIZE : xsysace_l.h
● XSA_DBR_OFFSET : xsysace_l.h
● XSA_ER_ABORT : xsysace_l.h
● XSA_ER_BAD_BLOCK : xsysace_l.h
● XSA_ER_CARD_READ : xsysace_l.h
● XSA_ER_CARD_READY : xsysace_l.h
● XSA_ER_CARD_RESET : xsysace_l.h
● XSA_ER_CARD_WRITE : xsysace_l.h
● XSA_ER_CFG_ADDR : xsysace_l.h
● XSA_ER_CFG_FAIL : xsysace_l.h
● XSA_ER_CFG_INIT : xsysace_l.h
● XSA_ER_CFG_INSTR : xsysace_l.h
● XSA_ER_CFG_READ : xsysace_l.h
● XSA_ER_GENERAL : xsysace_l.h
● XSA_ER_OFFSET : xsysace_l.h
● XSA_ER_RESERVED : xsysace_l.h

● XSA_ER_SECTOR_ID : xsysace_l.h
● XSA_ER_SECTOR_READY : xsysace_l.h
● XSA_ER_UNCORRECTABLE : xsysace_l.h
● XSA_EVENT_CFG_DONE : xsysace.h
● XSA_EVENT_DATA_DONE : xsysace.h
● XSA_EVENT_ERROR : xsysace.h
● XSA_FAT_12_BOOT_REC : xsysace_l.h
● XSA_FAT_12_CALC : xsysace_l.h
● XSA_FAT_12_PART_REC : xsysace_l.h
● XSA_FAT_16_BOOT_REC : xsysace_l.h
● XSA_FAT_16_CALC : xsysace_l.h
● XSA_FAT_16_PART_REC : xsysace_l.h
● XSA_FAT_VALID_BOOT_REC : xsysace_l.h
● XSA_FAT_VALID_PART_REC : xsysace_l.h
● XSA_FSR_OFFSET : xsysace_l.h
● XSA_MLR_LBA_MASK : xsysace_l.h
● XSA_MLR_OFFSET : xsysace_l.h
● XSA_SCCR_ABORT_MASK : xsysace_l.h
● XSA_SCCR_CMD_MASK : xsysace_l.h
● XSA_SCCR_COUNT_MASK : xsysace_l.h
● XSA_SCCR_IDENTIFY_MASK : xsysace_l.h
● XSA_SCCR_OFFSET : xsysace_l.h
● XSA_SCCR_READDATA_MASK : xsysace_l.h
● XSA_SCCR_RESET_MASK : xsysace_l.h
● XSA_SCCR_WRITEDATA_MASK : xsysace_l.h
● XSA_SR_CFBSY_MASK : xsysace_l.h
● XSA_SR_CFCERROR_MASK : xsysace_l.h
● XSA_SR_CFCORR_MASK : xsysace_l.h
● XSA_SR_CFDETECT_MASK : xsysace_l.h
● XSA_SR_CFDRQ_MASK : xsysace_l.h
● XSA_SR_CFDSC_MASK : xsysace_l.h
● XSA_SR_CFDWF_MASK : xsysace_l.h
● XSA_SR_CFERR_MASK : xsysace_l.h
● XSA_SR_CFGADDR_MASK : xsysace_l.h
● XSA_SR_CFGDONE_MASK : xsysace_l.h
● XSA_SR_CFGERROR_MASK : xsysace_l.h
● XSA_SR_CFGLOCK_MASK : xsysace_l.h
● XSA_SR_CFGMODE_MASK : xsysace_l.h

● XSA_SR_CFRDY_MASK : xsysace_l.h
● XSA_SR_DATABUFMODE_MASK : xsysace_l.h
● XSA_SR_DATABUFRDY_MASK : xsysace_l.h
● XSA_SR_MPULOCK_MASK : xsysace_l.h
● XSA_SR_OFFSET : xsysace_l.h
● XSA_SR_RDYFORCMD_MASK : xsysace_l.h
● XSA_VR_OFFSET : xsysace_l.h
● XSP_CLK_ACTIVE_LOW_OPTION : xspi.h
● XSP_CLK_PHASE_1_OPTION : xspi.h
● XSP_LOOPBACK_OPTION : xspi.h
● XSP_MANUAL_SSELECT_OPTION : xspi.h
● XSP_MASTER_OPTION : xspi.h
● XSpi_Abort() : xspi_i.h, xspi.c
● XSpi_ClearStats() : xspi_stats.c, xspi.h
● XSpi_ConfigTable : xspi_i.h, xspi_g.c
● XSpi_GetOptions() : xspi_options.c, xspi.h
● XSpi_GetSlaveSelect() : xspi.h, xspi.c
● XSpi_GetStats() : xspi_stats.c, xspi.h
● XSpi_Initialize() : xspi.h, xspi.c
● XSpi_InterruptHandler() : xspi.h, xspi.c
● XSpi_LookupConfig() : xspi.h, xspi.c
● XSpi_mDisable : xspi_l.h
● XSpi_mEnable : xspi_l.h
● XSpi_mGetControlReg : xspi_l.h
● XSpi_mGetSlaveSelectReg : xspi_l.h
● XSpi_mGetStatusReg : xspi_l.h
● XSpi_mRecvByte : xspi_l.h
● XSpi_mSendByte : xspi_l.h
● XSpi_mSetControlReg : xspi_l.h
● XSpi_mSetSlaveSelectReg : xspi_l.h
● XSpi_Reset() : xspi.h, xspi.c
● XSpi_SelfTest() : xspi_selftest.c, xspi.h
● XSpi_SetOptions() : xspi_options.c, xspi.h
● XSpi_SetSlaveSelect() : xspi.h, xspi.c
● XSpi_SetStatusHandler() : xspi.h, xspi.c
● XSpi_Start() : xspi.h, xspi.c
● XSpi_StatusHandler : xspi.h
● XSpi_Stop() : xspi.h, xspi.c

● XSpi_Transfer() : xspi.h, xspi.c
● XStatus : xstatus.h
● XSysAce_AbortCF() : xsysace_compactflash.c, xsysace.h
● XSysAce_ConfigTable : xsysace_g.c
● XSysAce_DisableInterrupt() : xsysace_intr.c, xsysace.h
● XSysAce_EnableInterrupt() : xsysace_intr.c, xsysace.h
● XSysAce_EventHandler : xsysace.h
● XSysAce_GetCfgSector() : xsysace_jtagcfg.c, xsysace.h
● XSysAce_GetErrors() : xsysace.h, xsysace.c
● XSysAce_GetFatStatus() : xsysace_compactflash.c, xsysace.h
● XSysAce_GetVersion() : xsysace_selftest.c, xsysace.h
● XSysAce_IdentifyCF() : xsysace_compactflash.c, xsysace.h
● XSysAce_Initialize() : xsysace.h, xsysace.c
● XSysAce_InterruptHandler() : xsysace_intr.c, xsysace.h
● XSysAce_IsCfgDone() : xsysace_jtagcfg.c, xsysace.h
● XSysAce_IsCFReady() : xsysace_compactflash.c, xsysace.h
● XSysAce_Lock() : xsysace.h, xsysace.c
● XSysAce_LookupConfig() : xsysace.h, xsysace.c
● XSysAce_mAndControlReg : xsysace_l.h
● XSysAce_mDisableIntr : xsysace_l.h
● XSysAce_mEnableIntr : xsysace_l.h
● XSysAce_mGetControlReg : xsysace_l.h
● XSysAce_mGetErrorReg : xsysace_l.h
● XSysAce_mGetStatusReg : xsysace_l.h
● XSysAce_mIsCfgDone : xsysace_l.h
● XSysAce_mIsIntrEnabled : xsysace_l.h
● XSysAce_mIsMpuLocked : xsysace_l.h
● XSysAce_mIsReadyForCmd : xsysace_l.h
● XSysAce_mOrControlReg : xsysace_l.h
● XSysAce_mSetCfgAddr : xsysace_l.h
● XSysAce_mSetControlReg : xsysace_l.h
● XSysAce_mWaitForLock : xsysace_l.h
● XSysAce_ProgramChain() : xsysace_jtagcfg.c, xsysace.h
● XSysAce_ReadDataBuffer() : xsysace_l.h, xsysace_l.c
● XSysAce_ReadSector() : xsysace_l.h, xsysace_l.c
● XSysAce_RegRead16() : xsysace_l.h, xsysace_l.c
● XSysAce_RegRead32() : xsysace_l.h, xsysace_l.c
● XSysAce_RegWrite16() : xsysace_l.h, xsysace_l.c

● XSysAce_RegWrite32() : xsysace_l.h, xsysace_l.c
● XSysAce_ResetCF() : xsysace_compactflash.c, xsysace.h
● XSysAce_ResetCfg() : xsysace_jtagcfg.c, xsysace.h
● XSysAce_SectorRead() : xsysace_compactflash.c, xsysace.h
● XSysAce_SectorWrite() : xsysace_compactflash.c, xsysace.h
● XSysAce_SelfTest() : xsysace_selftest.c, xsysace.h
● XSysAce_SetCfgAddr() : xsysace_jtagcfg.c, xsysace.h
● XSysAce_SetEventHandler() : xsysace_intr.c, xsysace.h
● XSysAce_SetStartMode() : xsysace_jtagcfg.c, xsysace.h
● XSysAce_Unlock() : xsysace.h, xsysace.c
● XSysAce_WriteDataBuffer() : xsysace_l.h, xsysace_l.c
● XSysAce_WriteSector() : xsysace_l.h, xsysace_l.c
● XTC_AUTO_RELOAD_OPTION : xtmrctr.h
● XTC_CAPTURE_MODE_OPTION : xtmrctr.h
● XTC_DEVICE_TIMER_COUNT : xtmrctr_l.h
● XTC_DOWN_COUNT_OPTION : xtmrctr.h
● XTC_ENABLE_ALL_OPTION : xtmrctr.h
● XTC_EXT_COMPARE_OPTION : xtmrctr.h
● XTC_INT_MODE_OPTION : xtmrctr.h
● XTimerCtr_mReadReg : xtmrctr_l.h
● XTmrCtr_ClearStats() : xtmrctr_stats.c, xtmrctr.h
● XTmrCtr_ConfigTable : xtmrctr_i.h, xtmrctr_g.c
● XTmrCtr_GetCaptureValue() : xtmrctr.h, xtmrctr.c
● XTmrCtr_GetOptions() : xtmrctr_options.c, xtmrctr.h
● XTmrCtr_GetStats() : xtmrctr_stats.c, xtmrctr.h
● XTmrCtr_GetValue() : xtmrctr.h, xtmrctr.c
● XTmrCtr_Handler : xtmrctr.h
● XTmrCtr_Initialize() : xtmrctr.h, xtmrctr.c
● XTmrCtr_InterruptHandler() : xtmrctr_intr.c, xtmrctr.h
● XTmrCtr_IsExpired() : xtmrctr.h, xtmrctr.c
● XTmrCtr_mDisable : xtmrctr_l.h
● XTmrCtr_mDisableIntr : xtmrctr_l.h
● XTmrCtr_mEnable : xtmrctr_l.h
● XTmrCtr_mEnableIntr : xtmrctr_l.h
● XTmrCtr_mGetControlStatusReg : xtmrctr_l.h
● XTmrCtr_mGetLoadReg : xtmrctr_l.h
● XTmrCtr_mGetTimerCounterReg : xtmrctr_l.h
● XTmrCtr_mHasEventOccurred : xtmrctr_l.h

● XTmrCtr_mLoadTimerCounterReg : xtmrctr_l.h
● XTmrCtr_mSetControlStatusReg : xtmrctr_l.h
● XTmrCtr_mSetLoadReg : xtmrctr_l.h
● XTmrCtr_mWriteReg : xtmrctr_l.h
● XTmrCtr_Reset() : xtmrctr.h, xtmrctr.c
● XTmrCtr_SelfTest() : xtmrctr_selftest.c, xtmrctr.h
● XTmrCtr_SetHandler() : xtmrctr_intr.c, xtmrctr.h
● XTmrCtr_SetOptions() : xtmrctr_options.c, xtmrctr.h
● XTmrCtr_SetResetValue() : xtmrctr.h, xtmrctr.c
● XTmrCtr_Start() : xtmrctr.h, xtmrctr.c
● XTmrCtr_Stop() : xtmrctr.h, xtmrctr.c
● XTouchscreen_GetPosition_2D() : xtouchscreen.h, xtouchscreen.c
● XTouchscreen_GetPosition_3D() : xtouchscreen.h, xtouchscreen.c
● XTouchscreen_GetValue() : xtouchscreen_l.h, xtouchscreen_l.c
● XTouchscreen_Initialize() : xtouchscreen.h, xtouchscreen.c
● XTouchscreen_InterruptHandler() : xtouchscreen_intr.c, xtouchscreen.h
● XTouchscreen_LookupConfig() : xtouchscreen.h, xtouchscreen.c
● XTouchscreen_mClearIntr : xtouchscreen_l.h
● XTouchscreen_mGetIntrStatus : xtouchscreen_l.h
● XTouchscreen_mReadCtrlReg : xtouchscreen_l.h
● XTouchscreen_mWriteCtrlReg : xtouchscreen_l.h
● XTouchscreen_SetHandler() : xtouchscreen_intr.c, xtouchscreen.h
● XTRUE : xbasic_types.h
● XUartLite_ClearStats() : xuartlite_stats.c, xuartlite.h
● XUartLite_ConfigTable : xuartlite_i.h, xuartlite_g.c
● XUartLite_DisableInterrupt() : xuartlite_intr.c, xuartlite.h
● XUartLite_EnableInterrupt() : xuartlite_intr.c, xuartlite.h
● XUartLite_GetStats() : xuartlite_stats.c, xuartlite.h
● XUartLite_Handler : xuartlite.h
● XUartLite_Initialize() : xuartlite.h, xuartlite.c
● XUartLite_InterruptHandler() : xuartlite_intr.c, xuartlite.h
● XUartLite_IsSending() : xuartlite.h, xuartlite.c
● XUartLite_mDisableIntr : xuartlite_l.h
● XUartLite_mEnableIntr : xuartlite_l.h
● XUartLite_mGetControlReg : xuartlite_l.h
● XUartLite_mGetStatusReg : xuartlite_l.h
● XUartLite_mIsIntrEnabled : xuartlite_l.h
● XUartLite_mIsReceiveEmpty : xuartlite_l.h

● XUartLite_mIsTransmitFull : xuartlite_l.h
● XUartLite_mSetControlReg : xuartlite_l.h
● XUartLite_ReceiveBuffer() : xuartlite_i.h, xuartlite.c
● XUartLite_Recv() : xuartlite.h, xuartlite.c
● XUartLite_RecvByte() : xuartlite_l.h, xuartlite_l.c
● XUartLite_ResetFifos() : xuartlite.h, xuartlite.c
● XUartLite_SelfTest() : xuartlite_selftest.c, xuartlite.h
● XUartLite_Send() : xuartlite.h, xuartlite.c
● XUartLite_SendBuffer() : xuartlite_i.h, xuartlite.c
● XUartLite_SendByte() : xuartlite_l.h, xuartlite_l.c
● XUartLite_SetRecvHandler() : xuartlite_intr.c, xuartlite.h
● XUartLite_SetSendHandler() : xuartlite_intr.c, xuartlite.h
● XUartNs550_ClearStats() : xuartns550_stats.c, xuartns550.h
● XUartNs550_ConfigTable : xuartns550_i.h, xuartns550_g.c
● XUartNs550_GetDataFormat() : xuartns550_format.c, xuartns550.h
● XUartNs550_GetFifoThreshold() : xuartns550_options.c, xuartns550.h
● XUartNs550_GetLastErrors() : xuartns550_options.c, xuartns550.h
● XUartNs550_GetModemStatus() : xuartns550_options.c, xuartns550.h
● XUartNs550_GetOptions() : xuartns550_options.c, xuartns550.h
● XUartNs550_GetStats() : xuartns550_stats.c, xuartns550.h
● XUartNs550_Handler : xuartns550.h
● XUartNs550_Initialize() : xuartns550.h, xuartns550.c
● XUartNs550_InterruptHandler() : xuartns550_intr.c, xuartns550.h
● XUartNs550_IsSending() : xuartns550_options.c, xuartns550.h
● XUartNs550_LookupConfig() : xuartns550.h, xuartns550.c
● XUartNs550_mDisableIntr : xuartns550_l.h
● XUartNs550_mEnableIntr : xuartns550_l.h
● XUartNs550_mGetLineControlReg : xuartns550_l.h
● XUartNs550_mGetLineStatusReg : xuartns550_l.h
● XUartNs550_mIsReceiveData : xuartns550_l.h
● XUartNs550_mIsTransmitEmpty : xuartns550_l.h
● XUartNs550_mReadReg : xuartns550_l.h
● XUartNs550_mSetLineControlReg : xuartns550_l.h
● XUartNs550_mWriteReg : xuartns550_l.h
● XUartNs550_ReceiveBuffer() : xuartns550_i.h, xuartns550.c
● XUartNs550_Recv() : xuartns550.h, xuartns550.c
● XUartNs550_RecvByte() : xuartns550_l.h, xuartns550_l.c
● XUartNs550_SelfTest() : xuartns550_selftest.c, xuartns550.h

● XUartNs550_Send() : xuartns550.h, xuartns550.c
● XUartNs550_SendBuffer() : xuartns550_i.h, xuartns550.c
● XUartNs550_SendByte() : xuartns550_l.h, xuartns550_l.c
● XUartNs550_SetDataFormat() : xuartns550_format.c, xuartns550.h
● XUartNs550_SetFifoThreshold() : xuartns550_options.c, xuartns550.h
● XUartNs550_SetHandler() : xuartns550_intr.c, xuartns550.h
● XUartNs550_SetOptions() : xuartns550_options.c, xuartns550.h
● Xuint16 : xbasic_types.h
● Xuint32 : xbasic_types.h
● XUINT64_LSW : xbasic_types.h
● XUINT64_MSW : xbasic_types.h
● Xuint8 : xbasic_types.h
● XUN_ERROR_BREAK_MASK : xuartns550.h
● XUN_ERROR_FRAMING_MASK : xuartns550.h
● XUN_ERROR_NONE : xuartns550.h
● XUN_ERROR_OVERRUN_MASK : xuartns550.h
● XUN_ERROR_PARITY_MASK : xuartns550.h
● XUN_EVENT_MODEM : xuartns550.h
● XUN_EVENT_RECV_DATA : xuartns550.h
● XUN_EVENT_RECV_ERROR : xuartns550.h
● XUN_EVENT_RECV_TIMEOUT : xuartns550.h
● XUN_EVENT_SENT_DATA : xuartns550.h
● XUN_FORMAT_1_STOP_BIT : xuartns550.h
● XUN_FORMAT_2_STOP_BIT : xuartns550.h
● XUN_FORMAT_5_BITS : xuartns550.h
● XUN_FORMAT_6_BITS : xuartns550.h
● XUN_FORMAT_7_BITS : xuartns550.h
● XUN_FORMAT_8_BITS : xuartns550.h
● XUN_FORMAT_EVEN_PARITY : xuartns550.h
● XUN_FORMAT_NO_PARITY : xuartns550.h
● XUN_FORMAT_ODD_PARITY : xuartns550.h
● XUN_MODEM_CTS_DELTA_MASK : xuartns550.h
● XUN_MODEM_CTS_MASK : xuartns550.h
● XUN_MODEM_DCD_DELTA_MASK : xuartns550.h
● XUN_MODEM_DCD_MASK : xuartns550.h
● XUN_MODEM_DSR_DELTA_MASK : xuartns550.h
● XUN_MODEM_DSR_MASK : xuartns550.h
● XUN_MODEM_RING_STOP_MASK : xuartns550.h

● XUN_MODEM_RINGING_MASK : xuartns550.h
● XUN_OPTION_ASSERT_DTR : xuartns550.h
● XUN_OPTION_ASSERT_OUT1 : xuartns550.h
● XUN_OPTION_ASSERT_OUT2 : xuartns550.h
● XUN_OPTION_ASSERT_RTS : xuartns550.h
● XUN_OPTION_DATA_INTR : xuartns550.h
● XUN_OPTION_FIFOS_ENABLE : xuartns550.h
● XUN_OPTION_LOOPBACK : xuartns550.h
● XUN_OPTION_MODEM_INTR : xuartns550.h
● XUN_OPTION_RESET_RX_FIFO : xuartns550.h
● XUN_OPTION_RESET_TX_FIFO : xuartns550.h
● XUN_OPTION_SET_BREAK : xuartns550.h
● XUT_ALLMEMTESTS : xutil.h
● XUT_FIXEDPATTERN : xutil.h
● XUT_INCREMENT : xutil.h
● XUT_INVERSEADDR : xutil.h
● XUT_MAXTEST : xutil.h
● XUT_WALKONES : xutil.h
● XUT_WALKZEROS : xutil.h
● XUtil_MemoryTest16() : xutil_memtest.c, xutil.h
● XUtil_MemoryTest32() : xutil_memtest.c, xutil.h
● XUtil_MemoryTest8() : xutil_memtest.c, xutil.h
● XWaitInAssert : xbasic_types.c
● XWdtTb_ConfigTable : xwdttb_i.h, xwdttb_g.c
● XWdtTb_GetTbValue() : xwdttb.h, xwdttb.c
● XWdtTb_Initialize() : xwdttb.h, xwdttb.c
● XWdtTb_IsWdtExpired() : xwdttb.h, xwdttb.c
● XWdtTb_mDisableWdt : xwdttb_l.h
● XWdtTb_mEnableWdt : xwdttb_l.h
● XWdtTb_mGetTimebaseReg : xwdttb_l.h
● XWdtTb_mHasExpired : xwdttb_l.h
● XWdtTb_mHasReset : xwdttb_l.h
● XWdtTb_mRestartWdt : xwdttb_l.h
● XWdtTb_RestartWdt() : xwdttb.h, xwdttb.c
● XWdtTb_SelfTest() : xwdttb_selftest.c, xwdttb.h
● XWdtTb_Start() : xwdttb.h, xwdttb.c
● XWdtTb_Stop() : xwdttb.h, xwdttb.c

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_selftest.c File
Reference

Detailed Description

Self-test and diagnostic functions of the XHdlc driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 04/02/02 First release

#include "xbasic_types.h"

#include "xhdlc_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"
#include "xpacket_fifo_v1_00_b.h"

Defines

#define LOOPBACK_BYTE_COUNT

Functions

XStatus XHdlc_SelfTest (XHdlc *InstancePtr)

Define Documentation

#define LOOPBACK_BYTE_COUNT

Performs a loopback test on the HDLC device by sending and receiving a frame using loopback mode.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:

 XST_SUCCESS Loopback was successful
 XST_LOOPBACK_ERROR Loopback was unsuccessful

Note:
None.

Function Documentation

XStatus XHdlc_SelfTest (XHdlc * InstancePtr)

Performs a self-test on the HDLC device. The test includes:

● Run self-test on the FIFOs, and IPIF components
● Reset the HDLC device, check its registers for proper reset values, and run an internal loopback

test on the device. The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default
configuration. The caller is responsible for re-configuring the device after the self-test is run, and
starting it when ready to send and receive frames.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:

 XST_SUCCESS Self-test was successful

 XST_REGISTER_ERROR HDLC failed register reset test
 XST_LOOPBACK_ERROR Internal loopback failed

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XHdlc Struct Reference
#include <xhdlc.h>

Detailed Description

The XHdlc driver instance data. The user is required to allocate a variable of this type for every HDLC
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● hdlc/v1_00_a/src/xhdlc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc.h
Go to the documentation of this file.

00001 /* $Id: xhdlc.h,v 1.5 2002/06/28 18:18:15 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file hdlc/v1_00_a/src/xhdlc.h
00026 *
00027 * The Xilinx HDLC driver component which supports the Xilinx HDLC device.
00028 *
00029 * Driver Description
00030 *
00031 * The device driver enables higher layer software (e.g., an application) to
00032 * communicate to HDLC devices. The driver handles transmission and reception of
00033 * HDLC frames, as well as configuration of the devices. A single device driver
00034 * can support multiple HDLC devices.
00035 *
00036 * The driver is designed for a zero-copy buffer scheme. That is, the driver
will
00037 * not copy buffers. This avoids potential throughput bottlenecks within the
00038 * driver.
00039 *
00040 * Since the driver is a simple pass-through mechanism between an application
00041 * and the HDLC devices, no assembly or disassembly of HDLC frames is done at

the
00042 * driver-level. This assumes that the application passes a correctly
00043 * formatted HDLC frame to the driver for transmission, and that the driver
00044 * does not validate the contents of an incoming frame.
00045 *
00046 * The driver supports polled mode and interrupt mode only with DMA
00047 * scatter-gather. FIFO interrupt mode without DMA scatter-gather is not yet
00048 * supported. The default mode of operation is polled.
00049 *
00050 * Device Configuration
00051 *
00052 * The device can be configured in various ways during the FPGA implementation
00053 * process. Configuration parameters are stored in the xhdlc_g.c file. A table
00054 * is defined where each entry contains configuration information for an HDLC
00055 * device. This information includes such things as the base address
00056 * of the memory-mapped device.
00057 *
00058 * HDLC Frame Description
00059 *
00060 * An HDLC frame contains a number of fields as illustrated below. The size of
00061 * several fields, the Address and FCS fields, are variable depending on the
00062 * the configuration of the device as set through the options.
00063 *
00064 * <Opening Flag><Address><Control><Data><FCS><Closing Flag>
00065 *
00066 * Asserts
00067 *
00068 * Asserts are used within all Xilinx drivers to enforce constraints on argument
00069 * values. Asserts can be turned off on a system-wide basis by defining, at
compile
00070 * time, the NDEBUG identifier. By default, asserts are turned on and it is
00071 * recommended that application developers leave asserts on during development.
00072 *
00073 * @note
00074 *
00075 * This driver is intended to be RTOS and processor independent. It works
00076 * with physical addresses only. Any needs for dynamic memory management,
00077 * threads or thread mutual exclusion, virtual memory, or cache control must
00078 * be satisfied by the layer above this driver.
00079 *
00080 * <pre>
00081 * MODIFICATION HISTORY:
00082 *
00083 * Ver Who Date Changes
00084 * ----- ---- -------- ---
00085 * 1.00a jhl 04/01/02 First release
00086 * </pre>
00087 *
00088 **/
00089
00090 #ifndef XHDLC_H /* prevent circular inclusions */
00091 #define XHDLC_H /* by using protection macros */
00092

00093 /***************************** Include Files *********************************/
00094
00095 #include "xbasic_types.h"

00096 #include "xstatus.h"

00097 #include "xpacket_fifo_v1_00_b.h" /* Uses v1.00b of Packet Fifo */
00098 #include "xdma_channel.h"
00099 #include "xhdlc_l.h"

00100 #include "xparameters.h"

00101
00102 /************************** Constant Definitions *****************************/
00103
00104 /** @name Configuration options
00105 *
00106 * Device configuration options (see the XHdlc_SetOptions() and
00107 * XHdlc_GetOptions() for information on how to use these options). Note that
00108 * the option to remove addresses from the receive buffers is only valid when
00109 * address filtering is on.
00110 * @{
00111 */
00112 #define XHD_OPTION_POLLED 0x01 /**< polled mode, default */

00113 #define XHD_OPTION_LOOPBACK 0x02 /**< loopback transmit to receive */

00114 #define XHD_OPTION_CRC_32 0x04 /**< send/receive 32 bit CRCs */

00115 #define XHD_OPTION_CRC_DISABLE 0x08 /**< disable sending CRCs */

00116 #define XHD_OPTION_RX_FILTER_ADDR 0x10 /**< receive address filtering */

00117 #define XHD_OPTION_RX_REMOVE_ADDR 0x20 /**< don't buffer receive addresses */

00118 #define XHD_OPTION_RX_BROADCAST 0x40 /**< receive broadcast addresses */

00119 #define XHD_OPTION_RX_16_ADDR 0x80 /**< receive 16 bit addresses, 8 bit

00120 } is the default */
00121
00122 /* The following constants determine the configuration of the hardware device
00123 * and are used to allow the driver to verify it can operate with the hardware
00124 * configuration.
00125 */
00126 #define XHD_CFG_NO_IPIF 0 /* Not supported by the driver */
00127 #define XHD_CFG_NO_DMA 1 /* No DMA */
00128 #define XHD_CFG_SIMPLE_DMA 2 /* Not supported by the driver */
00129 #define XHD_CFG_DMA_SG 3 /* DMA scatter gather */
00130
00131 /*
00132 * Some default values for interrupt coalescing within the scatter-gather
00133 * DMA engine.
00134 */
00135 #define XHD_SGDMA_DFT_THRESHOLD 1 /* Default pkt threshold */
00136 #define XHD_SGDMA_MAX_THRESHOLD 255 /* Maximum pkt theshold */
00137 #define XHD_SGDMA_DFT_WAITBOUND 5 /* Default pkt wait bound (msec) */
00138 #define XHD_SGDMA_MAX_WAITBOUND 1023 /* Maximum pkt wait bound (msec) */
00139
00140 /* The following constants control the number of buffers for DMA scatter
00141 * gather processing
00142 */
00143 #define XHD_MIN_BUFFERS 16 /* minimum number of receive buffers */

00144 #define XHD_DFT_BUFFERS 64 /* default number of receive buffers */
00145
00146 #define XHD_MIN_RECV_DESC 8 /* minimum # of recv descriptors */
00147 #define XHD_DFT_RECV_DESC 32 /* default # of recv descriptors */
00148
00149 #define XHD_MIN_SEND_DESC 8 /* minimum # of send descriptors */
00150 #define XHD_DFT_SEND_DESC 32 /* default # of send descriptors */
00151
00152 /**************************** Type Definitions *******************************/
00153
00154 /**
00155 * HDLC statistics (see XHdlc_GetStats() and XHdlc_ClearStats())
00156 */
00157 typedef struct

00158 {
00159 Xuint16 XmitFrames; /**< Number of frames transmitted */

00160 Xuint16 XmitBytes; /**< Number of bytes transmitted */

00161
00162 Xuint16 RecvFrames; /**< Number of frames received */

00163 Xuint16 RecvBytes; /**< Number of bytes received */

00164 Xuint16 RecvFcsErrors; /**< Number of frames discarded due

00165 to FCS errors */
00166 Xuint16 RecvAlignmentErrors; /**< Number of frames received with

00167 alignment errors */
00168 Xuint16 RecvOverrunErrors; /**< Number of frames discarded due

00169 to overrun errors */
00170 Xuint16 RecvAbortedFrames; /**< Number of transmit aborted frames */

00171
00172 Xuint16 FifoErrors; /**< Number of FIFO errors since init */

00173 Xuint16 DmaErrors; /**< Number of DMA errors */

00174 Xuint16 RecvInterrupts; /**< Number of receive interrupts */

00175 Xuint16 XmitInterrupts; /**< Number of transmit interrupts */

00176 Xuint16 HdlcInterrupts; /**< Number of HDLC (device) interrupts */

00177 } XHdlc_Stats;

00178
00179 /**
00180 * This typedef contains configuration information for a device.
00181 */
00182 typedef struct

00183 {
00184 Xuint16 DeviceId; /**< Unique ID of device */

00185 Xuint32 BaseAddress; /**< Device base address */

00186 Xuint32 TransmitFifoSize; /**< Transmit FIFO size in bytes */

00187 Xuint32 ReceiveFifoSize; /**< Receive FIFO size in bytes */

00188 Xuint8 IpIfDmaConfig; /**< IPIF/DMA hardware configuration */

00189 } XHdlc_Config;

00190
00191 /** @name Typedefs for callbacks
00192 * Callback functions.
00193 * @{

00194 */
00195 /**
00196 * Callback when data is sent or received with scatter-gather DMA.
00197 * @param CallBackRef is a callback reference passed in by the upper layer
00198 * when setting the callback functions, and passed back to the upper
00199 * layer when the callback is invoked.
00200 * @param FrameCount is the number of frames sent or received.
00201 */
00202 typedef void (*XHdlc_SgHandler)(void *CallBackRef, unsigned FrameCount);

00203
00204 /**
00205 * Callback when errors occur in interrupt mode.
00206 * @param CallBackRef is a callback reference passed in by the upper layer
00207 * when setting the callback functions, and passed back to the upper
00208 * layer when the callback is invoked.
00209 * @param ErrorCode indicates the error that occurred.
00210 */
00211 typedef void (*XHdlc_ErrorHandler)(void *CallBackRef, XStatus ErrorCode);

00212 /*@}*/
00213
00214 /**
00215 * The XHdlc driver instance data. The user is required to allocate a
00216 * variable of this type for every HDLC device in the system. A pointer
00217 * to a variable of this type is then passed to the driver API functions.
00218 */
00219 typedef struct

00220 {
00221 Xuint32 BaseAddress; /* Base address for device (IPIF) */

00222 Xuint32 IsStarted; /* Device is currently started */

00223 Xuint32 IsReady; /* Device is initialized and ready */

00224 Xboolean IsPolled; /* Polled/interrupt driven configuration */

00225 XHdlc_Config *ConfigPtr; /* A pointer to the device configuration */

00226
00227 XHdlc_Stats Stats;

00228 XPacketFifoV100b RecvFifo; /* FIFO used by receive channel */
00229 XPacketFifoV100b SendFifo; /* FIFO used by send channel */
00230
00231 XDmaChannel RecvChannel; /* DMA receive channel */
00232 XDmaChannel SendChannel; /* DMA send channel */
00233
00234 /*
00235 * Callbacks
00236 */
00237 XHdlc_SgHandler SgRecvHandler;

00238 void *SgRecvRef;
00239 XHdlc_SgHandler SgSendHandler;

00240 void *SgSendRef;
00241 XHdlc_ErrorHandler ErrorHandler;

00242 void *ErrorRef;
00243 } XHdlc;

00244

00245 /***************** Macros (Inline Functions) Definitions *********************/
00246
00247
00248 /************************** Function Prototypes ******************************/
00249
00250 /*
00251 * Initialization functions in xhdlc.c
00252 */
00253 XStatus XHdlc_Initialize(XHdlc *InstancePtr, Xuint16 DeviceId);

00254 XStatus XHdlc_Start(XHdlc *InstancePtr);

00255 XStatus XHdlc_Stop(XHdlc *InstancePtr);

00256 void XHdlc_Reset(XHdlc *InstancePtr);

00257 XHdlc_Config *XHdlc_LookupConfig(Xuint16 DeviceId);

00258
00259 XStatus XHdlc_Send(XHdlc *InstancePtr, Xuint8 *FramePtr, unsigned ByteCount);

00260 XStatus XHdlc_Recv(XHdlc *InstancePtr, Xuint8 *FramePtr,

00261 unsigned *ByteCountPtr, Xuint8 *FrameStatusPtr);

00262
00263 /*
00264 * Diagnostic functions in xhdlc_selftest.c
00265 */
00266 XStatus XHdlc_SelfTest(XHdlc *InstancePtr);

00267
00268 /*
00269 * Options functions in xhdlc_options.c
00270 */
00271 XStatus XHdlc_SetOptions(XHdlc *InstancePtr, Xuint8 Options);

00272 Xuint8 XHdlc_GetOptions(XHdlc *InstancePtr);

00273 void XHdlc_SetAddress(XHdlc *InstancePtr, Xuint16 Address);

00274 Xuint16 XHdlc_GetAddress(XHdlc *InstancePtr);

00275
00276 /*
00277 * Statistics in xhdlc_stats.c
00278 */
00279 void XHdlc_GetStats(XHdlc *InstancePtr, XHdlc_Stats *StatsPtr);

00280 void XHdlc_ClearStats(XHdlc *InstancePtr);

00281
00282 /*
00283 * DMA scatter gather functions in xhdlc_dmasg.c
00284 */
00285 XStatus XHdlc_SgSend(XHdlc *InstancePtr, XBufDescriptor *BdPtr);

00286 XStatus XHdlc_SgRecv(XHdlc *InstancePtr, XBufDescriptor *BdPtr);

00287 XStatus XHdlc_SgGetSendFrame(XHdlc* InstancePtr, XBufDescriptor **PtrToBdPtr,

00288 unsigned *BdCountPtr);
00289 XStatus XHdlc_SgGetRecvFrame(XHdlc* InstancePtr, XBufDescriptor **PtrToBdPtr,

00290 unsigned *BdCountPtr);
00291
00292 XStatus XHdlc_SetSgRecvSpace(XHdlc *InstancePtr, Xuint32 *MemoryPtr,

00293 unsigned ByteCount);
00294 XStatus XHdlc_SetSgSendSpace(XHdlc *InstancePtr, Xuint32 *MemoryPtr,

00295 unsigned ByteCount);
00296
00297 /*
00298 * DMA scatter gather interrupt handler and callbacks in xhdlc_dmasg.c
00299 */
00300 void XHdlc_InterruptHandler(void *InstancePtr);

00301 void XHdlc_SetSgRecvHandler(XHdlc *InstancePtr, void *CallBackRef,

00302 XHdlc_SgHandler FuncPtr);

00303 void XHdlc_SetSgSendHandler(XHdlc *InstancePtr, void *CallBackRef,

00304 XHdlc_SgHandler FuncPtr);

00305 void XHdlc_SetErrorHandler(XHdlc *InstancePtr, void *CallBackRef,

00306 XHdlc_ErrorHandler FuncPtr);

00307
00308 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc.h File Reference

Detailed Description

The Xilinx HDLC driver component which supports the Xilinx HDLC device.

Driver Description

The device driver enables higher layer software (e.g., an application) to communicate to HDLC devices.
The driver handles transmission and reception of HDLC frames, as well as configuration of the devices. A
single device driver can support multiple HDLC devices.

The driver is designed for a zero-copy buffer scheme. That is, the driver will not copy buffers. This avoids
potential throughput bottlenecks within the driver.

Since the driver is a simple pass-through mechanism between an application and the HDLC devices, no
assembly or disassembly of HDLC frames is done at the driver-level. This assumes that the application
passes a correctly formatted HDLC frame to the driver for transmission, and that the driver does not
validate the contents of an incoming frame.

The driver supports polled mode and interrupt mode only with DMA scatter-gather. FIFO interrupt mode
without DMA scatter-gather is not yet supported. The default mode of operation is polled.

Device Configuration

The device can be configured in various ways during the FPGA implementation process. Configuration
parameters are stored in the xhdlc_g.c file. A table is defined where each entry contains configuration
information for an HDLC device. This information includes such things as the base address of the memory-
mapped device.

HDLC Frame Description

An HDLC frame contains a number of fields as illustrated below. The size of several fields, the Address

and FCS fields, are variable depending on the the configuration of the device as set through the options.

<Opening Flag><Address><Control><Data><FCS><Closing Flag>

Asserts

Asserts are used within all Xilinx drivers to enforce constraints on argument values. Asserts can be turned
off on a system-wide basis by defining, at compile time, the NDEBUG identifier. By default, asserts are
turned on and it is recommended that application developers leave asserts on during development.

Note:
This driver is intended to be RTOS and processor independent. It works with physical addresses
only. Any needs for dynamic memory management, threads or thread mutual exclusion, virtual
memory, or cache control must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 04/01/02 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xpacket_fifo_v1_00_b.h"
#include "xdma_channel.h"
#include "xhdlc_l.h"

#include "xparameters.h"

Go to the source code of this file.

Data Structures

struct XHdlc
struct XHdlc_Config
struct XHdlc_Stats

Typedefs for callbacks

Callback functions.

typedef void(* XHdlc_SgHandler)(void *CallBackRef, unsigned FrameCount)
typedef void(* XHdlc_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Defines

#define XHD_OPTION_POLLED
#define XHD_OPTION_LOOPBACK
#define XHD_OPTION_CRC_32
#define XHD_OPTION_CRC_DISABLE
#define XHD_OPTION_RX_FILTER_ADDR
#define XHD_OPTION_RX_REMOVE_ADDR
#define XHD_OPTION_RX_BROADCAST
#define XHD_OPTION_RX_16_ADDR

Functions

XStatus XHdlc_Initialize (XHdlc *InstancePtr, Xuint16 DeviceId)
XStatus XHdlc_Start (XHdlc *InstancePtr)
XStatus XHdlc_Stop (XHdlc *InstancePtr)

void XHdlc_Reset (XHdlc *InstancePtr)
XHdlc_Config * XHdlc_LookupConfig (Xuint16 DeviceId)

XStatus XHdlc_Send (XHdlc *InstancePtr, Xuint8 *FramePtr, unsigned ByteCount)
XStatus XHdlc_Recv (XHdlc *InstancePtr, Xuint8 *FramePtr, unsigned *ByteCountPtr, Xuint8

*FrameStatusPtr)
XStatus XHdlc_SelfTest (XHdlc *InstancePtr)
XStatus XHdlc_SetOptions (XHdlc *InstancePtr, Xuint8 Options)
Xuint8 XHdlc_GetOptions (XHdlc *InstancePtr)

void XHdlc_SetAddress (XHdlc *InstancePtr, Xuint16 Address)
Xuint16 XHdlc_GetAddress (XHdlc *InstancePtr)

void XHdlc_GetStats (XHdlc *InstancePtr, XHdlc_Stats *StatsPtr)
void XHdlc_ClearStats (XHdlc *InstancePtr)

XStatus XHdlc_SgSend (XHdlc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XHdlc_SgRecv (XHdlc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XHdlc_SgGetSendFrame (XHdlc *InstancePtr, XBufDescriptor **PtrToBdPtr,

unsigned *BdCountPtr)
XStatus XHdlc_SgGetRecvFrame (XHdlc *InstancePtr, XBufDescriptor **PtrToBdPtr,

unsigned *BdCountPtr)
XStatus XHdlc_SetSgRecvSpace (XHdlc *InstancePtr, Xuint32 *MemoryPtr, unsigned

ByteCount)
XStatus XHdlc_SetSgSendSpace (XHdlc *InstancePtr, Xuint32 *MemoryPtr, unsigned

ByteCount)
void XHdlc_InterruptHandler (void *InstancePtr)
void XHdlc_SetSgRecvHandler (XHdlc *InstancePtr, void *CallBackRef,

XHdlc_SgHandler FuncPtr)
void XHdlc_SetSgSendHandler (XHdlc *InstancePtr, void *CallBackRef,

XHdlc_SgHandler FuncPtr)
void XHdlc_SetErrorHandler (XHdlc *InstancePtr, void *CallBackRef,

XHdlc_ErrorHandler FuncPtr)

Define Documentation

#define XHD_OPTION_CRC_32

 send/receive 32 bit CRCs

#define XHD_OPTION_CRC_DISABLE

 disable sending CRCs

#define XHD_OPTION_LOOPBACK

 loopback transmit to receive

#define XHD_OPTION_POLLED

 polled mode, default

#define XHD_OPTION_RX_16_ADDR

 receive 16 bit addresses, 8 bit } is the default

#define XHD_OPTION_RX_BROADCAST

 receive broadcast addresses

#define XHD_OPTION_RX_FILTER_ADDR

 receive address filtering

#define XHD_OPTION_RX_REMOVE_ADDR

 don't buffer receive addresses

Typedef Documentation

typedef void(* XHdlc_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Callback when errors occur in interrupt mode.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback

functions, and passed back to the upper layer when the callback is invoked.
ErrorCode indicates the error that occurred.

typedef void(* XHdlc_SgHandler)(void *CallBackRef, unsigned FrameCount)

Callback when data is sent or received with scatter-gather DMA.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback

functions, and passed back to the upper layer when the callback is invoked.
FrameCount is the number of frames sent or received.

Function Documentation

void XHdlc_ClearStats (XHdlc * InstancePtr)

Clear the statistics for the specified HDLC driver instance.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
None.

Note:
None.

Xuint16 XHdlc_GetAddress (XHdlc * InstancePtr)

Get the receive address for this driver/device.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
The receive address of the HDLC device.

Note:
None.

Xuint8 XHdlc_GetOptions (XHdlc * InstancePtr)

Get HDLC driver/device options. A value is returned which is a bit-mask representing the options. A
one (1) in the bit-mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
The value of the HDLC options. The value is a bit-mask representing all options that are
currently enabled. See xhdlc.h for a description of the available options.

Note:
None.

void XHdlc_GetStats (XHdlc * InstancePtr,
XHdlc_Stats * StatsPtr

)

Get a copy of the statistics structure, which contains the current statistics for this driver. The statistics
are only cleared at initialization or on demand using the XHdlc_ClearStats() function.

The FifoErrors counts indicate that the device has been or needs to be reset. Reset of the device is the
responsibility of the caller.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current
statistics will be copied.

Returns:
None.

Note:
None.

XStatus XHdlc_Initialize (XHdlc * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XHdlc instance/driver. The initialization entails:

● Initialize fields of the XHdlc structure
● Clear the HDLC statistics for this device
● Configure the FIFO components and DMA channels
● Reset the HDLC device

The driver defaults to polled mode operation. Interrupt mode can be selected using the SetOptions()
function and turning off polled mode.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

DeviceId is the unique id of the device controlled by this XHdlc instance. Passing in a device
id associates the generic XHdlc instance to a specific device, as chosen by the
caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a

device with the supplied device ID.
❍ XST_NO_FEATURE if the device configuration information indicates a feature that is

not supported by this driver (no IPIF or simple DMA).

Note:
None.

void XHdlc_InterruptHandler (void * InstancePtr)

Interrupt handler for the HDLC driver. It performs the following processing:

● Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be:
the HDLC device, the send packet FIFO, the receive packet FIFO, the send DMA channel, or the
receive DMA channel. The packet FIFOs only interrupt during "deadlock" conditions. All other
FIFO-related interrupts are generated by the HDLC device.

● Call the appropriate handler based on the source of the interrupt.

Parameters:
InstancePtr contains a pointer to the HDLC device instance for the interrupt.

Returns:
None.

Note:
None.

XHdlc_Config* XHdlc_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table XHdlc_ConfigTable contains
the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device being looked up.

Returns:
A pointer to the configuration table entry corresponding to the given device ID, or XNULL if no
match is found.

Note:
None.

XStatus XHdlc_Recv (XHdlc * InstancePtr,
Xuint8 * FramePtr,
unsigned * ByteCountPtr,
Xuint8 * FrameStatusPtr

)

Receive an HDLC frame in polled mode. The driver receives the frame directly from the devices packet
FIFO. This is a non-blocking receive, in that if there is no frame ready to be received at the device, the
function returns with an error. The buffer into which the frame will be received must be word-aligned.

The frames which are received by the device are stripped of the Opening Flag and Closing Flag fields
such that buffers which receive data will not contain these fields. The frames do contain the FCS field.
The Address field may or may not be contained in a receive buffer depending on the options set.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

FramePtr is a pointer to a 32 bit word aligned buffer into which the received HDLC
frame will be copied.

ByteCountPtr is both an input and output parameter. It is a pointer to a 32-bit word that
contains the number of bytes in the specified frame buffer on entry and the
number of bytes in the received frame on return from the function.

FrameStatusPtr is an output which is changed by the driver to contain the status of the frame. It
indicates any status that occurred for the received frame.

Returns:
❍ XST_SUCCESS if the frame was received successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NO_DATA if there is no frame to be received from the FIFO

❍ XST_BUFFER_TOO_SMALL if the specified receive buffer is smaller than the the
received frame. The received frame is not retrieved from the receive FIFO such that a
reset of the device is necessary to resynchronize the internal length and data FIFOs.

❍ XST_FIFO_ERROR if a non-recoverable FIFO error has occurred. A reset of the device
is necessary to clear this error.

Note:
Receive buffer must also be 32-bit aligned. The user must ensure that the size of the receive
buffer is large enough to hold the frames received.

void XHdlc_Reset (XHdlc * InstancePtr)

Reset the HDLC instance. This is a graceful reset in that the device is stopped first then it resets the
FIFOs and DMA channels if present. Reset must only be called after the driver has been initialized. The
reset does not remove any of the buffer descriptors from the scatter-gather list for DMA.

The configuration after this reset is as follows:

● Disabled transmitter and receiver
● Device interrupts are disabled
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation

The upper layer software is responsible for re-configuring (if necessary) and restarting the HDLC
device after the reset. Note also that driver statistics are not cleared on reset. It is up to the upper layer
software to clear the statistics if needed.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
None.

Note:
None.

XStatus XHdlc_SelfTest (XHdlc * InstancePtr)

Performs a self-test on the HDLC device. The test includes:

● Run self-test on the FIFOs, and IPIF components
● Reset the HDLC device, check its registers for proper reset values, and run an internal loopback

test on the device. The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default
configuration. The caller is responsible for re-configuring the device after the self-test is run, and
starting it when ready to send and receive frames.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:

 XST_SUCCESS Self-test was successful
 XST_REGISTER_ERROR HDLC failed register reset test
 XST_LOOPBACK_ERROR Internal loopback failed

Note:
None.

XStatus XHdlc_Send (XHdlc * InstancePtr,
Xuint8 * FramePtr,
unsigned ByteCount

)

Send an HDLC frame in polled mode. The driver writes the frame directly to the HDLC packet FIFO.
Statistics are updated if an error previously occurred. The buffer to be sent must be word-aligned. This
function is a non-blocking function in that it does not wait for the frame to be sent before returning.

The hardware device adds the Opening Flag, FCS, and Closing Flag fields to the frame such that these
should not be put in the buffers which are to be sent.

The hardware device uses a length FIFO to keep track of each frame that has been put into the data
FIFO. When sending a lot of short frames it is possible to fill this FIFO so that another frame cannot be
sent until a frame has been sent by the device.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

 FramePtr is a pointer to a 32 bit word aligned buffer containing the HDLC frame to be sent.
ByteCount is the size of the HDLC frame as an input. This size must be smaller than the size of

the transmit FIFO of the device.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_FIFO_NO_ROOM if there is no room in the devices FIFOs for this frame.
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical and

requires the caller to reset the device.

Note:
None.

void XHdlc_SetAddress (XHdlc * InstancePtr,
Xuint16 Address

)

Set the receive address for this driver/device. The address is a 8 or 16 bit value within a HDLC frame.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Address is the address to be set.

Returns:
None.

Note:
None.

void XHdlc_SetErrorHandler (XHdlc * InstancePtr,
void * CallBackRef,
XHdlc_ErrorHandler FuncPtr

)

Sets the callback function for handling errors. The upper layer software should call this function during
initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback which should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus
error or bus timeout. The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock
condition in the packet FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable HDLC device error occurred, usually an
overrun or underrun. The handler must reset and re-configure the device.

● XST_ERROR_COUNT_MAX indicates the counters of the HDLC device have reached the
maximum value and that the statistics of the HDLC device should be cleared.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This
helps the application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XHdlc_SetOptions (XHdlc * InstancePtr,
Xuint8 Options

)

Set HDLC driver/device options. The device must be stopped before calling this function. The options
are contained within a bit-mask with each bit representing an option (i.e., you can OR the options
together). A one (1) in the bit-mask turns an option on, and a zero (0) turns the option off.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Options is a bit-mask representing the HDLC options to turn on or off. See xhdlc.h for a
description of the available options.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped
❍ XST_NO_FEATURE if the polled option is being turned off and the device configuration

information indicates DMA scatter gather is not supported. This driver does not support
interrupt driven without DMA scatter-gather (FIFO only) yet.

Note:
This function is not thread-safe and makes use of internal resources that are shared between the
Start, Stop, and SetOptions functions, so if one task might be setting device options while
another is trying to start the device, protection of this shared data (typically using a semaphore)
is required.

void XHdlc_SetSgRecvHandler (XHdlc * InstancePtr,
void * CallBackRef,
XHdlc_SgHandler FuncPtr

)

Sets the callback function for handling received frames in scatter-gather DMA mode. The upper layer
software should call this function during initialization. The callback is called when a number of frames,
determined by the DMA scatter-gather packet threshold, are received. The number of received frames is
passed to the callback function. The callback function should communicate the data to a thread such that
the scatter-gather list processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer
descriptors for each received frame from the list and should attach a new buffer to each descriptor. It is
important that the specified number of frames passed to the callback function are handled by the scatter-
gather list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there
are other potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This
helps the application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XHdlc_SetSgRecvSpace (XHdlc * InstancePtr,
Xuint32 * MemoryPtr,
unsigned ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This
function should only be called once, during initialization of the HDLC driver. The memory space must
be word-aligned.

This function must be called prior to calling XHdlc_Start().

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the HDLC device is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XHdlc_Initialize() function because the DMA channel components must be initialized before
the memory space is set.

void XHdlc_SetSgSendHandler (XHdlc * InstancePtr,
void * CallBackRef,
XHdlc_SgHandler FuncPtr

)

Sets the callback function for handling confirmation of transmitted frames in scatter-gather DMA mode.
The upper layer software should call this function during initialization. The callback is called when a
number of frames, determined by the DMA scatter-gather packet threshold, are sent. The number of sent
frames is passed to the callback function. The callback function should communicate the data to a thread
such that the scatter-gather list processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer
descriptors for each sent frame from the list and should also free the buffers attached to the descriptors
if necessary. It is important that the specified number of frames passed to the callback function are
handled by the scatter-gather list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there
are potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This
helps the application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XHdlc_SetSgSendSpace (XHdlc * InstancePtr,
Xuint32 * MemoryPtr,
unsigned ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This
function should only be called once, during initialization of the HDLC driver. The memory space must
be word-aligned.

This function must be called prior to calling XHdlc_Start().

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the HDLC device is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XHdlc_Initialize() function because the DMA channel components must be initialized before
the memory space is set.

XStatus XHdlc_SgGetRecvFrame (XHdlc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
unsigned * BdCountPtr

)

Gets the first buffer descriptor of the oldest frame which was received by the scatter-gather DMA
channel of the HDLC device. This function is provided to be called from a callback function such that
the buffer descriptors for received frames can be processed. The function should be called by the
application repetitively for the number of frames indicated as an argument in the callback function.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the first
buffer descriptor of the frame. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the
number of buffer descriptors for the frame. This input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor

pointed to by PtrToBdPtr and a count of the number of buffer descriptors for the frame pointed
to by BdCountPtr are both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list

because there are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XHdlc_SgGetSendFrame (XHdlc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
unsigned * BdCountPtr

)

Gets the first buffer descriptor of the oldest frame which was sent by the scatter-gather DMA channel of
the HDLC device. This function is provided to be called from a callback function such that the buffer
descriptors for sent frames can be processed. The function should be called by the application
repetitively for the number of frames indicated as an argument in the callback function.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the first
buffer descriptor of the frame. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the
number of buffer descriptors for the frame. this input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor
pointed to by PtrToBdPtr and a count of the number of buffer descriptors for the frame pointed
to by BdCountPtr are both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list

because there are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XHdlc_SgRecv (XHdlc * InstancePtr,
XBufDescriptor * BdPtr

)

Adds this descriptor, with an attached empty buffer, into the receive descriptor list. The buffer attached
to the descriptor must be word-aligned. This is used by the upper layer software during initialization
when first setting up the receive descriptors, and also during reception of frames to replace filled buffers
with empty buffers. The contents of the specified buffer descriptor are copied into the scatter-gather
transmit list. This function can be called when the device is started or stopped.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the

list because a locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit.

Note:
None.

XStatus XHdlc_SgSend (XHdlc * InstancePtr,
XBufDescriptor * BdPtr

)

Sends a HDLC frame using scatter-gather DMA. The caller attaches the frame to one or more buffer
descriptors, then calls this function once for each descriptor. The caller is responsible for allocating and
setting up the descriptor. An entire frame may or may not be contained within one descriptor. The
contents of the buffer descriptor are copied into the scatter-gather transmit list. The caller is responsible
for providing mutual exclusion to guarantee that a frame is contiguous in the transmit list. The buffer
attached to the descriptor must be word-aligned.

The driver updates the descriptor with the DMA control register before being inserted into the transmit
list. If this is the last descriptor in the frame, the inserts are committed, which means the descriptors for
this frame are now available for transmission.

It is assumed that the upper layer software supplies a correctly formatted HDLC frame based upon the

configuration of the HDLC device. The HDLC device must be started before calling this function.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.

Returns:
❍ XST_SUCCESS if the buffer was successfully sent
❍ XST_DEVICE_IS_STOPPED if the HDLC device has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the

list because a locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit. If this is ever
encountered, there is likely a thread mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function
if there are to be multiple threads that can call it.

XStatus XHdlc_Start (XHdlc * InstancePtr)

Start the HDLC device and driver by enabling the transmitter and receiver. This function must be called
before other functions to send or receive data. It supports either polled or DMA scatter gather interrupt
driven modes of operation. It does not yet support interrupt driven with FIFOs (non-DMA) or simple
DMA without scatter gather.

If the driver is configured for interrupt driven operation, the interrupts of the device are enabled. The
user should have connected the interrupt handler of the driver to an interrupt source such as an interrupt
controller or the processor interrupt prior to this function being called.

Prior to calling this function, the functions XHdlc_SetSgRecvSpace() and XHdlc_SetSgSendSpace()
should be called to setup the memory buffers and descriptor lists for the DMA scatter-gather.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_DEVICE_IS_STARTED if the device is already started

❍ XST_NO_CALLBACK if a callback function has not yet been registered using the
SetxxxHandler function. This is required if in interrupt mode.

❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has
not yet been created for the send or receive channel.

❍ XST_DMA_SG_LIST_EMPTY if configured for scatter-gather DMA and a descriptor
list has been created for the receive channel but no buffers inserted into it.

Note:
This function makes use of internal resources that are shared between the Start, Stop, and
SetOptions functions. So if one task might be setting device options while another is trying to
start the device, the user is required to provide protection of this shared data (typically using a
semaphore).

XStatus XHdlc_Stop (XHdlc * InstancePtr)

Stop the HDLC device as follows:

● If the device is configured with DMA, stop the DMA channels (wait for acknowledgment of
stop)

● Disable the transmitter and receiver
● Disable interrupts if not in polled mode (the higher layer software is responsible for disabling

interrupts at the interrupt controller)

If the device is configured for scatter-gather DMA, the DMA engine stops at the next buffer descriptor
in its list. The remaining descriptors in the list are not removed, so anything in the list will be
transmitted or received when the device is restarted. The side effect of doing this is that the last buffer
descriptor processed by the DMA engine before stopping may not be the last descriptor in the HDLC
frame. So when the device is restarted, a partial frame (i.e., a bad frame) may be transmitted/received.
This is only a concern if a frame can span multiple buffer descriptors, which is dependent on the size of
the network buffers.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of HDLC devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 04/08/02 First release

#include "xhdlc.h"

Variables

XHdlc_Config XHdlc_ConfigTable [XPAR_XHDLC_NUM_INSTANCES]

Variable Documentation

XHdlc_Config XHdlc_ConfigTable[XPAR_XHDLC_NUM_INSTANCES]

 This table contains configuration information for each HDLC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XHdlc_Config Struct Reference
#include <xhdlc.h>

Detailed Description

This typedef contains configuration information for a device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint32 TransmitFifoSize
Xuint32 ReceiveFifoSize
Xuint8 IpIfDmaConfig

Field Documentation

Xuint32 XHdlc_Config::BaseAddress

 Device base address

Xuint16 XHdlc_Config::DeviceId

 Unique ID of device

Xuint8 XHdlc_Config::IpIfDmaConfig

 IPIF/DMA hardware configuration

Xuint32 XHdlc_Config::ReceiveFifoSize

 Receive FIFO size in bytes

Xuint32 XHdlc_Config::TransmitFifoSize

 Transmit FIFO size in bytes

The documentation for this struct was generated from the following file:

● hdlc/v1_00_a/src/xhdlc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xbasic_types.h File
Reference

Detailed Description

This file contains basic types for Xilinx software IP. These types do not follow the standard naming convention
with respect to using the component name in front of each name because they are considered to be primitives.

Note:
This file contains items which are architecture dependent.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 12/14/01 First release
 rmm 05/09/03 Added "xassert always" macros to rid ourselves of diab
 compiler warnings

Go to the source code of this file.

Data Structures

struct Xuint64

Primitive types

These primitive types are created for transportability. They are dependent upon the target architecture.

typedef unsigned char Xuint8
typedef char Xint8

typedef unsigned short Xuint16
typedef short Xint16

typedef unsigned long Xuint32
typedef long Xint32
typedef float Xfloat32

typedef double Xfloat64
typedef unsigned long Xboolean

Defines

#define XTRUE
#define XFALSE
#define XNULL
#define XUINT64_MSW(x)
#define XUINT64_LSW(x)
#define XASSERT_VOID(expression)
#define XASSERT_NONVOID(expression)
#define XASSERT_VOID_ALWAYS()
#define XASSERT_NONVOID_ALWAYS()

Typedefs

typedef void(* XInterruptHandler)(void *InstancePtr)
typedef void(* XAssertCallback)(char *FilenamePtr, int LineNumber)

Functions

void XAssert (char *, int)
void XAssertSetCallback (XAssertCallback Routine)

Variables

unsigned int XAssertStatus

Define Documentation

#define XASSERT_NONVOID(expression)

This assert macro is to be used for functions that do return a value. This in conjunction with the
XWaitInAssert boolean can be used to accomodate tests so that asserts which fail allow execution to
continue.

Parameters:
expression is the expression to evaluate. If it evaluates to false, the assert occurs.

Returns:
Returns 0 unless the XWaitInAssert variable is true, in which case no return is made and an infinite
loop is entered.

Note:
None.

#define XASSERT_NONVOID_ALWAYS()

Always assert. This assert macro is to be used for functions that do return a value. Use for instances where
an assert should always occur.

Returns:
Returns void unless the XWaitInAssert variable is true, in which case no return is made and an
infinite loop is entered.

Note:
None.

#define XASSERT_VOID(expression)

This assert macro is to be used for functions that do not return anything (void). This in conjunction with the
XWaitInAssert boolean can be used to accomodate tests so that asserts which fail allow execution to
continue.

Parameters:
expression is the expression to evaluate. If it evaluates to false, the assert occurs.

Returns:
Returns void unless the XWaitInAssert variable is true, in which case no return is made and an
infinite loop is entered.

Note:
None.

#define XASSERT_VOID_ALWAYS()

Always assert. This assert macro is to be used for functions that do not return anything (void). Use for
instances where an assert should always occur.

Returns:
Returns void unless the XWaitInAssert variable is true, in which case no return is made and an
infinite loop is entered.

Note:
None.

#define XFALSE

 Xboolean false

#define XNULL

 Null

#define XTRUE

 Xboolean true

#define XUINT64_LSW(x)

Return the least significant half of the 64 bit data type.

Parameters:
x is the 64 bit word.

Returns:
The lower 32 bits of the 64 bit word.

Note:
None.

#define XUINT64_MSW(x)

Return the most significant half of the 64 bit data type.

Parameters:
x is the 64 bit word.

Returns:
The upper 32 bits of the 64 bit word.

Note:
None.

Typedef Documentation

typedef void(* XAssertCallback)(char* FilenamePtr, int LineNumber)

This data type defines a callback to be invoked when an assert occurs. The callback is invoked only when
asserts are enabled

typedef unsigned long Xboolean

 boolean (XTRUE or XFALSE)

typedef float Xfloat32

 32-bit floating point

typedef double Xfloat64

 64-bit double precision floating point

typedef short Xint16

 signed 16-bit

typedef long Xint32

 signed 32-bit

typedef char Xint8

 signed 8-bit

typedef void(* XInterruptHandler)(void *InstancePtr)

This data type defines an interrupt handler for a device. The argument points to the instance of the
component

typedef unsigned short Xuint16

 unsigned 16-bit

typedef unsigned long Xuint32

 unsigned 32-bit

typedef unsigned char Xuint8

 unsigned 8-bit

Function Documentation

void XAssert (char * File,
int Line

)

Implements assert. Currently, it calls a user-defined callback function if one has been set. Then, it potentially
enters an infinite loop depending on the value of the XWaitInAssert variable.

Parameters:
File is the name of the filename of the source
Line is the linenumber within File

Returns:
None.

Note:
None.

void XAssertSetCallback (XAssertCallback Routine)

Sets up a callback function to be invoked when an assert occurs. If there was already a callback installed,
then it is replaced.

Parameters:
Routine is the callback to be invoked when an assert is taken

Returns:
None.

Note:
This function has no effect if NDEBUG is set

Variable Documentation

unsigned int XAssertStatus ()

This variable allows testing to be done easier with asserts. An assert sets this variable such that a driver can
evaluate this variable to determine if an assert occurred.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xbasic_types.h
Go to the documentation of this file.

00001 /* $Id: xbasic_types.h,v 1.8 2003/05/09 14:07:02 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file common/v1_00_a/src/xbasic_types.h
00026 *
00027 * This file contains basic types for Xilinx software IP. These types do not
00028 * follow the standard naming convention with respect to using the component
00029 * name in front of each name because they are considered to be primitives.
00030 *
00031 * @note
00032 *
00033 * This file contains items which are architecture dependent.
00034 *
00035 * <pre>
00036 * MODIFICATION HISTORY:
00037 *
00038 * Ver Who Date Changes
00039 * ----- ---- -------- ---
00040 * 1.00a rmm 12/14/01 First release
00041 * rmm 05/09/03 Added "xassert always" macros to rid ourselves of diab
00042 * compiler warnings

00043 * </pre>
00044 *
00045 **/
00046
00047 #ifndef XBASIC_TYPES_H /* prevent circular inclusions */
00048 #define XBASIC_TYPES_H /* by using protection macros */
00049
00050 /***************************** Include Files *********************************/
00051
00052
00053 /************************** Constant Definitions *****************************/
00054
00055 /** Xboolean true */
00056 #define XTRUE 1

00057 /** Xboolean false */
00058 #define XFALSE 0

00059
00060 #ifndef NULL
00061 #define NULL 0
00062 #endif
00063 /** Null */
00064 #define XNULL NULL

00065
00066 #define XCOMPONENT_IS_READY 0x11111111 /* component has been initialized
*/
00067 #define XCOMPONENT_IS_STARTED 0x22222222 /* component has been started */
00068
00069 /* the following constants and declarations are for unit test purposes and are
00070 * designed to be used in test applications.
00071 */
00072 #define XTEST_PASSED 0
00073 #define XTEST_FAILED 1
00074
00075 #define XASSERT_NONE 0
00076 #define XASSERT_OCCURRED 1
00077
00078 extern unsigned int XAssertStatus;

00079 extern void XAssert(char *, int);

00080
00081 /**************************** Type Definitions *******************************/
00082
00083 /** @name Primitive types
00084 * These primitive types are created for transportability.
00085 * They are dependent upon the target architecture.
00086 * @{
00087 */
00088 typedef unsigned char Xuint8; /**< unsigned 8-bit */

00089 typedef char Xint8; /**< signed 8-bit */

00090 typedef unsigned short Xuint16; /**< unsigned 16-bit */

00091 typedef short Xint16; /**< signed 16-bit */

00092 typedef unsigned long Xuint32; /**< unsigned 32-bit */

00093 typedef long Xint32; /**< signed 32-bit */

00094 typedef float Xfloat32; /**< 32-bit floating point */

00095 typedef double Xfloat64; /**< 64-bit double precision floating point

*/
00096 typedef unsigned long Xboolean; /**< boolean (XTRUE or XFALSE) */

00097
00098 typedef struct
00099 {
00100 Xuint32 Upper;

00101 Xuint32 Lower;

00102 } Xuint64;
00103
00104 /*@}*/
00105
00106 /**
00107 * This data type defines an interrupt handler for a device.
00108 * The argument points to the instance of the component
00109 */
00110 typedef void (*XInterruptHandler)(void *InstancePtr);

00111
00112 /**
00113 * This data type defines a callback to be invoked when an
00114 * assert occurs. The callback is invoked only when asserts are enabled
00115 */
00116 typedef void (*XAssertCallback)(char* FilenamePtr, int LineNumber);

00117
00118 /***************** Macros (Inline Functions) Definitions *********************/
00119
00120 /***/
00121 /**
00122 * Return the most significant half of the 64 bit data type.
00123 *
00124 * @param x is the 64 bit word.
00125 *
00126 * @return
00127 *
00128 * The upper 32 bits of the 64 bit word.
00129 *
00130 * @note
00131 *
00132 * None.
00133 *
00134 **/
00135 #define XUINT64_MSW(x) ((x).Upper)

00136
00137 /***/
00138 /**
00139 * Return the least significant half of the 64 bit data type.
00140 *
00141 * @param x is the 64 bit word.
00142 *

00143 * @return
00144 *
00145 * The lower 32 bits of the 64 bit word.
00146 *
00147 * @note
00148 *
00149 * None.
00150 *
00151 **/
00152 #define XUINT64_LSW(x) ((x).Lower)

00153
00154
00155 #ifndef NDEBUG
00156
00157 /***/
00158 /**
00159 * This assert macro is to be used for functions that do not return anything
00160 * (void). This in conjunction with the XWaitInAssert boolean can be used to
00161 * accomodate tests so that asserts which fail allow execution to continue.
00162 *
00163 * @param expression is the expression to evaluate. If it evaluates to false,
00164 * the assert occurs.
00165 *
00166 * @return
00167 *
00168 * Returns void unless the XWaitInAssert variable is true, in which case
00169 * no return is made and an infinite loop is entered.
00170 *
00171 * @note
00172 *
00173 * None.
00174 *
00175 **/
00176 #define XASSERT_VOID(expression) \

00177 { \
00178 if (expression) \
00179 { \
00180 XAssertStatus = XASSERT_NONE; \
00181 } \
00182 else \
00183 { \
00184 XAssert(__FILE__, __LINE__); \
00185 XAssertStatus = XASSERT_OCCURRED; \
00186 return; \
00187 } \
00188 }
00189
00190 /***/
00191 /**
00192 * This assert macro is to be used for functions that do return a value. This in
00193 * conjunction with the XWaitInAssert boolean can be used to accomodate tests so
00194 * that asserts which fail allow execution to continue.

00195 *
00196 * @param expression is the expression to evaluate. If it evaluates to false,
00197 * the assert occurs.
00198 *
00199 * @return
00200 *
00201 * Returns 0 unless the XWaitInAssert variable is true, in which case
00202 * no return is made and an infinite loop is entered.
00203 *
00204 * @note
00205 *
00206 * None.
00207 *
00208 **/
00209 #define XASSERT_NONVOID(expression) \

00210 { \
00211 if (expression) \
00212 { \
00213 XAssertStatus = XASSERT_NONE; \
00214 } \
00215 else \
00216 { \
00217 XAssert(__FILE__, __LINE__); \
00218 XAssertStatus = XASSERT_OCCURRED; \
00219 return 0; \
00220 } \
00221 }
00222
00223 /***/
00224 /**
00225 * Always assert. This assert macro is to be used for functions that do not
00226 * return anything (void). Use for instances where an assert should always
00227 * occur.
00228 *
00229 * @return
00230 *
00231 * Returns void unless the XWaitInAssert variable is true, in which case
00232 * no return is made and an infinite loop is entered.
00233 *
00234 * @note
00235 *
00236 * None.
00237 *
00238 **/
00239 #define XASSERT_VOID_ALWAYS() \

00240 { \
00241 XAssert(__FILE__, __LINE__); \
00242 XAssertStatus = XASSERT_OCCURRED; \
00243 return; \
00244 }
00245
00246 /***/

00247 /**
00248 * Always assert. This assert macro is to be used for functions that do return
00249 * a value. Use for instances where an assert should always occur.
00250 *
00251 * @return
00252 *
00253 * Returns void unless the XWaitInAssert variable is true, in which case
00254 * no return is made and an infinite loop is entered.
00255 *
00256 * @note
00257 *
00258 * None.
00259 *
00260 **/
00261 #define XASSERT_NONVOID_ALWAYS() \

00262 { \
00263 XAssert(__FILE__, __LINE__); \
00264 XAssertStatus = XASSERT_OCCURRED; \
00265 return 0; \
00266 }
00267
00268
00269 #else
00270
00271 #define XASSERT_VOID(expression)
00272 #define XASSERT_VOID_ALWAYS()
00273 #define XASSERT_NONVOID(expression)
00274 #define XASSERT_NONVOID_ALWAYS()
00275 #endif
00276
00277 /************************** Function Prototypes ******************************/
00278
00279 void XAssertSetCallback(XAssertCallback Routine);

00280
00281 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xbasic_types.c File
Reference

Detailed Description

This file contains basic functions for Xilinx software IP.

#include "xbasic_types.h"

Functions

void XAssert (char *File, int Line)
void XAssertSetCallback (XAssertCallback Routine)

Variables

unsigned int XAssertStatus
Xboolean XWaitInAssert

Function Documentation

void XAssert (char * File,
int Line

)

Implements assert. Currently, it calls a user-defined callback function if one has been set. Then, it
potentially enters an infinite loop depending on the value of the XWaitInAssert variable.

Parameters:
File is the name of the filename of the source
Line is the linenumber within File

Returns:
None.

Note:
None.

void XAssertSetCallback (XAssertCallback Routine)

Sets up a callback function to be invoked when an assert occurs. If there was already a callback
installed, then it is replaced.

Parameters:
Routine is the callback to be invoked when an assert is taken

Returns:
None.

Note:
This function has no effect if NDEBUG is set

Variable Documentation

unsigned int XAssertStatus

This variable allows testing to be done easier with asserts. An assert sets this variable such that a
driver can evaluate this variable to determine if an assert occurred.

Xboolean XWaitInAssert

This variable allows the assert functionality to be changed for testing such that it does not wait
infinitely. Use the debugger to disable the waiting during testing of asserts.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xstatus.h
Go to the documentation of this file.

00001 /* $Id: xstatus.h,v 1.19 2002/07/16 14:18:42 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file common/v1_00_a/src/xstatus.h
00026 *
00027 * This file contains Xilinx software status codes. Status codes have their
00028 * own data type called XStatus. These codes are used throughout the Xilinx
00029 * device drivers.
00030 *
00031 **/
00032
00033 #ifndef XSTATUS_H /* prevent circular inclusions */
00034 #define XSTATUS_H /* by using protection macros */
00035
00036 /***************************** Include Files *********************************/
00037
00038 #include "xbasic_types.h"

00039
00040 /************************** Constant Definitions *****************************/
00041
00042 /*********************** Common statuses 0 - 500 *****************************/

00043
00044 #define XST_SUCCESS 0L
00045 #define XST_FAILURE 1L
00046 #define XST_DEVICE_NOT_FOUND 2L
00047 #define XST_DEVICE_BLOCK_NOT_FOUND 3L
00048 #define XST_INVALID_VERSION 4L
00049 #define XST_DEVICE_IS_STARTED 5L
00050 #define XST_DEVICE_IS_STOPPED 6L
00051 #define XST_FIFO_ERROR 7L /* an error occurred during an
00052 operation with a FIFO such as
00053 an underrun or overrun, this
00054 error requires the device to
00055 be reset */
00056 #define XST_RESET_ERROR 8L /* an error occurred which requires
00057 the device to be reset */
00058 #define XST_DMA_ERROR 9L /* a DMA error occurred, this error
00059 typically requires the device
00060 using the DMA to be reset */
00061 #define XST_NOT_POLLED 10L /* the device is not configured
for
00062 polled mode operation */
00063 #define XST_FIFO_NO_ROOM 11L /* a FIFO did not have room to put
00064 the specified data into */
00065 #define XST_BUFFER_TOO_SMALL 12L /* the buffer is not large enough
00066 to hold the expected data */
00067 #define XST_NO_DATA 13L /* there was no data available */
00068 #define XST_REGISTER_ERROR 14L /* a register did not contain the
00069 expected value */
00070 #define XST_INVALID_PARAM 15L /* an invalid parameter was passed
00071 into the function */
00072 #define XST_NOT_SGDMA 16L /* the device is not configured for
00073 scatter-gather DMA operation */
00074 #define XST_LOOPBACK_ERROR 17L /* a loopback test failed */
00075 #define XST_NO_CALLBACK 18L /* a callback has not yet been
00076 * registered */
00077 #define XST_NO_FEATURE 19L /* device is not configured with
00078 * the requested feature */
00079 #define XST_NOT_INTERRUPT 20L /* device is not configured for
00080 * interrupt mode operation */
00081 #define XST_DEVICE_BUSY 21L /* device is busy */
00082 #define XST_ERROR_COUNT_MAX 22L /* the error counters of a device
00083 * have maxed out */
00084
00085 /***************** Utility Component statuses 401 - 500 *********************/
00086
00087 #define XST_MEMTEST_FAILED 401L /* memory test failed */
00088
00089
00090 /***************** Common Components statuses 501 - 1000 *********************/
00091
00092 /********************* Packet Fifo statuses 501 - 510 ************************/
00093

00094 #define XST_PFIFO_LACK_OF_DATA 501L /* not enough data in FIFO */
00095 #define XST_PFIFO_NO_ROOM 502L /* not enough room in FIFO */
00096 #define XST_PFIFO_BAD_REG_VALUE 503L /* self test, a register value
00097 was invalid after reset */
00098
00099 /************************** DMA statuses 511 - 530 ***************************/
00100
00101 #define XST_DMA_TRANSFER_ERROR 511L /* self test, DMA transfer
00102 failed */
00103 #define XST_DMA_RESET_REGISTER_ERROR 512L /* self test, a register value
00104 was invalid after reset */
00105 #define XST_DMA_SG_LIST_EMPTY 513L /* scatter gather list contains
00106 no buffer descriptors ready
00107 to be processed */
00108 #define XST_DMA_SG_IS_STARTED 514L /* scatter gather not stopped */
00109 #define XST_DMA_SG_IS_STOPPED 515L /* scatter gather not running */
00110 #define XST_DMA_SG_LIST_FULL 517L /* all the buffer desciptors of
00111 the scatter gather list are
00112 being used */
00113 #define XST_DMA_SG_BD_LOCKED 518L /* the scatter gather buffer
00114 descriptor which is to be
00115 copied over in the scatter
00116 list is locked */
00117 #define XST_DMA_SG_NOTHING_TO_COMMIT 519L /* no buffer descriptors have been
00118 put into the scatter gather
00119 list to be commited */
00120 #define XST_DMA_SG_COUNT_EXCEEDED 521L /* the packet count threshold
00121 specified was larger than the
00122 total # of buffer descriptors
00123 in the scatter gather list */
00124 #define XST_DMA_SG_LIST_EXISTS 522L /* the scatter gather list has
00125 already been created */
00126 #define XST_DMA_SG_NO_LIST 523L /* no scatter gather list has
00127 been created */
00128 #define XST_DMA_SG_BD_NOT_COMMITTED 524L /* the buffer descriptor which was
00129 being started was not committed
00130 to the list */
00131 #define XST_DMA_SG_NO_DATA 525L /* the buffer descriptor to start
00132 has already been used by the
00133 hardware so it can't be reused
00134 */
00135
00136 /************************** IPIF statuses 531 - 550
***************************/
00137
00138 #define XST_IPIF_REG_WIDTH_ERROR 531L /* an invalid register width
00139 was passed into the function */
00140 #define XST_IPIF_RESET_REGISTER_ERROR 532L /* the value of a register at
00141 reset was not valid */
00142 #define XST_IPIF_DEVICE_STATUS_ERROR 533L /* a write to the device interrupt
00143 status register did not read
00144 back correctly */
00145 #define XST_IPIF_DEVICE_ACK_ERROR 534L /* the device interrupt status

00146 register did not reset when
00147 acked */
00148 #define XST_IPIF_DEVICE_ENABLE_ERROR 535L /* the device interrupt enable
00149 register was not updated when
00150 other registers changed */
00151 #define XST_IPIF_IP_STATUS_ERROR 536L /* a write to the IP interrupt
00152 status register did not read
00153 back correctly */
00154 #define XST_IPIF_IP_ACK_ERROR 537L /* the IP interrupt status
register
00155 did not reset when acked */
00156 #define XST_IPIF_IP_ENABLE_ERROR 538L /* IP interrupt enable register
was
00157 not updated correctly when
other
00158 registers changed */
00159 #define XST_IPIF_DEVICE_PENDING_ERROR 539L /* The device interrupt pending
00160 register did not indicate the
00161 expected value */
00162 #define XST_IPIF_DEVICE_ID_ERROR 540L /* The device interrupt ID
register
00163 did not indicate the expected
00164 value */
00165
00166 /****************** Device specific statuses 1001 - 4095 *********************/
00167
00168 /********************* Ethernet statuses 1001 - 1050 *************************/
00169
00170 #define XST_EMAC_MEMORY_SIZE_ERROR 1001L /* Memory space is not big enough
00171 * to hold the minimum number of
00172 * buffers or descriptors */
00173 #define XST_EMAC_MEMORY_ALLOC_ERROR 1002L /* Memory allocation failed */
00174 #define XST_EMAC_MII_READ_ERROR 1003L /* MII read error */
00175 #define XST_EMAC_MII_BUSY 1004L /* An MII operation is in progress */
00176 #define XST_EMAC_OUT_OF_BUFFERS 1005L /* Adapter is out of buffers */
00177 #define XST_EMAC_PARSE_ERROR 1006L /* Invalid adapter init string */
00178 #define XST_EMAC_COLLISION_ERROR 1007L /* Excess deferral or late
00179 * collision on polled send */
00180
00181 /*********************** UART statuses 1051 - 1075 ***************************/
00182 #define XST_UART
00183
00184 #define XST_UART_INIT_ERROR 1051L
00185 #define XST_UART_START_ERROR 1052L
00186 #define XST_UART_CONFIG_ERROR 1053L
00187 #define XST_UART_TEST_FAIL 1054L
00188 #define XST_UART_BAUD_ERROR 1055L
00189 #define XST_UART_BAUD_RANGE 1056L
00190
00191
00192 /************************ IIC statuses 1076 - 1100 ***************************/
00193

00194 #define XST_IIC_SELFTEST_FAILED 1076 /* self test failed */
00195 #define XST_IIC_BUS_BUSY 1077 /* bus found busy */
00196 #define XST_IIC_GENERAL_CALL_ADDRESS 1078 /* mastersend attempted with */
00197 /* general call address */
00198 #define XST_IIC_STAND_REG_RESET_ERROR 1079 /* A non parameterizable reg */
00199 /* value after reset not valid */
00200 #define XST_IIC_TX_FIFO_REG_RESET_ERROR 1080 /* Tx fifo included in design */
00201 /* value after reset not valid */
00202 #define XST_IIC_RX_FIFO_REG_RESET_ERROR 1081 /* Rx fifo included in design */
00203 /* value after reset not valid */
00204 #define XST_IIC_TBA_REG_RESET_ERROR 1082 /* 10 bit addr incl in design */
00205 /* value after reset not valid */
00206 #define XST_IIC_CR_READBACK_ERROR 1083 /* Read of the control register*/
00207 /* didn't return value written */
00208 #define XST_IIC_DTR_READBACK_ERROR 1084 /* Read of the data Tx reg */
00209 /* didn't return value written */
00210 #define XST_IIC_DRR_READBACK_ERROR 1085 /* Read of the data Receive reg*/
00211 /* didn't return value written */
00212 #define XST_IIC_ADR_READBACK_ERROR 1086 /* Read of the data Tx reg */
00213 /* didn't return value written */
00214 #define XST_IIC_TBA_READBACK_ERROR 1087 /* Read of the 10 bit addr reg */
00215 /* didn't return written value */
00216 #define XST_IIC_NOT_SLAVE 1088 /* The device isn't a slave */
00217
00218 /*********************** ATMC statuses 1101 - 1125 ***************************/
00219
00220 #define XST_ATMC_ERROR_COUNT_MAX 1101L /* the error counters in the ATM
00221 controller hit the max value
00222 which requires the statistics
00223 to be cleared */
00224
00225 /*********************** Flash statuses 1126 - 1150 **************************/
00226
00227 #define XST_FLASH_BUSY 1126L /* Flash is erasing or programming
*/
00228 #define XST_FLASH_READY 1127L /* Flash is ready for commands */
00229 #define XST_FLASH_ERROR 1128L /* Flash had detected an internal
00230 error. Use XFlash_DeviceControl
00231 to retrieve device specific
codes */
00232 #define XST_FLASH_ERASE_SUSPENDED 1129L /* Flash is in suspended erase
state */
00233 #define XST_FLASH_WRITE_SUSPENDED 1130L /* Flash is in suspended write
state */
00234 #define XST_FLASH_PART_NOT_SUPPORTED 1131L /* Flash type not supported by
00235 driver */
00236 #define XST_FLASH_NOT_SUPPORTED 1132L /* Operation not supported */
00237 #define XST_FLASH_TOO_MANY_REGIONS 1133L /* Too many erase regions */
00238 #define XST_FLASH_TIMEOUT_ERROR 1134L /* Programming or erase operation
00239 aborted due to a timeout */
00240 #define XST_FLASH_ADDRESS_ERROR 1135L /* Accessed flash outside its
00241 addressible range */
00242 #define XST_FLASH_ALIGNMENT_ERROR 1136L /* Write alignment error */

00243 #define XST_FLASH_BLOCKING_CALL_ERROR 1137L /* Couldn't return immediately from
00244 write/erase function with
00245 XFL_NON_BLOCKING_WRITE/ERASE
00246 option cleared */
00247 #define XST_FLASH_CFI_QUERY_ERROR 1138L /* Failed to query the device */
00248
00249 /*********************** SPI statuses 1151 - 1175 ****************************/
00250
00251 #define XST_SPI_MODE_FAULT 1151 /* master was selected as slave */
00252 #define XST_SPI_TRANSFER_DONE 1152 /* data transfer is complete */
00253 #define XST_SPI_TRANSMIT_UNDERRUN 1153 /* slave underruns transmit register
*/
00254 #define XST_SPI_RECEIVE_OVERRUN 1154 /* device overruns receive register */
00255 #define XST_SPI_NO_SLAVE 1155 /* no slave has been selected yet */
00256 #define XST_SPI_TOO_MANY_SLAVES 1156 /* more than one slave is being
00257 * selected */
00258 #define XST_SPI_NOT_MASTER 1157 /* operation is valid only as master
*/
00259 #define XST_SPI_SLAVE_ONLY 1158 /* device is configured as slave-only
*/
00260 #define XST_SPI_SLAVE_MODE_FAULT 1159 /* slave was selected while disabled
*/
00261
00262 /********************** OPB Arbiter statuses 1176 - 1200 *********************/
00263
00264 #define XST_OPBARB_INVALID_PRIORITY 1176 /* the priority registers have either
00265 * one master assigned to two or more
00266 * priorities, or one master not
00267 * assigned to any priority
00268 */
00269 #define XST_OPBARB_NOT_SUSPENDED 1177 /* an attempt was made to modify the
00270 * priority levels without first
00271 * suspending the use of priority
00272 * levels
00273 */
00274 #define XST_OPBARB_PARK_NOT_ENABLED 1178 /* bus parking by id was enabled but
00275 * bus parking was not enabled
00276 */
00277 #define XST_OPBARB_NOT_FIXED_PRIORITY 1179 /* the arbiter must be in fixed
00278 * priority mode to allow the
00279 * priorities to be changed
00280 */
00281
00282 /************************ Intc statuses 1201 - 1225 **************************/
00283
00284 #define XST_INTC_FAIL_SELFTEST 1201 /* self test failed */
00285 #define XST_INTC_CONNECT_ERROR 1202 /* interrupt already in use */
00286
00287 /********************** TmrCtr statuses 1226 - 1250 **************************/
00288
00289 #define XST_TMRCTR_TIMER_FAILED 1226 /* self test failed */
00290

00291 /********************** WdtTb statuses 1251 - 1275 ***************************/
00292
00293 #define XST_WDTTB_TIMER_FAILED 1251L
00294
00295 /********************** PlbArb statuses 1276 - 1300 **************************/
00296
00297 #define XST_PLBARB_FAIL_SELFTEST 1276L
00298
00299 /********************** Plb2Opb statuses 1301 - 1325 *************************/
00300
00301 #define XST_PLB2OPB_FAIL_SELFTEST 1301L
00302
00303 /********************** Opb2Plb statuses 1326 - 1350 *************************/
00304
00305 #define XST_OPB2PLB_FAIL_SELFTEST 1326L
00306
00307 /********************** SysAce statuses 1351 - 1360 **************************/
00308
00309 #define XST_SYSACE_NO_LOCK 1351L /* No MPU lock has been granted */
00310
00311 /********************** PCI Bridge statuses 1361 - 1375 **********************/
00312
00313 #define XST_PCI_INVALID_ADDRESS 1361L
00314
00315 /**************************** Type Definitions *******************************/
00316
00317 /**
00318 * The status typedef.
00319 */
00320 typedef Xuint32 XStatus;

00321
00322 /***************** Macros (Inline Functions) Definitions *********************/
00323
00324
00325 /************************** Function Prototypes ******************************/
00326
00327
00328 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xstatus.h File
Reference

Detailed Description

This file contains Xilinx software status codes. Status codes have their own data type called XStatus.
These codes are used throughout the Xilinx device drivers.

#include "xbasic_types.h"

Go to the source code of this file.

Typedefs

typedef Xuint32 XStatus

Typedef Documentation

typedef Xuint32 XStatus

 The status typedef.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_l.h
Go to the documentation of this file.

00001 /* $Id: xhdlc_l.h,v 1.4 2002/06/28 18:18:15 linnj Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file hdlc/v1_00_a/src/xhdlc_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xhdlc.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b jhl 05/20/02 First release
00037 * </pre>
00038 *
00039 ***/
00040
00041 #ifndef XHDLC_L_H /* prevent circular inclusions */
00042 #define XHDLC_L_H /* by using protection macros */

00043
00044 /***************************** Include Files ********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048
00049 /************************** Constant Definitions ****************************/
00050
00051 /* Offsets from the base address of the device (IPIF) for the registers of the
00052 * device, the FIFOs and the DMA channels
00053 */
00054 #define XHD_REG_OFFSET 0x1100
00055 #define XHD_PFIFO_TXREG_OFFSET 0x2000
00056 #define XHD_PFIFO_TXDATA_OFFSET 0x2100
00057 #define XHD_PFIFO_RXREG_OFFSET 0x2010
00058 #define XHD_PFIFO_RXDATA_OFFSET 0x2200
00059 #define XHD_DMA_OFFSET 0x2300
00060 #define XHD_DMA_SEND_OFFSET (XHD_DMA_OFFSET + 0x0) /* DMA send channel */
00061 #define XHD_DMA_RECV_OFFSET (XHD_DMA_OFFSET + 0x40) /* DMA recv channel */
00062
00063
00064 /* HDLC Register offsets
00065 */
00066 #define XHD_RXCR_OFFSET XHD_REG_OFFSET + 0x00 /* receive control */
00067 #define XHD_RXSR_OFFSET XHD_REG_OFFSET + 0x04 /* receive status */
00068 #define XHD_RPLR_OFFSET XHD_REG_OFFSET + 0x08 /* receive length */
00069 #define XHD_TXCR_OFFSET XHD_REG_OFFSET + 0x0C /* transmit control */
00070 #define XHD_TXSR_OFFSET XHD_REG_OFFSET + 0x10 /* transmit status */
00071 #define XHD_TPLR_OFFSET XHD_REG_OFFSET + 0x14 /* transmit length */
00072 #define XHD_ADDR_OFFSET XHD_REG_OFFSET + 0x18 /* receive address */
00073 #define XHD_CRCE_OFFSET XHD_REG_OFFSET + 0x1C /* receive CRC error count */
00074 #define XHD_ABRT_OFFSET XHD_REG_OFFSET + 0x20 /* receive abort error count */
00075
00076 /*
00077 * Register offsets for the IPIF components
00078 */
00079 #define XHD_IISR_OFFSET 0x20UL /* Interrupt status */
00080
00081 /*
00082 * Receive (Rx) Control Register bit masks
00083 */
00084 #define XHD_RXCR_LOOP_MASK 0x40 /* local loopback enable, default off */
00085 #define XHD_RXCR_CRC32_MASK 0x20 /* CRC-32, default is 16 CRC-CCITT */
00086 #define XHD_RXCR_ADSIZE16_MASK 0x10 /* 16 bit address recognition, default 8
*/
00087 #define XHD_RXCR_ADREC_MASK 0x08 /* address recognition, default off */
00088 #define XHD_RXCR_RMADR_MASK 0x04 /* remove address field, default off */
00089 #define XHD_RXCR_BAMEN_MASK 0x02 /* broadcast address match, default off */
00090 #define XHD_RXCR_RXEN_MASK 0x01 /* receiver enable, default off */
00091
00092 /*
00093 * Receive (Rx) Status Register bit masks, a value of 0 indicates a frame

00094 * without any errors
00095 */
00096 #define XHD_RXSR_RXFA_MASK 0x08 /* frame aborted */
00097 #define XHD_RXSR_RXFCS_MASK 0x04 /* frame FCS error */
00098 #define XHD_RXSR_RXAE_MASK 0x02 /* frame alignment error */
00099 #define XHD_RXSR_RXBA_MASK 0x01 /* frame broadcast address received */
00100 #define XHD_RXSR_NO_STATUS 0 /* no frame status */
00101
00102 /*
00103 * Transmit (Tx) Control Register bit masks
00104 */
00105 #define XHD_TXCR_DISCRC_MASK 0x08 /* CRC generation disable */
00106 #define XHD_TXCR_TXCRC32_MASK 0x04 /* CRC-32, default is 16 CRC-CCITT */
00107 #define XHD_TXCR_TXFA_MASK 0x02 /* send frame abort sequence */
00108 #define XHD_TXCR_TXEN_MASK 0x01 /* transmitter enable */
00109
00110 /*
00111 * Transmit (Tx) Status Register bit masks
00112 */
00113 #define XHD_TXSR_TXUR_MASK 0x01 /* transmit data underrun */
00114
00115 /*
00116 * IPIF Device Interrupt Enable/Status Register bit masks
00117 */
00118 #define XHD_DIXR_HDLC_MASK 0x04UL /* HDLC device interrupt */
00119 #define XHD_DIXR_SEND_DMA_MASK 0x08UL /* Send DMA interrupt */
00120 #define XHD_DIXR_RECV_DMA_MASK 0x10UL /* Receive DMA interrupt */
00121 #define XHD_DIXR_RECV_FIFO_MASK 0x20UL /* Receive FIFO interrupt */
00122 #define XHD_DIXR_SEND_FIFO_MASK 0x40UL /* Send FIFO interrupt */
00123
00124 /*
00125 * IPIF IP Interrupt Enable/Status Register bit masks.
00126 */
00127 #define XHD_IIXR_DUALPORT_OUR_MASK 0x0400 /* dual port over/underrun */
00128 #define XHD_IIXR_ROLLOVER_MASK 0x0200 /* CRC/aborted counter rollover */
00129 #define XHD_IIXR_RLSFIFO_UNDER_MASK 0x0100 /* rx length/status fifo underrun */
00130 #define XHD_IIXR_XLSFIFO_UNDER_MASK 0x0080 /* tx length/status fifo underrun */
00131 #define XHD_IIXR_XLSFIFO_OVER_MASK 0x0040 /* tx length/status fifo overrun */
00132 #define XHD_IIXR_RLSFIFO_OVER_MASK 0x0020 /* rx length/status fifo overrun */
00133 #define XHD_IIXR_ALIGN_ERROR_MASK 0x0010 /* rx alignment error */
00134 #define XHD_IIXR_FCS_ERROR_MASK 0x0008 /* rx FCS error */
00135 #define XHD_IIXR_RDFIFO_OVER_MASK 0x0004 /* rx data fifo overrun */
00136 #define XHD_IIXR_RECV_DONE_MASK 0x0002 /* rx complete, (or aborted */
00137 #define XHD_IIXR_XMIT_DONE_MASK 0x0001 /* tx complete */
00138
00139 /**************************** Type Definitions ******************************/
00140
00141
00142 /***************** Macros (Inline Functions) Definitions ********************/
00143
00144 /***
00145 *
00146 * Low-level driver macros. The list below provides signatures

00147 * to help the user use the macros.
00148 *
00149 * Xuint32 XHdlc_mReadReg(Xuint32 BaseAddress, int RegOffset)
00150 * void XHdlc_mWriteReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Data)
00151 *
00152 * void XHdlc_mSetRxControlReg(Xuint32 BaseAddress, Xuint32 Data)
00153 * void XHdlc_mSetTxControlReg(Xuint32 BaseAddress, Xuint32 Data)
00154 * void XHdlc_mSetAddressReg(Xuint32 BaseAddress, Xuint32 Address)
00155 *
00156 * void XHdlc_mEnable(Xuint32 BaseAddress)
00157 * void XHdlc_mDisable(Xuint32 BaseAddress)
00158 *
00159 ***/
00160
00161 /**/
00162 /**
00163 *
00164 * Read the specified HDLC register. A 32 bit read of the register is performed.
00165 *
00166 * @param BaseAddress is the base address of the device
00167 * @param RegOffset is the register offset to be read
00168 *
00169 * @return The 32 bit value of the register
00170 *
00171 * @note None.
00172 *
00173 ***/
00174 #define XHdlc_mReadReg(BaseAddress, RegOffset) \

00175 XIo_In32((BaseAddress) + (RegOffset))
00176
00177 /**/
00178 /**
00179 *
00180 * Write the specified data to the specified register.
00181 *
00182 * @param BaseAddress is the base address of the device
00183 * @param RegOffset is the register offset to be written
00184 * @param Data is the 32-bit value to write to the register
00185 *
00186 * @return None.
00187 *
00188 * @note None.
00189 *
00190 ***/
00191 #define XHdlc_mWriteReg(BaseAddress, RegOffset, Data) \

00192 XIo_Out32((BaseAddress) + (RegOffset), (Data))
00193
00194 /**/
00195 /**
00196 *
00197 * Set the contents of the receive control register. Use the XHD_RXCR_*
00198 * constants defined above to create the bit-mask to be written to the register.

00199 *
00200 * @param BaseAddress is the base address of the device
00201 * @param Mask is the 32 bit value to write to the control register
00202 *
00203 * @return None.
00204 *
00205 * @note None.
00206 *
00207 ***/
00208 #define XHdlc_mSetRxControlReg(BaseAddress, Mask) \

00209 XIo_Out32((BaseAddress) + XHD_RXCR_OFFSET, (Mask))
00210
00211 /**/
00212 /**
00213 *
00214 * Set the contents of the transmit control register. Use the XHD_TXCR_*
00215 * constants defined above to create the bit-mask to be written to the register.
00216 *
00217 * @param BaseAddress is the base address of the device
00218 * @param Mask is the 32 bit value to write to the control register
00219 *
00220 * @return None.
00221 *
00222 * @note None.
00223 *
00224 ***/
00225 #define XHdlc_mSetTxControlReg(BaseAddress, Mask) \

00226 XIo_Out32((BaseAddress) + XHD_TXCR_OFFSET, (Mask))
00227
00228 /**/
00229 /**
00230 *
00231 * Set the address register to be used for address recognition.
00232 *
00233 * @param BaseAddress is the base address of the device
00234 * @param Address is a 16 bit address
00235 *
00236 * @return None.
00237 *
00238 * @note None.
00239 *
00240 ***/
00241 #define XHdlc_mSetAddressReg(BaseAddress, Address) \

00242 XIo_Out32((BaseAddress) + XHD_ADDR_OFFSET, Address)
00243
00244 /**/
00245 /**
00246 *
00247 * Enable the transmitter and receiver. Preserve the contents of the control
00248 * registers.
00249 *
00250 * @param BaseAddress is the base address of the device

00251 *
00252 * @return None.
00253 *
00254 * @note None.
00255 *
00256 ***/
00257 #define XHdlc_mEnable(BaseAddress) \

00258 { \
00259 XIo_Out32((BaseAddress) + XHD_RXCR_OFFSET, \
00260 (XIo_In32((BaseAddress) + XHD_RXCR_OFFSET) | XHD_RXCR_RXEN_MASK));\
00261 XIo_Out32((BaseAddress) + XHD_TXCR_OFFSET, \
00262 (XIo_In32((BaseAddress) + XHD_TXCR_OFFSET) | XHD_TXCR_TXEN_MASK));\
00263 }
00264
00265 /**/
00266 /**
00267 *
00268 * Disable the transmitter and receiver. Preserve the contents of the control
00269 * registers.
00270 *
00271 * @param BaseAddress is the base address of the device
00272 *
00273 * @return None.
00274 *
00275 * @note None.
00276 *
00277 ***/
00278 #define XHdlc_mDisable(BaseAddress) \

00279 { \
00280 XIo_Out32((BaseAddress) + XHD_RXCR_OFFSET, \
00281 XIo_In32((BaseAddress) + XHD_RXCR_OFFSET) & ~XHD_RXCR_RXEN_MASK);\
00282 XIo_Out32((BaseAddress) + XHD_TXCR_OFFSET, \
00283 XIo_In32((BaseAddress) + XHD_TXCR_OFFSET) & ~XHD_TXCR_RXEN_MASK);\
00284 }
00285
00286 /************************** Function Prototypes ******************************/
00287
00288 void XHdlc_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, unsigned

ByteCount);
00289 unsigned XHdlc_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr,

00290 Xuint32 *FrameStatusPtr);

00291
00292 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_l.h File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xhdlc.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 05/20/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XHdlc_mReadReg(BaseAddress, RegOffset)
#define XHdlc_mWriteReg(BaseAddress, RegOffset, Data)
#define XHdlc_mSetRxControlReg(BaseAddress, Mask)
#define XHdlc_mSetTxControlReg(BaseAddress, Mask)
#define XHdlc_mSetAddressReg(BaseAddress, Address)
#define XHdlc_mEnable(BaseAddress)
#define XHdlc_mDisable(BaseAddress)

Functions

void XHdlc_SendFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, unsigned ByteCount)
unsigned XHdlc_RecvFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, Xuint32 *FrameStatusPtr)

Define Documentation

#define XHdlc_mDisable(BaseAddress)

Disable the transmitter and receiver. Preserve the contents of the control registers.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XHdlc_mEnable(BaseAddress)

Enable the transmitter and receiver. Preserve the contents of the control registers.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XHdlc_mReadReg(BaseAddress,
RegOffset)

Read the specified HDLC register. A 32 bit read of the register is performed.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be read

Returns:
The 32 bit value of the register

Note:
None.

#define XHdlc_mSetAddressReg(BaseAddress,
Address)

Set the address register to be used for address recognition.

Parameters:
BaseAddress is the base address of the device
Address is a 16 bit address

Returns:
None.

Note:
None.

#define XHdlc_mSetRxControlReg(BaseAddress,
Mask)

Set the contents of the receive control register. Use the XHD_RXCR_* constants defined above to
create the bit-mask to be written to the register.

Parameters:
BaseAddress is the base address of the device
Mask is the 32 bit value to write to the control register

Returns:
None.

Note:
None.

#define XHdlc_mSetTxControlReg(BaseAddress,
Mask)

Set the contents of the transmit control register. Use the XHD_TXCR_* constants defined above to
create the bit-mask to be written to the register.

Parameters:
BaseAddress is the base address of the device
Mask is the 32 bit value to write to the control register

Returns:
None.

Note:
None.

#define XHdlc_mWriteReg(BaseAddress,
RegOffset,
Data)

Write the specified data to the specified register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be written
Data is the 32-bit value to write to the register

Returns:
None.

Note:
None.

Function Documentation

unsigned XHdlc_RecvFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
Xuint32 * FrameStatusPtr

)

Receive a frame. Wait for a frame to arrive.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to a 32 bit word-aligned buffer where the frame will be stored.
FrameStatusPtr is a pointer to a frame status that will be valid after this function returns.

Returns:
The size, in bytes, of the frame received.

Note:
None.

void XHdlc_SendFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
unsigned ByteCount

)

Send a HDLC frame. This size is the total frame size, including header. This function blocks waiting
for the frame to be transmitted.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to 32 bit word-aligned frame
ByteCount is the number of bytes in the frame

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu_ppc405/v1_00_a/src/xio.h
Go to the documentation of this file.

00001 /* $Id: xio.h,v 1.8 2003/05/05 21:08:31 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file cpu_ppc405/v1_00_a/src/xio.h
00026 *
00027 * This file contains the interface for the XIo component, which encapsulates
00028 * the Input/Output functions for the PowerPC architecture.
00029 *
00030 * @note
00031 *
00032 * This file contains architecture-dependent items (memory mapped or non memory
00033 * mapped I/O).
00034 *
00035 **/
00036
00037 #ifndef XIO_H /* prevent circular inclusions */
00038 #define XIO_H /* by using protection macros */
00039
00040 /***************************** Include Files *********************************/
00041
00042 #include "xbasic_types.h"

00043
00044 /************************** Constant Definitions *****************************/
00045
00046
00047 /**************************** Type Definitions *******************************/
00048
00049 /**
00050 * Typedef for an I/O address. Typically correlates to the width of the
00051 * address bus.
00052 */
00053 typedef Xuint32 XIo_Address;

00054
00055 /***************** Macros (Inline Functions) Definitions *********************/
00056
00057 /* The following macro is specific to the GNU compiler and PowerPC family. It
00058 * performs an EIEIO instruction such that I/O operations are synced correctly.
00059 * This macro is not necessarily portable across compilers since it uses
00060 * inline assembly.
00061 */
00062 #if defined __GNUC__
00063 # define SYNCHRONIZE_IO __asm__ volatile ("eieio")
00064 #elif defined __DCC__
00065 # define SYNCHRONIZE_IO __asm volatile(" eieio")
00066 #else
00067 # define SYNCHRONIZE_IO
00068 #endif
00069
00070 /* The following macros allow the software to be transportable across
00071 * processors which use big or little endian memory models.
00072 *
00073 * Defined first are processor-specific endian conversion macros specific to
00074 * the GNU compiler and the PowerPC family, as well as a no-op endian
conversion
00075 * macro. These macros are not to be used directly by software. Instead, the
00076 * XIo_To/FromLittleEndianXX and XIo_To/FromBigEndianXX macros below are to be
00077 * used to allow the endian conversion to only be performed when necessary
00078 */
00079
00080 #define XIo_EndianNoop(Source, DestPtr) (*DestPtr = Source)
00081
00082 #if defined __GNUC__
00083
00084 #define XIo_EndianSwap16(Source, DestPtr) __asm__ __volatile__(\
00085 "sthbrx %0,0,%1\n"\
00086 : : "r" (Source), "r" (DestPtr)\
00087)
00088
00089 #define XIo_EndianSwap32(Source, DestPtr) __asm__ __volatile__(\
00090 "stwbrx %0,0,%1\n"\
00091 : : "r" (Source), "r" (DestPtr)\
00092)
00093 #elif defined __DCC__

00094
00095 __asm void XIo_EndianSwap16(Xuint16 Source, Xuint16 *DestPtr)

00096 {
00097 % reg Source; reg DestPtr;
00098
00099 sthbrx Source,0,DestPtr
00100 }
00101
00102 __asm void XIo_EndianSwap32(Xuint32 Source, Xuint32 *DestPtr)

00103 {
00104 % reg Source; reg DestPtr;
00105
00106 stwbrx Source,0,DestPtr
00107 }
00108
00109 #else
00110
00111 #define XIo_EndianSwap16(Source, DestPtr) \
00112 {\
00113 Xuint16 src = (Source); \
00114 Xuint16 *destptr = (DestPtr); \
00115 *destptr = src >> 8; \
00116 *destptr |= (src << 8); \
00117 }
00118
00119 #define XIo_EndianSwap32(Source, DestPtr) \
00120 {\
00121 Xuint32 src = (Source); \
00122 Xuint32 *destptr = (DestPtr); \
00123 *destptr = src >> 24; \
00124 *destptr |= ((src >> 8) & 0x0000FF00); \
00125 *destptr |= ((src << 8) & 0x00FF0000); \
00126 *destptr |= ((src << 24) & 0xFF000000); \
00127 }
00128
00129 #endif
00130
00131 #ifdef XLITTLE_ENDIAN
00132 /* little-endian processor */
00133
00134 #define XIo_ToLittleEndian16 XIo_EndianNoop
00135 #define XIo_ToLittleEndian32 XIo_EndianNoop
00136 #define XIo_FromLittleEndian16 XIo_EndianNoop
00137 #define XIo_FromLittleEndian32 XIo_EndianNoop
00138
00139 #define XIo_ToBigEndian16(Source, DestPtr) XIo_EndianSwap16(Source, DestPtr)
00140 #define XIo_ToBigEndian32(Source, DestPtr) XIo_EndianSwap32(Source, DestPtr)
00141 #define XIo_FromBigEndian16 XIo_ToBigEndian16
00142 #define XIo_FromBigEndian32 XIo_ToBigEndian32
00143
00144 #else
00145 /* big-endian processor */

00146
00147 #define XIo_ToLittleEndian16(Source, DestPtr) XIo_EndianSwap16(Source, DestPtr)
00148 #define XIo_ToLittleEndian32(Source, DestPtr) XIo_EndianSwap32(Source, DestPtr)
00149 #define XIo_FromLittleEndian16 XIo_ToLittleEndian16
00150 #define XIo_FromLittleEndian32 XIo_ToLittleEndian32
00151
00152 #define XIo_ToBigEndian16 XIo_EndianNoop
00153 #define XIo_ToBigEndian32 XIo_EndianNoop
00154 #define XIo_FromBigEndian16 XIo_EndianNoop
00155 #define XIo_FromBigEndian32 XIo_EndianNoop
00156
00157 #endif
00158
00159
00160 /************************** Function Prototypes ******************************/
00161
00162 /* The following functions allow the software to be transportable across
00163 * processors which may use memory mapped I/O or I/O which is mapped into a
00164 * seperate address space such as X86. The functions are better suited for
00165 * debugging and are therefore the default implementation. Macros can instead
00166 * be used if USE_IO_MACROS is defined.
00167 */
00168 #ifndef USE_IO_MACROS
00169
00170 /* Functions */
00171 Xuint8 XIo_In8(XIo_Address InAddress);

00172 Xuint16 XIo_In16(XIo_Address InAddress);

00173 Xuint32 XIo_In32(XIo_Address InAddress);

00174
00175 void XIo_Out8(XIo_Address OutAddress, Xuint8 Value);

00176 void XIo_Out16(XIo_Address OutAddress, Xuint16 Value);

00177 void XIo_Out32(XIo_Address OutAddress, Xuint32 Value);

00178
00179 #else
00180
00181 /* The following macros allow optimized I/O operations for memory mapped I/O
00182 * Note that the SYNCHRONIZE_IO may be moved by the compiler during
00183 * optimization.
00184 */
00185
00186 #define XIo_In8(InputPtr) (*(volatile Xuint8 *)(InputPtr)); SYNCHRONIZE_IO;
00187 #define XIo_In16(InputPtr) (*(volatile Xuint16 *)(InputPtr)); SYNCHRONIZE_IO;
00188 #define XIo_In32(InputPtr) (*(volatile Xuint32 *)(InputPtr)); SYNCHRONIZE_IO;
00189
00190 #define XIo_Out8(OutputPtr, Value) \
00191 { (*(volatile Xuint8 *)(OutputPtr) = Value); SYNCHRONIZE_IO; }
00192 #define XIo_Out16(OutputPtr, Value) \
00193 { (*(volatile Xuint16 *)(OutputPtr) = Value); SYNCHRONIZE_IO; }
00194 #define XIo_Out32(OutputPtr, Value) \
00195 { (*(volatile Xuint32 *)(OutputPtr) = Value); SYNCHRONIZE_IO; }
00196
00197 #endif

00198
00199 /* The following functions handle IO addresses where data must be swapped
00200 * They cannot be implemented as macros
00201 */
00202 Xuint16 XIo_InSwap16(XIo_Address InAddress);

00203 Xuint32 XIo_InSwap32(XIo_Address InAddress);

00204 void XIo_OutSwap16(XIo_Address OutAddress, Xuint16 Value);

00205 void XIo_OutSwap32(XIo_Address OutAddress, Xuint32 Value);

00206
00207 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu_ppc405/v1_00_a/src/xio.h File
Reference

Detailed Description

This file contains the interface for the XIo component, which encapsulates the Input/Output functions for
the PowerPC architecture.

Note:
This file contains architecture-dependent items (memory mapped or non memory mapped I/O).

#include "xbasic_types.h"

Go to the source code of this file.

Typedefs

typedef Xuint32 XIo_Address

Functions

Xuint8 XIo_In8 (XIo_Address InAddress)
Xuint16 XIo_In16 (XIo_Address InAddress)
Xuint32 XIo_In32 (XIo_Address InAddress)

void XIo_Out8 (XIo_Address OutAddress, Xuint8 Value)
void XIo_Out16 (XIo_Address OutAddress, Xuint16 Value)

void XIo_Out32 (XIo_Address OutAddress, Xuint32 Value)
Xuint16 XIo_InSwap16 (XIo_Address InAddress)
Xuint32 XIo_InSwap32 (XIo_Address InAddress)

void XIo_OutSwap16 (XIo_Address OutAddress, Xuint16 Value)
void XIo_OutSwap32 (XIo_Address OutAddress, Xuint32 Value)

Typedef Documentation

typedef Xuint32 XIo_Address

 Typedef for an I/O address. Typically correlates to the width of the address bus.

Function Documentation

Xuint16 XIo_In16 (XIo_Address InAddress)

Performs an input operation for a 16-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

Note:
None.

Xuint32 XIo_In32 (XIo_Address InAddress)

Performs an input operation for a 32-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

Note:
None.

Xuint8 XIo_In8 (XIo_Address InAddress)

Performs an input operation for an 8-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

Note:
None.

Xuint16 XIo_InSwap16 (XIo_Address InAddress)

Performs an input operation for a 16-bit memory location by reading from the specified address and
returning the byte-swapped value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The byte-swapped value read from the specified input address.

Note:
None.

Xuint32 XIo_InSwap32 (XIo_Address InAddress)

Performs an input operation for a 32-bit memory location by reading from the specified address and
returning the byte-swapped value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The byte-swapped value read from the specified input address.

Note:
None.

void XIo_Out16 (XIo_Address OutAddress,
Xuint16 Value

)

Performs an output operation for a 16-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_Out32 (XIo_Address OutAddress,
Xuint32 Value

)

Performs an output operation for a 32-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_Out8 (XIo_Address OutAddress,
Xuint8 Value

)

Performs an output operation for an 8-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_OutSwap16 (XIo_Address OutAddress,
Xuint16 Value

)

Performs an output operation for a 16-bit memory location by writing the specified value to the the
specified address. The value is byte-swapped before being written.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_OutSwap32 (XIo_Address OutAddress,
Xuint32 Value

)

Performs an output operation for a 32-bit memory location by writing the specified value to the the
specified address. The value is byte-swapped before being written.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu/v1_00_a/src/xio.c File Reference

Detailed Description

Contains I/O functions for memory-mapped or non-memory-mapped I/O architectures. These functions
encapsulate generic CPU I/O requirements.

Note:
This file may contain architecture-dependent code.

#include "xio.h"

#include "xbasic_types.h"

Functions

void XIo_EndianSwap16 (Xuint16 Source, Xuint16 *DestPtr)
void XIo_EndianSwap32 (Xuint32 Source, Xuint32 *DestPtr)

Function Documentation

void XIo_EndianSwap16 (Xuint16 Source,
Xuint16 * DestPtr

)

Performs a 16-bit endian converion.

Parameters:
Source contains the value to be converted.
DestPtr contains a pointer to the location to put the converted value.

Returns:
None.

Note:
None.

void XIo_EndianSwap32 (Xuint32 Source,
Xuint32 * DestPtr

)

Performs a 32-bit endian converion.

Parameters:
Source contains the value to be converted.
DestPtr contains a pointer to the location to put the converted value.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu/v1_00_a/src/xio.h
Go to the documentation of this file.

00001 /* $Id: xio.h,v 1.6 2002/06/28 17:57:05 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file cpu/v1_00_a/src/xio.h
00026 *
00027 * This file contains the interface for the XIo component, which encapsulates
00028 * the Input/Output functions for processors that do not require any special
00029 * I/O handling.
00030 *
00031 * @notes
00032 *
00033 * This file may contain architecture-dependent items (memory-mapped or
00034 * non-memory-mapped I/O).
00035 *
00036 **/
00037
00038 #ifndef XIO_H /* prevent circular inclusions */
00039 #define XIO_H /* by using protection macros */
00040
00041 /***************************** Include Files *********************************/
00042

00043 #include "xbasic_types.h"

00044
00045 /************************** Constant Definitions *****************************/
00046
00047
00048 /**************************** Type Definitions *******************************/
00049
00050 /**
00051 * Typedef for an I/O address. Typically correlates to the width of the
00052 * address bus.
00053 */
00054 typedef Xuint32 XIo_Address;

00055
00056 /***************** Macros (Inline Functions) Definitions *********************/
00057
00058 /*
00059 * The following macros allow optimized I/O operations for memory mapped I/O.
00060 * It should be noted that macros cannot be used if synchronization of the I/O
00061 * operation is needed as it will likely break some code.
00062 */
00063
00064 /***/
00065 /**
00066 *
00067 * Performs an input operation for an 8-bit memory location by reading from the
00068 * specified address and returning the value read from that address.
00069 *
00070 * @param InputPtr contains the address to perform the input operation at.
00071 *
00072 * @return The value read from the specified input address.
00073 *
00074 **/
00075 #define XIo_In8(InputPtr) (*(volatile Xuint8 *)(InputPtr))

00076
00077 /***/
00078 /**
00079 *
00080 * Performs an input operation for a 16-bit memory location by reading from the
00081 * specified address and returning the value read from that address.
00082 *
00083 * @param InputPtr contains the address to perform the input operation at.
00084 *
00085 * @return The value read from the specified input address.
00086 *
00087 **/
00088 #define XIo_In16(InputPtr) (*(volatile Xuint16 *)(InputPtr))

00089
00090 /***/
00091 /**
00092 *
00093 * Performs an input operation for a 32-bit memory location by reading from the
00094 * specified address and returning the value read from that address.

00095 *
00096 * @param InputPtr contains the address to perform the input operation at.
00097 *
00098 * @return The value read from the specified input address.
00099 *
00100 **/
00101 #define XIo_In32(InputPtr) (*(volatile Xuint32 *)(InputPtr))

00102
00103
00104 /***/
00105 /**
00106 *
00107 * Performs an output operation for an 8-bit memory location by writing the
00108 * specified value to the the specified address.
00109 *
00110 * @param OutputPtr contains the address to perform the output operation at.
00111 * @param Value contains the value to be output at the specified address.
00112 *
00113 * @return None.
00114 *
00115 **/
00116 #define XIo_Out8(OutputPtr, Value) \

00117 { (*(volatile Xuint8 *)(OutputPtr) = Value); }
00118
00119 /***/
00120 /**
00121 *
00122 * Performs an output operation for a 16-bit memory location by writing the
00123 * specified value to the the specified address.
00124 *
00125 * @param OutputPtr contains the address to perform the output operation at.
00126 * @param Value contains the value to be output at the specified address.
00127 *
00128 * @return None.
00129 *
00130 **/
00131 #define XIo_Out16(OutputPtr, Value) \

00132 { (*(volatile Xuint16 *)(OutputPtr) = Value); }
00133
00134 /***/
00135 /**
00136 *
00137 * Performs an output operation for a 32-bit memory location by writing the
00138 * specified value to the the specified address.
00139 *
00140 * @param OutputPtr contains the address to perform the output operation at.
00141 * @param Value contains the value to be output at the specified address.
00142 *
00143 * @return None.
00144 *
00145 **/
00146 #define XIo_Out32(OutputPtr, Value) \

00147 { (*(volatile Xuint32 *)(OutputPtr) = Value); }
00148
00149
00150 /* The following macros allow the software to be transportable across
00151 * processors which use big or little endian memory models.
00152 *
00153 * Defined first is a no-op endian conversion macro. This macro is not to
00154 * be used directly by software. Instead, the XIo_To/FromLittleEndianXX and
00155 * XIo_To/FromBigEndianXX macros below are to be used to allow the endian
00156 * conversion to only be performed when necessary
00157 */
00158 #define XIo_EndianNoop(Source, Destination) (*DestPtr = Source)
00159
00160 #ifdef XLITTLE_ENDIAN
00161
00162 #define XIo_ToLittleEndian16 XIo_EndianNoop
00163 #define XIo_ToLittleEndian32 XIo_EndianNoop
00164 #define XIo_FromLittleEndian16 XIo_EndianNoop
00165 #define XIo_FromLittleEndian32 XIo_EndianNoop
00166
00167 #define XIo_ToBigEndian16(Source, DestPtr) XIo_EndianSwap16(Source, DestPtr)
00168 #define XIo_ToBigEndian32(Source, DestPtr) XIo_EndianSwap32(Source, DestPtr)
00169 #define XIo_FromBigEndian16 XIo_ToBigEndian16
00170 #define XIo_FromBigEndian32 XIo_ToBigEndian32
00171
00172 #else
00173
00174 #define XIo_ToLittleEndian16(Source, DestPtr) XIo_EndianSwap16(Source, DestPtr)
00175 #define XIo_ToLittleEndian32(Source, DestPtr) XIo_EndianSwap32(Source, DestPtr)
00176 #define XIo_FromLittleEndian16 XIo_ToLittleEndian16
00177 #define XIo_FromLittleEndian32 XIo_ToLittleEndian32
00178
00179 #define XIo_ToBigEndian16 XIo_EndianNoop
00180 #define XIo_ToBigEndian32 XIo_EndianNoop
00181 #define XIo_FromBigEndian16 XIo_EndianNoop
00182 #define XIo_FromBigEndian32 XIo_EndianNoop
00183
00184 #endif
00185
00186 /************************** Function Prototypes ******************************/
00187
00188 /* The following functions allow the software to be transportable across
00189 * processors which use big or little endian memory models. These functions
00190 * should not be directly called, but the macros XIo_To/FromLittleEndianXX and
00191 * XIo_To/FromBigEndianXX should be used to allow the endian conversion to only
00192 * be performed when necessary.
00193 */
00194 void XIo_EndianSwap16(Xuint16 Source, Xuint16* DestPtr);

00195 void XIo_EndianSwap32(Xuint32 Source, Xuint32* DestPtr);

00196
00197
00198 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu/v1_00_a/src/xio.h File Reference

Detailed Description

This file contains the interface for the XIo component, which encapsulates the Input/Output functions for
processors that do not require any special I/O handling.

Note:
This file may contain architecture-dependent items (memory-mapped or non-memory-mapped
I/O).

#include "xbasic_types.h"

Go to the source code of this file.

Defines

#define XIo_In8(InputPtr)
#define XIo_In16(InputPtr)
#define XIo_In32(InputPtr)
#define XIo_Out8(OutputPtr, Value)
#define XIo_Out16(OutputPtr, Value)
#define XIo_Out32(OutputPtr, Value)

Typedefs

typedef Xuint32 XIo_Address

Functions

void XIo_EndianSwap16 (Xuint16 Source, Xuint16 *DestPtr)
void XIo_EndianSwap32 (Xuint32 Source, Xuint32 *DestPtr)

Define Documentation

#define XIo_In16(InputPtr)

Performs an input operation for a 16-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InputPtr contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

#define XIo_In32(InputPtr)

Performs an input operation for a 32-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InputPtr contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

#define XIo_In8(InputPtr)

Performs an input operation for an 8-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InputPtr contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

#define XIo_Out16(OutputPtr,
Value)

Performs an output operation for a 16-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutputPtr contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

#define XIo_Out32(OutputPtr,
Value)

Performs an output operation for a 32-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutputPtr contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

#define XIo_Out8(OutputPtr,
Value)

Performs an output operation for an 8-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutputPtr contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Typedef Documentation

typedef Xuint32 XIo_Address

 Typedef for an I/O address. Typically correlates to the width of the address bus.

Function Documentation

void XIo_EndianSwap16 (Xuint16 Source,
Xuint16 * DestPtr

)

Performs a 16-bit endian converion.

Parameters:
Source contains the value to be converted.
DestPtr contains a pointer to the location to put the converted value.

Returns:
None.

Note:
None.

void XIo_EndianSwap32 (Xuint32 Source,
Xuint32 * DestPtr

)

Performs a 32-bit endian converion.

Parameters:
Source contains the value to be converted.
DestPtr contains a pointer to the location to put the converted value.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu_ppc405/v1_00_a/src/xio.c File
Reference

Detailed Description

Contains I/O functions for memory-mapped or non-memory-mapped I/O architectures. These functions
encapsulate PowerPC architecture-specific I/O requirements.

Note:
This file contains architecture-dependent code.

The order of the SYNCHRONIZE_IO and the read or write operation is important. For the Read
operation, all I/O needs to complete prior to the desired read to insure valid data from the address. The
PPC is a weakly ordered I/O model and reads can and will occur prior to writes and the
SYNCHRONIZE_IO ensures that any writes occur prior to the read. For the Write operation the
SYNCHRONIZE_IO occurs after the desired write to ensure that the address is updated with the new
value prior to any subsequent read.

#include "xio.h"

#include "xbasic_types.h"

Functions

Xuint8 XIo_In8 (XIo_Address InAddress)
Xuint16 XIo_In16 (XIo_Address InAddress)
Xuint32 XIo_In32 (XIo_Address InAddress)
Xuint16 XIo_InSwap16 (XIo_Address InAddress)
Xuint32 XIo_InSwap32 (XIo_Address InAddress)

void XIo_Out8 (XIo_Address OutAddress, Xuint8 Value)
void XIo_Out16 (XIo_Address OutAddress, Xuint16 Value)
void XIo_Out32 (XIo_Address OutAddress, Xuint32 Value)
void XIo_EndianSwap16OLD (Xuint16 Source, Xuint16 *DestPtr)
void XIo_EndianSwap32OLD (Xuint32 Source, Xuint32 *DestPtr)
void XIo_OutSwap16 (XIo_Address OutAddress, Xuint16 Value)
void XIo_OutSwap32 (XIo_Address OutAddress, Xuint32 Value)

Function Documentation

void XIo_EndianSwap16OLD (Xuint16 Source,
Xuint16 * DestPtr

)

Performs a 16-bit endian converion.

Parameters:
Source contains the value to be converted.
DestPtr contains a pointer to the location to put the converted value.

Returns:
None.

Note:
None.

void XIo_EndianSwap32OLD (Xuint32 Source,
Xuint32 * DestPtr

)

Performs a 32-bit endian converion.

Parameters:
Source contains the value to be converted.
DestPtr contains a pointer to the location to put the converted value.

Returns:
None.

Note:
None.

Xuint16 XIo_In16 (XIo_Address InAddress)

Performs an input operation for a 16-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

Note:
None.

Xuint32 XIo_In32 (XIo_Address InAddress)

Performs an input operation for a 32-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

Note:
None.

Xuint8 XIo_In8 (XIo_Address InAddress)

Performs an input operation for an 8-bit memory location by reading from the specified address and
returning the value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The value read from the specified input address.

Note:
None.

Xuint16 XIo_InSwap16 (XIo_Address InAddress)

Performs an input operation for a 16-bit memory location by reading from the specified address and
returning the byte-swapped value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The byte-swapped value read from the specified input address.

Note:
None.

Xuint32 XIo_InSwap32 (XIo_Address InAddress)

Performs an input operation for a 32-bit memory location by reading from the specified address and
returning the byte-swapped value read from that address.

Parameters:
InAddress contains the address to perform the input operation at.

Returns:
The byte-swapped value read from the specified input address.

Note:
None.

void XIo_Out16 (XIo_Address OutAddress,
Xuint16 Value

)

Performs an output operation for a 16-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_Out32 (XIo_Address OutAddress,
Xuint32 Value

)

Performs an output operation for a 32-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_Out8 (XIo_Address OutAddress,
Xuint8 Value

)

Performs an output operation for an 8-bit memory location by writing the specified value to the the
specified address.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_OutSwap16 (XIo_Address OutAddress,
Xuint16 Value

)

Performs an output operation for a 16-bit memory location by writing the specified value to the the
specified address. The value is byte-swapped before being written.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

void XIo_OutSwap32 (XIo_Address OutAddress,
Xuint32 Value

)

Performs an output operation for a 32-bit memory location by writing the specified value to the the
specified address. The value is byte-swapped before being written.

Parameters:
OutAddress contains the address to perform the output operation at.
Value contains the value to be output at the specified address.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_l.c File Reference

Detailed Description

This file contains low-level polled functions to send and receive HDLC frames.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 05/20/02 First release

#include "xhdlc_l.h"

#include "xio.h"

Functions

void XHdlc_SendFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, unsigned ByteCount)
unsigned XHdlc_RecvFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, Xuint32 *FrameStatusPtr)

Function Documentation

unsigned XHdlc_RecvFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
Xuint32 * FrameStatusPtr

)

Receive a frame. Wait for a frame to arrive.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to a 32 bit word-aligned buffer where the frame will be stored.
FrameStatusPtr is a pointer to a frame status that will be valid after this function returns.

Returns:
The size, in bytes, of the frame received.

Note:
None.

void XHdlc_SendFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
unsigned ByteCount

)

Send a HDLC frame. This size is the total frame size, including header. This function blocks waiting
for the frame to be transmitted.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to 32 bit word-aligned frame
ByteCount is the number of bytes in the frame

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xparameters.h
Go to the documentation of this file.

00001 /* $Id: xparameters.h,v 1.57 2003/05/09 14:15:47 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file common/v1_00_a/src/xparameters.h
00026 *
00027 * This file contains system parameters for the Xilinx device driver
environment.
00028 * It is a representation of the system in that it contains the number of each
00029 * device in the system as well as the parameters and memory map for each
00030 * device. The user can view this file to obtain a summary of the devices in
00031 * their system and the device parameters.
00032 *
00033 * This file may be automatically generated by a design tool such as System
00034 * Generator.
00035 *
00036 **/
00037
00038 /***************************** Include Files *********************************/
00039
00040 #ifndef XPARAMETERS_H /* prevent circular inclusions */
00041 #define XPARAMETERS_H /* by using protection macros */

00042
00043 /* unifying driver changes
00044
00045 added XPAR_INTC_0_ACK_BEFORE, XPAR_INTC_1_ACK_BEFORE
00046 changed XPAR_INTC_MAX_ID to XPAR_INTC_MAX_NUM_INTR_INPUTS
00047 deleted XPAR_INTC_0_MAX_ID, XPAR_INTC_1_MAX_ID
00048
00049 */
00050
00051 /************************** Constant Definitions *****************************/
00052
00053 /*
00054 * The following constants are for each device.
00055 *
00056 * An instance must exist for each physical device that exists in the system.
00057 * The device IDs in the following constants are unique between all devices to
00058 * allow device IDs to be searched in the future.
00059 */
00060
00061 /***
00062 *
00063 * System Level defines. These constants are for devices that do not require
00064 * a device driver. Examples of these types of devices include volatile RAM
00065 * devices.
00066 */
00067 #define XPAR_ZBT_NUM_INSTANCES 1
00068 #define XPAR_ZBT_0_BASE 0x00000000
00069 #define XPAR_ZBT_0_SIZE 0x00100000
00070
00071 #define XPAR_SRAM_NUM_INSTANCES 1
00072 #define XPAR_SRAM_0_BASE 0x00100000
00073 #define XPAR_SRAM_0_SIZE 0x00200000
00074
00075 #define XPAR_DDR_NUM_INSTANCES 1
00076 #define XPAR_DDR_0_BASE 0xF0000000
00077 #define XPAR_DDR_0_SIZE 0x01000000
00078
00079 #define XPAR_CORE_CLOCK_FREQ_HZ 12500000
00080
00081 #define XPAR_CPU_PPC405_CORE_CLOCK_FREQ_HZ XPAR_CORE_CLOCK_FREQ_HZ
00082
00083 /***
00084 *
00085 * Interrupt Controller (Intc) defines.
00086 * DeviceID starts at 0
00087 */
00088 #define XPAR_XINTC_NUM_INSTANCES 2 /* Number of instances */
00089 #define XPAR_INTC_MAX_NUM_INTR_INPUTS 31 /* max # inputs of all */
00090 #define XPAR_INTC_SINGLE_BASEADDR 0x70800000 /* low level driver base */
00091 #define XPAR_INTC_SINGLE_ACK_BEFORE 0xFFFF00FF /* low level driver */
00092
00093 #define XPAR_INTC_0_DEVICE_ID 1 /* Device ID for instance */
00094 #define XPAR_INTC_0_ACK_BEFORE 0xFFFF00FF /* Ack timing, before/after

*/
00095 #define XPAR_INTC_0_BASEADDR 0x70800000 /* Register base address */
00096
00097 #define XPAR_INTC_0_UARTLITE_0_VEC_ID 4 /* Interrupt source for
vector */
00098 #define XPAR_INTC_0_WDTTB_0_VEC_ID 5 /* Interrupt source for
vector */
00099 #define XPAR_INTC_0_WD_0_VEC_ID 6 /* Interrupt source for
vector */
00100 #define XPAR_INTC_0_TMRCTR_0_VEC_ID 7 /* Interrupt source for
vector */
00101 #define XPAR_INTC_0_SPI_0_VEC_ID 11 /* Interrupt source for
vector */
00102 #define XPAR_INTC_0_IIC_0_VEC_ID 12 /* Interrupt source for
vector */
00103 #define XPAR_INTC_0_UARTNS550_0_VEC_ID 13 /* Interrupt source for
vector */
00104 #define XPAR_INTC_0_UARTNS550_1_VEC_ID 14 /* Interrupt source for
vector */
00105 #define XPAR_INTC_0_EMAC_0_VEC_ID 15 /* Interrupt source for
vector */
00106
00107 #define XPAR_INTC_1_DEVICE_ID 2 /* Device ID for instance */
00108 #define XPAR_INTC_1_ACK_BEFORE 0xFFFF00FF /* Ack timing, before/after
*/
00109 #define XPAR_INTC_1_BASEADDR 0x70800020 /* Register base address */
00110
00111 #define XPAR_INTC_1_OPB_TO_PLB_ERR_VEC_ID 0 /* Interrupt source for
vector */
00112 #define XPAR_INTC_1_PLB_TO_OPB_ERR_VEC_ID 1 /* Interrupt source for
vector */
00113
00114 /***
00115 *
00116 * Ethernet 10/100 MAC defines.
00117 * DeviceID starts at 10
00118 */
00119 #define XPAR_XEMAC_NUM_INSTANCES 1 /* Number of instances */
00120
00121 #define XPAR_EMAC_0_DEVICE_ID 10 /* Device ID for instance */
00122 #define XPAR_EMAC_0_BASEADDR 0x60000000 /* Device base address */
00123 #define XPAR_EMAC_0_DMA_PRESENT XFALSE /* Does device have DMA? */
00124 #define XPAR_EMAC_0_ERR_COUNT_EXIST XTRUE /* Does device have counters?
*/
00125 #define XPAR_EMAC_0_MII_EXIST XTRUE /* Does device support MII? */
00126
00127 /***
00128 *
00129 * NS16550 UART defines.
00130 * DeviceID starts at 20
00131 */
00132 #define XPAR_XUARTNS550_NUM_INSTANCES 1 /* Number of instances */

00133
00134 #define XPAR_UARTNS550_0_DEVICE_ID 20 /* Device ID for instance */
00135 #define XPAR_UARTNS550_0_BASEADDR 0xA0010000 /* IPIF base address */
00136 #define XPAR_UARTNS550_0_CLOCK_HZ (66000000L)/* 66 MHz clock */
00137
00138 #define XPAR_UARTNS550_1_DEVICE_ID 21 /* Device ID for instance */
00139 #define XPAR_UARTNS550_1_BASEADDR 0xA0000000 /* IPIF base address */
00140 #define XPAR_UARTNS550_1_CLOCK_HZ (66000000L)/* 66 MHz clock */
00141
00142 /***
00143 *
00144 * UartLite defines.
00145 * DeviceID starts at 30
00146 */
00147 #define XPAR_XUARTLITE_NUM_INSTANCES 1 /* Number of instances */
00148
00149 #define XPAR_UARTLITE_0_DEVICE_ID 30 /* Device ID for instance */
00150 #define XPAR_UARTLITE_0_BASEADDR 0xA0020000 /* Device base address */
00151 #define XPAR_UARTLITE_0_BAUDRATE 19200 /* Baud rate */
00152 #define XPAR_UARTLITE_0_USE_PARITY XFALSE /* Parity generator enabled */
00153 #define XPAR_UARTLITE_0_ODD_PARITY XFALSE /* Type of parity generated */
00154 #define XPAR_UARTLITE_0_DATA_BITS 8 /* Data bits */
00155
00156 /***
00157 *
00158 * ATM controller defines.
00159 * DeviceID starts at 40
00160 */
00161 #define XPAR_XATMC_NUM_INSTANCES 1 /* Number of instances */
00162
00163 #define XPAR_ATMC_0_DEVICE_ID 40 /* Device ID for instance */
00164 #define XPAR_ATMC_0_BASEADDR 0x70000000 /* Device base address */
00165 #define XPAR_ATMC_0_DMA_PRESENT XFALSE /* Does device have DMA? */
00166
00167 /***
00168 *
00169 * Serial Peripheral Interface (SPI) defines.
00170 * DeviceID starts at 50
00171 */
00172 #define XPAR_XSPI_NUM_INSTANCES 2 /* Number of instances */
00173
00174 #define XPAR_SPI_0_DEVICE_ID 50 /* Device ID for instance */
00175 #define XPAR_SPI_0_BASEADDR 0x50000000 /* Device base address */
00176 #define XPAR_SPI_0_FIFO_EXIST XTRUE /* Does device have FIFOs? */
00177 #define XPAR_SPI_0_SLAVE_ONLY XFALSE /* Is the device slave only? */
00178 #define XPAR_SPI_0_NUM_SS_BITS 32 /* Number of slave select bits
*/
00179
00180 #define XPAR_SPI_1_DEVICE_ID 51 /* Device ID for instance */
00181 #define XPAR_SPI_1_BASEADDR 0x50000100 /* IPIF base address */
00182 #define XPAR_SPI_1_FIFO_EXIST XTRUE /* Does device have FIFOs? */
00183 #define XPAR_SPI_1_SLAVE_ONLY XFALSE /* Is the device slave only? */
00184 #define XPAR_SPI_1_NUM_SS_BITS 32 /* Number of slave select bits

*/
00185
00186 /***
00187 *
00188 * OPB Arbiter defines.
00189 * DeviceID starts at 60
00190 */
00191 #define XPAR_XOPBARB_NUM_INSTANCES 1 /* Number of instances */
00192
00193 #define XPAR_OPBARB_0_DEVICE_ID 60 /* Device ID for instance */
00194 #define XPAR_OPBARB_0_BASEADDR 0x80000000 /* Register base address */
00195 #define XPAR_OPBARB_0_NUM_MASTERS 8 /* Number of masters on bus */
00196
00197 /***
00198 *
00199 * Watchdog timer/timebase (WdtTb) defines.
00200 * DeviceID starts at 70
00201 */
00202 #define XPAR_XWDTTB_NUM_INSTANCES 1 /* Number of instances */
00203
00204 #define XPAR_WDTTB_0_DEVICE_ID 70 /* Device ID for instance */
00205 #define XPAR_WDTTB_0_BASEADDR 0x70800040 /* Register base address */
00206
00207 /***
00208 *
00209 * Timer Counter (TmrCtr) defines.
00210 * DeviceID starts at 80
00211 */
00212 #define XPAR_XTMRCTR_NUM_INSTANCES 2 /* Number of instances */
00213
00214 #define XPAR_TMRCTR_0_DEVICE_ID 80 /* Device ID for instance */
00215 #define XPAR_TMRCTR_0_BASEADDR 0x70800100 /* Register base address */
00216
00217 /***
00218 *
00219 * IIC defines.
00220 * DeviceID starts at 90
00221 */
00222 #define XPAR_XIIC_NUM_INSTANCES 2 /* Number of instances */
00223
00224 #define XPAR_IIC_0_DEVICE_ID 90 /* Device ID for instance */
00225 #define XPAR_IIC_0_BASEADDR 0xA8000000 /* Device base address */
00226 #define XPAR_IIC_0_TEN_BIT_ADR XTRUE /* Supports 10 bit addresses */
00227
00228 #define XPAR_IIC_1_DEVICE_ID 91 /* Device ID for instance */
00229 #define XPAR_IIC_1_BASEADDR 0xA8000000 /* Device base address */
00230 #define XPAR_IIC_1_TEN_BIT_ADR XTRUE /* Supports 10 bit addresses */
00231
00232 /***
00233 *
00234 * Flash defines.
00235 * DeviceID starts at 100

00236 */
00237 #define XPAR_XFLASH_NUM_INSTANCES 1 /* Number of instances */
00238 #define XPAR_FLASH_INTEL_SUPPORT /* Include intel flash support
*/
00239
00240 #define XPAR_FLASH_0_DEVICE_ID 100 /* Device ID for first instance
*/
00241 #define XPAR_FLASH_0_BASEADDR 0xFF000000 /* Base address of parts */
00242 #define XPAR_FLASH_0_NUM_PARTS 2 /* Number of parts in array */
00243 #define XPAR_FLASH_0_PART_WIDTH 2 /* Width of each part in bytes
*/
00244 #define XPAR_FLASH_0_PART_MODE 2 /* Mode of each part in bytes */
00245
00246 /***
00247 *
00248 * GPIO defines.
00249 * DeviceID starts at 110
00250 */
00251 #define XPAR_XGPIO_NUM_INSTANCES 1
00252
00253 #define XPAR_GPIO_0_DEVICE_ID 110 /* Device ID for instance */
00254 #define XPAR_GPIO_0_BASEADDR 0x90000000 /* Register base address */
00255
00256
00257 /***
00258 *
00259 * EMC defines.
00260 * DeviceID starts at 120
00261 */
00262 #define XPAR_XEMC_NUM_INSTANCES 1
00263
00264 #define XPAR_EMC_0_DEVICE_ID 120 /* Device ID for instance */
00265 #define XPAR_EMC_0_BASEADDR 0xE0000000 /* Register base address */
00266 #define XPAR_EMC_0_NUM_BANKS_MEM 3 /* Number of banks */
00267
00268 /***
00269 *
00270 * PLB Arbiter defines.
00271 * DeviceID starts at 130
00272 */
00273 #define XPAR_XPLBARB_NUM_INSTANCES 1
00274
00275 #define XPAR_PLBARB_0_DEVICE_ID 130 /* Device ID for instance */
00276 #define XPAR_PLBARB_0_BASEADDR 0x300 /* Register base address */
00277 #define XPAR_PLBARB_0_NUM_MASTERS 1 /* Number of masters on bus
*/
00278
00279 /***
00280 *
00281 * PLB To OPB Bridge defines.
00282 * DeviceID starts at 140
00283 */
00284 #define XPAR_XPLB2OPB_NUM_INSTANCES 1

00285
00286 #define XPAR_PLB2OPB_0_DEVICE_ID 140 /* Device ID for instance */
00287 #define XPAR_PLB2OPB_0_DCR_BASEADDR 0x0 /* DCR Register base address
*/
00288 #define XPAR_PLB2OPB_0_NUM_MASTERS 1 /* Number of masters on bus
*/
00289
00290
00291 /***
00292 *
00293 * OPB To PLB Bridge defines.
00294 * DeviceID starts at 150
00295 */
00296 #define XPAR_XOPB2PLB_NUM_INSTANCES 1
00297 #define XPAR_XOPB2PLB_ANY_OPB_REG_INTF /* Accessible from OPB, not DCR */
00298
00299 #define XPAR_OPB2PLB_0_DEVICE_ID 150 /* Device ID for instance */
00300 #define XPAR_OPB2PLB_0_OPB_BASEADDR 0x0 /* Register base address */
00301 #define XPAR_OPB2PLB_0_DCR_BASEADDR 0x0 /* DCR Register base address */
00302
00303
00304 /***
00305 *
00306 * System ACE defines.
00307 * DeviceID starts at 160
00308 */
00309 #define XPAR_XSYSACE_NUM_INSTANCES 1
00310
00311 #define XPAR_SYSACE_0_DEVICE_ID 160 /* Device ID for instance */
00312 #define XPAR_SYSACE_0_BASEADDR 0xCF000000 /* Register base address */
00313
00314
00315 /***
00316 *
00317 * HDLC defines.
00318 * DeviceID starts at 170
00319 */
00320 #define XPAR_XHDLC_NUM_INSTANCES 1
00321
00322 #define XPAR_HDLC_0_DEVICE_ID 170 /* Device ID for instance
*/
00323 #define XPAR_HDLC_0_BASEADDR 0x60010000 /* Register base address */
00324 #define XPAR_HDLC_0_TX_MEM_DEPTH 2048 /* Tx FIFO depth (bytes) */
00325 #define XPAR_HDLC_0_RX_MEM_DEPTH 2048 /* Rx FIFO depth (bytes) */
00326 #define XPAR_HDLC_0_DMA_PRESENT 3 /* DMA SG in hardware */
00327
00328
00329 /***
00330 *
00331 * PS2 Reference driver defines.
00332 * DeviceID starts at 180
00333 */

00334 #define XPAR_XPS2_NUM_INSTANCES 2
00335
00336 #define XPAR_PS2_0_DEVICE_ID 180 /* Device ID for instance */
00337 #define XPAR_PS2_0_BASEADDR 0x40010000 /* Register base address */
00338
00339 #define XPAR_PS2_1_DEVICE_ID 181 /* Device ID for instance */
00340 #define XPAR_PS2_1_BASEADDR 0x40020000 /* Register base address */
00341
00342 /***
00343 *
00344 * Rapid IO defines.
00345 * DeviceID starts at 190
00346 */
00347 #define XPAR_XRAPIDIO_NUM_INSTANCES 1
00348
00349 #define XPAR_RAPIDIO_0_DEVICE_ID 190 /* Device ID for
instance */
00350 #define XPAR_RAPIDIO_0_BASEADDR 0x60000000 /* Register base address
*/
00351
00352
00353 /***
00354 *
00355 * PCI defines.
00356 * DeviceID starts at 200
00357 */
00358 #define XPAR_XPCI_NUM_INSTANCES 1
00359 #define XPAR_OPB_PCI_1_DEVICE_ID 200
00360 #define XPAR_OPB_PCI_1_BASEADDR 0x86000000
00361 #define XPAR_OPB_PCI_1_HIGHADDR 0x860001FF
00362 #define XPAR_OPB_PCI_1_PCIBAR_0 0x10000000
00363 #define XPAR_OPB_PCI_1_PCIBAR_LEN_0 27
00364 #define XPAR_OPB_PCI_1_PCIBAR2IPIF_0 0xF0000000
00365 #define XPAR_OPB_PCI_1_PCIBAR_ENDIAN_TRANSLATE_EN_0 0
00366 #define XPAR_OPB_PCI_1_PCI_PREFETCH_0 1
00367 #define XPAR_OPB_PCI_1_PCI_SPACETYPE_0 1
00368 #define XPAR_OPB_PCI_1_PCIBAR_1 0x3F000000
00369 #define XPAR_OPB_PCI_1_PCIBAR_LEN_1 15
00370 #define XPAR_OPB_PCI_1_PCIBAR2IPIF_1 0xC0FF8000
00371 #define XPAR_OPB_PCI_1_PCIBAR_ENDIAN_TRANSLATE_EN_1 0
00372 #define XPAR_OPB_PCI_1_PCI_PREFETCH_1 1
00373 #define XPAR_OPB_PCI_1_PCI_SPACETYPE_1 1
00374 #define XPAR_OPB_PCI_1_PCIBAR_2 0x5F000000
00375 #define XPAR_OPB_PCI_1_PCIBAR_LEN_2 16
00376 #define XPAR_OPB_PCI_1_PCIBAR2IPIF_2 0x00000000
00377 #define XPAR_OPB_PCI_1_PCIBAR_ENDIAN_TRANSLATE_EN_2 0
00378 #define XPAR_OPB_PCI_1_PCI_PREFETCH_2 1
00379 #define XPAR_OPB_PCI_1_PCI_SPACETYPE_2 1
00380 #define XPAR_OPB_PCI_1_IPIFBAR_0 0x80000000
00381 #define XPAR_OPB_PCI_1_IPIF_HIGHADDR_0 0x81FFFFFF
00382 #define XPAR_OPB_PCI_1_IPIFBAR2PCI_0 0xF0000000
00383 #define XPAR_OPB_PCI_1_IPIFBAR_ENDIAN_TRANSLATE_EN_0 0
00384 #define XPAR_OPB_PCI_1_IPIF_PREFETCH_0 1

00385 #define XPAR_OPB_PCI_1_IPIF_SPACETYPE_0 1
00386 #define XPAR_OPB_PCI_1_IPIFBAR_1 0x82000000
00387 #define XPAR_OPB_PCI_1_IPIF_HIGHADDR_1 0x820007FF
00388 #define XPAR_OPB_PCI_1_IPIFBAR2PCI_1 0xCE000000
00389 #define XPAR_OPB_PCI_1_IPIFBAR_ENDIAN_TRANSLATE_EN_1 0
00390 #define XPAR_OPB_PCI_1_IPIF_PREFETCH_1 1
00391 #define XPAR_OPB_PCI_1_IPIF_SPACETYPE_1 1
00392 #define XPAR_OPB_PCI_1_IPIFBAR_2 0x82320000
00393 #define XPAR_OPB_PCI_1_IPIF_HIGHADDR_2 0x8232FFFF
00394 #define XPAR_OPB_PCI_1_IPIFBAR2PCI_2 0x00010000
00395 #define XPAR_OPB_PCI_1_IPIFBAR_ENDIAN_TRANSLATE_EN_2 0
00396 #define XPAR_OPB_PCI_1_IPIF_PREFETCH_2 1
00397 #define XPAR_OPB_PCI_1_IPIF_SPACETYPE_2 1
00398 #define XPAR_OPB_PCI_1_IPIFBAR_3 0x82330000
00399 #define XPAR_OPB_PCI_1_IPIF_HIGHADDR_3 0x8233FFFF
00400 #define XPAR_OPB_PCI_1_IPIFBAR2PCI_3 0x00010000
00401 #define XPAR_OPB_PCI_1_IPIFBAR_ENDIAN_TRANSLATE_EN_3 0
00402 #define XPAR_OPB_PCI_1_IPIF_PREFETCH_3 1
00403 #define XPAR_OPB_PCI_1_IPIF_SPACETYPE_3 0
00404 #define XPAR_OPB_PCI_1_IPIFBAR_4 0x82340000
00405 #define XPAR_OPB_PCI_1_IPIF_HIGHADDR_4 0x8234FFFF
00406 #define XPAR_OPB_PCI_1_IPIFBAR2PCI_4 0x00010000
00407 #define XPAR_OPB_PCI_1_IPIFBAR_ENDIAN_TRANSLATE_EN_4 0
00408 #define XPAR_OPB_PCI_1_IPIF_PREFETCH_4 0
00409 #define XPAR_OPB_PCI_1_IPIF_SPACETYPE_4 0
00410 #define XPAR_OPB_PCI_1_IPIFBAR_5 0x82350000
00411 #define XPAR_OPB_PCI_1_IPIF_HIGHADDR_5 0x8235FFFF
00412 #define XPAR_OPB_PCI_1_IPIFBAR2PCI_5 0x00010000
00413 #define XPAR_OPB_PCI_1_IPIFBAR_ENDIAN_TRANSLATE_EN_5 0
00414 #define XPAR_OPB_PCI_1_IPIF_PREFETCH_5 1
00415 #define XPAR_OPB_PCI_1_IPIF_SPACETYPE_5 1
00416 #define XPAR_OPB_PCI_1_DMA_BASEADDR 0x87000000
00417 #define XPAR_OPB_PCI_1_DMA_HIGHADDR 0x8700007F
00418 #define XPAR_OPB_PCI_1_DMA_CHAN_TYPE 0
00419 #define XPAR_OPB_PCI_1_DMA_LENGTH_WIDTH 11
00420
00421 /***
00422 *
00423 * GEmac defines.
00424 * DeviceID starts at 210
00425 */
00426 #define XPAR_XGEMAC_NUM_INSTANCES 1
00427 #define XPAR_GEMAC_0_DEVICE_ID 210
00428 #define XPAR_GEMAC_0_BASEADDR 0x61000000
00429 #define XPAR_GEMAC_0_DMA_TYPE 9
00430 #define XPAR_GEMAC_0_MIIM_EXIST XFALSE
00431
00432
00433 /***
00434 *
00435 * Touchscreen defines .
00436 * DeviceID starts at 220

00437 */
00438 #define XPAR_XTOUCHSCREEN_NUM_INSTANCES 1
00439 #define XPAR_TOUCHSCREEN_0_DEVICE_ID 220
00440 #define XPAR_TOUCHSCREEN_0_BASEADDR 0x70000000
00441
00442 /**************************** Type Definitions *******************************/
00443
00444
00445 /***************** Macros (Inline Functions) Definitions *********************/
00446
00447
00448 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xparameters.h File
Reference

Detailed Description

This file contains system parameters for the Xilinx device driver environment. It is a representation of
the system in that it contains the number of each device in the system as well as the parameters and
memory map for each device. The user can view this file to obtain a summary of the devices in their
system and the device parameters.

This file may be automatically generated by a design tool such as System Generator.

Go to the source code of this file.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XHdlc_Stats Struct Reference
#include <xhdlc.h>

Detailed Description

HDLC statistics (see XHdlc_GetStats() and XHdlc_ClearStats())

Data Fields

Xuint16 XmitFrames
Xuint16 XmitBytes
Xuint16 RecvFrames
Xuint16 RecvBytes
Xuint16 RecvFcsErrors
Xuint16 RecvAlignmentErrors
Xuint16 RecvOverrunErrors
Xuint16 RecvAbortedFrames
Xuint16 FifoErrors
Xuint16 DmaErrors
Xuint16 RecvInterrupts
Xuint16 XmitInterrupts
Xuint16 HdlcInterrupts

Field Documentation

Xuint16 XHdlc_Stats::DmaErrors

 Number of DMA errors

Xuint16 XHdlc_Stats::FifoErrors

 Number of FIFO errors since init

Xuint16 XHdlc_Stats::HdlcInterrupts

 Number of HDLC (device) interrupts

Xuint16 XHdlc_Stats::RecvAbortedFrames

 Number of transmit aborted frames

Xuint16 XHdlc_Stats::RecvAlignmentErrors

 Number of frames received with alignment errors

Xuint16 XHdlc_Stats::RecvBytes

 Number of bytes received

Xuint16 XHdlc_Stats::RecvFcsErrors

 Number of frames discarded due to FCS errors

Xuint16 XHdlc_Stats::RecvFrames

 Number of frames received

Xuint16 XHdlc_Stats::RecvInterrupts

 Number of receive interrupts

Xuint16 XHdlc_Stats::RecvOverrunErrors

 Number of frames discarded due to overrun errors

Xuint16 XHdlc_Stats::XmitBytes

 Number of bytes transmitted

Xuint16 XHdlc_Stats::XmitFrames

 Number of frames transmitted

Xuint16 XHdlc_Stats::XmitInterrupts

 Number of transmit interrupts

The documentation for this struct was generated from the following file:

● hdlc/v1_00_a/src/xhdlc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc.c File Reference

Detailed Description

Functions in this file are the minimum required functions for the HDLC driver. See xhdlc.h for a detailed
description of the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- --
 1.00a jhl 04/01/02 First release
 1.00a rpm 01/03/03 Changed location of IsStarted assignment in XHdlc_Start
 to be sure the flag is set before the device and
 interrupts are enabled.
 1.00a rmm 05/14/03 Fixed diab compiler warnings relating to asserts.

#include "xbasic_types.h"

#include "xhdlc_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"
#include "xdma_channel.h"
#include "xhdlc.h"

Functions

XStatus XHdlc_Initialize (XHdlc *InstancePtr, Xuint16 DeviceId)
XStatus XHdlc_Start (XHdlc *InstancePtr)
XStatus XHdlc_Stop (XHdlc *InstancePtr)

void XHdlc_Reset (XHdlc *InstancePtr)
XStatus XHdlc_Send (XHdlc *InstancePtr, Xuint8 *FramePtr, unsigned ByteCount)

XStatus XHdlc_Recv (XHdlc *InstancePtr, Xuint8 *FramePtr, unsigned *ByteCountPtr, Xuint8
*FrameStatusPtr)

XHdlc_Config * XHdlc_LookupConfig (Xuint16 DeviceId)

Function Documentation

XStatus XHdlc_Initialize (XHdlc * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XHdlc instance/driver. The initialization entails:

● Initialize fields of the XHdlc structure
● Clear the HDLC statistics for this device
● Configure the FIFO components and DMA channels
● Reset the HDLC device

The driver defaults to polled mode operation. Interrupt mode can be selected using the SetOptions() function
and turning off polled mode.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

DeviceId is the unique id of the device controlled by this XHdlc instance. Passing in a device id
associates the generic XHdlc instance to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device

with the supplied device ID.
❍ XST_NO_FEATURE if the device configuration information indicates a feature that is not

supported by this driver (no IPIF or simple DMA).

Note:
None.

XHdlc_Config* XHdlc_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table XHdlc_ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device being looked up.

Returns:
A pointer to the configuration table entry corresponding to the given device ID, or XNULL if no match
is found.

Note:
None.

XStatus XHdlc_Recv (XHdlc * InstancePtr,
Xuint8 * FramePtr,
unsigned * ByteCountPtr,
Xuint8 * FrameStatusPtr

)

Receive an HDLC frame in polled mode. The driver receives the frame directly from the devices packet FIFO.
This is a non-blocking receive, in that if there is no frame ready to be received at the device, the function
returns with an error. The buffer into which the frame will be received must be word-aligned.

The frames which are received by the device are stripped of the Opening Flag and Closing Flag fields such that
buffers which receive data will not contain these fields. The frames do contain the FCS field. The Address field
may or may not be contained in a receive buffer depending on the options set.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

FramePtr is a pointer to a 32 bit word aligned buffer into which the received HDLC frame will
be copied.

ByteCountPtr is both an input and output parameter. It is a pointer to a 32-bit word that contains the
number of bytes in the specified frame buffer on entry and the number of bytes in the
received frame on return from the function.

FrameStatusPtr is an output which is changed by the driver to contain the status of the frame. It
indicates any status that occurred for the received frame.

Returns:
❍ XST_SUCCESS if the frame was received successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the specified receive buffer is smaller than the the received

frame. The received frame is not retrieved from the receive FIFO such that a reset of the device is
necessary to resynchronize the internal length and data FIFOs.

❍ XST_FIFO_ERROR if a non-recoverable FIFO error has occurred. A reset of the device is
necessary to clear this error.

Note:
Receive buffer must also be 32-bit aligned. The user must ensure that the size of the receive buffer is
large enough to hold the frames received.

void XHdlc_Reset (XHdlc * InstancePtr)

Reset the HDLC instance. This is a graceful reset in that the device is stopped first then it resets the FIFOs and
DMA channels if present. Reset must only be called after the driver has been initialized. The reset does not
remove any of the buffer descriptors from the scatter-gather list for DMA.

The configuration after this reset is as follows:

● Disabled transmitter and receiver
● Device interrupts are disabled
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation

The upper layer software is responsible for re-configuring (if necessary) and restarting the HDLC device after
the reset. Note also that driver statistics are not cleared on reset. It is up to the upper layer software to clear the
statistics if needed.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
None.

Note:
None.

XStatus XHdlc_Send (XHdlc * InstancePtr,
Xuint8 * FramePtr,
unsigned ByteCount

)

Send an HDLC frame in polled mode. The driver writes the frame directly to the HDLC packet FIFO. Statistics
are updated if an error previously occurred. The buffer to be sent must be word-aligned. This function is a non-
blocking function in that it does not wait for the frame to be sent before returning.

The hardware device adds the Opening Flag, FCS, and Closing Flag fields to the frame such that these should
not be put in the buffers which are to be sent.

The hardware device uses a length FIFO to keep track of each frame that has been put into the data FIFO. When
sending a lot of short frames it is possible to fill this FIFO so that another frame cannot be sent until a frame has
been sent by the device.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

FramePtr is a pointer to a 32 bit word aligned buffer containing the HDLC frame to be sent.
ByteCount is the size of the HDLC frame as an input. This size must be smaller than the size of the

transmit FIFO of the device.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_FIFO_NO_ROOM if there is no room in the devices FIFOs for this frame.
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical and requires the

caller to reset the device.

Note:
None.

XStatus XHdlc_Start (XHdlc * InstancePtr)

Start the HDLC device and driver by enabling the transmitter and receiver. This function must be called before
other functions to send or receive data. It supports either polled or DMA scatter gather interrupt driven modes
of operation. It does not yet support interrupt driven with FIFOs (non-DMA) or simple DMA without scatter
gather.

If the driver is configured for interrupt driven operation, the interrupts of the device are enabled. The user
should have connected the interrupt handler of the driver to an interrupt source such as an interrupt controller or
the processor interrupt prior to this function being called.

Prior to calling this function, the functions XHdlc_SetSgRecvSpace() and XHdlc_SetSgSendSpace() should
be called to setup the memory buffers and descriptor lists for the DMA scatter-gather.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

 Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_NO_CALLBACK if a callback function has not yet been registered using the

SetxxxHandler function. This is required if in interrupt mode.
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has not yet

been created for the send or receive channel.
❍ XST_DMA_SG_LIST_EMPTY if configured for scatter-gather DMA and a descriptor list has

been created for the receive channel but no buffers inserted into it.

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to start the device, the
user is required to provide protection of this shared data (typically using a semaphore).

XStatus XHdlc_Stop (XHdlc * InstancePtr)

Stop the HDLC device as follows:

● If the device is configured with DMA, stop the DMA channels (wait for acknowledgment of stop)
● Disable the transmitter and receiver
● Disable interrupts if not in polled mode (the higher layer software is responsible for disabling interrupts

at the interrupt controller)

If the device is configured for scatter-gather DMA, the DMA engine stops at the next buffer descriptor in its
list. The remaining descriptors in the list are not removed, so anything in the list will be transmitted or received
when the device is restarted. The side effect of doing this is that the last buffer descriptor processed by the
DMA engine before stopping may not be the last descriptor in the HDLC frame. So when the device is
restarted, a partial frame (i.e., a bad frame) may be transmitted/received. This is only a concern if a frame can
span multiple buffer descriptors, which is dependent on the size of the network buffers.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_i.h
Go to the documentation of this file.

00001 /* $Id: xhdlc_i.h,v 1.4 2002/06/28 18:18:15 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file hdlc/v1_00_a/src/xhdlc_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between XHdlc components. The identifiers in this file are not intended for
00029 * use external to the driver.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a jhl 04/04/02 First release
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XHDLC_I_H /* prevent circular inclusions */
00042 #define XHDLC_I_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xhdlc.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 /*
00051 * Default buffer descriptor control word masks. The default send BD control
00052 * is set for incrementing the source address by one for each byte transferred,
00053 * and specify that the destination address (FIFO) is local to the device. The
00054 * default receive BD control is set for incrementing the destination address
00055 * by one for each byte transferred, and specify that the source address is
00056 * local to the device.
00057 */
00058 #define XHD_DFT_SEND_BD_MASK (XDC_DMACR_SOURCE_INCR_MASK | \
00059 XDC_DMACR_DEST_LOCAL_MASK)
00060 #define XHD_DFT_RECV_BD_MASK (XDC_DMACR_DEST_INCR_MASK | \
00061 XDC_DMACR_SOURCE_LOCAL_MASK)
00062
00063 /*
00064 * Default IPIF Device Interrupt mask when configured for DMA
00065 */
00066 #define XHD_IPIF_DMA_DFT_MASK (XHD_IPIF_SEND_DMA_MASK | \
00067 XHD_IPIF_RECV_DMA_MASK | \
00068 XHD_IPIF_HDLC_MASK | \
00069 XHD_IPIF_SEND_FIFO_MASK | \
00070 XHD_IPIF_RECV_FIFO_MASK)
00071
00072 /*
00073 * Default IPIF Device Interrupt mask when configured without DMA
00074 */
00075 #define XHD_IPIF_FIFO_DFT_MASK (XHD_IPIF_HDLC_MASK | \
00076 XHD_IPIF_SEND_FIFO_MASK | \
00077 XHD_IPIF_RECV_FIFO_MASK)
00078
00079 #define XHD_IPIF_DMA_DEV_INTR_COUNT 7 /* Number of interrupt sources */
00080 #define XHD_IPIF_FIFO_DEV_INTR_COUNT 5 /* Number of interrupt sources */
00081 #define XHD_IPIF_DEVICE_INTR_COUNT 7 /* Number of interrupt sources */
00082 #define XHD_IPIF_IP_INTR_COUNT 22 /* Number of HDLC interrupts */
00083
00084 /* default interrupt register masks for polled mode */
00085
00086 #define XHD_IIXR_TRANSMIT_MASKS (XHD_IIXR_XMIT_DONE_MASK | \
00087 XHD_IIXR_DUALPORT_OUR_MASK | \
00088 XHD_IIXR_XLSFIFO_UNDER_MASK | \
00089 XHD_IIXR_XLSFIFO_OVER_MASK)
00090
00091 #define XHD_IIXR_RECV_ALL_MASK (XHD_IIXR_RECV_DONE_MASK | \
00092 XHD_IIXR_RLSFIFO_UNDER_MASK | \
00093 XHD_IIXR_RLSFIFO_OVER_MASK | \
00094 XHD_IIXR_RDFIFO_OVER_MASK)

00095
00096 /* a default interrupt mask for scatter-gather DMA operation */
00097
00098 /* #define XHD_IIXR_DFT_SG_MASK (XHD_IIXR_DUALPORT_OUR_MASK | */
00099 #define XHD_IIXR_DFT_SG_MASK (XHD_IIXR_ROLLOVER_MASK | \
00100 XHD_IIXR_RLSFIFO_UNDER_MASK | \
00101 XHD_IIXR_XLSFIFO_UNDER_MASK | \
00102 XHD_IIXR_XLSFIFO_OVER_MASK | \
00103 XHD_IIXR_RLSFIFO_OVER_MASK | \
00104 XHD_IIXR_ALIGN_ERROR_MASK | \
00105 XHD_IIXR_FCS_ERROR_MASK | \
00106 XHD_IIXR_RDFIFO_OVER_MASK)
00107
00108 /*
00109 * Mask for the DMA interrupt enable and status registers.
00110 */
00111 #define XHD_DMA_SG_INTR_MASK (XDC_IXR_DMA_ERROR_MASK | \
00112 XDC_IXR_PKT_THRESHOLD_MASK | \
00113 XDC_IXR_PKT_WAIT_BOUND_MASK | \
00114 XDC_IXR_SG_END_MASK)
00115
00116 /**************************** Type Definitions *******************************/
00117
00118
00119 /***************** Macros (Inline Functions) Definitions *********************/
00120
00121
00122 #define XHD_CLEAR_STATS(InstancePtr) \
00123 { \
00124 Xuint8 *ClearPtr = (Xuint8 *)&InstancePtr->Stats; \
00125 int Index; \
00126 \
00127 /* Clear the stats in the instance */ \
00128 \
00129 for (Index = 0; Index < sizeof(XHdlc_Stats); Index++) \
00130 { \
00131 *ClearPtr++ = 0; \
00132 } \
00133 XIo_Out32(InstancePtr->BaseAddress + XHD_CRCE_OFFSET, 0); \
00134 XIo_Out32(InstancePtr->BaseAddress + XHD_ABRT_OFFSET, 0); \
00135 }
00136
00137 extern XHdlc_Config XHdlc_ConfigTable[];

00138
00139 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_i.h File Reference

Detailed Description

This header file contains internal identifiers, which are those shared between XHdlc components. The
identifiers in this file are not intended for use external to the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 04/04/02 First release

#include "xhdlc.h"

Go to the source code of this file.

Variables

XHdlc_Config XHdlc_ConfigTable []

Variable Documentation

XHdlc_Config XHdlc_ConfigTable[] ()

 This table contains configuration information for each HDLC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_options.c File
Reference

Detailed Description

Functions in this file allows options for the XHdlc driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 04/02/02 First release

#include "xbasic_types.h"

#include "xhdlc_i.h"

#include "xipif_v1_23_b.h"
#include "xio.h"

Data Structures

struct OptionMap

Functions

XStatus XHdlc_SetOptions (XHdlc *InstancePtr, Xuint8 Options)
Xuint8 XHdlc_GetOptions (XHdlc *InstancePtr)

void XHdlc_SetAddress (XHdlc *InstancePtr, Xuint16 Address)
Xuint16 XHdlc_GetAddress (XHdlc *InstancePtr)

Function Documentation

Xuint16 XHdlc_GetAddress (XHdlc * InstancePtr)

Get the receive address for this driver/device.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
The receive address of the HDLC device.

Note:
None.

Xuint8 XHdlc_GetOptions (XHdlc * InstancePtr)

Get HDLC driver/device options. A value is returned which is a bit-mask representing the options. A
one (1) in the bit-mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
The value of the HDLC options. The value is a bit-mask representing all options that are
currently enabled. See xhdlc.h for a description of the available options.

Note:
None.

void XHdlc_SetAddress (XHdlc * InstancePtr,
Xuint16 Address

)

Set the receive address for this driver/device. The address is a 8 or 16 bit value within a HDLC frame.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Address is the address to be set.

Returns:
None.

Note:
None.

XStatus XHdlc_SetOptions (XHdlc * InstancePtr,
Xuint8 Options

)

Set HDLC driver/device options. The device must be stopped before calling this function. The options
are contained within a bit-mask with each bit representing an option (i.e., you can OR the options
together). A one (1) in the bit-mask turns an option on, and a zero (0) turns the option off.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Options is a bit-mask representing the HDLC options to turn on or off. See xhdlc.h for a
description of the available options.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped
❍ XST_NO_FEATURE if the polled option is being turned off and the device

configuration information indicates DMA scatter gather is not supported. This driver
does not support interrupt driven without DMA scatter-gather (FIFO only) yet.

Note:
This function is not thread-safe and makes use of internal resources that are shared between
the Start, Stop, and SetOptions functions, so if one task might be setting device options while
another is trying to start the device, protection of this shared data (typically using a semaphore)
is required.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_stats.c File
Reference

Detailed Description

Contains functions to get and clear the XHdlc driver statistics.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 04/02/02 First release

#include "xbasic_types.h"

#include "xhdlc_i.h"

Functions

void XHdlc_GetStats (XHdlc *InstancePtr, XHdlc_Stats *StatsPtr)
void XHdlc_ClearStats (XHdlc *InstancePtr)

Function Documentation

void XHdlc_ClearStats (XHdlc * InstancePtr)

Clear the statistics for the specified HDLC driver instance.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

Returns:
None.

Note:
None.

void XHdlc_GetStats (XHdlc * InstancePtr,
XHdlc_Stats * StatsPtr

)

Get a copy of the statistics structure, which contains the current statistics for this driver. The statistics
are only cleared at initialization or on demand using the XHdlc_ClearStats() function.

The FifoErrors counts indicate that the device has been or needs to be reset. Reset of the device is the
responsibility of the caller.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current
statistics will be copied.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

hdlc/v1_00_a/src/xhdlc_dmasg.c File
Reference

Detailed Description

This file contains the HDLC DMA scatter gather processing. This file contains send and receive
functions as well as interrupt service routines.

Note:
None.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a JHL 06/03/02 First release

#include "xhdlc.h"

#include "xhdlc_i.h"

#include "xpacket_fifo_v1_00_b.h"
#include "xipif_v1_23_b.h"
#include "xio.h"

Functions

XStatus XHdlc_SgSend (XHdlc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XHdlc_SgRecv (XHdlc *InstancePtr, XBufDescriptor *BdPtr)

XStatus XHdlc_SgGetSendFrame (XHdlc *InstancePtr, XBufDescriptor **PtrToBdPtr, unsigned
*BdCountPtr)

XStatus XHdlc_SgGetRecvFrame (XHdlc *InstancePtr, XBufDescriptor **PtrToBdPtr, unsigned
*BdCountPtr)

void XHdlc_InterruptHandler (void *InstancePtr)
XStatus XHdlc_SetSgRecvSpace (XHdlc *InstancePtr, Xuint32 *MemoryPtr, unsigned ByteCount)
XStatus XHdlc_SetSgSendSpace (XHdlc *InstancePtr, Xuint32 *MemoryPtr, unsigned ByteCount)

void XHdlc_SetSgRecvHandler (XHdlc *InstancePtr, void *CallBackRef, XHdlc_SgHandler
FuncPtr)

void XHdlc_SetSgSendHandler (XHdlc *InstancePtr, void *CallBackRef, XHdlc_SgHandler
FuncPtr)

void XHdlc_SetErrorHandler (XHdlc *InstancePtr, void *CallBackRef, XHdlc_ErrorHandler
FuncPtr)

Function Documentation

void XHdlc_InterruptHandler (void * InstancePtr)

Interrupt handler for the HDLC driver. It performs the following processing:

● Get the interrupt status from the IpIf to determine the source of the interrupt. The source can
be: the HDLC device, the send packet FIFO, the receive packet FIFO, the send DMA channel,
or the receive DMA channel. The packet FIFOs only interrupt during "deadlock" conditions.
All other FIFO-related interrupts are generated by the HDLC device.

● Call the appropriate handler based on the source of the interrupt.

Parameters:
InstancePtr contains a pointer to the HDLC device instance for the interrupt.

Returns:
None.

Note:
None.

void XHdlc_SetErrorHandler (XHdlc * InstancePtr,
void * CallBackRef,
XHdlc_ErrorHandler FuncPtr

)

Sets the callback function for handling errors. The upper layer software should call this function
during initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback which should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus
error or bus timeout. The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock
condition in the packet FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable HDLC device error occurred, usually an
overrun or underrun. The handler must reset and re-configure the device.

● XST_ERROR_COUNT_MAX indicates the counters of the HDLC device have reached the
maximum value and that the statistics of the HDLC device should be cleared.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This
helps the application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XHdlc_SetSgRecvHandler (XHdlc * InstancePtr,
void * CallBackRef,
XHdlc_SgHandler FuncPtr

)

Sets the callback function for handling received frames in scatter-gather DMA mode. The upper layer
software should call this function during initialization. The callback is called when a number of
frames, determined by the DMA scatter-gather packet threshold, are received. The number of
received frames is passed to the callback function. The callback function should communicate the
data to a thread such that the scatter-gather list processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer
descriptors for each received frame from the list and should attach a new buffer to each descriptor. It
is important that the specified number of frames passed to the callback function are handled by the
scatter-gather list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are other potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This
helps the application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XHdlc_SetSgRecvSpace (XHdlc * InstancePtr,
Xuint32 * MemoryPtr,
unsigned ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This
function should only be called once, during initialization of the HDLC driver. The memory space
must be word-aligned.

This function must be called prior to calling XHdlc_Start().

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the HDLC device is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XHdlc_Initialize() function because the DMA channel components must be initialized before
the memory space is set.

void XHdlc_SetSgSendHandler (XHdlc * InstancePtr,
void * CallBackRef,
XHdlc_SgHandler FuncPtr

)

Sets the callback function for handling confirmation of transmitted frames in scatter-gather DMA
mode. The upper layer software should call this function during initialization. The callback is called
when a number of frames, determined by the DMA scatter-gather packet threshold, are sent. The
number of sent frames is passed to the callback function. The callback function should communicate
the data to a thread such that the scatter-gather list processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer
descriptors for each sent frame from the list and should also free the buffers attached to the
descriptors if necessary. It is important that the specified number of frames passed to the callback
function are handled by the scatter-gather list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This
helps the application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XHdlc_SetSgSendSpace (XHdlc * InstancePtr,
Xuint32 * MemoryPtr,
unsigned ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA transmit descriptor list.
This function should only be called once, during initialization of the HDLC driver. The memory
space must be word-aligned.

This function must be called prior to calling XHdlc_Start().

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the HDLC device is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XHdlc_Initialize() function because the DMA channel components must be initialized before
the memory space is set.

XStatus XHdlc_SgGetRecvFrame (XHdlc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
unsigned * BdCountPtr

)

Gets the first buffer descriptor of the oldest frame which was received by the scatter-gather DMA
channel of the HDLC device. This function is provided to be called from a callback function such that
the buffer descriptors for received frames can be processed. The function should be called by the
application repetitively for the number of frames indicated as an argument in the callback function.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the
first buffer descriptor of the frame. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the
number of buffer descriptors for the frame. This input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor
pointed to by PtrToBdPtr and a count of the number of buffer descriptors for the frame pointed
to by BdCountPtr are both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list

because there are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XHdlc_SgGetSendFrame (XHdlc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
unsigned * BdCountPtr

)

Gets the first buffer descriptor of the oldest frame which was sent by the scatter-gather DMA channel
of the HDLC device. This function is provided to be called from a callback function such that the
buffer descriptors for sent frames can be processed. The function should be called by the application
repetitively for the number of frames indicated as an argument in the callback function.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the
first buffer descriptor of the frame. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the
number of buffer descriptors for the frame. this input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor
pointed to by PtrToBdPtr and a count of the number of buffer descriptors for the frame pointed
to by BdCountPtr are both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list

because there are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XHdlc_SgRecv (XHdlc * InstancePtr,
XBufDescriptor * BdPtr

)

Adds this descriptor, with an attached empty buffer, into the receive descriptor list. The buffer
attached to the descriptor must be word-aligned. This is used by the upper layer software during
initialization when first setting up the receive descriptors, and also during reception of frames to
replace filled buffers with empty buffers. The contents of the specified buffer descriptor are copied
into the scatter-gather transmit list. This function can be called when the device is started or stopped.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into

the list because a locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit.

Note:
None.

XStatus XHdlc_SgSend (XHdlc * InstancePtr,
XBufDescriptor * BdPtr

)

Sends a HDLC frame using scatter-gather DMA. The caller attaches the frame to one or more buffer
descriptors, then calls this function once for each descriptor. The caller is responsible for allocating
and setting up the descriptor. An entire frame may or may not be contained within one descriptor. The
contents of the buffer descriptor are copied into the scatter-gather transmit list. The caller is
responsible for providing mutual exclusion to guarantee that a frame is contiguous in the transmit list.
The buffer attached to the descriptor must be word-aligned.

The driver updates the descriptor with the DMA control register before being inserted into the
transmit list. If this is the last descriptor in the frame, the inserts are committed, which means the
descriptors for this frame are now available for transmission.

It is assumed that the upper layer software supplies a correctly formatted HDLC frame based upon the
configuration of the HDLC device. The HDLC device must be started before calling this function.

Parameters:
InstancePtr is a pointer to the XHdlc instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.

Returns:
❍ XST_SUCCESS if the buffer was successfully sent
❍ XST_DEVICE_IS_STOPPED if the HDLC device has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into

the list because a locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit. If this is ever
encountered, there is likely a thread mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XAtmc Struct Reference
#include <xatmc.h>

Detailed Description

The XAtmc driver instance data. The user is required to allocate a variable of this type for every ATMC
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● atmc/v1_00_c/src/xatmc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc.h
Go to the documentation of this file.

00001 /* $Id: xatmc.h,v 1.1 2003/01/16 21:02:46 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 **/
00019 /***/
00020 /**
00021 *
00022 * @file atmc/v1_00_c/src/xatmc.h
00023 *
00024 * The implementation of the XAtmc component, which is the driver for the
00025 * Xilinx ATM controller.
00026 *
00027 * The Xilinx ATM controller supports the following features:
00028 * - Simple and scatter-gather DMA operations, as well as simple memory
00029 * mapped direct I/O interface (FIFOs).
00030 * - Independent internal transmit and receive FIFOs
00031 * - Internal loopback
00032 * - Header error check (HEC) generation and checking
00033 * - Cell buffering with or without header/User Defined
00034 * - Parity generation and checking
00035 * - Header generation for transmit cell payloads
00036 * - Physical interface (PHY) data path of 16 bits
00037 * - Basic statistics gathering such as long cells, short cells, parity
errors,
00038 * and HEC errors
00039 *
00040 * The driver does not support all of the features listed above. Features not
00041 * currently supported by the driver are:

00042 * - Simple DMA (in polled or interrupt mode)
00043 * - Direct I/O (FIFO) operations in interrupt mode (polled mode does use
00044 * the FIFO directly)
00045 *
00046 * It is the responsibility of the application get the interrupt handler of
00047 * the ATM controller and connect it to the interrupt source.
00048 *
00049 * The driver services interrupts and passes ATM cells to the upper layer
00050 * software through callback functions. The upper layer software must register
00051 * its callback functions during initialization. The driver requires callback
00052 * functions for received cells, for confirmation of transmitted cells, and
00053 * for asynchronous errors. The frequency of interrupts can be controlled with
00054 * the packet threshold and packet wait bound features of the scatter-gather DMA
00055 * engine.
00056 *
00057 * The callback function which performs processing for scatter-gather DMA is
00058 * executed in an interrupt context and is designed to allow the processing of
00059 * the scatter-gather list to be passed to a thread context. The scatter-gather
00060 * processing can require more processing than desired in an interrupt context.
00061 * Functions are provided to be called from the callback function or thread
00062 * context to get cells from the send and receive scatter-gather list.
00063 *
00064 * Some errors that can occur in the device require a device reset. These
00065 * errors are listed in the SetErrorHandler function header. The upper layer's
00066 * error handler is responsible for resetting the device and re-configuring it
00067 * based on its needs (the driver does not save the current configuration).
00068 *
00069 * DMA Support
00070 *
00071 * The Xilinx ATMC device is available for both the IBM On-Chip Peripheral Bus
00072 * (OPB) and Processor Local Bus (PLB). This driver works for both. However, a
00073 * current limitation of the ATMC device on the PLB is that it does not support
00074 * DMA. For this reason, the DMA scatter-gather functions (e.g.,
XAtmc_SgSend())
00075 * of this driver will not function for the PLB version of the ATMC device.
00076 *
00077 * @note
00078 *
00079 * Xilinx drivers are typically composed of two components, one is the driver
00080 * and the other is the adapter. The driver is independent of OS and processor
00081 * and is intended to be highly portable. The adapter is OS-specific and
00082 * facilitates communication between the driver and the OS.
00083 *

00084 * This driver is intended to be RTOS and processor independent. It works with
00085 * physical addresses only. Any needs for dynamic memory management, threads
00086 * or thread mutual exclusion, virtual memory, or cache control must be
00087 * satisfied by the layer above this driver.
00088 *
00089 * <pre>
00090 * MODIFICATION HISTORY:
00091 *
00092 * Ver Who Date Changes
00093 * ----- ---- -------- ---

00094 * 1.00a JHL 07/31/01 First release
00095 * 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
00096 * an v1.23b of the IPIF driver
00097 * </pre>
00098 *
00099 **/
00100
00101 #ifndef XATMC_H /* prevent circular inclusions */
00102 #define XATMC_H /* by using protection macros */
00103
00104 /***************************** Include Files *********************************/
00105
00106 #include "xstatus.h"

00107 #include "xparameters.h"

00108 #include "xdma_channel.h"
00109 #include "xbasic_types.h"

00110 #include "xpacket_fifo_v2_00_a.h"
00111
00112 /************************** Constant Definitions *****************************/
00113
00114 /** @name Configuration options
00115 * These options are used in XAtmc_SetOptions() to configure the device.
00116 * @{
00117 */
00118 /**
00119 * <pre>
00120 * XAT_LOOPBACK_OPTION Enable sent data to be received
00121 * XAT_POLLED_OPTION Enables polled mode (no interrupts)
00122 * XAT_DISCARD_SHORT_OPTION Discard runt/short cells
00123 * XAT_DISCARD_PARITY_OPTION Discard cells with parity errors
00124 * XAT_DISCARD_LONG_OPTION Discard long cells
00125 * XAT_DISCARD_HEC_OPTION Discard cells with HEC errors
00126 * XAT_DISCARD_VXI_OPTION Discard cells which don't match in the
00127 * VCI/VPI fields
00128 * XAT_PAYLOAD_ONLY_OPTION Buffer payload only
00129 * XAT_NO_SEND_PARITY_OPTION Disable parity for sent cells
00130 * </pre>
00131 */
00132 #define XAT_LOOPBACK_OPTION 0x1

00133 #define XAT_POLLED_OPTION 0x2

00134 #define XAT_DISCARD_SHORT_OPTION 0x4

00135 #define XAT_DISCARD_PARITY_OPTION 0x8

00136 #define XAT_DISCARD_LONG_OPTION 0x10

00137 #define XAT_DISCARD_HEC_OPTION 0x20

00138 #define XAT_DISCARD_VXI_OPTION 0x80

00139 #define XAT_PAYLOAD_ONLY_OPTION 0x200

00140 #define XAT_NO_SEND_PARITY_OPTION 0x800

00141 /*@}*/
00142
00143 /** @name Cell status
00144 * These constants define the status values for a received cell.

00145 * The status is available when polling to receive a cell or in the buffer
00146 * descriptor after a cell is received using DMA scatter-gather.
00147 * @{
00148 */
00149 /**
00150 * <pre>
00151 * XAT_CELL_STATUS_LONG Cell was too long
00152 * XAT_CELL_STATUS_SHORT Cell was too short
00153 * XAT_CELL_STATUS_BAD_PARITY Cell parity was not correct
00154 * XAT_CELL_STATUS_BAD_HEC Cell HEC was not correct
00155 * XAT_CELL_STATUS_VXI_MISMATCH Cell VPI/VCI fields didn't match the expected
00156 * header values
00157 * XAT_CELL_STATUS_NO_ERROR Cell received without errors
00158 * </pre>
00159 */
00160 #define XAT_CELL_STATUS_LONG 0x40UL

00161 #define XAT_CELL_STATUS_SHORT 0x20UL

00162 #define XAT_CELL_STATUS_BAD_PARITY 0x10UL

00163 #define XAT_CELL_STATUS_BAD_HEC 0x08UL

00164 #define XAT_CELL_STATUS_VXI_MISMATCH 0x04UL

00165 #define XAT_CELL_STATUS_NO_ERROR 0x02UL

00166 /*@}*/
00167
00168 /*
00169 * Constants to determine the configuration of the hardware device. They are
00170 * aused to allow the driver to verify it can operate with the hardware.
00171 */
00172 #define XAT_CFG_NO_IPIF 0 /* Not supported by the driver */
00173 #define XAT_CFG_NO_DMA 1 /* No DMA */
00174 #define XAT_CFG_SIMPLE_DMA 2 /* Not supported by the driver */
00175 #define XAT_CFG_DMA_SG 3 /* DMA scatter gather */
00176
00177 /*
00178 * Some default values for interrupt coalescing within the scatter-gather
00179 * DMA engine.
00180 */
00181 #define XAT_SGDMA_DFT_THRESHOLD 4 /* Default pkt threshold */
00182 #define XAT_SGDMA_MAX_THRESHOLD 255 /* Maximum pkt theshold */
00183 #define XAT_SGDMA_DFT_WAITBOUND 100 /* Default pkt wait bound (msec) */
00184 #define XAT_SGDMA_MAX_WAITBOUND 1023 /* Maximum pkt wait bound (msec) */
00185
00186 /*
00187 * Direction identifiers. These are used for setting values like packet
00188 * thresholds and wait bound for specific channels
00189 */
00190 #define XAT_SEND 1
00191 #define XAT_RECV 2
00192
00193 /*
00194 * The next few constants help upper layers determine the size of memory
00195 * pools used for ATM cells and descriptor lists.
00196 */

00197 #define XAT_PAYLOAD_SIZE 48
00198 #define XAT_MAX_HEADER_SIZE 6
00199 #define XAT_MAX_CELL_SIZE (XAT_PAYLOAD_SIZE + XAT_MAX_HEADER_SIZE)
00200
00201 #define XAT_MIN_BUFFERS 16 /* minimum number of receive buffers */
00202 #define XAT_DFT_BUFFERS 64 /* default number of receive buffers */
00203
00204 #define XAT_MIN_RECV_DESC 8 /* minimum # of recv descriptors */
00205 #define XAT_DFT_RECV_DESC 32 /* default # of recv descriptors */
00206
00207 #define XAT_MIN_SEND_DESC 8 /* minimum # of send descriptors */
00208 #define XAT_DFT_SEND_DESC 32 /* default # of send descriptors */
00209
00210 /**************************** Type Definitions *******************************/
00211
00212 /**
00213 * ATM controller statistics
00214 */
00215 typedef struct

00216 {
00217 Xuint32 XmitCells; /**< Number of cells transmitted */

00218 Xuint32 RecvCells; /**< Number of cells received */

00219 Xuint32 RecvUnexpectedHeaders; /**< Number of cells with unexpected headers

*/
00220 Xuint32 RecvShortCells; /**< Number of short cells */

00221 Xuint32 RecvLongCells; /**< Number of long cells */

00222 Xuint32 RecvHecErrors; /**< Number of HEC errors */

00223 Xuint32 RecvParityErrors; /**< Number of parity errors */

00224 Xuint32 DmaErrors; /**< Number of DMA errors since init */

00225 Xuint32 FifoErrors; /**< Number of FIFO errors since init */

00226 Xuint32 RecvInterrupts; /**< Number of receive interrupts */

00227 Xuint32 XmitInterrupts; /**< Number of transmit interrupts */

00228 Xuint32 AtmcInterrupts; /**< Number of ATMC interrupts */

00229 } XAtmc_Stats;

00230
00231
00232 /**
00233 * This typedef contains configuration information for the device.
00234 */
00235 typedef struct

00236 {
00237 Xuint16 DeviceId; /**< Unique ID of device */

00238 Xuint32 BaseAddress; /**< Base address of device */

00239 Xuint8 IpIfDmaConfig; /**< IPIF/DMA hardware configuration */

00240 } XAtmc_Config;

00241
00242
00243 /** @name Typedefs for callbacks
00244 * Callback functions.
00245 * @{

00246 */
00247 /**
00248 * Callback when data is sent or received with scatter-gather DMA.
00249 * @param CallBackRef is a callback reference passed in by the upper layer
00250 * when setting the callback functions, and passed back to the upper
00251 * layer when the callback is invoked.
00252 * @param CellCount is the number of cells sent or received.
00253 */
00254 typedef void (*XAtmc_SgHandler)(void *CallBackRef, Xuint32 CellCount);

00255
00256 /**
00257 * Callback when data is sent or received with scatter-gather DMA.
00258 * @param CallBackRef is a callback reference passed in by the upper layer
00259 * when setting the callback functions, and passed back to the upper
00260 * layer when the callback is invoked.
00261 * @param ErrorCode indicates the error that occurred.
00262 */
00263 typedef void (*XAtmc_ErrorHandler)(void *CallBackRef, XStatus ErrorCode);

00264 /*@}*/
00265
00266 /**
00267 * The XAtmc driver instance data. The user is required to allocate a
00268 * variable of this type for every ATMC device in the system. A pointer
00269 * to a variable of this type is then passed to the driver API functions.
00270 */
00271 typedef struct

00272 {
00273 XAtmc_Stats Stats;

00274 Xuint32 BaseAddress; /* Base address of ATM controller */

00275 Xuint32 IsStarted;

00276 Xuint32 IsReady; /* Device is initialized and ready */

00277 Xboolean IsPolled; /* Device is in polled mode */

00278 Xuint8 IpIfDmaConfig; /* IPIF/DMA hardware configuration */

00279
00280 XPacketFifoV200a RecvFifo; /* FIFO used by receive DMA channel */
00281 XPacketFifoV200a SendFifo; /* FIFO used by send DMA channel */
00282 XDmaChannel RecvChannel;
00283 XDmaChannel SendChannel;
00284
00285 /*
00286 * Callbacks
00287 */
00288 XAtmc_SgHandler SgRecvHandler;

00289 void *SgRecvRef;
00290 XAtmc_SgHandler SgSendHandler;

00291 void *SgSendRef;
00292 XAtmc_ErrorHandler ErrorHandler;

00293 void *ErrorRef;
00294
00295 } XAtmc;

00296

00297
00298 /***************** Macros (Inline Functions) Definitions *********************/
00299
00300
00301 /************************** Function Prototypes ******************************/
00302
00303 /*
00304 * Initialization functions
00305 */
00306 XStatus XAtmc_Initialize(XAtmc *InstancePtr, Xuint16 DeviceId);

00307 XStatus XAtmc_Start(XAtmc *InstancePtr);

00308 XStatus XAtmc_Stop(XAtmc *InstancePtr);

00309 void XAtmc_Reset(XAtmc *InstancePtr);

00310 XStatus XAtmc_SelfTest(XAtmc *InstancePtr);

00311 XAtmc_Config *XAtmc_LookupConfig(Xuint16 DeviceId);

00312
00313 /*
00314 * Send and receive functions
00315 */
00316 XStatus XAtmc_SgSend(XAtmc *InstancePtr, XBufDescriptor *BdPtr);

00317 XStatus XAtmc_SgRecv(XAtmc *InstancePtr, XBufDescriptor *BdPtr);

00318 XStatus XAtmc_SgGetSendCell(XAtmc* InstancePtr, XBufDescriptor **PtrToBdPtr,

00319 int *BdCountPtr);
00320 XStatus XAtmc_SgGetRecvCell(XAtmc* InstancePtr, XBufDescriptor **PtrToBdPtr,

00321 int *BdCountPtr);
00322 XStatus XAtmc_PollSend(XAtmc *InstancePtr, Xuint8 *BufPtr,

00323 Xuint32 ByteCount);

00324 XStatus XAtmc_PollRecv(XAtmc *InstancePtr, Xuint8 *BufPtr,

00325 Xuint32 *ByteCountPtr, Xuint32 *CellStatusPtr);

00326
00327 /*
00328 * ATMC configuration
00329 */
00330 XStatus XAtmc_SetOptions(XAtmc *InstancePtr, Xuint32 Options);

00331 Xuint32 XAtmc_GetOptions(XAtmc *InstancePtr);

00332
00333 XStatus XAtmc_SetPhyAddress(XAtmc *InstancePtr, Xuint8 Address);

00334 Xuint8 XAtmc_GetPhyAddress(XAtmc *InstancePtr);

00335
00336 XStatus XAtmc_SetHeader(XAtmc *InstancePtr, Xuint32 Direction,

00337 Xuint32 Header);

00338 Xuint32 XAtmc_GetHeader(XAtmc *InstancePtr, Xuint32 Direction);

00339
00340 XStatus XAtmc_SetUserDefined(XAtmc *InstancePtr, Xuint8 UserDefined);

00341 Xuint8 XAtmc_GetUserDefined(XAtmc *InstancePtr);

00342
00343 XStatus XAtmc_SetPktThreshold(XAtmc *InstancePtr, Xuint32 Direction,

00344 Xuint8 Threshold);

00345 XStatus XAtmc_GetPktThreshold(XAtmc *InstancePtr, Xuint32 Direction,

00346 Xuint8 *ThreshPtr);

00347 XStatus XAtmc_SetPktWaitBound(XAtmc *InstancePtr, Xuint32 Direction,

00348 Xuint32 TimerValue);

00349 XStatus XAtmc_GetPktWaitBound(XAtmc *InstancePtr, Xuint32 Direction,

00350 Xuint32 *WaitPtr);

00351
00352 /*
00353 * Statistics
00354 */
00355 void XAtmc_GetStats(XAtmc *InstancePtr, XAtmc_Stats *StatsPtr);

00356 void XAtmc_ClearStats(XAtmc *InstancePtr);

00357
00358 /*
00359 * Descriptor memory space
00360 */
00361 XStatus XAtmc_SetSgRecvSpace(XAtmc *InstancePtr, Xuint32 *MemoryPtr,

00362 Xuint32 ByteCount);

00363 XStatus XAtmc_SetSgSendSpace(XAtmc *InstancePtr, Xuint32 *MemoryPtr,

00364 Xuint32 ByteCount);

00365
00366 /*
00367 * Interrupt handler and Callbacks
00368 */
00369 void XAtmc_InterruptHandler(void *InstancePtr);

00370 void XAtmc_SetSgRecvHandler(XAtmc *InstancePtr, void *CallBackRef,

00371 XAtmc_SgHandler FuncPtr);

00372 void XAtmc_SetSgSendHandler(XAtmc *InstancePtr, void *CallBackRef,

00373 XAtmc_SgHandler FuncPtr);

00374 void XAtmc_SetErrorHandler(XAtmc *InstancePtr, void *CallBackRef,

00375 XAtmc_ErrorHandler FuncPtr);

00376
00377 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XAtmc_Stats Struct Reference
#include <xatmc.h>

Detailed Description

ATM controller statistics

Data Fields

Xuint32 XmitCells
Xuint32 RecvCells
Xuint32 RecvUnexpectedHeaders
Xuint32 RecvShortCells
Xuint32 RecvLongCells
Xuint32 RecvHecErrors
Xuint32 RecvParityErrors
Xuint32 DmaErrors
Xuint32 FifoErrors
Xuint32 RecvInterrupts
Xuint32 XmitInterrupts
Xuint32 AtmcInterrupts

Field Documentation

Xuint32 XAtmc_Stats::AtmcInterrupts

 Number of ATMC interrupts

Xuint32 XAtmc_Stats::DmaErrors

 Number of DMA errors since init

Xuint32 XAtmc_Stats::FifoErrors

 Number of FIFO errors since init

Xuint32 XAtmc_Stats::RecvCells

 Number of cells received

Xuint32 XAtmc_Stats::RecvHecErrors

 Number of HEC errors

Xuint32 XAtmc_Stats::RecvInterrupts

 Number of receive interrupts

Xuint32 XAtmc_Stats::RecvLongCells

 Number of long cells

Xuint32 XAtmc_Stats::RecvParityErrors

 Number of parity errors

Xuint32 XAtmc_Stats::RecvShortCells

 Number of short cells

Xuint32 XAtmc_Stats::RecvUnexpectedHeaders

 Number of cells with unexpected headers

Xuint32 XAtmc_Stats::XmitCells

 Number of cells transmitted

Xuint32 XAtmc_Stats::XmitInterrupts

 Number of transmit interrupts

The documentation for this struct was generated from the following file:

● atmc/v1_00_c/src/xatmc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XAtmc_Config Struct Reference
#include <xatmc.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint8 IpIfDmaConfig

Field Documentation

Xuint32 XAtmc_Config::BaseAddress

 Base address of device

Xuint16 XAtmc_Config::DeviceId

 Unique ID of device

Xuint8 XAtmc_Config::IpIfDmaConfig

 IPIF/DMA hardware configuration

The documentation for this struct was generated from the following file:

● atmc/v1_00_c/src/xatmc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_cfg.c File
Reference

Detailed Description

Functions in this file handle configuration (including initialization, reset, and self-test) of the Xilinx ATM driver
component.

Note:
None.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a JHL 07/31/01 First release
 1.00b rpm 12/12/02 Changed location of IsStarted assignment in XAtmc_Start
 to be sure the flag is set before the device and
 interrupts are enabled.
 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
 an v1.23b of the IPIF driver

#include "xatmc.h"

#include "xatmc_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Data Structures

struct Mapping

Functions

XStatus XAtmc_Initialize (XAtmc *InstancePtr, Xuint16 DeviceId)
XStatus XAtmc_Start (XAtmc *InstancePtr)
XStatus XAtmc_Stop (XAtmc *InstancePtr)

void XAtmc_Reset (XAtmc *InstancePtr)
XStatus XAtmc_SelfTest (XAtmc *InstancePtr)
XStatus XAtmc_SetOptions (XAtmc *InstancePtr, Xuint32 OptionsFlag)
Xuint32 XAtmc_GetOptions (XAtmc *InstancePtr)
XStatus XAtmc_SetPhyAddress (XAtmc *InstancePtr, Xuint8 Address)
Xuint8 XAtmc_GetPhyAddress (XAtmc *InstancePtr)

XStatus XAtmc_SetHeader (XAtmc *InstancePtr, Xuint32 Direction, Xuint32 Header)
Xuint32 XAtmc_GetHeader (XAtmc *InstancePtr, Xuint32 Direction)
XStatus XAtmc_SetUserDefined (XAtmc *InstancePtr, Xuint8 UserDefined)
Xuint8 XAtmc_GetUserDefined (XAtmc *InstancePtr)

XStatus XAtmc_SetPktThreshold (XAtmc *InstancePtr, Xuint32 Direction, Xuint8 Threshold)
XStatus XAtmc_GetPktThreshold (XAtmc *InstancePtr, Xuint32 Direction, Xuint8 *ThreshPtr)
XStatus XAtmc_SetPktWaitBound (XAtmc *InstancePtr, Xuint32 Direction, Xuint32 TimerValue)
XStatus XAtmc_GetPktWaitBound (XAtmc *InstancePtr, Xuint32 Direction, Xuint32 *WaitPtr)

void XAtmc_GetStats (XAtmc *InstancePtr, XAtmc_Stats *StatsPtr)
void XAtmc_ClearStats (XAtmc *InstancePtr)

XStatus XAtmc_SetSgRecvSpace (XAtmc *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)
XStatus XAtmc_SetSgSendSpace (XAtmc *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)

void XAtmc_SetSgRecvHandler (XAtmc *InstancePtr, void *CallBackRef, XAtmc_SgHandler
FuncPtr)

void XAtmc_SetSgSendHandler (XAtmc *InstancePtr, void *CallBackRef, XAtmc_SgHandler
FuncPtr)

void XAtmc_SetErrorHandler (XAtmc *InstancePtr, void *CallBackRef, XAtmc_ErrorHandler
FuncPtr)

XAtmc_Config * XAtmc_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XAtmc_ClearStats (XAtmc * InstancePtr)

Clears the XAtmc_Stats structure for this driver.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
None.

Note:
None.

Xuint32 XAtmc_GetHeader (XAtmc * InstancePtr,
Xuint32 Direction

)

Gets the send or receive ATM header in the ATM controller. The ATM controller attachs the send header to
cells which are to be sent but contain only the payload.

If the ATM controller is configured appropriately, it will compare the header of received cells against the
receive header and discard cells which don't match in the VCI and VPI fields of the header.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates whether we're retrieving the send header or the receive header.

Returns:
The ATM header currently being used by the ATM controller for attachment to transmitted cells or the
header which is being compared against received cells. An invalid specified direction will cause this
function to return a value of 0.

Note:
None.

Xuint32 XAtmc_GetOptions (XAtmc * InstancePtr)

Gets Atmc driver/device options. The value returned is a bit-mask representing the options. A one (1) in the
bit-mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
The 32-bit value of the Atmc options. The value is a bit-mask representing all options that are currently
enabled. See xatmc.h for a detailed description of the options.

Note:
None.

Xuint8 XAtmc_GetPhyAddress (XAtmc * InstancePtr)

Gets the PHY address for this driver/device.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
The 5-bit PHY address (0 - 31) currently being used by the ATM controller.

Note:
None.

XStatus XAtmc_GetPktThreshold (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint8 * ThreshPtr

)

Gets the value of the packet threshold register for this driver/device. The packet threshold is used for interrupt
coalescing when the ATM controller is configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
ThreshPtr is a pointer to the byte into which the current value of the packet threshold register will be

copied. An output parameter. A value of 0 indicates the use of packet threshold by the
hardware is disabled.

Returns:
❍ XST_SUCCESS if the packet threshold was retrieved successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

XStatus XAtmc_GetPktWaitBound (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint32 * WaitPtr

)

Gets the packet wait bound register for this driver/device. The packet wait bound is used for interrupt
coalescing when the ATM controller is configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
WaitPtr is a pointer to the byte into which the current value of the packet wait bound register will

be copied. An output parameter. Units are in milliseconds in the range 0 - 1023. A value
of 0 indicates the packet wait bound timer is disabled.

Returns:
❍ XST_SUCCESS if the packet wait bound was retrieved successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

void XAtmc_GetStats (XAtmc * InstancePtr,
XAtmc_Stats * StatsPtr

)

Gets a copy of the XAtmc_Stats structure, which contains the current statistics for this driver.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current statistics
will be copied.

Returns:
None. Although the output parameter will contain a copy of the statistics upon return from this
function.

Note:
None.

Xuint8 XAtmc_GetUserDefined (XAtmc * InstancePtr)

Gets the 2nd byte of the User Defined data in the ATM controller for the channel which is sending data. The
ATM controller will attach the header to all cells which are being sent and do not have a header. The header
of a 16 bit Utopia interface contains the User Defined data which is two bytes. The first byte contains the
HEC field and the second byte is available for user data. This function only allows the second byte to be
retrieved.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
The second byte of the User Defined data.

Note:
None.

XStatus XAtmc_Initialize (XAtmc * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific ATM controller instance/driver. The initialization entails:

● Initialize fields of the XAtmc structure
● Clear the ATM statistics for this device
● Initialize the IPIF component with its register base address
● Configure the FIFO components with their register base addresses.
● Configure the DMA channel components with their register base addresses. At some later time,

memory pools for the scatter-gather descriptor lists will be passed to the driver.
● Reset the ATM controller

The only driver function that should be called before this Initialize function is called is GetInstance.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

DeviceId is the unique id of the device controlled by this XAtmc instance. Passing in a device id
associates the generic XAtmc instance to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started

Note:
None.

XAtmc_Config* XAtmc_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table AtmcConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId contains the unique device ID that for the device. This ID is used to lookup the

configuration.

Returns:
A pointer to the configuration for the specified device, or XNULL if the device could not be found.

Note:
None.

void XAtmc_Reset (XAtmc * InstancePtr)

Resets the ATM controller. It resets the the DMA channels, the FIFOs, and the ATM controller. The reset
does not remove any of the buffer descriptors from the scatter-gather list for DMA. Reset must only be called
after the driver has been initialized.

The configuration after this reset is as follows:

● Disabled transmitter and receiver
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation
● PHY address of 0

The upper layer software is responsible for re-configuring (if necessary) and restarting the ATM controller
after the reset.

When a reset is required due to an internal error, the driver notifies the upper layer software of this need
through the ErrorHandler callback and specific status codes. The upper layer software is responsible for
calling this Reset function and then re-configuring the device.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
None.

Note:
The reset is accomplished by setting the IPIF reset register. This takes care of resetting all hardware
blocks, including the ATM controller.

XStatus XAtmc_SelfTest (XAtmc * InstancePtr)

Performs a self-test on the ATM controller device. The test includes:

● Run self-test on DMA channel, FIFO, and IPIF components
● Reset the ATM controller device, check its registers for proper reset values, and run an internal

loopback test on the device. The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default
configuration. The caller is responsible for re-configuring the device after the self-test is run.

It should be noted that data caching must be disabled when this function is called because the DMA self-test
uses two local buffers (on the stack) for the transfer test.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
❍ XST_SUCCESS if self-test was successful
❍ XST_PFIFO_BAD_REG_VALUE if the FIFO failed register self-test
❍ XST_DMA_TRANSFER_ERROR if DMA failed data transfer self-test
❍ XST_DMA_RESET_REGISTER_ERROR if DMA control register value was incorrect after a

reset
❍ XST_REGISTER_ERROR if the ATM controller failed register reset test
❍ XST_LOOPBACK_ERROR if the ATM controller internal loopback failed
❍ XST_IPIF_REG_WIDTH_ERROR if an invalid register width was passed into the function
❍ XST_IPIF_RESET_REGISTER_ERROR if the value of a register at reset was invalid
❍ XST_IPIF_DEVICE_STATUS_ERROR if a write to the device status register did not read

back correctly
❍ XST_IPIF_DEVICE_ACK_ERROR if a bit in the device status register did not reset when

acked
❍ XST_IPIF_DEVICE_ENABLE_ERROR if the device interrupt enable register was not updated

correctly by the hardware when other registers were written to
❍ XST_IPIF_IP_STATUS_ERROR if a write to the IP interrupt status register did not read back

correctly
❍ XST_IPIF_IP_ACK_ERROR if one or more bits in the IP status register did not reset when

acked
❍ XST_IPIF_IP_ENABLE_ERROR if the IP interrupt enable register was not updated correctly

when other registers were written to

Note:
Because this test uses the PollSend function for its loopback testing, there is the possibility that this
function will not return if the hardware is broken (i.e., it never sets the status bit indicating that
transmission is done). If this is of concern to the user, the user should provide protection from this
problem - perhaps by using a different timer thread to monitor the self-test thread.

void XAtmc_SetErrorHandler (XAtmc * InstancePtr,
void * CallBackRef,
XAtmc_ErrorHandler FuncPtr

)

Sets the callback function for handling errors. The upper layer software should call this function during
initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there
are potentially slow operations within the callback which should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus error or
bus timeout. The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock condition in
the packet FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable ATM controller error occurred, usually an overrun
or underrun. The handler must reset and re-configure the device.

● XST_ATMC_ERROR_COUNT_MAX indicates the counters of the ATM controller have reached the
maximum value and that the statistics of the ATM controller should be cleared.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the
adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XAtmc_SetHeader (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint32 Header

)

Sets the send or receive ATM header in the ATM controller. If cells with only payloads are given to the
controller to be sent, it will attach the header to the cells. If the ATM controller is configured appropriately, it
will compare the header of received cells against the receive header and discard cells which don't match in the
VCI and VPI fields of the header.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the direction, send(transmit) or receive, for the header to set.
Header contains the ATM header to be attached to each transmitted cell for cells with only

payloads or the expected header for cells which are received.

Returns:
❍ XST_SUCCESS if the PHY address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

XStatus XAtmc_SetOptions (XAtmc * InstancePtr,
Xuint32 OptionsFlag

)

Set Atmc driver/device options. The device must be stopped before calling this function. The options are
contained within a bit-mask with each bit representing an option. A one (1) in the bit-mask turns an option on,
and a zero (0) turns the option off. See xatmc.h for a detailed description of the available options.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

OptionsFlag is a bit-mask representing the Atmc options to turn on or off

Returns:
❍ XST_SUCCESS if options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
This function is not thread-safe and makes use of internal resources that are shared between the Start,
Stop, and SetOptions functions, so if one task might be setting device options while another is trying to
start the device, protection of this shared data (typically using a semaphore) is required.

XStatus XAtmc_SetPhyAddress (XAtmc * InstancePtr,
Xuint8 Address

)

Sets the PHY address for this driver/device. The address is a 5-bit value. The device must be stopped before
calling this function.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Address contains the 5-bit PHY address (0 - 31).

Returns:
❍ XST_SUCCESS if the PHY address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XAtmc_SetPktThreshold (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint8 Threshold

)

Sets the packet count threshold register for this driver/device. The device must be stopped before setting the
threshold. The packet count threshold is used for interrupt coalescing, which reduces the frequency of
interrupts from the device to the processor. In this case, the scatter-gather DMA engine only interrupts when
the packet count threshold is reached, instead of interrupting for each packet.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
Threshold is the value of the packet threshold count used during interrupt coalescing. A value of 0

disables the use of packet threshold by the hardware.

Returns:
❍ XST_SUCCESS if the threshold was successfully set
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_DMA_SG_COUNT_EXCEEDED if the threshold must be equal to or less than the

number of descriptors in the list
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

XStatus XAtmc_SetPktWaitBound (XAtmc * InstancePtr,
Xuint32 Direction,
Xuint32 TimerValue

)

Sets the packet wait bound register for this driver/device. The device must be stopped before setting the timer
value. The packet wait bound is used during interrupt coalescing to trigger an interrupt when not enough
packets have been received to reach the packet count threshold.

The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
TimerValue is the value of the packet wait bound used during interrupt coalescing. It is in

milliseconds in the range 0 - 1023. A value of 0 disables the packet wait bound timer.

Returns:
❍ XST_SUCCESS if the packet wait bound was set successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if an invalid direction was specified

Note:
None.

void XAtmc_SetSgRecvHandler (XAtmc * InstancePtr,
void * CallBackRef,
XAtmc_SgHandler FuncPtr

)

Sets the callback function for handling received cells in scatter-gather DMA mode. The upper layer software
should call this function during initialization. The callback is called when a number of cells, determined by
the DMA scatter-gather packet threshold, are received. The number of received cells is passed to the callback
function. The callback function should communicate the data to a thread such that the scatter-gather list
processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer descriptors for
each received cell from the list and should attach a new buffer to each descriptor. It is important that the
specified number of cells passed to the callback function are handled by the scatter-gather list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are
other potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This helps the
application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XAtmc_SetSgRecvSpace (XAtmc * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This function
should only be called once, during initialization of the Atmc driver. The memory space must be word-aligned.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XAtmc_Initialize function because the DMA channel components must be initialized before the
memory space is set.

void XAtmc_SetSgSendHandler (XAtmc * InstancePtr,
void * CallBackRef,
XAtmc_SgHandler FuncPtr

)

Sets the callback function for handling confirmation of transmitted cells in scatter-gather DMA mode. The
upper layer software should call this function during initialization. The callback is called when a number of
cells, determined by the DMA scatter-gather packet threshold, are sent. The number of sent cells is passed to
the callback function. The callback function should communicate the data to a thread such that the scatter-
gather list processing is not performed in an interrupt context.

The scatter-gather list processing of the thread context should call the function to get the buffer descriptors for
each sent cell from the list and should also free the buffers attached to the descriptors if necessary. It is
important that the specified number of cells passed to the callback function are handled by the scatter-gather
list processing.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are
potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

CallBackRef is a reference pointer to be passed back to the application in the callback. This helps the
application correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XAtmc_SetSgSendSpace (XAtmc * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Gives the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This
function should only be called once, during initialization of the Atmc driver. The memory space must be word-
aligned.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the ATM controller is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if the list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XAtmc_Initialize function because the DMA channel components must be initialized before the
memory space is set.

XStatus XAtmc_SetUserDefined (XAtmc * InstancePtr,
Xuint8 UserDefined

)

Sets the 2nd byte of the User Defined data in the ATM controller for the channel which is sending data. The
ATM controller will attach the header to all cells which are being sent and do not have a header. The header
of a 16 bit Utopia interface contains the User Defined data which is two bytes. The first byte contains the
HEC field and the second byte is available for user data. This function only allows the second byte to be set.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

UserDefined contains the second byte of the User Defined data.

Returns:
❍ XST_SUCCESS if the user-defined data was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XAtmc_Start (XAtmc * InstancePtr)

Starts the ATM controller as follows:

● If not in polled mode enable interrupts
● Enable the transmitter
● Enable the receiver
● Start the DMA channels if the descriptor lists are not empty

It is necessary for the caller to connect the interrupt servive routine of the ATM controller to the interrupt
source, typically an interrupt controller, and enable the interrupt in the interrupt controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has not

yet been created for the send or receive channel.
❍ XST_DMA_SG_LIST_EMPTY iff configured for scatter-gather DMA and no buffer

descriptors have been put into the list for the receive channel.

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to start the device, the
user is required to provide protection of this shared data (typically using a semaphore).

XStatus XAtmc_Stop (XAtmc * InstancePtr)

Stops the ATM controller as follows:

● Stop the DMA channels (wait for acknowledgment of stop)
● Disable the transmitter and receiver
● Disable interrupts if not in polled mode

It is the callers responsibility to disconnect the interrupt handler of the ATM controller from the interrupt
source, typically an interrupt controller, and disable the interrupt in the interrupt controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to stop the device, the
user is required to provide protection of this shared data (typically using a semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_i.h
Go to the documentation of this file.

00001 /* $Id $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 **/
00019 /***/
00020 /**
00021 *
00022 * @file atmc/v1_00_c/src/xatmc_i.h
00023 *
00024 * This file contains data which is shared between files internal to the
00025 * XAtmc component. It is intended for internal use only.
00026 *
00027 * <pre>
00028 * MODIFICATION HISTORY:
00029 *
00030 * Ver Who Date Changes
00031 * ----- ---- -------- ---
00032 * 1.00a JHL 07/31/01 First release
00033 * 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
00034 * an v1.23b of the IPIF driver
00035 * </pre>
00036 *
00037 **/
00038
00039 #ifndef XATMC_I_H /* prevent circular inclusions */
00040 #define XATMC_I_H /* by using protection macros */
00041
00042 /***************************** Include Files *********************************/

00043
00044 #include "xatmc.h"

00045 #include "xatmc_l.h"

00046
00047 /************************** Constant Definitions *****************************/
00048
00049 /*
00050 * Default buffer descriptor control word masks. The default send BD control
00051 * is set for incrementing the source address by one for each byte transferred,
00052 * and specify that the destination address (FIFO) is local to the device. The
00053 * default receive BD control is set for incrementing the destination address
00054 * by one for each byte transferred, and specify that the source address is
00055 * local to the device.
00056 */
00057 #define XAT_DFT_SEND_BD_MASK (XDC_DMACR_SOURCE_INCR_MASK | \
00058 XDC_DMACR_DEST_LOCAL_MASK)
00059
00060 #define XAT_DFT_RECV_BD_MASK (XDC_DMACR_DEST_INCR_MASK | \
00061 XDC_DMACR_SOURCE_LOCAL_MASK)
00062
00063 /*
00064 * Masks for the IPIF interrupt enable and status registers.
00065 */
00066 #define XAT_IPIF_ERROR_MASK 0x00000001UL /* Internal IPIF error */
00067 #define XAT_IPIF_ATMC_MASK 0x00000004UL /* ATM controller interrupt */
00068 #define XAT_IPIF_SEND_DMA_MASK 0x00000008UL /* Send DMA interrupt */
00069 #define XAT_IPIF_RECV_DMA_MASK 0x00000010UL /* Receive DMA interrupt */
00070 #define XAT_IPIF_RECV_FIFO_MASK 0x00000020UL /* Receive FIFO interrupt */
00071 #define XAT_IPIF_SEND_FIFO_MASK 0x00000040UL /* Send FIFO interrupt */
00072
00073 /* the following constant defines the default interrupts for the ATM controller
00074 * which include DMA send and receive, ATM controller, and send and receive
00075 * FIFO interrupts
00076 */
00077 #define XAT_IPIF_DFT_MASK (XAT_IPIF_SEND_DMA_MASK | \
00078 XAT_IPIF_RECV_DMA_MASK | \
00079 XAT_IPIF_ATMC_MASK | \
00080 XAT_IPIF_SEND_FIFO_MASK | \
00081 XAT_IPIF_RECV_FIFO_MASK)
00082
00083 #define XAT_IPIF_DEVICE_INTR_COUNT 7 /* Number of interrupt sources */
00084 #define XAT_IPIF_IP_INTR_COUNT 28 /* Number of ATMC interrupts */
00085
00086
00087 /* the following constant defines a default interrupt mask for scatter-gather
00088 * DMA operation which includes both transmit and receive FIFOs (status and
00089 * length) overruns and underruns and when the error counters max out
00090 */
00091 #define XAT_IIX_DFT_SG_MASK (XAT_IIX_RLFIFO_OVER_MASK | \
00092 XAT_IIX_RLFIFO_UNDER_MASK | \
00093 XAT_IIX_RSFIFO_OVER_MASK | \
00094 XAT_IIX_RSFIFO_UNDER_MASK | \

00095 XAT_IIX_XLFIFO_OVER_MASK | \
00096 XAT_IIX_XLFIFO_UNDER_MASK | \
00097 XAT_IIX_XSFIFO_OVER_MASK | \
00098 XAT_IIX_XSFIFO_UNDER_MASK | \
00099 XAT_IIX_COUNT_MAX_MASK)
00100
00101 /*
00102 * the following constant defines a mask for the DMA interrupt enable and
00103 * status registers which includes interrupts for DMA errors, packet threshold,
00104 * packet wait bound, and the end of the scatter gather list
00105 */
00106 #define XAT_DMA_SG_INTR_MASK (XDC_IXR_DMA_ERROR_MASK | \
00107 XDC_IXR_PKT_THRESHOLD_MASK | \
00108 XDC_IXR_PKT_WAIT_BOUND_MASK | \
00109 XDC_IXR_SG_END_MASK)
00110
00111 /**************************** Type Definitions *******************************/
00112
00113
00114 /***************** Macros (Inline Functions) Definitions *********************/
00115
00116 /***/
00117 /**
00118 *
00119 * This macro determines if the device is currently configured for
00120 * scatter-gather DMA.
00121 *
00122 * @param InstancePtr is a pointer to the XAtmc instance to be worked on.
00123 *
00124 * @return
00125 *
00126 * Boolean XTRUE if the device is configured for scatter-gather DMA, or XFALSE
00127 * if it is not.
00128 *
00129 * @note
00130 *
00131 * Signature: Xboolean XAtmc_mIsSgDma(XAtmc *InstancePtr)
00132 *
00133 **/
00134 #define XAtmc_mIsSgDma(InstancePtr) \

00135 ((InstancePtr)->IpIfDmaConfig == XAT_CFG_DMA_SG)
00136
00137 /************************** Variable Definitions *****************************/
00138
00139 extern XAtmc_Config XAtmc_ConfigTable[];

00140
00141 /************************** Function Prototypes ******************************/
00142
00143
00144 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_i.h File
Reference

Detailed Description

This file contains data which is shared between files internal to the XAtmc component. It is intended for
internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a JHL 07/31/01 First release
 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
 an v1.23b of the IPIF driver

#include "xatmc.h"

#include "xatmc_l.h"

Go to the source code of this file.

Defines

#define XAtmc_mIsSgDma(InstancePtr)

Variables

XAtmc_Config XAtmc_ConfigTable []

Define Documentation

#define XAtmc_mIsSgDma(InstancePtr)

This macro determines if the device is currently configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

Returns:
Boolean XTRUE if the device is configured for scatter-gather DMA, or XFALSE if it is not.

Note:
Signature: Xboolean XAtmc_mIsSgDma(XAtmc *InstancePtr)

Variable Documentation

XAtmc_Config XAtmc_ConfigTable[] ()

 This table contains configuration information for each ATMC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_l.h
Go to the documentation of this file.

00001 /* $Id: xatmc_l.h,v 1.1 2003/01/16 21:02:46 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file atmc/v1_00_c/src/xatmc_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xatmc.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b rpm 05/01/02 First release
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XATMC_L_H /* prevent circular inclusions */
00042 #define XATMC_L_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048
00049 /************************** Constant Definitions *****************************/
00050
00051 /* Offset of the ATMC registers from the IPIF base address */
00052 #define XAT_REG_OFFSET 0x1100UL
00053
00054 /*
00055 * Register offsets for the ATM controller. Each register is 32 bits and is
00056 * read/write unless specified otherwise.
00057 */
00058 #define XAT_AMIR_OFFSET (XAT_REG_OFFSET + 0) /* Module ID (read only) */
00059 #define XAT_ASRR_OFFSET (XAT_REG_OFFSET + 0) /* Soft reset (write only) */
00060 #define XAT_ATCR_OFFSET (XAT_REG_OFFSET + 4) /* Control */
00061 #define XAT_ATXHR_OFFSET (XAT_REG_OFFSET + 8) /* Tx header */
00062 #define XAT_ATUDR_OFFSET (XAT_REG_OFFSET + 12) /* Tx user defined */
00063 #define XAT_ATPLR_OFFSET (XAT_REG_OFFSET + 16) /* Tx packet length */
00064 #define XAT_ATSR_OFFSET (XAT_REG_OFFSET + 20) /* Tx status (read only) */
00065 #define XAT_ARXHR_OFFSET (XAT_REG_OFFSET + 24) /* Rx expected header */
00066 #define XAT_ARPLR_OFFSET (XAT_REG_OFFSET + 28) /* Rx pkt length (read only)
*/
00067 #define XAT_ARSR_OFFSET (XAT_REG_OFFSET + 32) /* Rx status (read only) */
00068 #define XAT_AUHC_OFFSET (XAT_REG_OFFSET + 36) /* Unexpected header count */
00069 #define XAT_ARCC_OFFSET (XAT_REG_OFFSET + 40) /* Runt (short) cell count */
00070 #define XAT_ARLC_OFFSET (XAT_REG_OFFSET + 44) /* Long cell count */
00071 #define XAT_AHECC_OFFSET (XAT_REG_OFFSET + 48) /* HEC error cell count */
00072 #define XAT_APECC_OFFSET (XAT_REG_OFFSET + 52) /* Parity error cell count */
00073
00074 /*
00075 * Register offsets for the IPIF components
00076 */
00077 #define XAT_ISR_OFFSET 0x20UL /* Interrupt status */
00078
00079 #define XAT_DMA_OFFSET 0x2300UL
00080 #define XAT_DMA_SEND_OFFSET (XAT_DMA_OFFSET + 0x0) /* DMA send channel */
00081 #define XAT_DMA_RECV_OFFSET (XAT_DMA_OFFSET + 0x40) /* DMA recv channel */
00082
00083 #define XAT_PFIFO_OFFSET 0x2000UL
00084 #define XAT_PFIFO_TXREG_OFFSET (XAT_PFIFO_OFFSET + 0x0) /* Tx registers */
00085 #define XAT_PFIFO_RXREG_OFFSET (XAT_PFIFO_OFFSET + 0x10) /* Rx registers */
00086 #define XAT_PFIFO_TXDATA_OFFSET (XAT_PFIFO_OFFSET + 0x100) /* Tx keyhole */
00087 #define XAT_PFIFO_RXDATA_OFFSET (XAT_PFIFO_OFFSET + 0x200) /* Rx keyhole */
00088
00089
00090 /*
00091 * ATMC Module Identification Register (AMIR)
00092 */
00093 #define XAT_AMIR_VERSION_MASK 0xFFFF0000UL /* Device version */

00094 #define XAT_AMIR_TYPE_MASK 0x0000FF00UL /* Device type */
00095
00096 /*
00097 * ATMC Reset Register (ASRR)
00098 */
00099 #define XAT_ASRR_RCV_RESET_MASK 0x0A000000UL /* receiver reset */
00100 #define XAT_ASRR_XMT_RESET_MASK 0xA0000000UL /* transmitter reset */
00101
00102 /*
00103 * ATMC Control Register (ATCR)
00104 */
00105 #define XAT_ATCR_NO_LONG_MASK 0x80000000UL /* Discard long */
00106 #define XAT_ATCR_NO_RUNTS_MASK 0x40000000UL /* Discard runt/short */
00107 #define XAT_ATCR_NO_PARITY_MASK 0x20000000UL /* Discard bad parity */
00108 #define XAT_ATCR_NO_HEC_MASK 0x08000000UL /* Discard HEC errors */
00109 #define XAT_ATCR_NO_VXI_MASK 0x02000000UL /* Discard VPI/VCI errors */
00110 #define XAT_ATCR_PAYLOAD_ONLY_MASK 0x00800000UL /* Receive only payloads */
00111 #define XAT_ATCR_RECV_ENABLE_MASK 0x00400000UL /* Receiver enable */
00112 #define XAT_ATCR_LOOPBACK_MASK 0x00020000UL /* Loopback test mode */
00113 #define XAT_ATCR_NNI_MASK 0x00010000UL /* 1=network node interface
00114 0=user network interface */
00115 #define XAT_ATCR_MULTI_PHY_MASK 0x00008000UL /* Multiple PHYs */
00116 #define XAT_ATCR_PHY_ADDRESS_MASK 0x00007C00UL /* PHY address */
00117 #define XAT_ATCR_AAL_PRESENT_MASK 0x00000200UL /* An AAL is present */
00118 #define XAT_ATCR_PAYLOAD_IF_MASK 0x00000100UL /* Send/receive payloads */
00119 #define XAT_ATCR_UTOPIA_MASTER_MASK 0x00000080UL /* 1 = master, 0 = slave */
00120 #define XAT_ATCR_UTOPIA_8_BIT_MASK 0x00000040UL /* 1 = 8 bit, 0 = 16 bit */
00121 #define XAT_ATCR_NO_PARITY_GEN_MASK 0x00000020UL /* Don't generate parity */
00122 #define XAT_ATCR_XMIT_ENABLE_MASK 0x00000010UL /* Transmitter enable */
00123
00124 #define XAT_ATCR_PHY_ADDR_SHIFT_VALUE 10 /* location of PHY address in
00125 * in the control register */
00126
00127 /*
00128 * Transmit Status Register (TSR)
00129 */
00130 #define XAT_TSR_PACKET_DONE_MASK 0x00000001UL /* transmit packet complete */
00131
00132 /*
00133 * ATMC Receive Status Register (ARSR)
00134 */
00135 #define XAT_ARSR_RUNT_MASK 0x00000020UL /* Recv runt/short cell */
00136 #define XAT_ARSR_PARITY_MASK 0x00000010UL /* Recv parity error cell */
00137 #define XAT_ARSR_HEC_MASK 0x00000008UL /* Recv HEC error cell */
00138 #define XAT_ARSR_VXI_MASK 0x00000004UL /* Recv VPI/VCI error cell */
00139 #define XAT_ARSR_NO_ERROR_MASK 0x00000002UL /* Recv cell without error */
00140 #define XAT_ARSR_COMPLETE_MASK 0x00000001UL /* Recv cell complete */
00141
00142
00143 /*
00144 * IPIF Interrupt Registers (Status and Enable) masks. These registers are
00145 * part of the IPIF device interrupt registers
00146 */

00147 #define XAT_IIX_XMIT_DONE_MASK 0x08000000UL /* Xmit complete */
00148 #define XAT_IIX_RECV_DONE_MASK 0x04000000UL /* Recv complete */
00149 #define XAT_IIX_RECV_RUNT_MASK 0x02000000UL /* Recv runt/short cell */
00150 #define XAT_IIX_RECV_LONG_MASK 0x01000000UL /* Recv long cell */
00151 #define XAT_IIX_RECV_HEC_MASK 0x00800000UL /* Recv HEC error cell */
00152 #define XAT_IIX_RECV_VXI_MASK 0x00400000UL /* Recv VPI/VCI error cell */
00153 #define XAT_IIX_RECV_PARITY_MASK 0x00200000UL /* Recv parity error cell */
00154 #define XAT_IIX_XSFIFO_EMPTY_MASK 0x00100000UL /* Xmit status fifo empty */
00155 #define XAT_IIX_RSFIFO_EMPTY_MASK 0x00080000UL /* Recv status fifo empty */
00156 #define XAT_IIX_XLFIFO_EMPTY_MASK 0x00040000UL /* Xmit length fifo empty */
00157 #define XAT_IIX_RLFIFO_EMPTY_MASK 0x00020000UL /* Recv length fifo empty */
00158 #define XAT_IIX_XSFIFO_FULL_MASK 0x00010000UL /* Xmit status fifo full */
00159 #define XAT_IIX_RSFIFO_FULL_MASK 0x00008000UL /* Recv status fifo full */
00160 #define XAT_IIX_XLFIFO_FULL_MASK 0x00004000UL /* Xmit length fifo full */
00161 #define XAT_IIX_RLFIFO_FULL_MASK 0x00002000UL /* Xmit length fifo full */
00162 #define XAT_IIX_XSFIFO_OVER_MASK 0x00001000UL /* Xmit status fifo overrun */
00163 #define XAT_IIX_RSFIFO_OVER_MASK 0x00000800UL /* Xmit status fifo overrun */
00164 #define XAT_IIX_XLFIFO_OVER_MASK 0x00000400UL /* Xmit length fifo overrun */
00165 #define XAT_IIX_RLFIFO_OVER_MASK 0x00000200UL /* Recv length fifo overrun */
00166 #define XAT_IIX_XSFIFO_UNDER_MASK 0x00000100UL /* Xmit status fifo underrun */
00167 #define XAT_IIX_RSFIFO_UNDER_MASK 0x00000080UL /* Recv status fifo underrun */
00168 #define XAT_IIX_XLFIFO_UNDER_MASK 0x00000040UL /* Xmit length fifo underrun */
00169 #define XAT_IIX_RLFIFO_UNDER_MASK 0x00000020UL /* Recv length fifo underrun */
00170 #define XAT_IIX_XDFIFO_EMPTY_MASK 0x00000010UL /* Xmit data fifo empty */
00171 #define XAT_IIX_RDFIFO_EMPTY_MASK 0x00000008UL /* Recv data fifo empty */
00172 #define XAT_IIX_XDFIFO_FULL_MASK 0x00000004UL /* Xmit data fifo full */
00173 #define XAT_IIX_RDFIFO_FULL_MASK 0x00000002UL /* Recv data fifo full */
00174 #define XAT_IIX_COUNT_MAX_MASK 0x00000001UL /* Recv errored count max */
00175
00176
00177 /**************************** Type Definitions *******************************/
00178
00179 /***************** Macros (Inline Functions) Definitions *********************/
00180
00181 /***
00182 *
00183 * Low-level driver macros and functions. The list below provides signatures
00184 * to help the user use the macros.
00185 *
00186 * Xuint32 XAtmc_mReadReg(Xuint32 BaseAddress, int RegOffset)
00187 * void XAtmc_mWriteReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Mask)
00188 *
00189 * void XAtmc_mEnable(Xuint32 BaseAddress)
00190 * void XAtmc_mDisable(Xuint32 BaseAddress)
00191 *
00192 * void XAtmc_SendCell(Xuint32 BaseAddress, Xuint8 *CellPtr, int Size)
00193 * int XAtmc_RecvCell(Xuint32 BaseAddress, Xuint8 *CellPtr)
00194 *
00195 * Xboolean XAtmc_mIsTxDone(Xuint32 BaseAddress)
00196 * Xboolean XAtmc_mIsRxEmpty(Xuint32 BaseAddress)
00197 *
00198 ***/

00199
00200 /**/
00201 /**
00202 *
00203 * Read the given register.
00204 *
00205 * @param BaseAddress is the base address of the device
00206 * @param RegOffset is the register offset to be read
00207 *
00208 * @return The 32-bit value of the register
00209 *
00210 * @note None.
00211 *
00212 ***/
00213 #define XAtmc_mReadReg(BaseAddress, RegOffset) \

00214 XIo_In32((BaseAddress) + (RegOffset))
00215
00216
00217 /**/
00218 /**
00219 *
00220 * Write the given register.
00221 *
00222 * @param BaseAddress is the base address of the device
00223 * @param RegOffset is the register offset to be written
00224 * @param Data is the 32-bit value to write to the register
00225 *
00226 * @return None.
00227 *
00228 * @note None.
00229 *
00230 ***/
00231 #define XAtmc_mWriteReg(BaseAddress, RegOffset, Data) \

00232 XIo_Out32((BaseAddress) + (RegOffset), (Data))
00233
00234
00235 /**/
00236 /**
00237 *
00238 * Enable the transmitter and receiver. Preserve the contents of the control
00239 * register.
00240 *
00241 * @param BaseAddress is the base address of the device
00242 *
00243 * @return None.
00244 *
00245 * @note None.
00246 *
00247 ***/
00248 #define XAtmc_mEnable(BaseAddress) \

00249 { \
00250 Xuint32 Control; \

00251 Control = XIo_In32((BaseAddress) + XAT_ATCR_OFFSET); \
00252 Control |= (XAT_ATCR_XMIT_ENABLE_MASK | XAT_ATCR_RECV_ENABLE_MASK); \
00253 XIo_Out32((BaseAddress) + XAT_ATCR_OFFSET, Control); \
00254 }
00255
00256
00257 /**/
00258 /**
00259 *
00260 * Disable the transmitter and receiver. Preserve the contents of the control
00261 * register.
00262 *
00263 * @param BaseAddress is the base address of the device
00264 *
00265 * @return None.
00266 *
00267 * @note None.
00268 *
00269 ***/
00270 #define XAtmc_mDisable(BaseAddress) \

00271 XIo_Out32((BaseAddress) + XAT_ATCR_OFFSET, \
00272 XIo_In32((BaseAddress) + XAT_ATCR_OFFSET) & \
00273 ~(XAT_ATCR_XMIT_ENABLE_MASK | XAT_ATCR_RECV_ENABLE_MASK))
00274
00275
00276 /**/
00277 /**
00278 *
00279 * Check to see if the transmission is complete.
00280 *
00281 * @param BaseAddress is the base address of the device
00282 *
00283 * @return XTRUE if it is done, or XFALSE if it is not.
00284 *
00285 * @note None.
00286 *
00287 ***/
00288 #define XAtmc_mIsTxDone(BaseAddress) \

00289 (XIo_In32((BaseAddress) + XAT_ISR_OFFSET) & XAT_IIX_XMIT_DONE_MASK)
00290
00291
00292 /**/
00293 /**
00294 *
00295 * Check to see if the receive FIFO is empty.
00296 *
00297 * @param BaseAddress is the base address of the device
00298 *
00299 * @return XTRUE if it is empty, or XFALSE if it is not.
00300 *
00301 * @note None.
00302 *

00303 ***/
00304 #define XAtmc_mIsRxEmpty(BaseAddress) \

00305 (!(XIo_In32((BaseAddress) + XAT_ISR_OFFSET) & XAT_IIX_RECV_DONE_MASK))
00306
00307
00308 /************************** Function Prototypes ******************************/
00309
00310 void XAtmc_SendCell(Xuint32 BaseAddress, Xuint8 *CellPtr, int Size);

00311 int XAtmc_RecvCell(Xuint32 BaseAddress, Xuint8 *CellPtr, Xuint32

*CellStatusPtr);
00312
00313
00314 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xatmc.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 05/01/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XAtmc_mReadReg(BaseAddress, RegOffset)
#define XAtmc_mWriteReg(BaseAddress, RegOffset, Data)
#define XAtmc_mEnable(BaseAddress)
#define XAtmc_mDisable(BaseAddress)
#define XAtmc_mIsTxDone(BaseAddress)
#define XAtmc_mIsRxEmpty(BaseAddress)

Functions

void XAtmc_SendCell (Xuint32 BaseAddress, Xuint8 *CellPtr, int Size)
int XAtmc_RecvCell (Xuint32 BaseAddress, Xuint8 *CellPtr, Xuint32 *CellStatusPtr)

Define Documentation

#define XAtmc_mDisable(BaseAddress)

Disable the transmitter and receiver. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XAtmc_mEnable(BaseAddress)

Enable the transmitter and receiver. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XAtmc_mIsRxEmpty(BaseAddress)

Check to see if the receive FIFO is empty.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is empty, or XFALSE if it is not.

Note:
None.

#define XAtmc_mIsTxDone(BaseAddress)

Check to see if the transmission is complete.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is done, or XFALSE if it is not.

Note:
None.

#define XAtmc_mReadReg(BaseAddress,
RegOffset)

Read the given register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be read

Returns:
The 32-bit value of the register

Note:
None.

#define XAtmc_mWriteReg(BaseAddress,
RegOffset,
Data)

Write the given register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be written
Data is the 32-bit value to write to the register

Returns:
None.

Note:
None.

Function Documentation

int XAtmc_RecvCell (Xuint32 BaseAddress,
Xuint8 * CellPtr,
Xuint32 * CellStatusPtr

)

Receive a cell. Wait for a cell to arrive.

Parameters:
BaseAddress is the base address of the device
CellPtr is a pointer to a word-aligned buffer where the cell will be stored.
CellStatusPtr is a pointer to a cell status that will be valid after this function returns.

Returns:
The size, in bytes, of the cell received.

Note:
None.

void XAtmc_SendCell (Xuint32 BaseAddress,
Xuint8 * CellPtr,
int Size

)

Send an ATM cell. This function blocks waiting for the cell to be transmitted.

Parameters:
BaseAddress is the base address of the device
CellPtr is a pointer to word-aligned cell
Size is the size, in bytes, of the cell

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_l.c File
Reference

Detailed Description

This file contains low-level polled functions to send and receive ATM cells.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 05/01/02 First release

#include "xatmc_l.h"

Functions

void XAtmc_SendCell (Xuint32 BaseAddress, Xuint8 *CellPtr, int Size)
int XAtmc_RecvCell (Xuint32 BaseAddress, Xuint8 *CellPtr, Xuint32 *CellStatusPtr)

Function Documentation

int XAtmc_RecvCell (Xuint32 BaseAddress,
Xuint8 * CellPtr,
Xuint32 * CellStatusPtr

)

Receive a cell. Wait for a cell to arrive.

Parameters:
BaseAddress is the base address of the device
CellPtr is a pointer to a word-aligned buffer where the cell will be stored.
CellStatusPtr is a pointer to a cell status that will be valid after this function returns.

Returns:
The size, in bytes, of the cell received.

Note:
None.

void XAtmc_SendCell (Xuint32 BaseAddress,
Xuint8 * CellPtr,
int Size

)

Send an ATM cell. This function blocks waiting for the cell to be transmitted.

Parameters:
BaseAddress is the base address of the device
CellPtr is a pointer to word-aligned cell
Size is the size, in bytes, of the cell

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc.c File Reference

Detailed Description

This file contains the ATM controller driver. This file contains send and receive functions as well as
interrupt service routines.

There is one interrupt service routine registered with the interrupt controller. This function determines
the source of the interrupt and calls an appropriate handler function.

Note:
None.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a JHL 07/31/01 First release
 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
 an v1.23b of the IPIF driver

#include "xatmc.h"

#include "xatmc_i.h"

#include "xipif_v1_23_b.h"
#include "xpacket_fifo_v2_00_a.h"
#include "xio.h"

Functions

XStatus XAtmc_SgSend (XAtmc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XAtmc_SgRecv (XAtmc *InstancePtr, XBufDescriptor *BdPtr)
XStatus XAtmc_SgGetSendCell (XAtmc *InstancePtr, XBufDescriptor **PtrToBdPtr, int

*BdCountPtr)
XStatus XAtmc_SgGetRecvCell (XAtmc *InstancePtr, XBufDescriptor **PtrToBdPtr, int

*BdCountPtr)
XStatus XAtmc_PollSend (XAtmc *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XAtmc_PollRecv (XAtmc *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr, Xuint32

*CellStatusPtr)
void XAtmc_InterruptHandler (void *InstancePtr)

Function Documentation

void XAtmc_InterruptHandler (void * InstancePtr)

Interrupt handler for the ATM controller driver. It performs the following processing:

● Get the interrupt status from the IpIf to determine the source of the interrupt. The source can
be: the ATM controller, the send packet FIFO, the receive packet FIFO, the send DMA
channel, or the receive DMA channel. The packet FIFOs only interrupt during "deadlock"
conditions. All other FIFO-related interrupts are generated by the ATM controller.

● Call the appropriate handler based on the source of the interrupt.

Parameters:
InstancePtr contains a pointer to the ATMC controller instance for the interrupt.

Returns:
None.

Note:
None.

XStatus XAtmc_PollRecv (XAtmc * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr,
Xuint32 * CellStatusPtr

)

Receives an ATM cell in polled mode. The device/driver must be in polled mode before calling this
function. The driver receives the cell directly from the ATM controller packet FIFO. This is a non-
blocking receive, in that if there is no cell ready to be received at the device, the function returns with
an error. The buffer into which the cell will be received must be word-aligned.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Atmc cell will be
copied.

ByteCountPtr is both an input and an output parameter. It is a pointer to the size of the buffer
on entry into the function and the size the received cell on return from the
function.

CellStatusPtr is both an input and an output parameter. It is a pointer to the status of the cell
which is received. It is only valid if the return value indicates success. The
status is necessary when cells with errors are not being discarded. This status is
a bit mask which may contain one or more of the following values with the
exception of XAT_CELL_STATUS_NO_ERROR which is mutually
exclusive. The status values are:

● XAT_CELL_STATUS_NO_ERROR indicates the cell was received without any errors
● XAT_CELL_STATUS_BAD_PARITY indicates the cell parity was not correct
● XAT_CELL_STATUS_BAD_HEC indicates the cell HEC was not correct
● XAT_CELL_STATUS_SHORT indicates the cell was not the correct length
● XAT_CELL_STATUS_VXI_MISMATCH indicates the cell VPI/VCI fields did not match the

expected header values

Returns:
❍ XST_SUCCESS if the cell was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_NO_DATA if tThere is no cell to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the cell is too small for the cell

waiting in the FIFO.

Note:

The input buffer must be big enough to hold the largest ATM cell. The buffer must also be 32-
bit aligned.

XStatus XAtmc_PollSend (XAtmc * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Sends an ATM cell in polled mode. The device/driver must be in polled mode before calling this
function. The driver writes the cell directly to the ATM controller packet FIFO, then enters a loop
checking the device status for completion or error. The buffer to be sent must be word-aligned.

It is assumed that the upper layer software supplies a correctly formatted ATM cell based upon the
configuration of the ATM controller (attaching header or not).

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the ATM cell to be sent.
ByteCount is the size of the ATM cell. An ATM cell for a 16 bit Utopia interface is 54 bytes

with a 6 byte header and 48 bytes of payload. This function may be used to send
short cells with or without headers depending on the configuration of the ATM
controller.

Returns:
❍ XST_SUCCESS if the cell was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_PFIFO_NO_ROOM if there is no room in the FIFO for this cell
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun

Note:
There is the possibility that this function will not return if the hardware is broken (i.e., it never
sets the status bit indicating that transmission is done). If this is of concern to the user, the user
should provide protection from this problem - perhaps by using a different timer thread to
monitor the PollSend thread.

The input buffer must be big enough to hold the largest ATM cell. The buffer must also be 32-
bit aligned.

XStatus XAtmc_SgGetRecvCell (XAtmc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
int * BdCountPtr

)

Gets the first buffer descriptor of the oldest cell which was received by the scatter-gather DMA
channel of the ATM controller. This function is provided to be called from a callback function such
that the buffer descriptors for received cells can be processed. The function should be called by the
application repetitively for the number of cells indicated as an argument in the callback function. This
function may also be used when only payloads are being sent and received by the ATM controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the
first buffer descriptor of the cell. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the
number of buffer descriptors for the cell. This input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor
pointed to by PtrToBdPtr and a count of the number of buffer descriptors for the cell pointed
to by BdCountPtr are both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list

because there are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XAtmc_SgGetSendCell (XAtmc * InstancePtr,
XBufDescriptor ** PtrToBdPtr,
int * BdCountPtr

)

Gets the first buffer descriptor of the oldest cell which was sent by the scatter-gather DMA channel of
the ATM controller. This function is provided to be called from a callback function such that the
buffer descriptors for sent cells can be processed. The function should be called by the application
repetitively for the number of cells indicated as an argument in the callback function. This function
may also be used when only payloads are being sent and received by the ATM controller.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

PtrToBdPtr is a pointer to a buffer descriptor pointer which will be modified to point to the
first buffer descriptor of the cell. This input argument is also an output.

BdCountPtr is a pointer to a buffer descriptor count which will be modified to indicate the
number of buffer descriptors for the cell. this input argument is also an output.

Returns:
A status is returned which contains one of values below. The pointer to a buffer descriptor
pointed to by PtrToBdPtr and a count of the number of buffer descriptors for the cell pointed
to by BdCountPtr are both modified if the return status indicates success. The status values are:

❍ XST_SUCCESS if a descriptor was successfully returned to the driver.
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode.
❍ XST_DMA_SG_NO_LIST if the scatter gather list has not been created.
❍ XST_DMA_SG_LIST_EMPTY if no buffer descriptor was retrieved from the list

because there are no buffer descriptors to be processed in the list.

Note:
None.

XStatus XAtmc_SgRecv (XAtmc * InstancePtr,
XBufDescriptor * BdPtr

)

Adds this descriptor, with an attached empty buffer, into the receive descriptor list. The buffer
attached to the descriptor must be word-aligned. This is used by the upper layer software during
initialization when first setting up the receive descriptors, and also during reception of cells to replace
filled buffers with empty buffers. The contents of the specified buffer descriptor are copied into the
scatter-gather transmit list. This function can be called when the device is started or stopped.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into

the list because a locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit.

Note:
None.

XStatus XAtmc_SgSend (XAtmc * InstancePtr,
XBufDescriptor * BdPtr

)

Sends an ATM cell using scatter-gather DMA. The caller attaches the cell to one or more buffer
descriptors, then calls this function once for each descriptor. The caller is responsible for allocating
and setting up the descriptor. An entire ATM cell may or may not be contained within one descriptor.
The contents of the buffer descriptor are copied into the scatter-gather transmit list. The caller is
responsible for providing mutual exclusion to guarantee that a cell is contiguous in the transmit list.
The buffer attached to the descriptor must be word-aligned.

The driver updates the descriptor with the device control register before being inserted into the
transmit list. If this is the last descriptor in the cell, the inserts are committed, which means the
descriptors for this cell are now available for transmission.

It is assumed that the upper layer software supplies a correctly formatted ATM cell based upon the
configuration of the ATM controller (attaching header or not). The ATM controller must be started
before calling this function.

Parameters:
InstancePtr is a pointer to the XAtmc instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.

Returns:
❍ XST_SUCCESS if the buffer was successfully sent
❍ XST_DEVICE_IS_STOPPED if the ATM controller has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into

the list because a locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit. If this is ever
encountered, there is likely a thread mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

atmc/v1_00_c/src/xatmc_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of ATMC devices in the system.
Each ATMC device should have an entry in this table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a JHL 07/31/01 First release
 1.00b rpm 05/01/02 Condensed base addresses into one
 1.00c rpm 01/08/03 New release supports v2.00a of packet fifo driver
 an v1.23b of the IPIF driver

#include "xatmc.h"

#include "xparameters.h"

Variables

XAtmc_Config XAtmc_ConfigTable [XPAR_XATMC_NUM_INSTANCES]

Variable Documentation

XAtmc_Config XAtmc_ConfigTable[XPAR_XATMC_NUM_INSTANCES]

 This table contains configuration information for each ATMC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac.h File Reference

Detailed Description

The Xilinx Ethernet driver component. This component supports the Xilinx Ethernet 10/100 MAC (EMAC).

The Xilinx Ethernet 10/100 MAC supports the following features:

● Simple and scatter-gather DMA operations, as well as simple memory mapped direct I/O interface (FIFOs).
● Media Independent Interface (MII) for connection to external 10/100 Mbps PHY transceivers.
● MII management control reads and writes with MII PHYs
● Independent internal transmit and receive FIFOs
● CSMA/CD compliant operations for half-duplex modes
● Programmable PHY reset signal
● Unicast, broadcast, and promiscuous address filtering (no multicast yet)
● Internal loopback
● Automatic source address insertion or overwrite (programmable)
● Automatic FCS insertion and stripping (programmable)
● Automatic pad insertion and stripping (programmable)
● Pause frame (flow control) detection in full-duplex mode
● Programmable interframe gap
● VLAN frame support.
● Pause frame support

The device driver supports all the features listed above.

Driver Description

The device driver enables higher layer software (e.g., an application) to communicate to the EMAC. The driver handles
transmission and reception of Ethernet frames, as well as configuration of the controller. It does not handle protocol stack
functionality such as Link Layer Control (LLC) or the Address Resolution Protocol (ARP). The protocol stack that makes use
of the driver handles this functionality. This implies that the driver is simply a pass-through mechanism between a protocol
stack and the EMAC. A single device driver can support multiple EMACs.

The driver is designed for a zero-copy buffer scheme. That is, the driver will not copy buffers. This avoids potential throughput
bottlenecks within the driver.

Since the driver is a simple pass-through mechanism between a protocol stack and the EMAC, no assembly or disassembly of
Ethernet frames is done at the driver-level. This assumes that the protocol stack passes a correctly formatted Ethernet frame to
the driver for transmission, and that the driver does not validate the contents of an incoming frame

PHY Communication

The driver provides rudimentary read and write functions to allow the higher layer software to access the PHY. The EMAC
provides MII registers for the driver to access. This management interface can be parameterized away in the FPGA
implementation process. If this is the case, the PHY read and write functions of the driver return XST_NO_FEATURE.

External loopback is usually supported at the PHY. It is up to the user to turn external loopback on or off at the PHY. The
driver simply provides pass- through functions for configuring the PHY. The driver does not read, write, or reset the PHY on
its own. All control of the PHY must be done by the user.

Asynchronous Callbacks

The driver services interrupts and passes Ethernet frames to the higher layer software through asynchronous callback
functions. When using the driver directly (i.e., not with the RTOS protocol stack), the higher layer software must register its
callback functions during initialization. The driver requires callback functions for received frames, for confirmation of
transmitted frames, and for asynchronous errors.

Interrupts

The driver has no dependencies on the interrupt controller. The driver provides two interrupt handlers.
XEmac_IntrHandlerDma() handles interrupts when the EMAC is configured with scatter-gather DMA.
XEmac_IntrHandlerFifo() handles interrupts when the EMAC is configured for direct FIFO I/O or simple DMA. Either of
these routines can be connected to the system interrupt controller by the user.

Interrupt Frequency

When the EMAC is configured with scatter-gather DMA, the frequency of interrupts can be controlled with the interrupt
coalescing features of the scatter-gather DMA engine. The frequency of interrupts can be adjusted using the driver API
functions for setting the packet count threshold and the packet wait bound values.

The scatter-gather DMA engine only interrupts when the packet count threshold is reached, instead of interrupting for each
packet. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case.

The packet wait bound is a timer value used during interrupt coalescing to trigger an interrupt when not enough packets have
been received to reach the packet count threshold.

These values can be tuned by the user to meet their needs. If there appear to be interrupt latency problems or delays in packet
arrival that are longer than might be expected, the user should verify that the packet count threshold is set low enough to
receive interrupts before the wait bound timer goes off.

Device Reset

Some errors that can occur in the device require a device reset. These errors are listed in the XEmac_SetErrorHandler()
function header. The user's error handler is responsible for resetting the device and re-configuring it based on its needs (the
driver does not save the current configuration). When integrating into an RTOS, these reset and re-configure obligations are
taken care of by the Xilinx adapter software if it exists for that RTOS.

Device Configuration

The device can be configured in various ways during the FPGA implementation process. Configuration parameters are stored
in the xemac_g.c files. A table is defined where each entry contains configuration information for an EMAC device. This

information includes such things as the base address of the memory-mapped device, the base addresses of IPIF, DMA, and
FIFO modules within the device, and whether the device has DMA, counter registers, multicast support, MII support, and flow
control.

The driver tries to use the features built into the device. So if, for example, the hardware is configured with scatter-gather
DMA, the driver expects to start the scatter-gather channels and expects that the user has set up the buffer descriptor lists
already. If the user expects to use the driver in a mode different than how the hardware is configured, the user should modify
the configuration table to reflect the mode to be used. Modifying the configuration table is a workaround for now until we get
some experience with how users are intending to use the hardware in its different configurations. For example, if the hardware
is built with scatter-gather DMA but the user is intending to use only simple DMA, the user either needs to modify the config
table as a workaround or rebuild the hardware with only simple DMA. The recommendation at this point is to build the
hardware with the features you intend to use. If you're inclined to modify the table, do so before the call to
XEmac_Initialize(). Here is a snippet of code that changes a device to simple DMA (the hardware needs to have DMA for
this to work of course):

 XEmac_Config *ConfigPtr;

 ConfigPtr = XEmac_LookupConfig(DeviceId);
 ConfigPtr->IpIfDmaConfig = XEM_CFG_SIMPLE_DMA;

Simple DMA

Simple DMA is supported through the FIFO functions, FifoSend and FifoRecv, of the driver (i.e., there is no separate interface
for it). The driver makes use of the DMA engine for a simple DMA transfer if the device is configured with DMA, otherwise it
uses the FIFOs directly. While the simple DMA interface is therefore transparent to the user, the caching of network buffers is
not. If the device is configured with DMA and the FIFO interface is used, the user must ensure that the network buffers are not
cached or are cache coherent, since DMA will be used to transfer to and from the Emac device. If the device is configured with
DMA and the user really wants to use the FIFOs directly, the user should rebuild the hardware without DMA. If unable to do
this, there is a workaround (described above in Device Configuration) to modify the configuration table of the driver to fake
the driver into thinking the device has no DMA. A code snippet follows:

 XEmac_Config *ConfigPtr;

 ConfigPtr = XEmac_LookupConfig(DeviceId);
 ConfigPtr->IpIfDmaConfig = XEM_CFG_NO_DMA;

Asserts

Asserts are used within all Xilinx drivers to enforce constraints on argument values. Asserts can be turned off on a system-
wide basis by defining, at compile time, the NDEBUG identifier. By default, asserts are turned on and it is recommended that
users leave asserts on during development.

Building the driver

The XEmac driver is composed of several source files. Why so many? This allows the user to build and link only those parts
of the driver that are necessary. Since the EMAC hardware can be configured in various ways (e.g., with or without DMA), the
driver too can be built with varying features. For the most part, this means that besides always linking in xemac.c, you link in
only the driver functionality you want. Some of the choices you have are polled vs. interrupt, interrupt with FIFOs only vs.
interrupt with DMA, self-test diagnostics, and driver statistics. Note that currently the DMA code must be linked in, even if

you don't have DMA in the device.

Note:
Xilinx drivers are typically composed of two components, one is the driver and the other is the adapter. The driver is
independent of OS and processor and is intended to be highly portable. The adapter is OS-specific and facilitates
communication between the driver and an OS.

This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any needs for
dynamic memory management, threads or thread mutual exclusion, virtual memory, or cache control must be satisfied
by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00b rpm 10/08/02 Replaced HasSgDma boolean with IpifDmaConfig enumerated
 configuration parameter
 1.00c rpm 12/05/02 New version includes support for simple DMA and the delay
 argument to SgSend
 1.00c rpm 02/03/03 The XST_DMA_SG_COUNT_EXCEEDED return code was removed
 from SetPktThreshold in the internal DMA driver. Also
 avoided compiler warnings by initializing Result in the
 DMA interrupt service routines.

#include "xbasic_types.h"

#include "xstatus.h"

#include "xparameters.h"

#include "xpacket_fifo_v1_00_b.h"
#include "xdma_channel.h"

Go to the source code of this file.

Data Structures

struct XEmac
struct XEmac_Config
struct XEmac_Stats

Configuration options

Device configuration options (see the XEmac_SetOptions() and XEmac_GetOptions() for information on how to use these
options)

#define XEM_UNICAST_OPTION

#define XEM_BROADCAST_OPTION
#define XEM_PROMISC_OPTION
#define XEM_FDUPLEX_OPTION
#define XEM_POLLED_OPTION
#define XEM_LOOPBACK_OPTION
#define XEM_FLOW_CONTROL_OPTION
#define XEM_INSERT_PAD_OPTION
#define XEM_INSERT_FCS_OPTION
#define XEM_INSERT_ADDR_OPTION
#define XEM_OVWRT_ADDR_OPTION
#define XEM_STRIP_PAD_FCS_OPTION

Typedefs for callbacks

Callback functions.

typedef void(* XEmac_SgHandler)(void *CallBackRef, XBufDescriptor *BdPtr, Xuint32 NumBds)
typedef void(* XEmac_FifoHandler)(void *CallBackRef)
typedef void(* XEmac_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Defines

#define XEmac_mIsSgDma(InstancePtr)
#define XEmac_mIsSimpleDma(InstancePtr)
#define XEmac_mIsDma(InstancePtr)

Functions

XStatus XEmac_Initialize (XEmac *InstancePtr, Xuint16 DeviceId)
XStatus XEmac_Start (XEmac *InstancePtr)
XStatus XEmac_Stop (XEmac *InstancePtr)

void XEmac_Reset (XEmac *InstancePtr)
XEmac_Config * XEmac_LookupConfig (Xuint16 DeviceId)

XStatus XEmac_SelfTest (XEmac *InstancePtr)
XStatus XEmac_PollSend (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XEmac_PollRecv (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)
XStatus XEmac_SgSend (XEmac *InstancePtr, XBufDescriptor *BdPtr, int Delay)
XStatus XEmac_SgRecv (XEmac *InstancePtr, XBufDescriptor *BdPtr)
XStatus XEmac_SetPktThreshold (XEmac *InstancePtr, Xuint32 Direction, Xuint8 Threshold)
XStatus XEmac_GetPktThreshold (XEmac *InstancePtr, Xuint32 Direction, Xuint8 *ThreshPtr)
XStatus XEmac_SetPktWaitBound (XEmac *InstancePtr, Xuint32 Direction, Xuint32 TimerValue)
XStatus XEmac_GetPktWaitBound (XEmac *InstancePtr, Xuint32 Direction, Xuint32 *WaitPtr)
XStatus XEmac_SetSgRecvSpace (XEmac *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)

XStatus XEmac_SetSgSendSpace (XEmac *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)
void XEmac_SetSgRecvHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_SgHandler FuncPtr)
void XEmac_SetSgSendHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_SgHandler FuncPtr)
void XEmac_IntrHandlerDma (void *InstancePtr)

XStatus XEmac_FifoSend (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XEmac_FifoRecv (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)

void XEmac_SetFifoRecvHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_FifoHandler FuncPtr)
void XEmac_SetFifoSendHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_FifoHandler FuncPtr)
void XEmac_IntrHandlerFifo (void *InstancePtr)
void XEmac_SetErrorHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_ErrorHandler FuncPtr)

XStatus XEmac_SetOptions (XEmac *InstancePtr, Xuint32 OptionFlag)
Xuint32 XEmac_GetOptions (XEmac *InstancePtr)
XStatus XEmac_SetMacAddress (XEmac *InstancePtr, Xuint8 *AddressPtr)

void XEmac_GetMacAddress (XEmac *InstancePtr, Xuint8 *BufferPtr)
XStatus XEmac_SetInterframeGap (XEmac *InstancePtr, Xuint8 Part1, Xuint8 Part2)

void XEmac_GetInterframeGap (XEmac *InstancePtr, Xuint8 *Part1Ptr, Xuint8 *Part2Ptr)
XStatus XEmac_MulticastAdd (XEmac *InstancePtr, Xuint8 *AddressPtr)
XStatus XEmac_MulticastClear (XEmac *InstancePtr)
XStatus XEmac_PhyRead (XEmac *InstancePtr, Xuint32 PhyAddress, Xuint32 RegisterNum, Xuint16

*PhyDataPtr)
XStatus XEmac_PhyWrite (XEmac *InstancePtr, Xuint32 PhyAddress, Xuint32 RegisterNum, Xuint16 PhyData)

void XEmac_GetStats (XEmac *InstancePtr, XEmac_Stats *StatsPtr)
void XEmac_ClearStats (XEmac *InstancePtr)

Define Documentation

#define XEM_BROADCAST_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_FDUPLEX_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_FLOW_CONTROL_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_INSERT_ADDR_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_INSERT_FCS_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_INSERT_PAD_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_LOOPBACK_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_OVWRT_ADDR_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_POLLED_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_PROMISC_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_STRIP_PAD_FCS_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEM_UNICAST_OPTION

 XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
 XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
 XEM_POLLED_OPTION Polled mode on or off (default is off)
 XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
 XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
 only used if source address insertion is on.
 (default is on)
 XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
 (default is off)

#define XEmac_mIsDma(InstancePtr)

This macro determines if the device is currently configured with DMA (either simple DMA or scatter-gather DMA)

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
Boolean XTRUE if the device is configured with DMA, or XFALSE otherwise

Note:
Signature: Xboolean XEmac_mIsDma(XEmac *InstancePtr)

#define XEmac_mIsSgDma(InstancePtr)

This macro determines if the device is currently configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
Boolean XTRUE if the device is configured for scatter-gather DMA, or XFALSE if it is not.

Note:
Signature: Xboolean XEmac_mIsSgDma(XEmac *InstancePtr)

#define XEmac_mIsSimpleDma(InstancePtr)

This macro determines if the device is currently configured for simple DMA.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
Boolean XTRUE if the device is configured for simple DMA, or XFALSE otherwise

Note:
Signature: Xboolean XEmac_mIsSimpleDma(XEmac *InstancePtr)

Typedef Documentation

typedef void(* XEmac_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Callback when an asynchronous error occurs.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed

back to the upper layer when the callback is invoked.
ErrorCode is a Xilinx error code defined in xstatus.h. Also see XEmac_SetErrorHandler() for a description of

possible errors.

typedef void(* XEmac_FifoHandler)(void *CallBackRef)

Callback when data is sent or received with direct FIFO communication or simple DMA. The user typically defines two
callacks, one for send and one for receive.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed

back to the upper layer when the callback is invoked.

typedef void(* XEmac_SgHandler)(void *CallBackRef, XBufDescriptor *BdPtr, Xuint32 NumBds)

Callback when data is sent or received with scatter-gather DMA.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed

back to the upper layer when the callback is invoked.
BdPtr is a pointer to the first buffer descriptor in a list of buffer descriptors.
NumBds is the number of buffer descriptors in the list pointed to by BdPtr.

Function Documentation

void XEmac_ClearStats (XEmac * InstancePtr)

Clear the XEmacStats structure for this driver.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
None.

Note:
None.

XStatus XEmac_FifoRecv (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame into the buffer passed as an argument. This function is called in response to the callback
function for received frames being called by the driver. The callback function is set up using SetFifoRecvHandler, and is
invoked when the driver receives an interrupt indicating a received frame. The driver expects the upper layer software to
call this function, FifoRecv, to receive the frame. The buffer supplied should be large enough to hold a maximum-size
Ethernet frame.

The buffer into which the frame will be received must be word-aligned.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from the Emac to memory. This
means that this buffer should not be cached. See the comment section "Simple DMA" in xemac.h for more information.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame will be copied.
ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that contains the size of the

buffer on entry into the function and the size the received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the frame waiting in the

FIFO.
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The user should treat this

as a fatal error that requires a reset of the EMAC device.

Note:
The input buffer must be big enough to hold the largest Ethernet frame.

XStatus XEmac_FifoSend (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame using direct FIFO I/O or simple DMA with interrupts. The caller provides a contiguous-memory
buffer and its length. The buffer must be word-aligned. The callback function set by using SetFifoSendHandler is invoked
when the transmission is complete.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the destination and
source addresses, the type/length field, and the data field.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from memory to the Emac. This
means that this buffer should not be cached. See the comment section "Simple DMA" in xemac.h for more information.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was successfully sent. An interrupt is generated when the EMAC transmits the

frame and the driver calls the callback set with XEmac_SetFifoSendHandler()
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_FIFO_NO_ROOM if there is no room in the FIFO for this frame
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The user should treat this

as a fatal error that requires a reset of the EMAC device.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there are to be
multiple threads that can call it.

void XEmac_GetInterframeGap (XEmac * InstancePtr,
Xuint8 * Part1Ptr,
Xuint8 * Part2Ptr

)

Get the interframe gap, parts 1 and 2. See the description of interframe gap above in XEmac_SetInterframeGap().

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Part1Ptr is a pointer to an 8-bit buffer into which the interframe gap part 1 value will be copied.
Part2Ptr is a pointer to an 8-bit buffer into which the interframe gap part 2 value will be copied.

Returns:
None. The values of the interframe gap parts are copied into the output parameters.

void XEmac_GetMacAddress (XEmac * InstancePtr,
Xuint8 * BufferPtr

)

Get the MAC address for this driver/device.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufferPtr is an output parameter, and is a pointer to a buffer into which the current MAC address will be copied.
The buffer must be at least 6 bytes.

Returns:
None.

Note:
None.

Xuint32 XEmac_GetOptions (XEmac * InstancePtr)

Get Ethernet driver/device options. The 32-bit value returned is a bit-mask representing the options. A one (1) in the bit-
mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
The 32-bit value of the Ethernet options. The value is a bit-mask representing all options that are currently enabled.
See xemac.h for a description of the available options.

Note:
None.

XStatus XEmac_GetPktThreshold (XEmac * InstancePtr,
Xuint32 Direction,
Xuint8 * ThreshPtr

)

Get the value of the packet count threshold for this driver/device. The packet count threshold is used for interrupt
coalescing, which reduces the frequency of interrupts from the device to the processor. In this case, the scatter-gather DMA
engine only interrupts when the packet count threshold is reached, instead of interrupting for each packet. A packet is a
generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
ThreshPtr is a pointer to the byte into which the current value of the packet threshold register will be copied. An

output parameter. A value of 0 indicates the use of packet threshold by the hardware is disabled.

Returns:
❍ XST_SUCCESS if the packet threshold was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

XStatus XEmac_GetPktWaitBound (XEmac * InstancePtr,
Xuint32 Direction,
Xuint32 * WaitPtr

)

Get the packet wait bound timer for this driver/device. The packet wait bound is used during interrupt coalescing to trigger
an interrupt when not enough packets have been received to reach the packet count threshold. A packet is a generic term
used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case. The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
WaitPtr is a pointer to the byte into which the current value of the packet wait bound register will be copied. An

output parameter. Units are in milliseconds in the range 0 - 1023. A value of 0 indicates the packet wait
bound timer is disabled.

Returns:
❍ XST_SUCCESS if the packet wait bound was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

void XEmac_GetStats (XEmac * InstancePtr,
XEmac_Stats * StatsPtr

)

Get a copy of the XEmacStats structure, which contains the current statistics for this driver. The statistics are only cleared
at initialization or on demand using the XEmac_ClearStats() function.

The DmaErrors and FifoErrors counts indicate that the device has been or needs to be reset. Reset of the device is the
responsibility of the upper layer software.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current statistics will be copied.

Returns:
None.

Note:
None.

XStatus XEmac_Initialize (XEmac * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XEmac instance/driver. The initialization entails:

● Initialize fields of the XEmac structure
● Clear the Ethernet statistics for this device
● Initialize the IPIF component with its register base address
● Configure the FIFO components with their register base addresses.
● If the device is configured with DMA, configure the DMA channel components with their register base addresses.

At some later time, memory pools for the scatter-gather descriptor lists may be passed to the driver.
● Reset the Ethernet MAC

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

DeviceId is the unique id of the device controlled by this XEmac instance. Passing in a device id associates the
generic XEmac instance to a specific device, as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device with the

supplied device ID.

Note:
None.

void XEmac_IntrHandlerDma (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured with scatter- gather DMA.

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be: MAC, Recv Packet FIFO,
Send Packet FIFO, Recv DMA channel, or Send DMA channel. The packet FIFOs only interrupt during "deadlock"
conditions.

Parameters:
InstancePtr is a pointer to the XEmac instance that just interrupted.

Returns:
None.

Note:
None.

void XEmac_IntrHandlerFifo (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured for direct FIFO communication or simple DMA.

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be: MAC, Recv Packet FIFO,
or Send Packet FIFO. The packet FIFOs only interrupt during "deadlock" conditions. All other FIFO-related interrupts are
generated by the MAC.

Parameters:
InstancePtr is a pointer to the XEmac instance that just interrupted.

Returns:
None.

Note:
None.

XEmac_Config* XEmac_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table EmacConfigTable contains the configuration
info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device being looked up.

Returns:
A pointer to the configuration table entry corresponding to the given device ID, or XNULL if no match is found.

Note:
None.

XStatus XEmac_MulticastAdd (XEmac * InstancePtr,
Xuint8 * AddressPtr

)

Add a multicast address to the list of multicast addresses from which the EMAC accepts frames. The EMAC uses a hash
table for multicast address filtering. Obviously, the more multicast addresses that are added reduces the accuracy of the
address filtering. The upper layer software that receives multicast frames should perform additional filtering when accuracy
must be guaranteed. There is no way to retrieve a multicast address or the multicast address list once added. The upper
layer software should maintain its own list of multicast addresses. The device must be stopped before calling this function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

AddressPtr is a pointer to a 6-byte multicast address.

Returns:
❍ XST_SUCCESS if the multicast address was added successfully
❍ XST_NO_FEATURE if the device is not configured with multicast support
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
Not currently supported.

XStatus XEmac_MulticastClear (XEmac * InstancePtr)

Clear the hash table used by the EMAC for multicast address filtering. The entire hash table is cleared, meaning no
multicast frames will be accepted after this function is called. If this function is used to delete one or more multicast
addresses, the upper layer software is responsible for adding back those addresses still needed for address filtering. The
device must be stopped before calling this function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
❍ XST_SUCCESS if the multicast address list was cleared
❍ XST_NO_FEATURE if the device is not configured with multicast support

❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
Not currently supported.

XStatus XEmac_PhyRead (XEmac * InstancePtr,
Xuint32 PhyAddress,
Xuint32 RegisterNum,
Xuint16 * PhyDataPtr

)

Read the current value of the PHY register indicated by the PhyAddress and the RegisterNum parameters. The MAC
provides the driver with the ability to talk to a PHY that adheres to the Media Independent Interface (MII) as defined in the
IEEE 802.3 standard.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

PhyAddress is the address of the PHY to be read (supports multiple PHYs)
RegisterNum is the register number, 0-31, of the specific PHY register to read
PhyDataPtr is an output parameter, and points to a 16-bit buffer into which the current value of the register will be

copied.

Returns:
❍ XST_SUCCESS if the PHY was read from successfully
❍ XST_NO_FEATURE if the device is not configured with MII support
❍ XST_EMAC_MII_BUSY if there is another PHY operation in progress
❍ XST_EMAC_MII_READ_ERROR if a read error occurred between the MAC and the PHY

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there are to be
multiple threads that can call it.

There is the possibility that this function will not return if the hardware is broken (i.e., it never sets the status bit
indicating that the read is done). If this is of concern to the user, the user should provide protection from this
problem - perhaps by using a different timer thread to monitor the PhyRead thread.

XStatus XEmac_PhyWrite (XEmac * InstancePtr,
Xuint32 PhyAddress,
Xuint32 RegisterNum,
Xuint16 PhyData

)

Write data to the specified PHY register. The Ethernet driver does not require the device to be stopped before writing to the
PHY. Although it is probably a good idea to stop the device, it is the responsibility of the application to deem this
necessary. The MAC provides the driver with the ability to talk to a PHY that adheres to the Media Independent Interface
(MII) as defined in the IEEE 802.3 standard.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

PhyAddress is the address of the PHY to be written (supports multiple PHYs)
RegisterNum is the register number, 0-31, of the specific PHY register to write
PhyData is the 16-bit value that will be written to the register

Returns:
❍ XST_SUCCESS if the PHY was written to successfully. Since there is no error status from the MAC on a

write, the user should read the PHY to verify the write was successful.
❍ XST_NO_FEATURE if the device is not configured with MII support
❍ XST_EMAC_MII_BUSY if there is another PHY operation in progress

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there are to be
multiple threads that can call it.

There is the possibility that this function will not return if the hardware is broken (i.e., it never sets the status bit
indicating that the write is done). If this is of concern to the user, the user should provide protection from this
problem - perhaps by using a different timer thread to monitor the PhyWrite thread.

XStatus XEmac_PollRecv (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame in polled mode. The device/driver must be in polled mode before calling this function. The
driver receives the frame directly from the MAC's packet FIFO. This is a non-blocking receive, in that if there is no frame
ready to be received at the device, the function returns with an error. The MAC's error status is not checked, so statistics are
not updated for polled receive. The buffer into which the frame will be received must be word-aligned.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame will be copied.
ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that contains the size of the

buffer on entry into the function and the size the received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the frame waiting in the

FIFO.

Note:
Input buffer must be big enough to hold the largest Ethernet frame. Buffer must also be 32-bit aligned.

XStatus XEmac_PollSend (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame in polled mode. The device/driver must be in polled mode before calling this function. The driver
writes the frame directly to the MAC's packet FIFO, then enters a loop checking the device status for completion or error.
Statistics are updated if an error occurs. The buffer to be sent must be word-aligned.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the destination and
source addresses, the type/length field, and the data field. It is also assumed that upper layer software does not append FCS
at the end of the frame.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_FIFO_NO_ROOM if there is no room in the EMAC's length FIFO for this frame
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical and requires the caller to reset

the device.
❍ XST_EMAC_COLLISION if the send failed due to excess deferral or late collision

Note:
There is the possibility that this function will not return if the hardware is broken (i.e., it never sets the status bit
indicating that transmission is done). If this is of concern to the user, the user should provide protection from this
problem - perhaps by using a different timer thread to monitor the PollSend thread. On a 10Mbps MAC, it takes
about 1.21 msecs to transmit a maximum size Ethernet frame (1518 bytes). On a 100Mbps MAC, it takes about 121
usecs to transmit a maximum size Ethernet frame.

void XEmac_Reset (XEmac * InstancePtr)

Reset the Ethernet MAC. This is a graceful reset in that the device is stopped first. Resets the DMA channels, the FIFOs,
the transmitter, and the receiver. The PHY is not reset. Any frames in the scatter-gather descriptor lists will remain in the
lists. The side effect of doing this is that after a reset and following a restart of the device, frames that were in the list before
the reset may be transmitted or received. Reset must only be called after the driver has been initialized.

The driver is also taken out of polled mode if polled mode was set. The user is responsbile for re-configuring the driver into
polled mode after the reset if desired.

The configuration after this reset is as follows:

● Half duplex
● Disabled transmitter and receiver
● Enabled PHY (the PHY is not reset)
● MAC transmitter does pad insertion, FCS insertion, and source address overwrite.
● MAC receiver does not strip padding or FCS
● Interframe Gap as recommended by IEEE Std. 802.3 (96 bit times)
● Unicast addressing enabled
● Broadcast addressing enabled
● Multicast addressing disabled (addresses are preserved)
● Promiscuous addressing disabled
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation
● MAC address of all zeros
● Non-polled mode

The upper layer software is responsible for re-configuring (if necessary) and restarting the MAC after the reset. Note that
the PHY is not reset. PHY control is left to the upper layer software. Note also that driver statistics are not cleared on reset.
It is up to the upper layer software to clear the statistics if needed.

When a reset is required due to an internal error, the driver notifies the upper layer software of this need through the
ErrorHandler callback and specific status codes. The upper layer software is responsible for calling this Reset function and
then re-configuring the device.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
None.

Note:
None.

XStatus XEmac_SelfTest (XEmac * InstancePtr)

Performs a self-test on the Ethernet device. The test includes:

● Run self-test on DMA channel, FIFO, and IPIF components
● Reset the Ethernet device, check its registers for proper reset values, and run an internal loopback test on the device.

The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default configuration. The
caller is responsible for re-configuring the device after the self-test is run, and starting it when ready to send and receive
frames.

It should be noted that data caching must be disabled when this function is called because the DMA self-test uses two local
buffers (on the stack) for the transfer test.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:

 XST_SUCCESS Self-test was successful
 XST_PFIFO_BAD_REG_VALUE FIFO failed register self-test
 XST_DMA_TRANSFER_ERROR DMA failed data transfer self-test
 XST_DMA_RESET_REGISTER_ERROR DMA control register value was incorrect
 after a reset
 XST_REGISTER_ERROR Ethernet failed register reset test
 XST_LOOPBACK_ERROR Internal loopback failed
 XST_IPIF_REG_WIDTH_ERROR An invalid register width was passed into
 the function
 XST_IPIF_RESET_REGISTER_ERROR The value of a register at reset was invalid
 XST_IPIF_DEVICE_STATUS_ERROR A write to the device status register did
 not read back correctly
 XST_IPIF_DEVICE_ACK_ERROR A bit in the device status register did not
 reset when acked
 XST_IPIF_DEVICE_ENABLE_ERROR The device interrupt enable register was not
 updated correctly by the hardware when other
 registers were written to
 XST_IPIF_IP_STATUS_ERROR A write to the IP interrupt status
 register did not read back correctly
 XST_IPIF_IP_ACK_ERROR One or more bits in the IP status
 register did not reset when acked
 XST_IPIF_IP_ENABLE_ERROR The IP interrupt enable register
 was not updated correctly when other
 registers were written to

Note:
This function makes use of options-related functions, and the XEmac_PollSend() and XEmac_PollRecv()
functions.

Because this test uses the PollSend function for its loopback testing, there is the possibility that this function will not
return if the hardware is broken (i.e., it never sets the status bit indicating that transmission is done). If this is of
concern to the user, the user should provide protection from this problem - perhaps by using a different timer thread

to monitor the self-test thread.

void XEmac_SetErrorHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_ErrorHandler FuncPtr

)

Set the callback function for handling asynchronous errors. The upper layer software should call this function during
initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are potentially
slow operations within the callback, these should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus error or bus timeout.
The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock condition in the packet
FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable MAC error occurred, usually an overrun or underrun. The
handler must reset and re-configure the device.

● XST_DMA_SG_NO_LIST indicates an attempt was made to access a scatter-gather DMA list that has not yet been
created.

● XST_DMA_SG_LIST_EMPTY indicates the driver tried to get a descriptor from the receive descriptor list, but the
list was empty.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XEmac_SetFifoRecvHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_FifoHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames when configured for direct memory-mapped I/O
using FIFOs. The upper layer software should call this function during initialization. The callback is called by the driver
once per frame sent. The callback is responsible for freeing the transmitted buffer if necessary.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are potentially slow
operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XEmac_SetFifoSendHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_FifoHandler FuncPtr

)

Set the callback function for handling received frames when configured for direct memory-mapped I/O using FIFOs. The
upper layer software should call this function during initialization. The callback is called once per frame received. During
the callback, the upper layer software should call FifoRecv to retrieve the received frame.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. Sending the received frame
up the protocol stack should be done at task-level. If there are other potentially slow operations within the callback, these
too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XEmac_SetInterframeGap (XEmac * InstancePtr,
Xuint8 Part1,
Xuint8 Part2

)

Set the Interframe Gap (IFG), which is the time the MAC delays between transmitting frames. There are two parts required.
The total interframe gap is the total of the two parts. The values provided for the Part1 and Part2 parameters are multiplied
by 4 to obtain the bit-time interval. The first part should be the first 2/3 of the total interframe gap. The MAC will reset the
interframe gap timer if carrier sense becomes true during the period defined by interframe gap Part1. Part1 may be shorter
than 2/3 the total and can be as small as zero. The second part should be the last 1/3 of the total interframe gap, but can be
as large as the total interframe gap. The MAC will not reset the interframe gap timer if carrier sense becomes true during
the period defined by interframe gap Part2.

The device must be stopped before setting the interframe gap.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Part1 is the interframe gap part 1 (which will be multiplied by 4 to get the bit-time interval).
Part2 is the interframe gap part 2 (which will be multiplied by 4 to get the bit-time interval).

Returns:
❍ XST_SUCCESS if the interframe gap was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not been stopped

Note:
None.

XStatus XEmac_SetMacAddress (XEmac * InstancePtr,
Xuint8 * AddressPtr

)

Set the MAC address for this driver/device. The address is a 48-bit value. The device must be stopped before calling this
function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

AddressPtr is a pointer to a 6-byte MAC address.

Returns:
❍ XST_SUCCESS if the MAC address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XEmac_SetOptions (XEmac * InstancePtr,
Xuint32 OptionsFlag

)

Set Ethernet driver/device options. The device must be stopped before calling this function. The options are contained
within a bit-mask with each bit representing an option (i.e., you can OR the options together). A one (1) in the bit-mask
turns an option on, and a zero (0) turns the option off.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

OptionsFlag is a bit-mask representing the Ethernet options to turn on or off. See xemac.h for a description of the
available options.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
This function is not thread-safe and makes use of internal resources that are shared between the Start, Stop, and
SetOptions functions, so if one task might be setting device options while another is trying to start the device,
protection of this shared data (typically using a semaphore) is required.

XStatus XEmac_SetPktThreshold (XEmac * InstancePtr,
Xuint32 Direction,
Xuint8 Threshold

)

Set the packet count threshold for this device. The device must be stopped before setting the threshold. The packet count
threshold is used for interrupt coalescing, which reduces the frequency of interrupts from the device to the processor. In this
case, the scatter-gather DMA engine only interrupts when the packet count threshold is reached, instead of interrupting for
each packet. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in
our case.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
Threshold is the value of the packet threshold count used during interrupt coalescing. A value of 0 disables the

use of packet threshold by the hardware.

Returns:
❍ XST_SUCCESS if the threshold was successfully set
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
The packet threshold could be set to larger than the number of descriptors allocated to the DMA channel. In this
case, the wait bound will take over and always indicate data arrival. There was a check in this function that returned

an error if the treshold was larger than the number of descriptors, but that was removed because users would then
have to set the threshold only after they set descriptor space, which is an order dependency that caused confustion.

XStatus XEmac_SetPktWaitBound (XEmac * InstancePtr,
Xuint32 Direction,
Xuint32 TimerValue

)

Set the packet wait bound timer for this driver/device. The device must be stopped before setting the timer value. The
packet wait bound is used during interrupt coalescing to trigger an interrupt when not enough packets have been received to
reach the packet count threshold. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an
Ethernet frame in our case. The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
TimerValue is the value of the packet wait bound used during interrupt coalescing. It is in milliseconds in the range

0 - 1023. A value of 0 disables the packet wait bound timer.

Returns:
❍ XST_SUCCESS if the packet wait bound was set successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

void XEmac_SetSgRecvHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_SgHandler FuncPtr

)

Set the callback function for handling received frames in scatter-gather DMA mode. The upper layer software should call
this function during initialization. The callback is called once per frame received. The head of a descriptor list is passed in
along with the number of descriptors in the list. Before leaving the callback, the upper layer software should attach a new
buffer to each descriptor in the list.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. Sending the received frame
up the protocol stack should be done at task-level. If there are other potentially slow operations within the callback, these
too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XEmac_SetSgRecvSpace (XEmac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This function should only
be called once, during initialization of the Ethernet driver. The memory space must be big enough to hold some number of
descriptors, depending on the needs of the system. The xemac.h file defines minimum and default numbers of descriptors
which can be used to allocate this memory space.

The memory space must be word-aligned. An assert will occur if asserts are turned on and the memory is not word-aligned.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the XEmac_Initialize()
function because the DMA channel components must be initialized before the memory space is set.

void XEmac_SetSgSendHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_SgHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames in scatter-gather DMA mode. The upper layer
software should call this function during initialization. The callback is called once per frame sent. The head of a descriptor
list is passed in along with the number of descriptors in the list. The callback is responsible for freeing buffers attached to
these descriptors.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are potentially slow
operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XEmac_SetSgSendSpace (XEmac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This function should only
be called once, during initialization of the Ethernet driver. The memory space must be big enough to hold some number of
descriptors, depending on the needs of the system. The xemac.h file defines minimum and default numbers of descriptors
which can be used to allocate this memory space.

The memory space must be word-aligned. An assert will occur if asserts are turned on and the memory is not word-aligned.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the XEmac_Initialize()
function because the DMA channel components must be initialized before the memory space is set.

XStatus XEmac_SgRecv (XEmac * InstancePtr,
XBufDescriptor * BdPtr

)

Add a descriptor, with an attached empty buffer, into the receive descriptor list. The buffer attached to the descriptor must
be word-aligned. This is used by the upper layer software during initialization when first setting up the receive descriptors,
and also during reception of frames to replace filled buffers with empty buffers. This function can be called when the
device is started or stopped. Note that it does start the scatter-gather DMA engine. Although this is not necessary during
initialization, it is not a problem during initialization because the MAC receiver is not yet started.

The buffer attached to the descriptor must be word-aligned on both the front end and the back end.

Notification of received frames are done asynchronously through the receive callback function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list because a

locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the DMA

channel believes there are no new descriptors to commit.

XStatus XEmac_SgSend (XEmac * InstancePtr,
XBufDescriptor * BdPtr,
int Delay

)

Send an Ethernet frame using scatter-gather DMA. The caller attaches the frame to one or more buffer descriptors, then
calls this function once for each descriptor. The caller is responsible for allocating and setting up the descriptor. An entire
Ethernet frame may or may not be contained within one descriptor. This function simply inserts the descriptor into the
scatter- gather engine's transmit list. The caller is responsible for providing mutual exclusion to guarantee that a frame is
contiguous in the transmit list. The buffer attached to the descriptor must be word-aligned.

The driver updates the descriptor with the device control register before being inserted into the transmit list. If this is the
last descriptor in the frame, the inserts are committed, which means the descriptors for this frame are now available for
transmission.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the destination and
source addresses, the type/length field, and the data field. It is also assumed that upper layer software does not append FCS
at the end of the frame.

The buffer attached to the descriptor must be word-aligned on the front end.

This call is non-blocking. Notification of error or successful transmission is done asynchronously through the send or error
callback function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.
Delay indicates whether to start the scatter-gather DMA channel immediately, or whether to wait. This allows

the user to build up a list of more than one descriptor before starting the transmission of the packets,
which allows the application to keep up with DMA and have a constant stream of frames being
transmitted. Use XEM_SGDMA_NODELAY or XEM_SGDMA_DELAY, defined in xemac.h, as the
value of this argument. If the user chooses to delay and build a list, the user must call this function with
the XEM_SGDMA_NODELAY option or call XEmac_Start() to kick off the tranmissions.

Returns:
❍ XST_SUCCESS if the buffer was successfull sent
❍ XST_DEVICE_IS_STOPPED if the Ethernet MAC has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list because a

locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the DMA

channel believes there are no new descriptors to commit. If this is ever encountered, there is likely a thread
mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there are to be
multiple threads that can call it.

XStatus XEmac_Start (XEmac * InstancePtr)

Start the Ethernet controller as follows:

● If not in polled mode
❍ Set the internal interrupt enable registers appropriately
❍ Enable interrupts within the device itself. Note that connection of the driver's interrupt handler to the

interrupt source (typically done using the interrupt controller component) is done by the higher layer
software.

❍ If the device is configured with scatter-gather DMA, start the DMA channels if the descriptor lists are not
empty

● Enable the transmitter
● Enable the receiver

The PHY is enabled after driver initialization. We assume the upper layer software has configured it and the EMAC
appropriately before this function is called.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_NO_CALLBACK if a callback function has not yet been registered using the SetxxxHandler function.

This is required if in interrupt mode.

❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has not yet been

created for the send or receive channel.

Note:
The driver tries to match the hardware configuration. So if the hardware is configured with scatter-gather DMA, the
driver expects to start the scatter-gather channels and expects that the user has set up the buffer descriptor lists
already. If the user expects to use the driver in a mode different than how the hardware is configured, the user should
modify the configuration table to reflect the mode to be used. Modifying the config table is a workaround for now
until we get some experience with how users are intending to use the hardware in its different configurations. For
example, if the hardware is built with scatter-gather DMA but the user is intending to use only simple DMA, the
user either needs to modify the config table as a workaround or rebuild the hardware with only simple DMA.

This function makes use of internal resources that are shared between the Start, Stop, and SetOptions functions. So if one
task might be setting device options while another is trying to start the device, the user is required to provide protection of
this shared data (typically using a semaphore).

XStatus XEmac_Stop (XEmac * InstancePtr)

Stop the Ethernet MAC as follows:

● If the device is configured with scatter-gather DMA, stop the DMA channels (wait for acknowledgment of stop)
● Disable the transmitter and receiver
● Disable interrupts if not in polled mode (the higher layer software is responsible for disabling interrupts at the

interrupt controller)

The PHY is left enabled after a Stop is called.

If the device is configured for scatter-gather DMA, the DMA engine stops at the next buffer descriptor in its list. The
remaining descriptors in the list are not removed, so anything in the list will be transmitted or received when the device is
restarted. The side effect of doing this is that the last buffer descriptor processed by the DMA engine before stopping may
not be the last descriptor in the Ethernet frame. So when the device is restarted, a partial frame (i.e., a bad frame) may be
transmitted/received. This is only a concern if a frame can span multiple buffer descriptors, which is dependent on the size
of the network buffers.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions functions. So if
one task might be setting device options while another is trying to start the device, the user is required to provide
protection of this shared data (typically using a semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of EMAC devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xemac.h"

#include "xparameters.h"

Variables

XEmac_Config XEmac_ConfigTable [XPAR_XEMAC_NUM_INSTANCES]

Variable Documentation

XEmac_Config XEmac_ConfigTable[XPAR_XEMAC_NUM_INSTANCES]

 This table contains configuration information for each EMAC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac.h
Go to the documentation of this file.

00001 /* $Id: xemac.h,v 1.3 2003/02/03 19:49:38 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 **/
00019 /***/
00020 /**
00021 *
00022 * @file emac/v1_00_c/src/xemac.h
00023 *
00024 * The Xilinx Ethernet driver component. This component supports the Xilinx
00025 * Ethernet 10/100 MAC (EMAC).
00026 *
00027 * The Xilinx Ethernet 10/100 MAC supports the following features:
00028 * - Simple and scatter-gather DMA operations, as well as simple memory
00029 * mapped direct I/O interface (FIFOs).
00030 * - Media Independent Interface (MII) for connection to external
00031 * 10/100 Mbps PHY transceivers.
00032 * - MII management control reads and writes with MII PHYs
00033 * - Independent internal transmit and receive FIFOs
00034 * - CSMA/CD compliant operations for half-duplex modes
00035 * - Programmable PHY reset signal
00036 * - Unicast, broadcast, and promiscuous address filtering (no multicast yet)
00037 * - Internal loopback
00038 * - Automatic source address insertion or overwrite (programmable)
00039 * - Automatic FCS insertion and stripping (programmable)
00040 * - Automatic pad insertion and stripping (programmable)
00041 * - Pause frame (flow control) detection in full-duplex mode
00042 * - Programmable interframe gap

00043 * - VLAN frame support.
00044 * - Pause frame support
00045 *
00046 * The device driver supports all the features listed above.
00047 *
00048 * Driver Description
00049 *
00050 * The device driver enables higher layer software (e.g., an application) to
00051 * communicate to the EMAC. The driver handles transmission and reception of
00052 * Ethernet frames, as well as configuration of the controller. It does not
00053 * handle protocol stack functionality such as Link Layer Control (LLC) or the
00054 * Address Resolution Protocol (ARP). The protocol stack that makes use of the
00055 * driver handles this functionality. This implies that the driver is simply a
00056 * pass-through mechanism between a protocol stack and the EMAC. A single device
00057 * driver can support multiple EMACs.
00058 *
00059 * The driver is designed for a zero-copy buffer scheme. That is, the driver
will
00060 * not copy buffers. This avoids potential throughput bottlenecks within the
00061 * driver.
00062 *
00063 * Since the driver is a simple pass-through mechanism between a protocol stack
00064 * and the EMAC, no assembly or disassembly of Ethernet frames is done at the
00065 * driver-level. This assumes that the protocol stack passes a correctly
00066 * formatted Ethernet frame to the driver for transmission, and that the driver
00067 * does not validate the contents of an incoming frame
00068 *
00069 * PHY Communication
00070 *
00071 * The driver provides rudimentary read and write functions to allow the higher
00072 * layer software to access the PHY. The EMAC provides MII registers for the
00073 * driver to access. This management interface can be parameterized away in the
00074 * FPGA implementation process. If this is the case, the PHY read and write
00075 * functions of the driver return XST_NO_FEATURE.
00076 *
00077 * External loopback is usually supported at the PHY. It is up to the user to
00078 * turn external loopback on or off at the PHY. The driver simply provides pass-
00079 * through functions for configuring the PHY. The driver does not read, write,
00080 * or reset the PHY on its own. All control of the PHY must be done by the user.
00081 *
00082 * Asynchronous Callbacks
00083 *
00084 * The driver services interrupts and passes Ethernet frames to the higher layer
00085 * software through asynchronous callback functions. When using the driver
00086 * directly (i.e., not with the RTOS protocol stack), the higher layer
00087 * software must register its callback functions during initialization. The
00088 * driver requires callback functions for received frames, for confirmation of
00089 * transmitted frames, and for asynchronous errors.
00090 *
00091 * Interrupts
00092 *
00093 * The driver has no dependencies on the interrupt controller. The driver
00094 * provides two interrupt handlers. XEmac_IntrHandlerDma() handles interrupts

00095 * when the EMAC is configured with scatter-gather DMA. XEmac_IntrHandlerFifo()
00096 * handles interrupts when the EMAC is configured for direct FIFO I/O or simple
00097 * DMA. Either of these routines can be connected to the system interrupt
00098 * controller by the user.
00099 *
00100 * Interrupt Frequency
00101 *
00102 * When the EMAC is configured with scatter-gather DMA, the frequency of
00103 * interrupts can be controlled with the interrupt coalescing features of the
00104 * scatter-gather DMA engine. The frequency of interrupts can be adjusted using
00105 * the driver API functions for setting the packet count threshold and the
packet
00106 * wait bound values.
00107 *
00108 * The scatter-gather DMA engine only interrupts when the packet count threshold
00109 * is reached, instead of interrupting for each packet. A packet is a generic
00110 * term used by the scatter-gather DMA engine, and is equivalent to an Ethernet
00111 * frame in our case.
00112 *
00113 * The packet wait bound is a timer value used during interrupt coalescing to
00114 * trigger an interrupt when not enough packets have been received to reach the
00115 * packet count threshold.
00116 *
00117 * These values can be tuned by the user to meet their needs. If there appear to
00118 * be interrupt latency problems or delays in packet arrival that are longer
than
00119 * might be expected, the user should verify that the packet count threshold is
00120 * set low enough to receive interrupts before the wait bound timer goes off.
00121 *
00122 * Device Reset
00123 *
00124 * Some errors that can occur in the device require a device reset. These errors
00125 * are listed in the XEmac_SetErrorHandler() function header. The user's error
00126 * handler is responsible for resetting the device and re-configuring it based
on
00127 * its needs (the driver does not save the current configuration). When
00128 * integrating into an RTOS, these reset and re-configure obligations are
00129 * taken care of by the Xilinx adapter software if it exists for that RTOS.
00130 *
00131 * Device Configuration
00132 *
00133 * The device can be configured in various ways during the FPGA implementation
00134 * process. Configuration parameters are stored in the xemac_g.c files.
00135 * A table is defined where each entry contains configuration information
00136 * for an EMAC device. This information includes such things as the base
address
00137 * of the memory-mapped device, the base addresses of IPIF, DMA, and FIFO
modules
00138 * within the device, and whether the device has DMA, counter registers,
00139 * multicast support, MII support, and flow control.
00140 *
00141 * The driver tries to use the features built into the device. So if, for

00142 * example, the hardware is configured with scatter-gather DMA, the driver
00143 * expects to start the scatter-gather channels and expects that the user has
set
00144 * up the buffer descriptor lists already. If the user expects to use the driver
00145 * in a mode different than how the hardware is configured, the user should
00146 * modify the configuration table to reflect the mode to be used. Modifying the
00147 * configuration table is a workaround for now until we get some experience with
00148 * how users are intending to use the hardware in its different configurations.
00149 * For example, if the hardware is built with scatter-gather DMA but the user is
00150 * intending to use only simple DMA, the user either needs to modify the config
00151 * table as a workaround or rebuild the hardware with only simple DMA. The
00152 * recommendation at this point is to build the hardware with the features you
00153 * intend to use. If you're inclined to modify the table, do so before the call
00154 * to XEmac_Initialize(). Here is a snippet of code that changes a device to
00155 * simple DMA (the hardware needs to have DMA for this to work of course):
00156 * <pre>
00157 * XEmac_Config *ConfigPtr;
00158 *
00159 * ConfigPtr = XEmac_LookupConfig(DeviceId);
00160 * ConfigPtr->IpIfDmaConfig = XEM_CFG_SIMPLE_DMA;
00161 * </pre>
00162 *
00163 * Simple DMA
00164 *
00165 * Simple DMA is supported through the FIFO functions, FifoSend and FifoRecv, of
00166 * the driver (i.e., there is no separate interface for it). The driver makes
use
00167 * of the DMA engine for a simple DMA transfer if the device is configured with
00168 * DMA, otherwise it uses the FIFOs directly. While the simple DMA interface is
00169 * therefore transparent to the user, the caching of network buffers is not.
00170 * If the device is configured with DMA and the FIFO interface is used, the user
00171 * must ensure that the network buffers are not cached or are cache coherent,
00172 * since DMA will be used to transfer to and from the Emac device. If the device
00173 * is configured with DMA and the user really wants to use the FIFOs directly,
00174 * the user should rebuild the hardware without DMA. If unable to do this, there
00175 * is a workaround (described above in Device Configuration) to modify the
00176 * configuration table of the driver to fake the driver into thinking the device
00177 * has no DMA. A code snippet follows:
00178 * <pre>
00179 * XEmac_Config *ConfigPtr;
00180 *
00181 * ConfigPtr = XEmac_LookupConfig(DeviceId);
00182 * ConfigPtr->IpIfDmaConfig = XEM_CFG_NO_DMA;
00183 * </pre>
00184 *
00185 * Asserts
00186 *
00187 * Asserts are used within all Xilinx drivers to enforce constraints on argument
00188 * values. Asserts can be turned off on a system-wide basis by defining, at
00189 * compile time, the NDEBUG identifier. By default, asserts are turned on and it
00190 * is recommended that users leave asserts on during development.
00191 *
00192 * Building the driver

00193 *
00194 * The XEmac driver is composed of several source files. Why so many? This
00195 * allows the user to build and link only those parts of the driver that are
00196 * necessary. Since the EMAC hardware can be configured in various ways (e.g.,
00197 * with or without DMA), the driver too can be built with varying features.
00198 * For the most part, this means that besides always linking in xemac.c, you
00199 * link in only the driver functionality you want. Some of the choices you have
00200 * are polled vs. interrupt, interrupt with FIFOs only vs. interrupt with DMA,
00201 * self-test diagnostics, and driver statistics. Note that currently the DMA
code
00202 * must be linked in, even if you don't have DMA in the device.
00203 *
00204 * @note
00205 *
00206 * Xilinx drivers are typically composed of two components, one is the driver
00207 * and the other is the adapter. The driver is independent of OS and processor
00208 * and is intended to be highly portable. The adapter is OS-specific and
00209 * facilitates communication between the driver and an OS.
00210 *

00211 * This driver is intended to be RTOS and processor independent. It works
00212 * with physical addresses only. Any needs for dynamic memory management,
00213 * threads or thread mutual exclusion, virtual memory, or cache control must
00214 * be satisfied by the layer above this driver.
00215 *
00216 * <pre>
00217 * MODIFICATION HISTORY:
00218 *
00219 * Ver Who Date Changes
00220 * ----- ---- -------- ---
00221 * 1.00a rpm 07/31/01 First release
00222 * 1.00b rpm 02/20/02 Repartitioned files and functions
00223 * 1.00b rpm 10/08/02 Replaced HasSgDma boolean with IpifDmaConfig enumerated
00224 * configuration parameter
00225 * 1.00c rpm 12/05/02 New version includes support for simple DMA and the delay
00226 * argument to SgSend
00227 * 1.00c rpm 02/03/03 The XST_DMA_SG_COUNT_EXCEEDED return code was removed
00228 * from SetPktThreshold in the internal DMA driver. Also
00229 * avoided compiler warnings by initializing Result in the
00230 * DMA interrupt service routines.
00231 * </pre>
00232 *
00233 **/
00234
00235 #ifndef XEMAC_H /* prevent circular inclusions */
00236 #define XEMAC_H /* by using protection macros */
00237
00238 /***************************** Include Files *********************************/
00239
00240 #include "xbasic_types.h"

00241 #include "xstatus.h"

00242 #include "xparameters.h"

00243 #include "xpacket_fifo_v1_00_b.h" /* Uses v1.00b of Packet Fifo */

00244 #include "xdma_channel.h"
00245
00246 /************************** Constant Definitions *****************************/
00247
00248 /*
00249 * Device information
00250 */
00251 #define XEM_DEVICE_NAME "xemac"
00252 #define XEM_DEVICE_DESC "Xilinx Ethernet 10/100 MAC"
00253
00254 /** @name Configuration options
00255 *
00256 * Device configuration options (see the XEmac_SetOptions() and
00257 * XEmac_GetOptions() for information on how to use these options)
00258 * @{
00259 */
00260 /**
00261 * <pre>
00262 * XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
00263 * XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
00264 * XEM_PROMISC_OPTION Promiscuous addressing on or off (default is
off)
00265 * XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
00266 * XEM_POLLED_OPTION Polled mode on or off (default is off)
00267 * XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
00268 * XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
00269 * (default is off)
00270 * XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
00271 * XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
00272 * XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is
on)
00273 * XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
00274 * only used if source address insertion is on.
00275 * (default is on)
00276 * XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
00277 * (default is off)
00278 * </pre>
00279 */
00280 #define XEM_UNICAST_OPTION 0x00000001UL

00281 #define XEM_BROADCAST_OPTION 0x00000002UL

00282 #define XEM_PROMISC_OPTION 0x00000004UL

00283 #define XEM_FDUPLEX_OPTION 0x00000008UL

00284 #define XEM_POLLED_OPTION 0x00000010UL

00285 #define XEM_LOOPBACK_OPTION 0x00000020UL

00286 #define XEM_FLOW_CONTROL_OPTION 0x00000080UL

00287 #define XEM_INSERT_PAD_OPTION 0x00000100UL

00288 #define XEM_INSERT_FCS_OPTION 0x00000200UL

00289 #define XEM_INSERT_ADDR_OPTION 0x00000400UL

00290 #define XEM_OVWRT_ADDR_OPTION 0x00000800UL

00291 #define XEM_STRIP_PAD_FCS_OPTION 0x00002000UL

00292 /*@}*/

00293 /*
00294 * Not supported yet:
00295 * XEM_MULTICAST_OPTION Multicast addressing on or off (default is
off)
00296 */
00297 /* NOT SUPPORTED YET... */
00298 #define XEM_MULTICAST_OPTION 0x00000040UL
00299
00300 /*
00301 * Some default values for interrupt coalescing within the scatter-gather
00302 * DMA engine.
00303 */
00304 #define XEM_SGDMA_DFT_THRESHOLD 1 /* Default pkt threshold */
00305 #define XEM_SGDMA_MAX_THRESHOLD 255 /* Maximum pkt theshold */
00306 #define XEM_SGDMA_DFT_WAITBOUND 5 /* Default pkt wait bound (msec) */
00307 #define XEM_SGDMA_MAX_WAITBOUND 1023 /* Maximum pkt wait bound (msec) */
00308
00309 /*
00310 * Direction identifiers. These are used for setting values like packet
00311 * thresholds and wait bound for specific channels
00312 */
00313 #define XEM_SEND 1
00314 #define XEM_RECV 2
00315
00316 /*
00317 * Arguments to SgSend function to indicate whether to hold off starting
00318 * the scatter-gather engine.
00319 */
00320 #define XEM_SGDMA_NODELAY 0 /* start SG DMA immediately */
00321 #define XEM_SGDMA_DELAY 1 /* do not start SG DMA */
00322
00323 /*
00324 * Constants to determine the configuration of the hardware device. They are
00325 * used to allow the driver to verify it can operate with the hardware.
00326 */
00327 #define XEM_CFG_NO_IPIF 0 /* Not supported by the driver */
00328 #define XEM_CFG_NO_DMA 1 /* No DMA */
00329 #define XEM_CFG_SIMPLE_DMA 2 /* Simple DMA */
00330 #define XEM_CFG_DMA_SG 3 /* DMA scatter gather */
00331
00332 /*
00333 * The next few constants help upper layers determine the size of memory
00334 * pools used for Ethernet buffers and descriptor lists.
00335 */
00336 #define XEM_MAC_ADDR_SIZE 6 /* six-byte MAC address */
00337 #define XEM_MTU 1500 /* max size of Ethernet frame */
00338 #define XEM_HDR_SIZE 14 /* size of Ethernet header */
00339 #define XEM_HDR_VLAN_SIZE 18 /* size of Ethernet header with VLAN */
00340 #define XEM_TRL_SIZE 4 /* size of Ethernet trailer (FCS) */
00341 #define XEM_MAX_FRAME_SIZE (XEM_MTU + XEM_HDR_SIZE + XEM_TRL_SIZE)
00342 #define XEM_MAX_VLAN_FRAME_SIZE (XEM_MTU + XEM_HDR_VLAN_SIZE + XEM_TRL_SIZE)
00343
00344 /*

00345 * Define a default number of send and receive buffers
00346 */
00347 #define XEM_MIN_RECV_BUFS 32 /* minimum # of recv buffers */
00348 #define XEM_DFT_RECV_BUFS 64 /* default # of recv buffers */
00349
00350 #define XEM_MIN_SEND_BUFS 16 /* minimum # of send buffers */
00351 #define XEM_DFT_SEND_BUFS 32 /* default # of send buffers */
00352
00353 #define XEM_MIN_BUFFERS (XEM_MIN_RECV_BUFS + XEM_MIN_SEND_BUFS)
00354 #define XEM_DFT_BUFFERS (XEM_DFT_RECV_BUFS + XEM_DFT_SEND_BUFS)
00355
00356 /*
00357 * Define the number of send and receive buffer descriptors, used for
00358 * scatter-gather DMA
00359 */
00360 #define XEM_MIN_RECV_DESC 16 /* minimum # of recv descriptors */
00361 #define XEM_DFT_RECV_DESC 32 /* default # of recv descriptors */
00362
00363 #define XEM_MIN_SEND_DESC 8 /* minimum # of send descriptors */
00364 #define XEM_DFT_SEND_DESC 16 /* default # of send descriptors */
00365
00366 /**************************** Type Definitions *******************************/
00367
00368 /**
00369 * Ethernet statistics (see XEmac_GetStats() and XEmac_ClearStats())
00370 */
00371 typedef struct

00372 {
00373 Xuint32 XmitFrames; /**< Number of frames transmitted */

00374 Xuint32 XmitBytes; /**< Number of bytes transmitted */

00375 Xuint32 XmitLateCollisionErrors; /**< Number of transmission failures

00376 due to late collisions */
00377 Xuint32 XmitExcessDeferral; /**< Number of transmission failures

00378 due o excess collision deferrals */
00379 Xuint32 XmitOverrunErrors; /**< Number of transmit overrun errors */

00380 Xuint32 XmitUnderrunErrors; /**< Number of transmit underrun errors */

00381 Xuint32 RecvFrames; /**< Number of frames received */

00382 Xuint32 RecvBytes; /**< Number of bytes received */

00383 Xuint32 RecvFcsErrors; /**< Number of frames discarded due

00384 to FCS errors */
00385 Xuint32 RecvAlignmentErrors; /**< Number of frames received with

00386 alignment errors */
00387 Xuint32 RecvOverrunErrors; /**< Number of frames discarded due

00388 to overrun errors */
00389 Xuint32 RecvUnderrunErrors; /**< Number of recv underrun errors */

00390 Xuint32 RecvMissedFrameErrors; /**< Number of frames missed by MAC */

00391 Xuint32 RecvCollisionErrors; /**< Number of frames discarded due

00392 to collisions */
00393 Xuint32 RecvLengthFieldErrors; /**< Number of frames discarded with

00394 invalid length field */

00395 Xuint32 RecvShortErrors; /**< Number of short frames discarded */

00396 Xuint32 RecvLongErrors; /**< Number of long frames discarded */

00397 Xuint32 DmaErrors; /**< Number of DMA errors since init */

00398 Xuint32 FifoErrors; /**< Number of FIFO errors since init */

00399 Xuint32 RecvInterrupts; /**< Number of receive interrupts */

00400 Xuint32 XmitInterrupts; /**< Number of transmit interrupts */

00401 Xuint32 EmacInterrupts; /**< Number of MAC (device) interrupts */

00402 Xuint32 TotalIntrs; /**< Total interrupts */

00403 } XEmac_Stats;

00404
00405 /**
00406 * This typedef contains configuration information for a device.
00407 */
00408 typedef struct

00409 {
00410 Xuint16 DeviceId; /**< Unique ID of device */

00411 Xuint32 BaseAddress; /**< Register base address */

00412 Xboolean HasCounters; /**< Does device have counters? */

00413 Xuint8 IpIfDmaConfig; /**< IPIF/DMA hardware configuration */

00414 Xboolean HasMii; /**< Does device support MII? */

00415
00416 } XEmac_Config;

00417
00418
00419 /** @name Typedefs for callbacks
00420 * Callback functions.
00421 * @{
00422 */
00423 /**
00424 * Callback when data is sent or received with scatter-gather DMA.
00425 *
00426 * @param CallBackRef is a callback reference passed in by the upper layer
00427 * when setting the callback functions, and passed back to the upper
00428 * layer when the callback is invoked.
00429 * @param BdPtr is a pointer to the first buffer descriptor in a list of
00430 * buffer descriptors.
00431 * @param NumBds is the number of buffer descriptors in the list pointed
00432 * to by BdPtr.
00433 */
00434 typedef void (*XEmac_SgHandler)(void *CallBackRef, XBufDescriptor *BdPtr,

00435 Xuint32 NumBds);

00436
00437 /**
00438 * Callback when data is sent or received with direct FIFO communication or
00439 * simple DMA. The user typically defines two callacks, one for send and one
00440 * for receive.
00441 *
00442 * @param CallBackRef is a callback reference passed in by the upper layer
00443 * when setting the callback functions, and passed back to the upper
00444 * layer when the callback is invoked.

00445 */
00446 typedef void (*XEmac_FifoHandler)(void *CallBackRef);

00447
00448 /**
00449 * Callback when an asynchronous error occurs.
00450 *
00451 * @param CallBackRef is a callback reference passed in by the upper layer
00452 * when setting the callback functions, and passed back to the upper
00453 * layer when the callback is invoked.
00454 * @param ErrorCode is a Xilinx error code defined in xstatus.h. Also see
00455 * XEmac_SetErrorHandler() for a description of possible errors.
00456 */
00457 typedef void (*XEmac_ErrorHandler)(void *CallBackRef, XStatus ErrorCode);

00458 /*@}*/
00459
00460 /**
00461 * The XEmac driver instance data. The user is required to allocate a
00462 * variable of this type for every EMAC device in the system. A pointer
00463 * to a variable of this type is then passed to the driver API functions.
00464 */
00465 typedef struct

00466 {
00467 Xuint32 BaseAddress; /* Base address (of IPIF) */

00468 Xuint32 IsStarted; /* Device is currently started */

00469 Xuint32 IsReady; /* Device is initialized and ready */

00470 Xboolean IsPolled; /* Device is in polled mode */

00471 Xuint8 IpIfDmaConfig; /* IPIF/DMA hardware configuration */

00472 Xboolean HasMii; /* Does device support MII? */

00473 Xboolean HasMulticastHash; /* Does device support multicast hash table?

*/
00474
00475 XEmac_Stats Stats;

00476 XPacketFifoV100b RecvFifo; /* FIFO used to receive frames */
00477 XPacketFifoV100b SendFifo; /* FIFO used to send frames */
00478
00479 /*
00480 * Callbacks
00481 */
00482 XEmac_FifoHandler FifoRecvHandler; /* for non-DMA/simple DMA interrupts */

00483 void *FifoRecvRef;
00484 XEmac_FifoHandler FifoSendHandler; /* for non-DMA/simple DMA interrupts */

00485 void *FifoSendRef;
00486 XEmac_ErrorHandler ErrorHandler; /* for asynchronous errors */

00487 void *ErrorRef;
00488
00489 XDmaChannel RecvChannel; /* DMA receive channel driver */
00490 XDmaChannel SendChannel; /* DMA send channel driver */
00491
00492 XEmac_SgHandler SgRecvHandler; /* callback for scatter-gather DMA */

00493 void *SgRecvRef;
00494 XEmac_SgHandler SgSendHandler; /* callback for scatter-gather DMA */

00495 void *SgSendRef;
00496 } XEmac;

00497
00498
00499 /***************** Macros (Inline Functions) Definitions *********************/
00500
00501 /***/
00502 /**
00503 *
00504 * This macro determines if the device is currently configured for
00505 * scatter-gather DMA.
00506 *
00507 * @param InstancePtr is a pointer to the XEmac instance to be worked on.
00508 *
00509 * @return
00510 *
00511 * Boolean XTRUE if the device is configured for scatter-gather DMA, or XFALSE
00512 * if it is not.
00513 *
00514 * @note
00515 *
00516 * Signature: Xboolean XEmac_mIsSgDma(XEmac *InstancePtr)
00517 *
00518 **/
00519 #define XEmac_mIsSgDma(InstancePtr) \

00520 ((InstancePtr)->IpIfDmaConfig == XEM_CFG_DMA_SG)
00521
00522
00523 /***/
00524 /**
00525 *
00526 * This macro determines if the device is currently configured for simple DMA.
00527 *
00528 * @param InstancePtr is a pointer to the XEmac instance to be worked on.
00529 *
00530 * @return
00531 *
00532 * Boolean XTRUE if the device is configured for simple DMA, or XFALSE otherwise
00533 *
00534 * @note
00535 *
00536 * Signature: Xboolean XEmac_mIsSimpleDma(XEmac *InstancePtr)
00537 *
00538 **/
00539 #define XEmac_mIsSimpleDma(InstancePtr) \

00540 ((InstancePtr)->IpIfDmaConfig == XEM_CFG_SIMPLE_DMA)
00541
00542
00543 /***/
00544 /**
00545 *
00546 * This macro determines if the device is currently configured with DMA (either

00547 * simple DMA or scatter-gather DMA)
00548 *
00549 * @param InstancePtr is a pointer to the XEmac instance to be worked on.
00550 *
00551 * @return
00552 *
00553 * Boolean XTRUE if the device is configured with DMA, or XFALSE otherwise
00554 *
00555 * @note
00556 *
00557 * Signature: Xboolean XEmac_mIsDma(XEmac *InstancePtr)
00558 *
00559 **/
00560 #define XEmac_mIsDma(InstancePtr) \

00561 (XEmac_mIsSimpleDma(InstancePtr) || XEmac_mIsSgDma(InstancePtr))
00562
00563 /************************** Function Prototypes ******************************/
00564
00565 /*
00566 * Initialization functions in xemac.c
00567 */
00568 XStatus XEmac_Initialize(XEmac *InstancePtr, Xuint16 DeviceId);

00569 XStatus XEmac_Start(XEmac *InstancePtr);

00570 XStatus XEmac_Stop(XEmac *InstancePtr);

00571 void XEmac_Reset(XEmac *InstancePtr);

00572 XEmac_Config *XEmac_LookupConfig(Xuint16 DeviceId);

00573
00574 /*
00575 * Diagnostic functions in xemac_selftest.c
00576 */
00577 XStatus XEmac_SelfTest(XEmac *InstancePtr);

00578
00579 /*
00580 * Polled functions in xemac_polled.c
00581 */
00582 XStatus XEmac_PollSend(XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount);

00583 XStatus XEmac_PollRecv(XEmac *InstancePtr, Xuint8 *BufPtr,

00584 Xuint32 *ByteCountPtr);

00585
00586 /*
00587 * Interrupts with scatter-gather DMA functions in xemac_intr_dma.c
00588 */
00589 XStatus XEmac_SgSend(XEmac *InstancePtr, XBufDescriptor *BdPtr, int Delay);

00590 XStatus XEmac_SgRecv(XEmac *InstancePtr, XBufDescriptor *BdPtr);

00591 XStatus XEmac_SetPktThreshold(XEmac *InstancePtr, Xuint32 Direction,

00592 Xuint8 Threshold);

00593 XStatus XEmac_GetPktThreshold(XEmac *InstancePtr, Xuint32 Direction,

00594 Xuint8 *ThreshPtr);

00595 XStatus XEmac_SetPktWaitBound(XEmac *InstancePtr, Xuint32 Direction,

00596 Xuint32 TimerValue);

00597 XStatus XEmac_GetPktWaitBound(XEmac *InstancePtr, Xuint32 Direction,

00598 Xuint32 *WaitPtr);

00599 XStatus XEmac_SetSgRecvSpace(XEmac *InstancePtr, Xuint32 *MemoryPtr,

00600 Xuint32 ByteCount);

00601 XStatus XEmac_SetSgSendSpace(XEmac *InstancePtr, Xuint32 *MemoryPtr,

00602 Xuint32 ByteCount);

00603 void XEmac_SetSgRecvHandler(XEmac *InstancePtr, void *CallBackRef,

00604 XEmac_SgHandler FuncPtr);

00605 void XEmac_SetSgSendHandler(XEmac *InstancePtr, void *CallBackRef,

00606 XEmac_SgHandler FuncPtr);

00607
00608 void XEmac_IntrHandlerDma(void *InstancePtr); /* interrupt handler */

00609
00610 /*
00611 * Interrupts with direct FIFO functions in xemac_intr_fifo.c. Also used
00612 * for simple DMA.
00613 */
00614 XStatus XEmac_FifoSend(XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount);

00615 XStatus XEmac_FifoRecv(XEmac *InstancePtr, Xuint8 *BufPtr,

00616 Xuint32 *ByteCountPtr);

00617 void XEmac_SetFifoRecvHandler(XEmac *InstancePtr, void *CallBackRef,

00618 XEmac_FifoHandler FuncPtr);

00619 void XEmac_SetFifoSendHandler(XEmac *InstancePtr, void *CallBackRef,

00620 XEmac_FifoHandler FuncPtr);

00621
00622 void XEmac_IntrHandlerFifo(void *InstancePtr); /* interrupt handler */

00623
00624 /*
00625 * General interrupt-related functions in xemac_intr.c
00626 */
00627 void XEmac_SetErrorHandler(XEmac *InstancePtr, void *CallBackRef,

00628 XEmac_ErrorHandler FuncPtr);

00629
00630 /*
00631 * MAC configuration in xemac_options.c
00632 */
00633 XStatus XEmac_SetOptions(XEmac *InstancePtr, Xuint32 OptionFlag);

00634 Xuint32 XEmac_GetOptions(XEmac *InstancePtr);

00635 XStatus XEmac_SetMacAddress(XEmac *InstancePtr, Xuint8 *AddressPtr);

00636 void XEmac_GetMacAddress(XEmac *InstancePtr, Xuint8 *BufferPtr);

00637 XStatus XEmac_SetInterframeGap(XEmac *InstancePtr, Xuint8 Part1, Xuint8 Part2);

00638 void XEmac_GetInterframeGap(XEmac *InstancePtr, Xuint8 *Part1Ptr,

00639 Xuint8* Part2Ptr);

00640
00641 /*
00642 * Multicast functions in xemac_multicast.c (not supported by EMAC yet)
00643 */
00644 XStatus XEmac_MulticastAdd(XEmac *InstancePtr, Xuint8 *AddressPtr);

00645 XStatus XEmac_MulticastClear(XEmac *InstancePtr);

00646
00647 /*
00648 * PHY configuration in xemac_phy.c
00649 */
00650 XStatus XEmac_PhyRead(XEmac *InstancePtr, Xuint32 PhyAddress,

00651 Xuint32 RegisterNum, Xuint16 *PhyDataPtr);

00652 XStatus XEmac_PhyWrite(XEmac *InstancePtr, Xuint32 PhyAddress,

00653 Xuint32 RegisterNum, Xuint16 PhyData);

00654
00655 /*
00656 * Statistics in xemac_stats.c
00657 */
00658 void XEmac_GetStats(XEmac *InstancePtr, XEmac_Stats *StatsPtr);

00659 void XEmac_ClearStats(XEmac *InstancePtr);

00660
00661
00662 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XEmac_Stats Struct Reference
#include <xemac.h>

Detailed Description

Ethernet statistics (see XEmac_GetStats() and XEmac_ClearStats())

Data Fields

Xuint32 XmitFrames
Xuint32 XmitBytes
Xuint32 XmitLateCollisionErrors
Xuint32 XmitExcessDeferral
Xuint32 XmitOverrunErrors
Xuint32 XmitUnderrunErrors
Xuint32 RecvFrames
Xuint32 RecvBytes
Xuint32 RecvFcsErrors
Xuint32 RecvAlignmentErrors
Xuint32 RecvOverrunErrors
Xuint32 RecvUnderrunErrors
Xuint32 RecvMissedFrameErrors
Xuint32 RecvCollisionErrors
Xuint32 RecvLengthFieldErrors
Xuint32 RecvShortErrors
Xuint32 RecvLongErrors
Xuint32 DmaErrors

Xuint32 FifoErrors
Xuint32 RecvInterrupts
Xuint32 XmitInterrupts
Xuint32 EmacInterrupts
Xuint32 TotalIntrs

Field Documentation

Xuint32 XEmac_Stats::DmaErrors

 Number of DMA errors since init

Xuint32 XEmac_Stats::EmacInterrupts

 Number of MAC (device) interrupts

Xuint32 XEmac_Stats::FifoErrors

 Number of FIFO errors since init

Xuint32 XEmac_Stats::RecvAlignmentErrors

 Number of frames received with alignment errors

Xuint32 XEmac_Stats::RecvBytes

 Number of bytes received

Xuint32 XEmac_Stats::RecvCollisionErrors

 Number of frames discarded due to collisions

Xuint32 XEmac_Stats::RecvFcsErrors

 Number of frames discarded due to FCS errors

Xuint32 XEmac_Stats::RecvFrames

 Number of frames received

Xuint32 XEmac_Stats::RecvInterrupts

 Number of receive interrupts

Xuint32 XEmac_Stats::RecvLengthFieldErrors

 Number of frames discarded with invalid length field

Xuint32 XEmac_Stats::RecvLongErrors

 Number of long frames discarded

Xuint32 XEmac_Stats::RecvMissedFrameErrors

 Number of frames missed by MAC

Xuint32 XEmac_Stats::RecvOverrunErrors

 Number of frames discarded due to overrun errors

Xuint32 XEmac_Stats::RecvShortErrors

 Number of short frames discarded

Xuint32 XEmac_Stats::RecvUnderrunErrors

 Number of recv underrun errors

Xuint32 XEmac_Stats::TotalIntrs

 Total interrupts

Xuint32 XEmac_Stats::XmitBytes

 Number of bytes transmitted

Xuint32 XEmac_Stats::XmitExcessDeferral

 Number of transmission failures due o excess collision deferrals

Xuint32 XEmac_Stats::XmitFrames

 Number of frames transmitted

Xuint32 XEmac_Stats::XmitInterrupts

 Number of transmit interrupts

Xuint32 XEmac_Stats::XmitLateCollisionErrors

 Number of transmission failures due to late collisions

Xuint32 XEmac_Stats::XmitOverrunErrors

 Number of transmit overrun errors

Xuint32 XEmac_Stats::XmitUnderrunErrors

 Number of transmit underrun errors

The documentation for this struct was generated from the following file:

● emac/v1_00_c/src/xemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XEmac_Config Struct Reference
#include <xemac.h>

Detailed Description

This typedef contains configuration information for a device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress

Xboolean HasCounters
Xuint8 IpIfDmaConfig

Xboolean HasMii

Field Documentation

Xuint32 XEmac_Config::BaseAddress

 Register base address

Xuint16 XEmac_Config::DeviceId

 Unique ID of device

Xboolean XEmac_Config::HasCounters

 Does device have counters?

Xboolean XEmac_Config::HasMii

 Does device support MII?

Xuint8 XEmac_Config::IpIfDmaConfig

 IPIF/DMA hardware configuration

The documentation for this struct was generated from the following file:

● emac/v1_00_c/src/xemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XEmac Struct Reference
#include <xemac.h>

Detailed Description

The XEmac driver instance data. The user is required to allocate a variable of this type for every EMAC
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● emac/v1_00_c/src/xemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac.c File Reference

Detailed Description

The XEmac driver. Functions in this file are the minimum required functions for this driver. See xemac.h for a
detailed description of the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00b rpm 07/23/02 Removed the PHY reset from Initialize()
 1.00b rmm 09/23/02 Removed commented code in Initialize(). Recycled as
 XEmac_mPhyReset macro in xemac_l.h.

 1.00c rpm 12/05/02 New version includes support for simple DMA
 1.00c rpm 12/12/02 Changed location of IsStarted assignment in XEmac_Start
 to be sure the flag is set before the device and
 interrupts are enabled.
 1.00c rpm 02/03/03 SelfTest was not clearing polled mode. Take driver out
 of polled mode in XEmac_Reset() to fix this problem.

 1.00c rmm 05/13/03 Fixed diab compiler warnings relating to asserts.

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XEmac_Initialize (XEmac *InstancePtr, Xuint16 DeviceId)

XStatus XEmac_Start (XEmac *InstancePtr)
XStatus XEmac_Stop (XEmac *InstancePtr)

void XEmac_Reset (XEmac *InstancePtr)
XStatus XEmac_SetMacAddress (XEmac *InstancePtr, Xuint8 *AddressPtr)

void XEmac_GetMacAddress (XEmac *InstancePtr, Xuint8 *BufferPtr)
XEmac_Config * XEmac_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XEmac_GetMacAddress (XEmac * InstancePtr,
Xuint8 * BufferPtr

)

Get the MAC address for this driver/device.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufferPtr is an output parameter, and is a pointer to a buffer into which the current MAC address
will be copied. The buffer must be at least 6 bytes.

Returns:
None.

Note:
None.

XStatus XEmac_Initialize (XEmac * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XEmac instance/driver. The initialization entails:

● Initialize fields of the XEmac structure
● Clear the Ethernet statistics for this device
● Initialize the IPIF component with its register base address
● Configure the FIFO components with their register base addresses.
● If the device is configured with DMA, configure the DMA channel components with their register base

addresses. At some later time, memory pools for the scatter-gather descriptor lists may be passed to the
driver.

● Reset the Ethernet MAC

Parameters:

InstancePtr is a pointer to the XEmac instance to be worked on.

DeviceId is the unique id of the device controlled by this XEmac instance. Passing in a device id
associates the generic XEmac instance to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device

with the supplied device ID.

Note:
None.

XEmac_Config* XEmac_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table EmacConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device being looked up.

Returns:
A pointer to the configuration table entry corresponding to the given device ID, or XNULL if no match
is found.

Note:
None.

void XEmac_Reset (XEmac * InstancePtr)

Reset the Ethernet MAC. This is a graceful reset in that the device is stopped first. Resets the DMA channels,
the FIFOs, the transmitter, and the receiver. The PHY is not reset. Any frames in the scatter-gather descriptor
lists will remain in the lists. The side effect of doing this is that after a reset and following a restart of the
device, frames that were in the list before the reset may be transmitted or received. Reset must only be called
after the driver has been initialized.

The driver is also taken out of polled mode if polled mode was set. The user is responsbile for re-configuring
the driver into polled mode after the reset if desired.

The configuration after this reset is as follows:

● Half duplex
● Disabled transmitter and receiver
● Enabled PHY (the PHY is not reset)
● MAC transmitter does pad insertion, FCS insertion, and source address overwrite.
● MAC receiver does not strip padding or FCS
● Interframe Gap as recommended by IEEE Std. 802.3 (96 bit times)
● Unicast addressing enabled
● Broadcast addressing enabled
● Multicast addressing disabled (addresses are preserved)
● Promiscuous addressing disabled
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation
● MAC address of all zeros
● Non-polled mode

The upper layer software is responsible for re-configuring (if necessary) and restarting the MAC after the
reset. Note that the PHY is not reset. PHY control is left to the upper layer software. Note also that driver
statistics are not cleared on reset. It is up to the upper layer software to clear the statistics if needed.

When a reset is required due to an internal error, the driver notifies the upper layer software of this need
through the ErrorHandler callback and specific status codes. The upper layer software is responsible for
calling this Reset function and then re-configuring the device.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
None.

Note:
None.

XStatus XEmac_SetMacAddress (XEmac * InstancePtr,
Xuint8 * AddressPtr

)

Set the MAC address for this driver/device. The address is a 48-bit value. The device must be stopped before
calling this function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

AddressPtr is a pointer to a 6-byte MAC address.

Returns:
❍ XST_SUCCESS if the MAC address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XEmac_Start (XEmac * InstancePtr)

Start the Ethernet controller as follows:

● If not in polled mode
❍ Set the internal interrupt enable registers appropriately
❍ Enable interrupts within the device itself. Note that connection of the driver's interrupt handler

to the interrupt source (typically done using the interrupt controller component) is done by the
higher layer software.

❍ If the device is configured with scatter-gather DMA, start the DMA channels if the descriptor
lists are not empty

● Enable the transmitter
● Enable the receiver

The PHY is enabled after driver initialization. We assume the upper layer software has configured it and the
EMAC appropriately before this function is called.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_NO_CALLBACK if a callback function has not yet been registered using the

SetxxxHandler function. This is required if in interrupt mode.
❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has not

yet been created for the send or receive channel.

Note:
The driver tries to match the hardware configuration. So if the hardware is configured with scatter-
gather DMA, the driver expects to start the scatter-gather channels and expects that the user has set up
the buffer descriptor lists already. If the user expects to use the driver in a mode different than how the
hardware is configured, the user should modify the configuration table to reflect the mode to be used.
Modifying the config table is a workaround for now until we get some experience with how users are
intending to use the hardware in its different configurations. For example, if the hardware is built with
scatter-gather DMA but the user is intending to use only simple DMA, the user either needs to modify
the config table as a workaround or rebuild the hardware with only simple DMA.

This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to start the device, the user is
required to provide protection of this shared data (typically using a semaphore).

XStatus XEmac_Stop (XEmac * InstancePtr)

Stop the Ethernet MAC as follows:

● If the device is configured with scatter-gather DMA, stop the DMA channels (wait for
acknowledgment of stop)

● Disable the transmitter and receiver
● Disable interrupts if not in polled mode (the higher layer software is responsible for disabling

interrupts at the interrupt controller)

The PHY is left enabled after a Stop is called.

If the device is configured for scatter-gather DMA, the DMA engine stops at the next buffer descriptor in its
list. The remaining descriptors in the list are not removed, so anything in the list will be transmitted or
received when the device is restarted. The side effect of doing this is that the last buffer descriptor processed
by the DMA engine before stopping may not be the last descriptor in the Ethernet frame. So when the device
is restarted, a partial frame (i.e., a bad frame) may be transmitted/received. This is only a concern if a frame
can span multiple buffer descriptors, which is dependent on the size of the network buffers.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to start the device, the

user is required to provide protection of this shared data (typically using a semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xemac.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 04/26/02 First release
 1.00b rmm 09/23/02 Added XEmac_mPhyReset macro
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XEmac_mReadReg(BaseAddress, RegOffset)
#define XEmac_mWriteReg(BaseAddress, RegOffset, Data)
#define XEmac_mSetControlReg(BaseAddress, Mask)
#define XEmac_mSetMacAddress(BaseAddress, AddressPtr)

#define XEmac_mEnable(BaseAddress)
#define XEmac_mDisable(BaseAddress)
#define XEmac_mIsTxDone(BaseAddress)
#define XEmac_mIsRxEmpty(BaseAddress)
#define XEmac_mPhyReset(BaseAddress)

Functions

void XEmac_SendFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, int Size)
int XEmac_RecvFrame (Xuint32 BaseAddress, Xuint8 *FramePtr)

Define Documentation

#define XEmac_mDisable(BaseAddress)

Disable the transmitter and receiver. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XEmac_mEnable(BaseAddress)

Enable the transmitter and receiver. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XEmac_mIsRxEmpty(BaseAddress)

Check to see if the receive FIFO is empty.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is empty, or XFALSE if it is not.

Note:
None.

#define XEmac_mIsTxDone(BaseAddress)

Check to see if the transmission is complete.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is done, or XFALSE if it is not.

Note:
None.

#define XEmac_mPhyReset(BaseAddress)

Reset MII compliant PHY

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XEmac_mReadReg(BaseAddress,
RegOffset)

Read the given register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be read

Returns:
The 32-bit value of the register

Note:
None.

#define XEmac_mSetControlReg(BaseAddress,
Mask)

Set the contents of the control register. Use the XEM_ECR_* constants defined above to create the
bit-mask to be written to the register.

Parameters:
BaseAddress is the base address of the device
Mask is the 16-bit value to write to the control register

Returns:
None.

Note:
None.

#define XEmac_mSetMacAddress(BaseAddress,
AddressPtr)

Set the station address of the EMAC device.

Parameters:
BaseAddress is the base address of the device
AddressPtr is a pointer to a 6-byte MAC address

Returns:
None.

Note:
None.

#define XEmac_mWriteReg(BaseAddress,
RegOffset,
Data)

Write the given register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be written
Data is the 32-bit value to write to the register

Returns:
None.

Note:
None.

Function Documentation

int XEmac_RecvFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr

)

Receive a frame. Wait for a frame to arrive.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to a word-aligned buffer where the frame will be stored.

Returns:
The size, in bytes, of the frame received.

Note:
None.

void XEmac_SendFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
int Size

)

Send an Ethernet frame. This size is the total frame size, including header. This function blocks
waiting for the frame to be transmitted.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to word-aligned frame
Size is the size, in bytes, of the frame

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_l.h
Go to the documentation of this file.

00001 /* $Id: xemac_l.h,v 1.1 2002/12/09 17:42:43 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file emac/v1_00_c/src/xemac_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xemac.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b rpm 04/26/02 First release
00037 * 1.00b rmm 09/23/02 Added XEmac_mPhyReset macro
00038 * 1.00c rpm 12/05/02 New version includes support for simple DMA
00039 * </pre>
00040 *
00041 **/
00042

00043 #ifndef XEMAC_L_H /* prevent circular inclusions */
00044 #define XEMAC_L_H /* by using protection macros */
00045
00046 /***************************** Include Files *********************************/
00047
00048 #include "xbasic_types.h"

00049 #include "xio.h"

00050
00051 /************************** Constant Definitions *****************************/
00052
00053 /* Offset of the MAC registers from the IPIF base address */
00054 #define XEM_REG_OFFSET 0x1100UL
00055
00056 /*
00057 * Register offsets for the Ethernet MAC. Each register is 32 bits.
00058 */
00059 #define XEM_EMIR_OFFSET (XEM_REG_OFFSET + 0x0) /* EMAC Module ID */
00060 #define XEM_ECR_OFFSET (XEM_REG_OFFSET + 0x4) /* MAC Control */
00061 #define XEM_IFGP_OFFSET (XEM_REG_OFFSET + 0x8) /* Interframe Gap */
00062 #define XEM_SAH_OFFSET (XEM_REG_OFFSET + 0xC) /* Station addr, high */
00063 #define XEM_SAL_OFFSET (XEM_REG_OFFSET + 0x10) /* Station addr, low */
00064 #define XEM_MGTCR_OFFSET (XEM_REG_OFFSET + 0x14) /* MII mgmt control */
00065 #define XEM_MGTDR_OFFSET (XEM_REG_OFFSET + 0x18) /* MII mgmt data */
00066 #define XEM_RPLR_OFFSET (XEM_REG_OFFSET + 0x1C) /* Rx packet length */
00067 #define XEM_TPLR_OFFSET (XEM_REG_OFFSET + 0x20) /* Tx packet length */
00068 #define XEM_TSR_OFFSET (XEM_REG_OFFSET + 0x24) /* Tx status */
00069 #define XEM_RMFC_OFFSET (XEM_REG_OFFSET + 0x28) /* Rx missed frames */
00070 #define XEM_RCC_OFFSET (XEM_REG_OFFSET + 0x2C) /* Rx collisions */
00071 #define XEM_RFCSEC_OFFSET (XEM_REG_OFFSET + 0x30) /* Rx FCS errors */
00072 #define XEM_RAEC_OFFSET (XEM_REG_OFFSET + 0x34) /* Rx alignment errors */
00073 #define XEM_TEDC_OFFSET (XEM_REG_OFFSET + 0x38) /* Transmit excess
00074 * deferral cnt */
00075
00076 /*
00077 * Register offsets for the IPIF components
00078 */
00079 #define XEM_ISR_OFFSET 0x20UL /* Interrupt status */
00080
00081 #define XEM_DMA_OFFSET 0x2300UL
00082 #define XEM_DMA_SEND_OFFSET (XEM_DMA_OFFSET + 0x0) /* DMA send channel */
00083 #define XEM_DMA_RECV_OFFSET (XEM_DMA_OFFSET + 0x40) /* DMA recv channel */
00084
00085 #define XEM_PFIFO_OFFSET 0x2000UL
00086 #define XEM_PFIFO_TXREG_OFFSET (XEM_PFIFO_OFFSET + 0x0) /* Tx registers */
00087 #define XEM_PFIFO_RXREG_OFFSET (XEM_PFIFO_OFFSET + 0x10) /* Rx registers */
00088 #define XEM_PFIFO_TXDATA_OFFSET (XEM_PFIFO_OFFSET + 0x100) /* Tx keyhole */
00089 #define XEM_PFIFO_RXDATA_OFFSET (XEM_PFIFO_OFFSET + 0x200) /* Rx keyhole */
00090
00091 /*
00092 * EMAC Module Identification Register (EMIR)
00093 */
00094 #define XEM_EMIR_VERSION_MASK 0xFFFF0000UL /* Device version */

00095 #define XEM_EMIR_TYPE_MASK 0x0000FF00UL /* Device type */
00096
00097 /*
00098 * EMAC Control Register (ECR)
00099 */
00100 #define XEM_ECR_FULL_DUPLEX_MASK 0x80000000UL /* Full duplex mode */
00101 #define XEM_ECR_XMIT_RESET_MASK 0x40000000UL /* Reset transmitter */
00102 #define XEM_ECR_XMIT_ENABLE_MASK 0x20000000UL /* Enable transmitter */
00103 #define XEM_ECR_RECV_RESET_MASK 0x10000000UL /* Reset receiver */
00104 #define XEM_ECR_RECV_ENABLE_MASK 0x08000000UL /* Enable receiver */
00105 #define XEM_ECR_PHY_ENABLE_MASK 0x04000000UL /* Enable PHY */
00106 #define XEM_ECR_XMIT_PAD_ENABLE_MASK 0x02000000UL /* Enable xmit pad insert
*/
00107 #define XEM_ECR_XMIT_FCS_ENABLE_MASK 0x01000000UL /* Enable xmit FCS insert
*/
00108 #define XEM_ECR_XMIT_ADDR_INSERT_MASK 0x00800000UL /* Enable xmit source
addr
00109 * insertion */
00110 #define XEM_ECR_XMIT_ERROR_INSERT_MASK 0x00400000UL /* Insert xmit error */
00111 #define XEM_ECR_XMIT_ADDR_OVWRT_MASK 0x00200000UL /* Enable xmit source
addr
00112 * overwrite */
00113 #define XEM_ECR_LOOPBACK_MASK 0x00100000UL /* Enable internal
00114 * loopback */
00115 #define XEM_ECR_RECV_STRIP_ENABLE_MASK 0x00080000UL /* Enable recv pad/fcs
strip */
00116 #define XEM_ECR_UNICAST_ENABLE_MASK 0x00020000UL /* Enable unicast addr */
00117 #define XEM_ECR_MULTI_ENABLE_MASK 0x00010000UL /* Enable multicast addr
*/
00118 #define XEM_ECR_BROAD_ENABLE_MASK 0x00008000UL /* Enable broadcast addr
*/
00119 #define XEM_ECR_PROMISC_ENABLE_MASK 0x00004000UL /* Enable promiscuous
mode */
00120 #define XEM_ECR_RECV_ALL_MASK 0x00002000UL /* Receive all frames */
00121 #define XEM_ECR_RESERVED2_MASK 0x00001000UL /* Reserved */
00122 #define XEM_ECR_MULTI_HASH_ENABLE_MASK 0x00000800UL /* Enable multicast hash
*/
00123 #define XEM_ECR_PAUSE_FRAME_MASK 0x00000400UL /* Interpret pause frames
*/
00124 #define XEM_ECR_CLEAR_HASH_MASK 0x00000200UL /* Clear hash table */
00125 #define XEM_ECR_ADD_HASH_ADDR_MASK 0x00000100UL /* Add hash table address
*/
00126
00127 /*
00128 * Interframe Gap Register (IFGR)
00129 */
00130 #define XEM_IFGP_PART1_MASK 0xF8000000UL /* Interframe Gap Part1 */
00131 #define XEM_IFGP_PART1_SHIFT 27
00132 #define XEM_IFGP_PART2_MASK 0x07C00000UL /* Interframe Gap Part2 */
00133 #define XEM_IFGP_PART2_SHIFT 22
00134
00135 /*
00136 * Station Address High Register (SAH)

00137 */
00138 #define XEM_SAH_ADDR_MASK 0x0000FFFFUL /* Station address high bytes
*/
00139
00140 /*
00141 * Station Address Low Register (SAL)
00142 */
00143 #define XEM_SAL_ADDR_MASK 0xFFFFFFFFUL /* Station address low bytes
*/
00144
00145 /*
00146 * MII Management Control Register (MGTCR)
00147 */
00148 #define XEM_MGTCR_START_MASK 0x80000000UL /* Start/Busy */
00149 #define XEM_MGTCR_RW_NOT_MASK 0x40000000UL /* Read/Write Not (direction)
*/
00150 #define XEM_MGTCR_PHY_ADDR_MASK 0x3E000000UL /* PHY address */
00151 #define XEM_MGTCR_PHY_ADDR_SHIFT 25 /* PHY address shift */
00152 #define XEM_MGTCR_REG_ADDR_MASK 0x01F00000UL /* Register address */
00153 #define XEM_MGTCR_REG_ADDR_SHIFT 20 /* Register addr shift */
00154 #define XEM_MGTCR_MII_ENABLE_MASK 0x00080000UL /* Enable MII from EMAC */
00155 #define XEM_MGTCR_RD_ERROR_MASK 0x00040000UL /* MII mgmt read error */
00156
00157 /*
00158 * MII Management Data Register (MGTDR)
00159 */
00160 #define XEM_MGTDR_DATA_MASK 0x0000FFFFUL /* MII data */
00161
00162 /*
00163 * Receive Packet Length Register (RPLR)
00164 */
00165 #define XEM_RPLR_LENGTH_MASK 0x0000FFFFUL /* Receive packet length */
00166
00167 /*
00168 * Transmit Packet Length Register (TPLR)
00169 */
00170 #define XEM_TPLR_LENGTH_MASK 0x0000FFFFUL /* Transmit packet length */
00171
00172 /*
00173 * Transmit Status Register (TSR)
00174 */
00175 #define XEM_TSR_EXCESS_DEFERRAL_MASK 0x80000000UL /* Transmit excess deferral
*/
00176 #define XEM_TSR_FIFO_UNDERRUN_MASK 0x40000000UL /* Packet FIFO underrun */
00177 #define XEM_TSR_ATTEMPTS_MASK 0x3E000000UL /* Transmission attempts */
00178 #define XEM_TSR_LATE_COLLISION_MASK 0x01000000UL /* Transmit late collision */
00179
00180 /*
00181 * Receive Missed Frame Count (RMFC)
00182 */
00183 #define XEM_RMFC_DATA_MASK 0x0000FFFFUL
00184

00185 /*
00186 * Receive Collision Count (RCC)
00187 */
00188 #define XEM_RCC_DATA_MASK 0x0000FFFFUL
00189
00190 /*
00191 * Receive FCS Error Count (RFCSEC)
00192 */
00193 #define XEM_RFCSEC_DATA_MASK 0x0000FFFFUL
00194
00195 /*
00196 * Receive Alignment Error Count (RALN)
00197 */
00198 #define XEM_RAEC_DATA_MASK 0x0000FFFFUL
00199
00200 /*
00201 * Transmit Excess Deferral Count (TEDC)
00202 */
00203 #define XEM_TEDC_DATA_MASK 0x0000FFFFUL
00204
00205
00206 /*
00207 * EMAC Interrupt Registers (Status and Enable) masks. These registers are
00208 * part of the IPIF IP Interrupt registers
00209 */
00210 #define XEM_EIR_XMIT_DONE_MASK 0x00000001UL /* Xmit complete */
00211 #define XEM_EIR_RECV_DONE_MASK 0x00000002UL /* Recv complete */
00212 #define XEM_EIR_XMIT_ERROR_MASK 0x00000004UL /* Xmit error */
00213 #define XEM_EIR_RECV_ERROR_MASK 0x00000008UL /* Recv error */
00214 #define XEM_EIR_XMIT_SFIFO_EMPTY_MASK 0x00000010UL /* Xmit status fifo empty
*/
00215 #define XEM_EIR_RECV_LFIFO_EMPTY_MASK 0x00000020UL /* Recv length fifo empty
*/
00216 #define XEM_EIR_XMIT_LFIFO_FULL_MASK 0x00000040UL /* Xmit length fifo full */
00217 #define XEM_EIR_RECV_LFIFO_OVER_MASK 0x00000080UL /* Recv length fifo
00218 * overrun */
00219 #define XEM_EIR_RECV_LFIFO_UNDER_MASK 0x00000100UL /* Recv length fifo
00220 * underrun */
00221 #define XEM_EIR_XMIT_SFIFO_OVER_MASK 0x00000200UL /* Xmit status fifo
00222 * overrun */
00223 #define XEM_EIR_XMIT_SFIFO_UNDER_MASK 0x00000400UL /* Transmit status fifo
00224 * underrun */
00225 #define XEM_EIR_XMIT_LFIFO_OVER_MASK 0x00000800UL /* Transmit length fifo
00226 * overrun */
00227 #define XEM_EIR_XMIT_LFIFO_UNDER_MASK 0x00001000UL /* Transmit length fifo
00228 * underrun */
00229 #define XEM_EIR_XMIT_PAUSE_MASK 0x00002000UL /* Transmit pause pkt
00230 * received */
00231 #define XEM_EIR_RECV_DFIFO_OVER_MASK 0x00004000UL /* Receive data fifo
00232 * overrun */
00233 #define XEM_EIR_RECV_MISSED_FRAME_MASK 0x00008000UL /* Receive missed frame
00234 * error */
00235 #define XEM_EIR_RECV_COLLISION_MASK 0x00010000UL /* Receive collision

00236 * error */
00237 #define XEM_EIR_RECV_FCS_ERROR_MASK 0x00020000UL /* Receive FCS error */
00238 #define XEM_EIR_RECV_LEN_ERROR_MASK 0x00040000UL /* Receive length field
00239 * error */
00240 #define XEM_EIR_RECV_SHORT_ERROR_MASK 0x00080000UL /* Receive short frame
00241 * error */
00242 #define XEM_EIR_RECV_LONG_ERROR_MASK 0x00100000UL /* Receive long frame
00243 * error */
00244 #define XEM_EIR_RECV_ALIGN_ERROR_MASK 0x00200000UL /* Receive alignment
00245 * error */
00246
00247
00248 /**************************** Type Definitions *******************************/
00249
00250 /***************** Macros (Inline Functions) Definitions *********************/
00251
00252 /***
00253 *
00254 * Low-level driver macros and functions. The list below provides signatures
00255 * to help the user use the macros.
00256 *
00257 * Xuint32 XEmac_mReadReg(Xuint32 BaseAddress, int RegOffset)
00258 * void XEmac_mWriteReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Mask)
00259 *
00260 * void XEmac_mSetControlReg(Xuint32 BaseAddress, Xuint32 Mask)
00261 * void XEmac_mSetMacAddress(Xuint32 BaseAddress, Xuint8 *AddressPtr)
00262 *
00263 * void XEmac_mEnable(Xuint32 BaseAddress)
00264 * void XEmac_mDisable(Xuint32 BaseAddress)
00265 *
00266 * Xboolean XEmac_mIsTxDone(Xuint32 BaseAddress)
00267 * Xboolean XEmac_mIsRxEmpty(Xuint32 BaseAddress)
00268 *
00269 * void XEmac_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, int Size)
00270 * int XEmac_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr)
00271 *
00272 ***/
00273
00274 /**/
00275 /**
00276 *
00277 * Read the given register.
00278 *
00279 * @param BaseAddress is the base address of the device
00280 * @param RegOffset is the register offset to be read
00281 *
00282 * @return The 32-bit value of the register
00283 *
00284 * @note None.
00285 *
00286 ***/
00287 #define XEmac_mReadReg(BaseAddress, RegOffset) \

00288 XIo_In32((BaseAddress) + (RegOffset))
00289
00290
00291 /**/
00292 /**
00293 *
00294 * Write the given register.
00295 *
00296 * @param BaseAddress is the base address of the device
00297 * @param RegOffset is the register offset to be written
00298 * @param Data is the 32-bit value to write to the register
00299 *
00300 * @return None.
00301 *
00302 * @note None.
00303 *
00304 ***/
00305 #define XEmac_mWriteReg(BaseAddress, RegOffset, Data) \

00306 XIo_Out32((BaseAddress) + (RegOffset), (Data))
00307
00308
00309 /**/
00310 /**
00311 *
00312 * Set the contents of the control register. Use the XEM_ECR_* constants
00313 * defined above to create the bit-mask to be written to the register.
00314 *
00315 * @param BaseAddress is the base address of the device
00316 * @param Mask is the 16-bit value to write to the control register
00317 *
00318 * @return None.
00319 *
00320 * @note None.
00321 *
00322 ***/
00323 #define XEmac_mSetControlReg(BaseAddress, Mask) \

00324 XIo_Out32((BaseAddress) + XEM_ECR_OFFSET, (Mask))
00325
00326
00327 /**/
00328 /**
00329 *
00330 * Set the station address of the EMAC device.
00331 *
00332 * @param BaseAddress is the base address of the device
00333 * @param AddressPtr is a pointer to a 6-byte MAC address
00334 *
00335 * @return None.
00336 *
00337 * @note None.
00338 *
00339 ***/

00340 #define XEmac_mSetMacAddress(BaseAddress, AddressPtr) \

00341 { \
00342 Xuint32 MacAddr; \
00343 \
00344 MacAddr = ((AddressPtr)[0] << 8) | (AddressPtr)[1]; \
00345 XIo_Out32((BaseAddress) + XEM_SAH_OFFSET, MacAddr); \
00346 \
00347 MacAddr = ((AddressPtr)[2] << 24) | ((AddressPtr)[3] << 16) | \
00348 ((AddressPtr)[4] << 8) | (AddressPtr)[5]; \
00349 \
00350 XIo_Out32((BaseAddress) + XEM_SAL_OFFSET, MacAddr); \
00351 }
00352
00353
00354 /**/
00355 /**
00356 *
00357 * Enable the transmitter and receiver. Preserve the contents of the control
00358 * register.
00359 *
00360 * @param BaseAddress is the base address of the device
00361 *
00362 * @return None.
00363 *
00364 * @note None.
00365 *
00366 ***/
00367 #define XEmac_mEnable(BaseAddress) \

00368 { \
00369 Xuint32 Control; \
00370 Control = XIo_In32((BaseAddress) + XEM_ECR_OFFSET); \
00371 Control &= ~(XEM_ECR_XMIT_RESET_MASK | XEM_ECR_RECV_RESET_MASK); \
00372 Control |= (XEM_ECR_XMIT_ENABLE_MASK | XEM_ECR_RECV_ENABLE_MASK); \
00373 XIo_Out32((BaseAddress) + XEM_ECR_OFFSET, Control); \
00374 }
00375
00376
00377 /**/
00378 /**
00379 *
00380 * Disable the transmitter and receiver. Preserve the contents of the control
00381 * register.
00382 *
00383 * @param BaseAddress is the base address of the device
00384 *
00385 * @return None.
00386 *
00387 * @note None.
00388 *
00389 ***/
00390 #define XEmac_mDisable(BaseAddress) \

00391 XIo_Out32((BaseAddress) + XEM_ECR_OFFSET, \

00392 XIo_In32((BaseAddress) + XEM_ECR_OFFSET) & \
00393 ~(XEM_ECR_XMIT_ENABLE_MASK | XEM_ECR_RECV_ENABLE_MASK))
00394
00395
00396 /**/
00397 /**
00398 *
00399 * Check to see if the transmission is complete.
00400 *
00401 * @param BaseAddress is the base address of the device
00402 *
00403 * @return XTRUE if it is done, or XFALSE if it is not.
00404 *
00405 * @note None.
00406 *
00407 ***/
00408 #define XEmac_mIsTxDone(BaseAddress) \

00409 (XIo_In32((BaseAddress) + XEM_ISR_OFFSET) &
XEM_EIR_XMIT_DONE_MASK)
00410
00411
00412 /**/
00413 /**
00414 *
00415 * Check to see if the receive FIFO is empty.
00416 *
00417 * @param BaseAddress is the base address of the device
00418 *
00419 * @return XTRUE if it is empty, or XFALSE if it is not.
00420 *
00421 * @note None.
00422 *
00423 ***/
00424 #define XEmac_mIsRxEmpty(BaseAddress) \

00425 (!(XIo_In32((BaseAddress) + XEM_ISR_OFFSET) &
XEM_EIR_RECV_DONE_MASK))
00426
00427
00428 /**/
00429 /**
00430 *
00431 * Reset MII compliant PHY
00432 *
00433 * @param BaseAddress is the base address of the device
00434 *
00435 * @return None.
00436 *
00437 * @note None.
00438 *
00439 ***/
00440 #define XEmac_mPhyReset(BaseAddress) \

00441 { \

00442 Xuint32 Control; \
00443 Control = XIo_In32((BaseAddress) + XEM_ECR_OFFSET); \
00444 Control &= ~XEM_ECR_PHY_ENABLE_MASK; \
00445 XIo_Out32((BaseAddress) + XEM_ECR_OFFSET, Control); \
00446 Control |= XEM_ECR_PHY_ENABLE_MASK; \
00447 XIo_Out32((BaseAddress) + XEM_ECR_OFFSET, Control); \
00448 }
00449
00450
00451 /************************** Function Prototypes ******************************/
00452
00453 void XEmac_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, int Size);

00454 int XEmac_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr);

00455
00456
00457 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_l.c File
Reference

Detailed Description

This file contains low-level polled functions to send and receive Ethernet frames.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 04/29/02 First release
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xemac_l.h"

Functions

void XEmac_SendFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, int Size)
int XEmac_RecvFrame (Xuint32 BaseAddress, Xuint8 *FramePtr)

Function Documentation

int XEmac_RecvFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr

)

Receive a frame. Wait for a frame to arrive.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to a word-aligned buffer where the frame will be stored.

Returns:
The size, in bytes, of the frame received.

Note:
None.

void XEmac_SendFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
int Size

)

Send an Ethernet frame. This size is the total frame size, including header. This function blocks
waiting for the frame to be transmitted.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to word-aligned frame
Size is the size, in bytes, of the frame

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_i.h
Go to the documentation of this file.

00001 /* $Id: xemac_i.h,v 1.1 2002/12/09 17:42:43 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file emac/v1_00_c/src/xemac_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between XEmac components. The identifiers in this file are not intended for
00029 * use external to the driver.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a rpm 07/31/01 First release
00037 * 1.00b rpm 02/20/02 Repartitioned files and functions
00038 * 1.00b rpm 04/29/02 Moved register definitions to xemac_l.h
00039 * 1.00c rpm 12/05/02 New version includes support for simple DMA
00040 * </pre>
00041 *
00042 **/

00043
00044 #ifndef XEMAC_I_H /* prevent circular inclusions */
00045 #define XEMAC_I_H /* by using protection macros */
00046
00047 /***************************** Include Files *********************************/
00048
00049 #include "xemac.h"

00050 #include "xemac_l.h"

00051
00052 /************************** Constant Definitions *****************************/
00053
00054 /*
00055 * Default buffer descriptor control word masks. The default send BD control
00056 * is set for incrementing the source address by one for each byte transferred,
00057 * and specify that the destination address (FIFO) is local to the device. The
00058 * default receive BD control is set for incrementing the destination address
00059 * by one for each byte transferred, and specify that the source address is
00060 * local to the device.
00061 */
00062 #define XEM_DFT_SEND_BD_MASK (XDC_DMACR_SOURCE_INCR_MASK | \
00063 XDC_DMACR_DEST_LOCAL_MASK)
00064 #define XEM_DFT_RECV_BD_MASK (XDC_DMACR_DEST_INCR_MASK | \
00065 XDC_DMACR_SOURCE_LOCAL_MASK)
00066
00067 /*
00068 * Masks for the IPIF Device Interrupt enable and status registers.
00069 */
00070 #define XEM_IPIF_EMAC_MASK 0x00000004UL /* MAC interrupt */
00071 #define XEM_IPIF_SEND_DMA_MASK 0x00000008UL /* Send DMA interrupt */
00072 #define XEM_IPIF_RECV_DMA_MASK 0x00000010UL /* Receive DMA interrupt */
00073 #define XEM_IPIF_RECV_FIFO_MASK 0x00000020UL /* Receive FIFO interrupt */
00074 #define XEM_IPIF_SEND_FIFO_MASK 0x00000040UL /* Send FIFO interrupt */
00075
00076 /*
00077 * Default IPIF Device Interrupt mask when configured for DMA
00078 */
00079 #define XEM_IPIF_DMA_DFT_MASK (XEM_IPIF_SEND_DMA_MASK | \
00080 XEM_IPIF_RECV_DMA_MASK | \
00081 XEM_IPIF_EMAC_MASK | \
00082 XEM_IPIF_SEND_FIFO_MASK | \
00083 XEM_IPIF_RECV_FIFO_MASK)
00084
00085 /*
00086 * Default IPIF Device Interrupt mask when configured without DMA
00087 */
00088 #define XEM_IPIF_FIFO_DFT_MASK (XEM_IPIF_EMAC_MASK | \
00089 XEM_IPIF_SEND_FIFO_MASK | \
00090 XEM_IPIF_RECV_FIFO_MASK)
00091
00092 #define XEM_IPIF_DMA_DEV_INTR_COUNT 7 /* Number of interrupt sources */
00093 #define XEM_IPIF_FIFO_DEV_INTR_COUNT 5 /* Number of interrupt sources */
00094 #define XEM_IPIF_DEVICE_INTR_COUNT 7 /* Number of interrupt sources */

00095 #define XEM_IPIF_IP_INTR_COUNT 22 /* Number of MAC interrupts */
00096
00097
00098 /* a mask for all transmit interrupts, used in polled mode */
00099 #define XEM_EIR_XMIT_ALL_MASK (XEM_EIR_XMIT_DONE_MASK | \
00100 XEM_EIR_XMIT_ERROR_MASK | \
00101 XEM_EIR_XMIT_SFIFO_EMPTY_MASK | \
00102 XEM_EIR_XMIT_LFIFO_FULL_MASK)
00103
00104 /* a mask for all receive interrupts, used in polled mode */
00105 #define XEM_EIR_RECV_ALL_MASK (XEM_EIR_RECV_DONE_MASK | \
00106 XEM_EIR_RECV_ERROR_MASK | \
00107 XEM_EIR_RECV_LFIFO_EMPTY_MASK | \
00108 XEM_EIR_RECV_LFIFO_OVER_MASK | \
00109 XEM_EIR_RECV_LFIFO_UNDER_MASK | \
00110 XEM_EIR_RECV_DFIFO_OVER_MASK | \
00111 XEM_EIR_RECV_MISSED_FRAME_MASK | \
00112 XEM_EIR_RECV_COLLISION_MASK | \
00113 XEM_EIR_RECV_FCS_ERROR_MASK | \
00114 XEM_EIR_RECV_LEN_ERROR_MASK | \
00115 XEM_EIR_RECV_SHORT_ERROR_MASK | \
00116 XEM_EIR_RECV_LONG_ERROR_MASK | \
00117 XEM_EIR_RECV_ALIGN_ERROR_MASK)
00118
00119 /* a default interrupt mask for scatter-gather DMA operation */
00120 #define XEM_EIR_DFT_SG_MASK (XEM_EIR_RECV_ERROR_MASK | \
00121 XEM_EIR_RECV_LFIFO_OVER_MASK | \
00122 XEM_EIR_RECV_LFIFO_UNDER_MASK | \
00123 XEM_EIR_XMIT_SFIFO_OVER_MASK | \
00124 XEM_EIR_XMIT_SFIFO_UNDER_MASK | \
00125 XEM_EIR_XMIT_LFIFO_OVER_MASK | \
00126 XEM_EIR_XMIT_LFIFO_UNDER_MASK | \
00127 XEM_EIR_RECV_DFIFO_OVER_MASK | \
00128 XEM_EIR_RECV_MISSED_FRAME_MASK | \
00129 XEM_EIR_RECV_COLLISION_MASK | \
00130 XEM_EIR_RECV_FCS_ERROR_MASK | \
00131 XEM_EIR_RECV_LEN_ERROR_MASK | \
00132 XEM_EIR_RECV_SHORT_ERROR_MASK | \
00133 XEM_EIR_RECV_LONG_ERROR_MASK | \
00134 XEM_EIR_RECV_ALIGN_ERROR_MASK)
00135
00136 /* a default interrupt mask for non-DMA operation (direct FIFOs) */
00137 #define XEM_EIR_DFT_FIFO_MASK (XEM_EIR_XMIT_DONE_MASK | \
00138 XEM_EIR_RECV_DONE_MASK | \
00139 XEM_EIR_DFT_SG_MASK)
00140
00141
00142 /*
00143 * Mask for the DMA interrupt enable and status registers when configured
00144 * for scatter-gather DMA.
00145 */
00146 #define XEM_DMA_SG_INTR_MASK (XDC_IXR_DMA_ERROR_MASK | \
00147 XDC_IXR_PKT_THRESHOLD_MASK | \

00148 XDC_IXR_PKT_WAIT_BOUND_MASK | \
00149 XDC_IXR_SG_END_MASK)
00150
00151
00152 /**************************** Type Definitions *******************************/
00153
00154 /***************** Macros (Inline Functions) Definitions *********************/
00155
00156
00157 /***/
00158 /*
00159 *
00160 * Clears a structure of given size, in bytes, by setting each byte to 0.
00161 *
00162 * @param StructPtr is a pointer to the structure to be cleared.
00163 * @param NumBytes is the number of bytes in the structure.
00164 *
00165 * @return
00166 *
00167 * None.
00168 *
00169 * @note
00170 *
00171 * Signature: void XEmac_mClearStruct(Xuint8 *StructPtr, unsigned int NumBytes)
00172 *
00173 **/
00174 #define XEmac_mClearStruct(StructPtr, NumBytes) \
00175 { \
00176 int i; \
00177 Xuint8 *BytePtr = (Xuint8 *)(StructPtr); \
00178 for (i=0; i < (unsigned int)(NumBytes); i++) \
00179 { \
00180 *BytePtr++ = 0; \
00181 } \
00182 }
00183
00184 /************************** Variable Definitions *****************************/
00185
00186 extern XEmac_Config XEmac_ConfigTable[];

00187
00188 /************************** Function Prototypes ******************************/
00189
00190 void XEmac_CheckEmacError(XEmac *InstancePtr, Xuint32 IntrStatus);

00191 void XEmac_CheckFifoRecvError(XEmac *InstancePtr);

00192 void XEmac_CheckFifoSendError(XEmac *InstancePtr);

00193
00194 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_i.h File
Reference

Detailed Description

This header file contains internal identifiers, which are those shared between XEmac components. The
identifiers in this file are not intended for use external to the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00b rpm 04/29/02 Moved register definitions to xemac_l.h

 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xemac.h"

#include "xemac_l.h"

Go to the source code of this file.

Variables

XEmac_Config XEmac_ConfigTable []

Variable Documentation

XEmac_Config XEmac_ConfigTable[] ()

 This table contains configuration information for each EMAC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_selftest.c File
Reference

Detailed Description

Self-test and diagnostic functions of the XEmac driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XEmac_SelfTest (XEmac *InstancePtr)

Function Documentation

XStatus XEmac_SelfTest (XEmac * InstancePtr)

Performs a self-test on the Ethernet device. The test includes:

● Run self-test on DMA channel, FIFO, and IPIF components
● Reset the Ethernet device, check its registers for proper reset values, and run an internal loopback test on the device.

The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default configuration. The
caller is responsible for re-configuring the device after the self-test is run, and starting it when ready to send and receive
frames.

It should be noted that data caching must be disabled when this function is called because the DMA self-test uses two local
buffers (on the stack) for the transfer test.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:

 XST_SUCCESS Self-test was successful
 XST_PFIFO_BAD_REG_VALUE FIFO failed register self-test
 XST_DMA_TRANSFER_ERROR DMA failed data transfer self-test
 XST_DMA_RESET_REGISTER_ERROR DMA control register value was incorrect
 after a reset
 XST_REGISTER_ERROR Ethernet failed register reset test
 XST_LOOPBACK_ERROR Internal loopback failed
 XST_IPIF_REG_WIDTH_ERROR An invalid register width was passed into
 the function
 XST_IPIF_RESET_REGISTER_ERROR The value of a register at reset was invalid
 XST_IPIF_DEVICE_STATUS_ERROR A write to the device status register did
 not read back correctly
 XST_IPIF_DEVICE_ACK_ERROR A bit in the device status register did not
 reset when acked
 XST_IPIF_DEVICE_ENABLE_ERROR The device interrupt enable register was not
 updated correctly by the hardware when other
 registers were written to
 XST_IPIF_IP_STATUS_ERROR A write to the IP interrupt status
 register did not read back correctly
 XST_IPIF_IP_ACK_ERROR One or more bits in the IP status
 register did not reset when acked
 XST_IPIF_IP_ENABLE_ERROR The IP interrupt enable register
 was not updated correctly when other
 registers were written to

Note:
This function makes use of options-related functions, and the XEmac_PollSend() and XEmac_PollRecv()
functions.

Because this test uses the PollSend function for its loopback testing, there is the possibility that this function will not
return if the hardware is broken (i.e., it never sets the status bit indicating that transmission is done). If this is of
concern to the user, the user should provide protection from this problem - perhaps by using a different timer thread

to monitor the self-test thread.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_polled.c File
Reference

Detailed Description

Contains functions used when the driver is in polled mode. Use the XEmac_SetOptions() function to put
the driver into polled mode.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XEmac_PollSend (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XEmac_PollRecv (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)

Function Documentation

XStatus XEmac_PollRecv (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame in polled mode. The device/driver must be in polled mode before calling
this function. The driver receives the frame directly from the MAC's packet FIFO. This is a non-
blocking receive, in that if there is no frame ready to be received at the device, the function returns
with an error. The MAC's error status is not checked, so statistics are not updated for polled receive.
The buffer into which the frame will be received must be word-aligned.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame
will be copied.

ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that
contains the size of the buffer on entry into the function and the size the
received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the

frame waiting in the FIFO.

Note:
Input buffer must be big enough to hold the largest Ethernet frame. Buffer must also be 32-bit
aligned.

XStatus XEmac_PollSend (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame in polled mode. The device/driver must be in polled mode before calling this
function. The driver writes the frame directly to the MAC's packet FIFO, then enters a loop checking
the device status for completion or error. Statistics are updated if an error occurs. The buffer to be
sent must be word-aligned.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including
the destination and source addresses, the type/length field, and the data field. It is also assumed that
upper layer software does not append FCS at the end of the frame.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_FIFO_NO_ROOM if there is no room in the EMAC's length FIFO for this frame
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical and

requires the caller to reset the device.
❍ XST_EMAC_COLLISION if the send failed due to excess deferral or late collision

Note:
There is the possibility that this function will not return if the hardware is broken (i.e., it never
sets the status bit indicating that transmission is done). If this is of concern to the user, the user
should provide protection from this problem - perhaps by using a different timer thread to
monitor the PollSend thread. On a 10Mbps MAC, it takes about 1.21 msecs to transmit a
maximum size Ethernet frame (1518 bytes). On a 100Mbps MAC, it takes about 121 usecs to
transmit a maximum size Ethernet frame.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_intr_dma.c File
Reference

Detailed Description

Contains functions used in interrupt mode when configured with scatter-gather DMA.

The interrupt handler, XEmac_IntrHandlerDma(), must be connected by the user to the interrupt controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA and the delay
 argument to SgSend
 1.00c rpm 02/03/03 The XST_DMA_SG_COUNT_EXCEEDED return code was removed
 from SetPktThreshold in the internal DMA driver. Also
 avoided compiler warnings by initializing Result in the
 interrupt service routines.
 1.00c rpm 03/26/03 Fixed a problem in the interrupt service routines where
 the interrupt status was toggled clear after a call to
 ErrorHandler, but if ErrorHandler reset the device the
 toggle actually asserted the interrupt because the
 reset had cleared it.

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

#include "xbuf_descriptor.h"
#include "xdma_channel.h"
#include "xipif_v1_23_b.h"

Functions

XStatus XEmac_SgSend (XEmac *InstancePtr, XBufDescriptor *BdPtr, int Delay)
XStatus XEmac_SgRecv (XEmac *InstancePtr, XBufDescriptor *BdPtr)

void XEmac_IntrHandlerDma (void *InstancePtr)
XStatus XEmac_SetPktThreshold (XEmac *InstancePtr, Xuint32 Direction, Xuint8 Threshold)
XStatus XEmac_GetPktThreshold (XEmac *InstancePtr, Xuint32 Direction, Xuint8 *ThreshPtr)
XStatus XEmac_SetPktWaitBound (XEmac *InstancePtr, Xuint32 Direction, Xuint32 TimerValue)
XStatus XEmac_GetPktWaitBound (XEmac *InstancePtr, Xuint32 Direction, Xuint32 *WaitPtr)
XStatus XEmac_SetSgRecvSpace (XEmac *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)
XStatus XEmac_SetSgSendSpace (XEmac *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)

void XEmac_SetSgRecvHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_SgHandler FuncPtr)
void XEmac_SetSgSendHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_SgHandler FuncPtr)

Function Documentation

XStatus XEmac_GetPktThreshold (XEmac * InstancePtr,
Xuint32 Direction,
Xuint8 * ThreshPtr

)

Get the value of the packet count threshold for this driver/device. The packet count threshold is used for interrupt
coalescing, which reduces the frequency of interrupts from the device to the processor. In this case, the scatter-
gather DMA engine only interrupts when the packet count threshold is reached, instead of interrupting for each
packet. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame
in our case.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
ThreshPtr is a pointer to the byte into which the current value of the packet threshold register will be

copied. An output parameter. A value of 0 indicates the use of packet threshold by the
hardware is disabled.

Returns:
❍ XST_SUCCESS if the packet threshold was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also

catch this error.

Note:

None.

XStatus XEmac_GetPktWaitBound (XEmac * InstancePtr,
Xuint32 Direction,
Xuint32 * WaitPtr

)

Get the packet wait bound timer for this driver/device. The packet wait bound is used during interrupt coalescing
to trigger an interrupt when not enough packets have been received to reach the packet count threshold. A packet
is a generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case. The
timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
WaitPtr is a pointer to the byte into which the current value of the packet wait bound register will be

copied. An output parameter. Units are in milliseconds in the range 0 - 1023. A value of 0
indicates the packet wait bound timer is disabled.

Returns:
❍ XST_SUCCESS if the packet wait bound was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also

catch this error.

Note:
None.

void XEmac_IntrHandlerDma (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured with scatter- gather DMA.

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be: MAC, Recv
Packet FIFO, Send Packet FIFO, Recv DMA channel, or Send DMA channel. The packet FIFOs only interrupt
during "deadlock" conditions.

Parameters:
InstancePtr is a pointer to the XEmac instance that just interrupted.

Returns:
None.

Note:
None.

XStatus XEmac_SetPktThreshold (XEmac * InstancePtr,
Xuint32 Direction,
Xuint8 Threshold

)

Set the packet count threshold for this device. The device must be stopped before setting the threshold. The
packet count threshold is used for interrupt coalescing, which reduces the frequency of interrupts from the device
to the processor. In this case, the scatter-gather DMA engine only interrupts when the packet count threshold is
reached, instead of interrupting for each packet. A packet is a generic term used by the scatter-gather DMA
engine, and is equivalent to an Ethernet frame in our case.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
Threshold is the value of the packet threshold count used during interrupt coalescing. A value of 0

disables the use of packet threshold by the hardware.

Returns:
❍ XST_SUCCESS if the threshold was successfully set
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also

catch this error.

Note:
The packet threshold could be set to larger than the number of descriptors allocated to the DMA channel.
In this case, the wait bound will take over and always indicate data arrival. There was a check in this
function that returned an error if the treshold was larger than the number of descriptors, but that was
removed because users would then have to set the threshold only after they set descriptor space, which is
an order dependency that caused confustion.

XStatus XEmac_SetPktWaitBound (XEmac * InstancePtr,
Xuint32 Direction,
Xuint32 TimerValue

)

Set the packet wait bound timer for this driver/device. The device must be stopped before setting the timer value.
The packet wait bound is used during interrupt coalescing to trigger an interrupt when not enough packets have
been received to reach the packet count threshold. A packet is a generic term used by the scatter-gather DMA
engine, and is equivalent to an Ethernet frame in our case. The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
TimerValue is the value of the packet wait bound used during interrupt coalescing. It is in milliseconds in

the range 0 - 1023. A value of 0 disables the packet wait bound timer.

Returns:
❍ XST_SUCCESS if the packet wait bound was set successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also

catch this error.

Note:
None.

void XEmac_SetSgRecvHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_SgHandler FuncPtr

)

Set the callback function for handling received frames in scatter-gather DMA mode. The upper layer software
should call this function during initialization. The callback is called once per frame received. The head of a
descriptor list is passed in along with the number of descriptors in the list. Before leaving the callback, the upper
layer software should attach a new buffer to each descriptor in the list.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. Sending the
received frame up the protocol stack should be done at task-level. If there are other potentially slow operations
within the callback, these too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter
correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XEmac_SetSgRecvSpace (XEmac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This function
should only be called once, during initialization of the Ethernet driver. The memory space must be big enough to
hold some number of descriptors, depending on the needs of the system. The xemac.h file defines minimum and
default numbers of descriptors which can be used to allocate this memory space.

The memory space must be word-aligned. An assert will occur if asserts are turned on and the memory is not
word-aligned.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XEmac_Initialize() function because the DMA channel components must be initialized before the
memory space is set.

void XEmac_SetSgSendHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_SgHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames in scatter-gather DMA mode. The
upper layer software should call this function during initialization. The callback is called once per frame sent.
The head of a descriptor list is passed in along with the number of descriptors in the list. The callback is
responsible for freeing buffers attached to these descriptors.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are
potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter
correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XEmac_SetSgSendSpace (XEmac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This function
should only be called once, during initialization of the Ethernet driver. The memory space must be big enough to
hold some number of descriptors, depending on the needs of the system. The xemac.h file defines minimum and
default numbers of descriptors which can be used to allocate this memory space.

The memory space must be word-aligned. An assert will occur if asserts are turned on and the memory is not
word-aligned.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

MemoryPtr is a pointer to the word-aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:

If the device is configured for scatter-gather DMA, this function must be called AFTER the
XEmac_Initialize() function because the DMA channel components must be initialized before the
memory space is set.

XStatus XEmac_SgRecv (XEmac * InstancePtr,
XBufDescriptor * BdPtr

)

Add a descriptor, with an attached empty buffer, into the receive descriptor list. The buffer attached to the
descriptor must be word-aligned. This is used by the upper layer software during initialization when first setting
up the receive descriptors, and also during reception of frames to replace filled buffers with empty buffers. This
function can be called when the device is started or stopped. Note that it does start the scatter-gather DMA
engine. Although this is not necessary during initialization, it is not a problem during initialization because the
MAC receiver is not yet started.

The buffer attached to the descriptor must be word-aligned on both the front end and the back end.

Notification of received frames are done asynchronously through the receive callback function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list

because a locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the

DMA channel believes there are no new descriptors to commit.

XStatus XEmac_SgSend (XEmac * InstancePtr,
XBufDescriptor * BdPtr,
int Delay

)

Send an Ethernet frame using scatter-gather DMA. The caller attaches the frame to one or more buffer
descriptors, then calls this function once for each descriptor. The caller is responsible for allocating and setting
up the descriptor. An entire Ethernet frame may or may not be contained within one descriptor. This function
simply inserts the descriptor into the scatter- gather engine's transmit list. The caller is responsible for providing
mutual exclusion to guarantee that a frame is contiguous in the transmit list. The buffer attached to the descriptor
must be word-aligned.

The driver updates the descriptor with the device control register before being inserted into the transmit list. If
this is the last descriptor in the frame, the inserts are committed, which means the descriptors for this frame are
now available for transmission.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the
destination and source addresses, the type/length field, and the data field. It is also assumed that upper layer
software does not append FCS at the end of the frame.

The buffer attached to the descriptor must be word-aligned on the front end.

This call is non-blocking. Notification of error or successful transmission is done asynchronously through the
send or error callback function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.
Delay indicates whether to start the scatter-gather DMA channel immediately, or whether to wait.

This allows the user to build up a list of more than one descriptor before starting the
transmission of the packets, which allows the application to keep up with DMA and have a
constant stream of frames being transmitted. Use XEM_SGDMA_NODELAY or
XEM_SGDMA_DELAY, defined in xemac.h, as the value of this argument. If the user
chooses to delay and build a list, the user must call this function with the
XEM_SGDMA_NODELAY option or call XEmac_Start() to kick off the tranmissions.

Returns:
❍ XST_SUCCESS if the buffer was successfull sent
❍ XST_DEVICE_IS_STOPPED if the Ethernet MAC has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list

because a locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the

DMA channel believes there are no new descriptors to commit. If this is ever encountered, there is
likely a thread mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there
are to be multiple threads that can call it.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_intr_fifo.c File
Reference

Detailed Description

Contains functions related to interrupt mode using direct FIFO I/O or simple DMA. The driver uses
simple DMA if the device is configured with DMA, otherwise it uses direct FIFO access.

The interrupt handler, XEmac_IntrHandlerFifo(), must be connected by the user to the interrupt
controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA
 1.00c rpm 04/01/03 Added check in FifoSend for room in the data FIFO
 before starting a simple DMA transfer.

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XEmac_FifoSend (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XEmac_FifoRecv (XEmac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)

void XEmac_IntrHandlerFifo (void *InstancePtr)
void XEmac_SetFifoRecvHandler (XEmac *InstancePtr, void *CallBackRef,

XEmac_FifoHandler FuncPtr)
void XEmac_SetFifoSendHandler (XEmac *InstancePtr, void *CallBackRef,

XEmac_FifoHandler FuncPtr)

Function Documentation

XStatus XEmac_FifoRecv (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame into the buffer passed as an argument. This function is called in response
to the callback function for received frames being called by the driver. The callback function is set up
using SetFifoRecvHandler, and is invoked when the driver receives an interrupt indicating a received
frame. The driver expects the upper layer software to call this function, FifoRecv, to receive the
frame. The buffer supplied should be large enough to hold a maximum-size Ethernet frame.

The buffer into which the frame will be received must be word-aligned.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from the Emac
to memory. This means that this buffer should not be cached. See the comment section "Simple
DMA" in xemac.h for more information.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame
will be copied.

ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that
contains the size of the buffer on entry into the function and the size the
received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode

❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the

frame waiting in the FIFO.
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The

user should treat this as a fatal error that requires a reset of the EMAC device.

Note:
The input buffer must be big enough to hold the largest Ethernet frame.

XStatus XEmac_FifoSend (XEmac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame using direct FIFO I/O or simple DMA with interrupts. The caller provides a
contiguous-memory buffer and its length. The buffer must be word-aligned. The callback function set
by using SetFifoSendHandler is invoked when the transmission is complete.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including
the destination and source addresses, the type/length field, and the data field.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from memory
to the Emac. This means that this buffer should not be cached. See the comment section "Simple
DMA" in xemac.h for more information.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was successfully sent. An interrupt is generated when the

EMAC transmits the frame and the driver calls the callback set with
XEmac_SetFifoSendHandler()

❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_FIFO_NO_ROOM if there is no room in the FIFO for this frame
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The

user should treat this as a fatal error that requires a reset of the EMAC device.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

void XEmac_IntrHandlerFifo (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured for direct FIFO communication or
simple DMA.

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be:
MAC, Recv Packet FIFO, or Send Packet FIFO. The packet FIFOs only interrupt during "deadlock"
conditions. All other FIFO-related interrupts are generated by the MAC.

Parameters:
InstancePtr is a pointer to the XEmac instance that just interrupted.

Returns:
None.

Note:
None.

void XEmac_SetFifoRecvHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_FifoHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames when configured for direct
memory-mapped I/O using FIFOs. The upper layer software should call this function during
initialization. The callback is called by the driver once per frame sent. The callback is responsible for
freeing the transmitted buffer if necessary.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XEmac_SetFifoSendHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_FifoHandler FuncPtr

)

Set the callback function for handling received frames when configured for direct memory-mapped
I/O using FIFOs. The upper layer software should call this function during initialization. The callback
is called once per frame received. During the callback, the upper layer software should call FifoRecv
to retrieve the received frame.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly.
Sending the received frame up the protocol stack should be done at task-level. If there are other
potentially slow operations within the callback, these too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_intr.c File
Reference

Detailed Description

This file contains general interrupt-related functions of the XEmac driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA
 1.00c rpm 03/31/03 Added comment to indicate that no Receive Length FIFO
 overrun interrupts occur in v1.00l and later of the EMAC
 device. This avoids the need to reset the device on
 receive overruns.

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

void XEmac_SetErrorHandler (XEmac *InstancePtr, void *CallBackRef, XEmac_ErrorHandler FuncPtr)

Function Documentation

void XEmac_SetErrorHandler (XEmac * InstancePtr,
void * CallBackRef,
XEmac_ErrorHandler FuncPtr

)

Set the callback function for handling asynchronous errors. The upper layer software should call this function
during initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are
potentially slow operations within the callback, these should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus error or
bus timeout. The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock condition in the
packet FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable MAC error occurred, usually an overrun or underrun.
The handler must reset and re-configure the device.

● XST_DMA_SG_NO_LIST indicates an attempt was made to access a scatter-gather DMA list that has
not yet been created.

● XST_DMA_SG_LIST_EMPTY indicates the driver tried to get a descriptor from the receive descriptor
list, but the list was empty.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the
adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_options.c File
Reference

Detailed Description

Functions in this file handle configuration of the XEmac driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

Data Structures

struct OptionMap

Functions

XStatus XEmac_SetOptions (XEmac *InstancePtr, Xuint32 OptionsFlag)

Xuint32 XEmac_GetOptions (XEmac *InstancePtr)
XStatus XEmac_SetInterframeGap (XEmac *InstancePtr, Xuint8 Part1, Xuint8 Part2)

void XEmac_GetInterframeGap (XEmac *InstancePtr, Xuint8 *Part1Ptr, Xuint8 *Part2Ptr)

Function Documentation

void XEmac_GetInterframeGap (XEmac * InstancePtr,
Xuint8 * Part1Ptr,
Xuint8 * Part2Ptr

)

Get the interframe gap, parts 1 and 2. See the description of interframe gap above in
XEmac_SetInterframeGap().

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Part1Ptr is a pointer to an 8-bit buffer into which the interframe gap part 1 value will be
copied.

Part2Ptr is a pointer to an 8-bit buffer into which the interframe gap part 2 value will be
copied.

Returns:
None. The values of the interframe gap parts are copied into the output parameters.

Xuint32 XEmac_GetOptions (XEmac * InstancePtr)

Get Ethernet driver/device options. The 32-bit value returned is a bit-mask representing the options. A
one (1) in the bit-mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
The 32-bit value of the Ethernet options. The value is a bit-mask representing all options that
are currently enabled. See xemac.h for a description of the available options.

Note:
None.

XStatus XEmac_SetInterframeGap (XEmac * InstancePtr,
Xuint8 Part1,
Xuint8 Part2

)

Set the Interframe Gap (IFG), which is the time the MAC delays between transmitting frames. There
are two parts required. The total interframe gap is the total of the two parts. The values provided for
the Part1 and Part2 parameters are multiplied by 4 to obtain the bit-time interval. The first part should
be the first 2/3 of the total interframe gap. The MAC will reset the interframe gap timer if carrier
sense becomes true during the period defined by interframe gap Part1. Part1 may be shorter than 2/3
the total and can be as small as zero. The second part should be the last 1/3 of the total interframe gap,
but can be as large as the total interframe gap. The MAC will not reset the interframe gap timer if
carrier sense becomes true during the period defined by interframe gap Part2.

The device must be stopped before setting the interframe gap.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Part1 is the interframe gap part 1 (which will be multiplied by 4 to get the bit-time
interval).

Part2 is the interframe gap part 2 (which will be multiplied by 4 to get the bit-time
interval).

Returns:
❍ XST_SUCCESS if the interframe gap was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not been stopped

Note:
None.

XStatus XEmac_SetOptions (XEmac * InstancePtr,
Xuint32 OptionsFlag

)

Set Ethernet driver/device options. The device must be stopped before calling this function. The
options are contained within a bit-mask with each bit representing an option (i.e., you can OR the
options together). A one (1) in the bit-mask turns an option on, and a zero (0) turns the option off.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

OptionsFlag is a bit-mask representing the Ethernet options to turn on or off. See xemac.h
for a description of the available options.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
This function is not thread-safe and makes use of internal resources that are shared between
the Start, Stop, and SetOptions functions, so if one task might be setting device options while
another is trying to start the device, protection of this shared data (typically using a semaphore)
is required.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_multicast.c File
Reference

Detailed Description

Contains functions to configure multicast addressing in the Ethernet MAC.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

Functions

XStatus XEmac_MulticastAdd (XEmac *InstancePtr, Xuint8 *AddressPtr)
XStatus XEmac_MulticastClear (XEmac *InstancePtr)

Function Documentation

XStatus XEmac_MulticastAdd (XEmac * InstancePtr,
Xuint8 * AddressPtr

)

Add a multicast address to the list of multicast addresses from which the EMAC accepts frames. The
EMAC uses a hash table for multicast address filtering. Obviously, the more multicast addresses that
are added reduces the accuracy of the address filtering. The upper layer software that receives
multicast frames should perform additional filtering when accuracy must be guaranteed. There is no
way to retrieve a multicast address or the multicast address list once added. The upper layer software
should maintain its own list of multicast addresses. The device must be stopped before calling this
function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

AddressPtr is a pointer to a 6-byte multicast address.

Returns:
❍ XST_SUCCESS if the multicast address was added successfully
❍ XST_NO_FEATURE if the device is not configured with multicast support
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
Not currently supported.

XStatus XEmac_MulticastClear (XEmac * InstancePtr)

Clear the hash table used by the EMAC for multicast address filtering. The entire hash table is
cleared, meaning no multicast frames will be accepted after this function is called. If this function is
used to delete one or more multicast addresses, the upper layer software is responsible for adding
back those addresses still needed for address filtering. The device must be stopped before calling this
function.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
❍ XST_SUCCESS if the multicast address list was cleared
❍ XST_NO_FEATURE if the device is not configured with multicast support
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:

Not currently supported.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_phy.c File
Reference

Detailed Description

Contains functions to read and write the PHY through the Ethernet MAC MII registers. These assume an
MII-compliant PHY.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xemac_i.h"

#include "xio.h"

Functions

XStatus XEmac_PhyRead (XEmac *InstancePtr, Xuint32 PhyAddress, Xuint32 RegisterNum,
Xuint16 *PhyDataPtr)

XStatus XEmac_PhyWrite (XEmac *InstancePtr, Xuint32 PhyAddress, Xuint32 RegisterNum,
Xuint16 PhyData)

Function Documentation

XStatus XEmac_PhyRead (XEmac * InstancePtr,
Xuint32 PhyAddress,
Xuint32 RegisterNum,
Xuint16 * PhyDataPtr

)

Read the current value of the PHY register indicated by the PhyAddress and the RegisterNum
parameters. The MAC provides the driver with the ability to talk to a PHY that adheres to the Media
Independent Interface (MII) as defined in the IEEE 802.3 standard.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

PhyAddress is the address of the PHY to be read (supports multiple PHYs)
RegisterNum is the register number, 0-31, of the specific PHY register to read
PhyDataPtr is an output parameter, and points to a 16-bit buffer into which the current value

of the register will be copied.

Returns:
❍ XST_SUCCESS if the PHY was read from successfully
❍ XST_NO_FEATURE if the device is not configured with MII support
❍ XST_EMAC_MII_BUSY if there is another PHY operation in progress
❍ XST_EMAC_MII_READ_ERROR if a read error occurred between the MAC and the

PHY

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

There is the possibility that this function will not return if the hardware is broken (i.e., it never
sets the status bit indicating that the read is done). If this is of concern to the user, the user
should provide protection from this problem - perhaps by using a different timer thread to
monitor the PhyRead thread.

XStatus XEmac_PhyWrite (XEmac * InstancePtr,
Xuint32 PhyAddress,
Xuint32 RegisterNum,
Xuint16 PhyData

)

Write data to the specified PHY register. The Ethernet driver does not require the device to be
stopped before writing to the PHY. Although it is probably a good idea to stop the device, it is the
responsibility of the application to deem this necessary. The MAC provides the driver with the ability
to talk to a PHY that adheres to the Media Independent Interface (MII) as defined in the IEEE 802.3
standard.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

PhyAddress is the address of the PHY to be written (supports multiple PHYs)
RegisterNum is the register number, 0-31, of the specific PHY register to write
PhyData is the 16-bit value that will be written to the register

Returns:
❍ XST_SUCCESS if the PHY was written to successfully. Since there is no error status

from the MAC on a write, the user should read the PHY to verify the write was
successful.

❍ XST_NO_FEATURE if the device is not configured with MII support
❍ XST_EMAC_MII_BUSY if there is another PHY operation in progress

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

There is the possibility that this function will not return if the hardware is broken (i.e., it never
sets the status bit indicating that the write is done). If this is of concern to the user, the user
should provide protection from this problem - perhaps by using a different timer thread to
monitor the PhyWrite thread.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emac/v1_00_c/src/xemac_stats.c File
Reference

Detailed Description

Contains functions to get and clear the XEmac driver statistics.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 07/31/01 First release
 1.00b rpm 02/20/02 Repartitioned files and functions
 1.00c rpm 12/05/02 New version includes support for simple DMA

#include "xbasic_types.h"

#include "xemac_i.h"

Functions

void XEmac_GetStats (XEmac *InstancePtr, XEmac_Stats *StatsPtr)
void XEmac_ClearStats (XEmac *InstancePtr)

Function Documentation

void XEmac_ClearStats (XEmac * InstancePtr)

Clear the XEmacStats structure for this driver.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

Returns:
None.

Note:
None.

void XEmac_GetStats (XEmac * InstancePtr,
XEmac_Stats * StatsPtr

)

Get a copy of the XEmacStats structure, which contains the current statistics for this driver. The
statistics are only cleared at initialization or on demand using the XEmac_ClearStats() function.

The DmaErrors and FifoErrors counts indicate that the device has been or needs to be reset. Reset of
the device is the responsibility of the upper layer software.

Parameters:
InstancePtr is a pointer to the XEmac instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current
statistics will be copied.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emaclite/v1_00_a/src/xemaclite_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions and macros that can be used to access
the device.

The Xilinx Ethernet Lite driver component. This component supports the Xilinx Lite Ethernet 10/100
MAC (EMAC Lite).

The Xilinx Ethernet Lite 10/100 MAC supports the following features:

● Media Independent Interface (MII) for connection to external 10/100 Mbps PHY transceivers.
● Independent internal transmit and receive buffers
● CSMA/CD compliant operations for half-duplex modes
● Unicast and broadcast
● Automatic FCS insertion
● Automatic pad insertion on transmit

The Xilinx Ethernet Lite 10/100 MAC does not support the following features:

● interrupts
● multi-frame buffering only 1 transmit frame is allowed into the transmit buffer only 1 receive

frame is allowed into the receive buffer. the hardware blocks reception until buffer is emptied
● Pause frame (flow control) detection in full-duplex mode
● Programmable interframe gap
● Multicast and promiscuous address filtering
● Internal loopback
● Automatic source address insertion or overwrite (programmable)

Driver Description

The device driver enables higher layer software (e.g., an application) to communicate to the EMAC Lite.
The driver handles transmission and reception of Ethernet frames, as well as configuration of the
controller. It does not handle protocol stack functionality such as Link Layer Control (LLC) or the
Address Resolution Protocol (ARP). The protocol stack that makes use of the driver handles this
functionality. This implies that the driver is simply a pass-through mechanism between a protocol stack
and the EMAC Lite.

Since the driver is a simple pass-through mechanism between a protocol stack and the EMAC Lite, no
assembly or disassembly of Ethernet frames is done at the driver-level. This assumes that the protocol
stack passes a correctly formatted Ethernet frame to the driver for transmission, and that the driver does
not validate the contents of an incoming frame.

Note:
None

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 06/01/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XEmacLite_mIsTxDone(BaseAddress)
#define XEmacLite_mIsRxEmpty(BaseAddress)

Functions

void XEmacLite_SetMacAddress (Xuint32 BaseAddress, Xuint8 *AddressPtr)
void XEmacLite_SendFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, unsigned Size)

Xuint16 XEmacLite_RecvFrame (Xuint32 BaseAddress, Xuint8 *FramePtr)

Define Documentation

#define XEmacLite_mIsRxEmpty(BaseAddress)

Check to see if the receive is empty.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is empty, or XFALSE if it is not.

Note:
Xboolean XEmacLite_mIsRxEmpty(Xuint32 BaseAddress)

#define XEmacLite_mIsTxDone(BaseAddress)

Check to see if the transmission is complete.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is done, or XFALSE if it is not.

Note:
Xboolean XEmacLite_mIsTxDone(Xuint32 BaseAddress)

Function Documentation

Xuint16 XEmacLite_RecvFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr

)

Receive a frame. Wait for a frame to arrive.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to a buffer where the frame will be stored.

Returns:
The type/length field of the frame received. When the type/length field contains the type ,
XEL_RPLR_MAX_LENGTH bytes will be copied out of the buffer and it is up to the higher
layers to sort out the frame.

Note:
This function call is blocking in nature, i.e. it will wait until a frame arrives.

The hardware is actually a 32-bit access of which the least significant 8 bits are actually used. This
forces the strange 32-bit read of the receive buffer in the buffer copy and the increment by 4 in the
source address.

void XEmacLite_SendFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
unsigned Size

)

Send an Ethernet frame. The size is the total frame size, including header. This function blocks
waiting for the frame to be transmitted.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to frame
Size is the size, in bytes, of the frame

Returns:
None.

Note:
This function call is blocking in nature, i.e. it will wait until the frame is transmitted.

The hardware is actually a 32-bit access of which the least significant 8 bits are actually used. This
forces the strange 32-bit write of the byte array in the buffer copy and the increment by 4 in the
destination address.

void XEmacLite_SetMacAddress (Xuint32 BaseAddress,
Xuint8 * AddressPtr

)

Set the MAC address for this device. The address is a 48-bit value.

Parameters:
BaseAddress is register base address of the XEmacLite device.
AddressPtr is a pointer to a 6-byte MAC address. the format of the MAC address is major

octet to minor octet

Returns:
None.

Note:
TX must be idle and RX should be idle for deterministic results.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emaclite/v1_00_a/src/xemaclite_l.h
Go to the documentation of this file.

00001 /* $Id: xemaclite_l.h,v 1.3 2002/07/25 14:21:57 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file emaclite/v1_00_a/src/xemaclite_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions and
00028 * macros that can be used to access the device.
00029 *
00030 * The Xilinx Ethernet Lite driver component. This component supports the Xilinx
00031 * Lite Ethernet 10/100 MAC (EMAC Lite).
00032 *
00033 * The Xilinx Ethernet Lite 10/100 MAC supports the following features:
00034 * - Media Independent Interface (MII) for connection to external
00035 * 10/100 Mbps PHY transceivers.
00036 * - Independent internal transmit and receive buffers
00037 * - CSMA/CD compliant operations for half-duplex modes
00038 * - Unicast and broadcast
00039 * - Automatic FCS insertion
00040 * - Automatic pad insertion on transmit
00041 *
00042 * The Xilinx Ethernet Lite 10/100 MAC does not support the following features:

00043 * - interrupts
00044 * - multi-frame buffering
00045 * only 1 transmit frame is allowed into the transmit buffer
00046 * only 1 receive frame is allowed into the receive buffer.
00047 * the hardware blocks reception until buffer is emptied
00048 * - Pause frame (flow control) detection in full-duplex mode
00049 * - Programmable interframe gap
00050 * - Multicast and promiscuous address filtering
00051 * - Internal loopback
00052 * - Automatic source address insertion or overwrite (programmable)
00053 *
00054 * Driver Description
00055 *
00056 * The device driver enables higher layer software (e.g., an application) to
00057 * communicate to the EMAC Lite. The driver handles transmission and reception
00058 * of Ethernet frames, as well as configuration of the controller. It does not
00059 * handle protocol stack functionality such as Link Layer Control (LLC) or the
00060 * Address Resolution Protocol (ARP). The protocol stack that makes use of the
00061 * driver handles this functionality. This implies that the driver is simply a
00062 * pass-through mechanism between a protocol stack and the EMAC Lite.
00063 *
00064 * Since the driver is a simple pass-through mechanism between a protocol stack
00065 * and the EMAC Lite, no assembly or disassembly of Ethernet frames is done at
00066 * the driver-level. This assumes that the protocol stack passes a correctly
00067 * formatted Ethernet frame to the driver for transmission, and that the driver
00068 * does not validate the contents of an incoming frame.
00069 *
00070 * @note
00071 *
00072 * None
00073 *
00074 * <pre>
00075 * MODIFICATION HISTORY:
00076 *
00077 * Ver Who Date Changes
00078 * ----- ---- -------- ---
00079 * 1.00a ecm 06/01/02 First release
00080 * </pre>
00081 *
00082 **/
00083
00084 #ifndef XEMAC_LITE_L_H /* prevent circular inclusions */
00085 #define XEMAC_LITE_L_H /* by using protection macros */
00086
00087 /***************************** Include Files *********************************/
00088
00089 #include "xbasic_types.h"

00090 #include "xio.h"

00091
00092 /************************** Constant Definitions *****************************/
00093
00094 /* Offset of the MAC registers from the IPIF base address */

00095 #define XEL_REG_OFFSET 0x0UL
00096
00097 /*
00098 * Register offsets for the Ethernet MAC.
00099 */
00100 #define XEL_TXBUFF_OFFSET (XEL_REG_OFFSET) /*
Transmit Buffer */
00101 #define XEL_TSR_OFFSET (XEL_TXBUFF_OFFSET + 0x1FFC) /* Tx status */
00102 #define XEL_TPLR_OFFSET (XEL_TXBUFF_OFFSET + 0x1FF4) /* Tx packet length */
00103
00104 #define XEL_RXBUFF_OFFSET (XEL_REG_OFFSET + 0x2000) /* Receive Buffer */
00105 #define XEL_RSR_OFFSET (XEL_RXBUFF_OFFSET + 0x1FFC) /* Rx status */
00106 #define XEL_RPLR_OFFSET (XEL_RXBUFF_OFFSET + 0x30) /* Rx packet length */
00107
00108 #define XEM_MAC_HI_OFFSET (XEL_TXBUFF_OFFSET + 0x14) /* MAC address hi
offset */
00109 #define XEM_MAC_LO_OFFSET (XEL_TXBUFF_OFFSET) /* MAC address
lo offset */
00110 /*
00111 * Transmit Status Register (TSR)
00112 */
00113 #define XEL_TSR_XMIT_BUSY_MASK 0x01UL /* Xmit complete */
00114 #define XEL_TSR_PROGRAM_MASK 0x02UL /* Program the MAC address */
00115 /*
00116 * define for programming the MAC address into the EMAC Lite
00117 */
00118
00119 #define XEL_TSR_PROG_MAC_ADDR (XEL_TSR_XMIT_BUSY_MASK | XEL_TSR_PROGRAM_MASK)
00120
00121 /*
00122 * Receive Status Register (RSR)
00123 */
00124 #define XEL_RSR_RECV_DONE_MASK 0x01UL /* Recv complete */
00125
00126 /*
00127 * Transmit Packet Length Register (TPLR)
00128 */
00129 #define XEL_TPLR_LENGTH_MASK_HI 0x0000FF00UL /* Transmit packet length
upper byte */
00130 #define XEL_TPLR_LENGTH_MASK_LO 0x000000FFUL /* Transmit packet length
lower byte */
00131
00132 /*
00133 * Receive Packet Length Register (RPLR)
00134 */
00135 #define XEL_RPLR_LENGTH_MASK_HI 0x0000FF00UL /* Receive packet length
upper byte */
00136 #define XEL_RPLR_LENGTH_MASK_LO 0x000000FFUL /* Receive packet length
lower byte */
00137
00138 #define XEL_HEADER_SIZE 14 /*
size of header */
00139 #define XEL_MTU_SIZE 1500 /* max size of

data in frame */
00140 #define XEL_CRC_SIZE 4 /*
size of CRC */
00141
00142
00143 #define XEL_RPLR_MAX_LENGTH
(XEL_HEADER_SIZE+XEL_MTU_SIZE+XEL_CRC_SIZE)
00144
/* maximum lenght of rx frame */
00145
/* used if length/type field */
00146
/* contains the type (> 1500) */
00147
00148
00149 #define XEL_MAC_ADDR_SIZE 6 /*
length of MAC address */
00150
00151
00152 /***************** Macros (Inline Functions) Definitions *********************/
00153
00154 /**/
00155 /**
00156 *
00157 * Check to see if the transmission is complete.
00158 *
00159 * @param BaseAddress is the base address of the device
00160 *
00161 * @return XTRUE if it is done, or XFALSE if it is not.
00162 *
00163 * @note
00164 * Xboolean XEmacLite_mIsTxDone(Xuint32 BaseAddress)
00165 *
00166 ***/
00167 #define XEmacLite_mIsTxDone(BaseAddress) \

00168 (!(XIo_In32((BaseAddress) + XEL_TSR_OFFSET) &
XEL_TSR_XMIT_BUSY_MASK))
00169
00170
00171 /**/
00172 /**
00173 *
00174 * Check to see if the receive is empty.
00175 *
00176 * @param BaseAddress is the base address of the device
00177 *
00178 * @return XTRUE if it is empty, or XFALSE if it is not.
00179 *
00180 * @note
00181 * Xboolean XEmacLite_mIsRxEmpty(Xuint32 BaseAddress)
00182 *
00183 ***/

00184 #define XEmacLite_mIsRxEmpty(BaseAddress) \

00185 (!(XIo_In32((BaseAddress) + XEL_RSR_OFFSET) &
XEL_RSR_RECV_DONE_MASK))
00186
00187 /************************** Function Prototypes ******************************/
00188
00189 void XEmacLite_SetMacAddress(Xuint32 BaseAddress, Xuint8 *AddressPtr);

00190 void XEmacLite_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, unsigned Size);

00191 Xuint16 XEmacLite_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr);

00192
00193
00194 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emaclite/v1_00_a/src/xemaclite_l.c File
Reference

Detailed Description

This file contains the minimal, polled functions to send and receive Ethernet frames.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 06/01/02 First release

#include "xbasic_types.h"

#include "xemaclite_l.h"

Functions

void XEmacLite_SendFrame (Xuint32 BaseAddress, Xuint8 *FramePtr, unsigned Size)
Xuint16 XEmacLite_RecvFrame (Xuint32 BaseAddress, Xuint8 *FramePtr)

void XEmacLite_SetMacAddress (Xuint32 BaseAddress, Xuint8 *AddressPtr)

Function Documentation

Xuint16 XEmacLite_RecvFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr

)

Receive a frame. Wait for a frame to arrive.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to a buffer where the frame will be stored.

Returns:
The type/length field of the frame received. When the type/length field contains the type ,
XEL_RPLR_MAX_LENGTH bytes will be copied out of the buffer and it is up to the higher
layers to sort out the frame.

Note:
This function call is blocking in nature, i.e. it will wait until a frame arrives.

The hardware is actually a 32-bit access of which the least significant 8 bits are actually used. This
forces the strange 32-bit read of the receive buffer in the buffer copy and the increment by 4 in the
source address.

void XEmacLite_SendFrame (Xuint32 BaseAddress,
Xuint8 * FramePtr,
unsigned Size

)

Send an Ethernet frame. The size is the total frame size, including header. This function blocks
waiting for the frame to be transmitted.

Parameters:
BaseAddress is the base address of the device
FramePtr is a pointer to frame
Size is the size, in bytes, of the frame

Returns:
None.

Note:
This function call is blocking in nature, i.e. it will wait until the frame is transmitted.

The hardware is actually a 32-bit access of which the least significant 8 bits are actually used. This
forces the strange 32-bit write of the byte array in the buffer copy and the increment by 4 in the
destination address.

void XEmacLite_SetMacAddress (Xuint32 BaseAddress,
Xuint8 * AddressPtr

)

Set the MAC address for this device. The address is a 48-bit value.

Parameters:
BaseAddress is register base address of the XEmacLite device.
AddressPtr is a pointer to a 6-byte MAC address. the format of the MAC address is major

octet to minor octet

Returns:
None.

Note:
TX must be idle and RX should be idle for deterministic results.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc.h File Reference

Detailed Description

This file contains the software API definition of the Xilinx External Memory Controller (XEmc) component. This
controller can be attached to host OPB or PLB buses to control multiple banks of supported memory devices. The type
of host bus is transparent to software.

This driver allows the user to access the device's registers to support fast/slow access to the memory devices as well as
enabling/disabling paged mode access.

The Xilinx OPB/PLB External memory controller is a soft IP core designed for Xilinx FPGAs and contains the
following general features:

● Support for 128, 64, 32, 16, and 8 bit bus interfaces.
● Controls up to 8 banks of supported memory devices.
● Separate control register for each bank of memory.
● Selectable wait state control (fast or slow). (See note 1)
● Supports page mode accesses. Page size is 8 bytes.
● System clock frequency of up to 133 MHz.

OPB features:

● OPB V2.0 bus interface with byte-enable support.
● Memory width of connected devices is the same as or smaller than OPB bus width.

Note:

 (1) The number of wait states inserted for fast and slow mode is determined
 by the HW designer and is hard-coded into the IP. Each bank has its
 own settings.

(2) For read accesses, fast/slow access mode is ignored when page mode is enabled. For write accesses, page mode does
not apply. (3) This driver is not thread-safe. Thread safety must be guaranteed by the layer above this driver if there is a
need to access the device from multiple threads. MODIFICATION HISTORY: Ver Who Date Changes ----- ---- -------- --
--- 1.00a rmm 01/29/02 First release 1.00a rpm 05/14/02 Made configuration
table/lookup public

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XEmc
struct XEmc_Config

Functions

XStatus XEmc_Initialize (XEmc *InstancePtr, Xuint16 DeviceId)
XEmc_Config * XEmc_LookupConfig (Xuint16 DeviceId)

XStatus XEmc_SetPageMode (XEmc *InstancePtr, unsigned Bank, unsigned Mode)
XStatus XEmc_SetAccessSpeed (XEmc *InstancePtr, unsigned Bank, unsigned Speed)
unsigned XEmc_GetPageMode (XEmc *InstancePtr, unsigned Bank)
unsigned XEmc_GetAccessSpeed (XEmc *InstancePtr, unsigned Bank)
XStatus XEmc_SelfTest (XEmc *InstancePtr)

Function Documentation

unsigned XEmc_GetAccessSpeed (XEmc * InstancePtr,
unsigned Bank

)

Gets current access speed setting for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to retrieve the setting for. Valid range is 0 to the number of banks minus
one. The number of banks is defined as a constant in xparameters.h
(XPAR_EMC_<n>_NUM_BANKS) or it can be found in the NumBanks attribute of the XEmc
instance.

Returns:
Current access speed of bank. XEMC_ACCESS_SPEED_FAST or XEMC_ACCESS_SPEED_SLOW.

Note:
none

unsigned XEmc_GetPageMode (XEmc * InstancePtr,
unsigned Bank

)

Gets the current page mode setting for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to retrieve the setting for. Valid range is 0 to the number of banks minus
one. The number of banks is defined as a constant in xparameters.h
(XPAR_EMC_<n>_NUM_BANKS) or it can be found in the NumBanks attribute of the XEmc
instance.

Returns:
Current mode of bank. XEMC_PAGE_MODE_ENABLE or XEMC_PAGE_MODE_DISABLE.

Note:
none

XStatus XEmc_Initialize (XEmc * InstancePtr,
Xuint16 DeviceId

)

Initializes the XEmc instance provided by the caller based on the given DeviceID.

Parameters:
InstancePtr is a pointer to an XEmc instance. The memory the pointer references must be pre-allocated by

the caller. Further calls to manipulate the component through the XEmc API must be made with
this pointer.

DeviceId is the unique id of the device controlled by this XEmc component. Passing in a device id
associates the generic XEmc instance to a specific device, as chosen by the caller or application
developer.

Returns:
❍ XST_SUCCESS Initialization was successful.
❍ XST_DEVICE_NOT_FOUND Device configuration data was not found for a device with the supplied

device ID.

Note:
The control registers for each bank are not modified because it is possible that they have been setup during
bootstrap processing prior to "C" runtime support.

XEmc_Config* XEmc_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table XEmc_ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceID is the device identifier to lookup.

Returns:
XEmc configuration structure pointer if DeviceID is found.

XNULL if DeviceID is not found.

XStatus XEmc_SelfTest (XEmc * InstancePtr)

Runs a self-test on the driver/device. This includes the following tests:

● Control register read/write access for each bank.

Memory devices controlled by this component are not changed. However access speeds are toggled which could
possibly have undesirable effects.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on. This parameter must have been previously

initialized with XEmc_Initialize().

Returns:

 XST_SUCCESS If test passed

XST_FAILURE If test failed

Note:
❍ Control register contents are restored to their original state when the test completes.
❍ This test does not abort if an error is detected.

XStatus XEmc_SetAccessSpeed (XEmc * InstancePtr,
unsigned Bank,
unsigned Speed

)

Sets the access speed for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to change. Valid range is 0 to the number of banks minus one. The number
of banks is defined as a constant in xparameters.h (XPAR_EMC_<n>_NUM_BANKS) or it
can be found in the NumBanks attribute of the XEmc instance.

Speed is the new access speed. Valid speeds are XEMC_ACCESS_SPEED_SLOW and
XEMC_ACCESS_SPEED_FAST.

Returns:
❍ XST_SUCCESS Access speed successfully set.
❍ XST_INVALID_PARAM Speed parameter is invalid.

Note:
none

XStatus XEmc_SetPageMode (XEmc * InstancePtr,
unsigned Bank,
unsigned Mode

)

Sets the page mode for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to change. Valid range is 0 to the number of banks minus one. The number
of banks is defined as a constant in xparameters.h (XPAR_EMC_<n>_NUM_BANKS) or it
can be found in the NumBanks attribute of the XEmc instance.

Mode is the new mode to set. Valid modes are XEMC_PAGE_MODE_ENABLE and
XEMC_PAGE_MODE_DISABLE.

Returns:
❍ XST_SUCCESS Mode successfully set.
❍ XST_INVALID_PARAM Mode parameter is invalid.

Note:
none

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XEmc Struct Reference
#include <xemc.h>

Detailed Description

The XEmc driver instance data. The user is required to allocate a variable of this type for every EMC
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● emc/v1_00_a/src/xemc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc.h
Go to the documentation of this file.

00001 /* $Id: xemc.h,v 1.5 2002/05/16 17:21:35 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 * @file emc/v1_00_a/src/xemc.h
00025 *
00026 * This file contains the software API definition of the Xilinx External Memory
00027 * Controller (XEmc) component. This controller can be attached to host OPB or
00028 * PLB buses to control multiple banks of supported memory devices. The type
00029 * of host bus is transparent to software.
00030 *
00031 * This driver allows the user to access the device's registers to support
00032 * fast/slow access to the memory devices as well as enabling/disabling paged
00033 * mode access.
00034 *
00035 * The Xilinx OPB/PLB External memory controller is a soft IP core designed for
00036 * Xilinx FPGAs and contains the following general features:
00037 * - Support for 128, 64, 32, 16, and 8 bit bus interfaces.
00038 * - Controls up to 8 banks of supported memory devices.
00039 * - Separate control register for each bank of memory.
00040 * - Selectable wait state control (fast or slow). (See note 1)
00041 * - Supports page mode accesses. Page size is 8 bytes.
00042 * - System clock frequency of up to 133 MHz.

00043 *
00044 * OPB features:
00045 * - OPB V2.0 bus interface with byte-enable support.
00046 * - Memory width of connected devices is the same as or smaller than OPB
00047 * bus width.
00048 *
00049 * @note
00050 * <pre>
00051 * (1) The number of wait states inserted for fast and slow mode is determined
00052 * by the HW designer and is hard-coded into the IP. Each bank has its
00053 * own settings.
00054 *
00055 * (2) For read accesses, fast/slow access mode is ignored when page mode
00056 * is enabled. For write accesses, page mode does not apply.
00057 *
00058 * (3) This driver is not thread-safe. Thread safety must be guaranteed by
00059 * the layer above this driver if there is a need to access the device
00060 * from multiple threads.
00061 *
00062 * MODIFICATION HISTORY:
00063 *
00064 * Ver Who Date Changes
00065 * ----- ---- -------- ---
00066 * 1.00a rmm 01/29/02 First release
00067 * 1.00a rpm 05/14/02 Made configuration table/lookup public
00068 * </pre>
00069 *
00070 ***/
00071 #ifndef XEMC_H /* prevent circular inclusions */
00072 #define XEMC_H /* by using protection macros */
00073
00074 /***************************** Include Files ********************************/
00075 #include "xbasic_types.h"

00076 #include "xstatus.h"

00077
00078 /************************** Constant Definitions ****************************/
00079
00080 /** @name Page mode options
00081 *
00082 * Page modes used in XEmc_SetPageMode().
00083 * @{
00084 */
00085 #define XEMC_PAGE_MODE_ENABLE 0
00086 #define XEMC_PAGE_MODE_DISABLE 1
00087 /*@}*/
00088
00089 /** @name Access speed options
00090 *
00091 * Access speeds used in XEmc_SetAccessSpeed(). What constitutes fast and
00092 * slow are defined by the IP design.
00093 * @{
00094 */

00095 #define XEMC_ACCESS_SPEED_FAST 2
00096 #define XEMC_ACCESS_SPEED_SLOW 3
00097 /*@}*/
00098
00099 /**************************** Type Definitions ******************************/
00100
00101 /**
00102 * This typedef contains configuration information for the device.
00103 */
00104 typedef struct

00105 {
00106 Xuint16 DeviceId; /**< Unique ID of device */

00107 Xuint32 RegBaseAddr; /**< Register base address */

00108 Xuint8 NumBanks; /**< Number of devices controlled by this component

*/
00109 } XEmc_Config;

00110
00111
00112 /**
00113 * The XEmc driver instance data. The user is required to allocate a
00114 * variable of this type for every EMC device in the system. A pointer
00115 * to a variable of this type is then passed to the driver API functions.
00116 */
00117 typedef struct

00118 {
00119 Xuint32 RegBaseAddr; /* Base address of registers */

00120 Xuint32 IsReady; /* Device is initialized and ready */

00121 Xuint8 NumBanks; /* Number of device banks under control */

00122 } XEmc;

00123
00124
00125 /***************** Macros (Inline Functions) Definitions ********************/
00126
00127
00128 /************************** Function Prototypes *****************************/
00129
00130 /*
00131 * Initialization and configuration functions. These functions are mandatory.
00132 * This API is implemented in xemc.c
00133 */
00134 XStatus XEmc_Initialize(XEmc *InstancePtr, Xuint16 DeviceId);

00135 XEmc_Config *XEmc_LookupConfig(Xuint16 DeviceId);

00136
00137 XStatus XEmc_SetPageMode(XEmc *InstancePtr, unsigned Bank, unsigned Mode);

00138 XStatus XEmc_SetAccessSpeed(XEmc *InstancePtr, unsigned Bank, unsigned Speed);

00139 unsigned XEmc_GetPageMode(XEmc *InstancePtr, unsigned Bank);

00140 unsigned XEmc_GetAccessSpeed(XEmc *InstancePtr, unsigned Bank);

00141
00142 /*
00143 * Selftest is optional
00144 * This API is implemented in xemc_selftest.c

00145 */
00146 XStatus XEmc_SelfTest(XEmc *InstancePtr);

00147
00148 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XEmc_Config Struct Reference
#include <xemc.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 RegBaseAddr
Xuint8 NumBanks

Field Documentation

Xuint16 XEmc_Config::DeviceId

 Unique ID of device

Xuint8 XEmc_Config::NumBanks

 Number of devices controlled by this component

Xuint32 XEmc_Config::RegBaseAddr

 Register base address

The documentation for this struct was generated from the following file:

● emc/v1_00_a/src/xemc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc.c File Reference

Detailed Description

The implementation of the XEmc component. See xemc.h for more information about the component.

Note:
None

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 01/29/02 First release
 1.00a rpm 05/14/02 Made configuration table/lookup public

#include "xemc.h"

#include "xemc_i.h"

#include "xparameters.h"

Functions

XStatus XEmc_Initialize (XEmc *InstancePtr, Xuint16 DeviceId)
XEmc_Config * XEmc_LookupConfig (Xuint16 DeviceId)

XStatus XEmc_SetPageMode (XEmc *InstancePtr, unsigned Bank, unsigned Mode)
XStatus XEmc_SetAccessSpeed (XEmc *InstancePtr, unsigned Bank, unsigned Speed)
unsigned XEmc_GetPageMode (XEmc *InstancePtr, unsigned Bank)
unsigned XEmc_GetAccessSpeed (XEmc *InstancePtr, unsigned Bank)

Function Documentation

unsigned XEmc_GetAccessSpeed (XEmc * InstancePtr,
unsigned Bank

)

Gets current access speed setting for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to retrieve the setting for. Valid range is 0 to the number of
banks minus one. The number of banks is defined as a constant in xparameters.h
(XPAR_EMC_<n>_NUM_BANKS) or it can be found in the NumBanks
attribute of the XEmc instance.

Returns:
Current access speed of bank. XEMC_ACCESS_SPEED_FAST or
XEMC_ACCESS_SPEED_SLOW.

Note:
none

unsigned XEmc_GetPageMode (XEmc * InstancePtr,
unsigned Bank

)

Gets the current page mode setting for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to retrieve the setting for. Valid range is 0 to the number of
banks minus one. The number of banks is defined as a constant in xparameters.h
(XPAR_EMC_<n>_NUM_BANKS) or it can be found in the NumBanks
attribute of the XEmc instance.

Returns:
Current mode of bank. XEMC_PAGE_MODE_ENABLE or
XEMC_PAGE_MODE_DISABLE.

Note:
none

XStatus XEmc_Initialize (XEmc * InstancePtr,
Xuint16 DeviceId

)

Initializes the XEmc instance provided by the caller based on the given DeviceID.

Parameters:
InstancePtr is a pointer to an XEmc instance. The memory the pointer references must be pre-

allocated by the caller. Further calls to manipulate the component through the
XEmc API must be made with this pointer.

DeviceId is the unique id of the device controlled by this XEmc component. Passing in a
device id associates the generic XEmc instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS Initialization was successful.
❍ XST_DEVICE_NOT_FOUND Device configuration data was not found for a device

with the supplied device ID.

Note:
The control registers for each bank are not modified because it is possible that they have been
setup during bootstrap processing prior to "C" runtime support.

XEmc_Config* XEmc_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table XEmc_ConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceID is the device identifier to lookup.

Returns:
XEmc configuration structure pointer if DeviceID is found.

XNULL if DeviceID is not found.

XStatus XEmc_SetAccessSpeed (XEmc * InstancePtr,
unsigned Bank,
unsigned Speed

)

Sets the access speed for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to change. Valid range is 0 to the number of banks minus
one. The number of banks is defined as a constant in xparameters.h
(XPAR_EMC_<n>_NUM_BANKS) or it can be found in the NumBanks
attribute of the XEmc instance.

Speed is the new access speed. Valid speeds are XEMC_ACCESS_SPEED_SLOW and
XEMC_ACCESS_SPEED_FAST.

Returns:
❍ XST_SUCCESS Access speed successfully set.
❍ XST_INVALID_PARAM Speed parameter is invalid.

Note:
none

XStatus XEmc_SetPageMode (XEmc * InstancePtr,
unsigned Bank,
unsigned Mode

)

Sets the page mode for the given bank of memory devices.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on.

Bank is the set of devices to change. Valid range is 0 to the number of banks minus
one. The number of banks is defined as a constant in xparameters.h
(XPAR_EMC_<n>_NUM_BANKS) or it can be found in the NumBanks
attribute of the XEmc instance.

Mode is the new mode to set. Valid modes are XEMC_PAGE_MODE_ENABLE and
XEMC_PAGE_MODE_DISABLE.

Returns:
❍ XST_SUCCESS Mode successfully set.
❍ XST_INVALID_PARAM Mode parameter is invalid.

Note:
none

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc_i.h
Go to the documentation of this file.

00001 /* $Id: xemc_i.h,v 1.4 2002/05/14 18:14:39 moleres Exp $: */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file emc/v1_00_a/src/xemc_i.h
00026 *
00027 * This header file contains register offsets and bit definitions for the
00028 * external memory controller (EMC). The definitions here are meant to be
00029 * used for internal xemc driver purposes.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a rmm 02/04/02 First release
00037 * 1.00a rpm 05/14/02 Moved identifiers to xemc_l.h
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XEMC_I_H /* prevent circular inclusions */

00043 #define XEMC_I_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046 #include "xemc_l.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 /**************************** Type Definitions *******************************/
00051
00052 /***************** Macros (Inline Functions) Definitions *********************/
00053
00054 /************************** Function Prototypes ******************************/
00055
00056 /******************v************ Variables ***********************************/
00057
00058 extern XEmc_Config XEmc_ConfigTable[];

00059
00060
00061 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc_i.h File Reference

Detailed Description

This header file contains register offsets and bit definitions for the external memory controller (EMC).
The definitions here are meant to be used for internal xemc driver purposes.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 02/04/02 First release
 1.00a rpm 05/14/02 Moved identifiers to xemc_l.h

#include "xemc_l.h"

Go to the source code of this file.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc_l.h File Reference

Detailed Description

Contains identifiers and low-level macros that can be used to access the device directly. High-level
functions are defined in xemc.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 05/14/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XEmc_mGetOffset(Bank)
#define XEmc_mGetControlReg(Base, Bank)
#define XEmc_mSetControlReg(Base, Bank, Data)
#define XEmc_mEnablePageMode(BaseAddress, Bank)
#define XEmc_mDisablePageMode(BaseAddress, Bank)
#define XEmc_mEnableFastAccess(BaseAddress, Bank)
#define XEmc_mDisableFastAccess(BaseAddress, Bank)

Define Documentation

#define XEmc_mDisableFastAccess(BaseAddress,
Bank)

Disable fast access in the given memory bank.

Parameters:
BaseAddress is the base address of the device
Bank is the memory bank to set.

Returns:
None.

Note:
None.

#define XEmc_mDisablePageMode(BaseAddress,
Bank)

Disable page mode in the given memory bank.

Parameters:
BaseAddress is the base address of the device
Bank is the memory bank to set.

Returns:
None.

Note:
None.

#define XEmc_mEnableFastAccess(BaseAddress,
Bank)

Enable fast access in the given memory bank.

Parameters:
BaseAddress is the base address of the device
Bank is the memory bank to set.

Returns:
None.

Note:
None.

#define XEmc_mEnablePageMode(BaseAddress,
Bank)

Enable page mode in the given memory bank.

Parameters:
BaseAddress is the base address of the device
Bank is the memory bank to set.

Returns:
None.

Note:
None.

#define XEmc_mGetControlReg(Base,
Bank)

Reads the contents of a bank's control register.

Parameters:
Base is the base address of the EMC component.
Bank identifies the control register to read.

Returns:
Value of the Bank's control register

Note:
❍ Macro signature: Xuint32 XEmc_mGetControlReg(Xuint32 Base, unsigned Bank)

#define XEmc_mGetOffset(Bank)

Calculate the offset of a control register based on its bank. This macro is used internally.

Parameters:
Bank is the bank number of the control register offset to calculate

Returns:
Offset to control register associated with Bank parameter.

Note:
❍ To compute the physical address of the register add the base address of the component

to the result of this macro.
❍ Does not test for validity of Bank.
❍ Macro signature: unsigned XEmc_mGetOffset(unsigned Bank)

#define XEmc_mSetControlReg(Base,
Bank,
Data)

Writes to a bank's control register.

Parameters:
Base is the base address of the EMC component.
Bank identifies the control register to modify.
Data is the data to write to the control register.

Returns:
None.

Note:
❍ Macro signature: void XEmc_mSetControlReg(Xuint32 Base, unsigned Bank,

Xuint32 Data)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc_l.h
Go to the documentation of this file.

00001 /* $Id: xemc_l.h,v 1.1 2002/05/14 18:13:56 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file emc/v1_00_a/src/xemc_l.h
00026 *
00027 * Contains identifiers and low-level macros that can be used to access the
00028 * device directly. High-level functions are defined in xemc.h.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rpm 05/14/02 First release
00036 * </pre>
00037 *
00038 **/
00039 #ifndef XEMC_L_H /* prevent circular inclusions */
00040 #define XEMC_L_H /* by using protection macros */
00041
00042 /***************************** Include Files *********************************/

00043 #include "xbasic_types.h"

00044 #include "xio.h"

00045
00046 /************************** Constant Definitions *****************************/
00047
00048 /*
00049 * Register offsets.
00050 *
00051 * There is a single control register for each bank.
00052 *
00053 * The EMC can be configured with between 1 to 8 banks of memory devices.
00054 * See xparameters.h for the definition for the number of banks present.
00055 */
00056 #define XEMC_CR0_OFFSET 0x00000000 /* Control register for bank 0 */
00057 #define XEMC_CR1_OFFSET 0x00000004 /* Control register for bank 1 */
00058 #define XEMC_CR2_OFFSET 0x00000008 /* Control register for bank 2 */
00059 #define XEMC_CR3_OFFSET 0x0000000C /* Control register for bank 3 */
00060 #define XEMC_CR4_OFFSET 0x00000010 /* Control register for bank 4 */
00061 #define XEMC_CR5_OFFSET 0x00000014 /* Control register for bank 5 */
00062 #define XEMC_CR6_OFFSET 0x00000018 /* Control register for bank 6 */
00063 #define XEMC_CR7_OFFSET 0x0000001C /* Control register for bank 7 */
00064
00065 /*
00066 * Masks and bit definitions for the CR register
00067 */
00068 #define XEMC_CR_FS_ENABLE 0x00000001 /* Fast/slow mode enable.
00069 0-slow,
00070 1-fast */
00071 #define XEMC_CR_PM_ENABLE 0x00000002 /* Page mode enable.
00072 0-page mode disable
00073 1-page mode enable */
00074
00075 /**************************** Type Definitions *******************************/
00076
00077 /***************** Macros (Inline Functions) Definitions *********************/
00078
00079 /***
00080 *
00081 * Low-level driver macros and functions. The list below provides signatures
00082 * to help the user use the macros.
00083 *
00084 * Xuint32 XEmc_mGetControlReg(Xuint32 BaseAddress, unsigned Bank)
00085 * void XEmc_mSetControlReg(Xuint32 BaseAddress, unsigned Bank, Xuint32 Data)
00086 *
00087 * void XEmc_mEnablePageMode(Xuint32 BaseAddress, unsigned Bank)
00088 * void XEmc_mDisablePageMode(Xuint32 BaseAddress, unsigned Bank)
00089 * void XEmc_mEnableFastAccess(Xuint32 BaseAddress, unsigned Bank)
00090 * void XEmc_mDisableFastAccess(Xuint32 BaseAddress, unsigned Bank)
00091 *
00092 ***/
00093
00094 /***/

00095 /**
00096 *
00097 * Calculate the offset of a control register based on its bank. This macro is
00098 * used internally.
00099 *
00100 * @param Bank is the bank number of the control register offset to calculate
00101 *
00102 * @return Offset to control register associated with Bank parameter.
00103 *
00104 * @note
00105 *
00106 * - To compute the physical address of the register add the
00107 * base address of the component to the result of this macro.
00108 * - Does not test for validity of Bank.
00109 * - Macro signature: unsigned XEmc_mGetOffset(unsigned Bank)
00110 *
00111 **/
00112 #define XEmc_mGetOffset(Bank) (XEMC_CR0_OFFSET + (4 * Bank))

00113
00114
00115 /***/
00116 /**
00117 *
00118 * Reads the contents of a bank's control register.
00119 *
00120 * @param Base is the base address of the EMC component.
00121 * @param Bank identifies the control register to read.
00122 *
00123 * @return Value of the Bank's control register
00124 *
00125 * @note
00126 *
00127 * - Macro signature:
00128 * Xuint32 XEmc_mGetControlReg(Xuint32 Base, unsigned Bank)
00129 *
00130 **/
00131 #define XEmc_mGetControlReg(Base, Bank) \

00132 XIo_In32((XIo_Address)((Base) + XEmc_mGetOffset(Bank)))
00133
00134
00135 /***/
00136 /**
00137 *
00138 * Writes to a bank's control register.
00139 *
00140 * @param Base is the base address of the EMC component.
00141 * @param Bank identifies the control register to modify.
00142 * @param Data is the data to write to the control register.
00143 *
00144 * @return None.
00145 *
00146 * @note

00147 *
00148 * - Macro signature:
00149 * void XEmc_mSetControlReg(Xuint32 Base, unsigned Bank, Xuint32 Data)
00150 *
00151 **/
00152 #define XEmc_mSetControlReg(Base, Bank, Data) \

00153 XIo_Out32((XIo_Address)((Base) + XEmc_mGetOffset(Bank)), (Data))
00154
00155
00156 /**/
00157 /**
00158 *
00159 * Enable page mode in the given memory bank.
00160 *
00161 * @param BaseAddress is the base address of the device
00162 * @param Bank is the memory bank to set.
00163 *
00164 * @return None.
00165 *
00166 * @note None.
00167 *
00168 ***/
00169 #define XEmc_mEnablePageMode(BaseAddress, Bank) \

00170 XEmc_mSetControlReg(BaseAddress, Bank, \
00171 XEmc_mGetControlReg(BaseAddress, Bank) | XEMC_CR_PM_ENABLE)
00172
00173
00174 /**/
00175 /**
00176 *
00177 * Disable page mode in the given memory bank.
00178 *
00179 * @param BaseAddress is the base address of the device
00180 * @param Bank is the memory bank to set.
00181 *
00182 * @return None.
00183 *
00184 * @note None.
00185 *
00186 ***/
00187 #define XEmc_mDisablePageMode(BaseAddress, Bank) \

00188 XEmc_mSetControlReg(BaseAddress, Bank, \
00189 XEmc_mGetControlReg(BaseAddress, Bank) & ~XEMC_CR_PM_ENABLE)
00190
00191
00192 /**/
00193 /**
00194 *
00195 * Enable fast access in the given memory bank.
00196 *
00197 * @param BaseAddress is the base address of the device
00198 * @param Bank is the memory bank to set.

00199 *
00200 * @return None.
00201 *
00202 * @note None.
00203 *
00204 ***/
00205 #define XEmc_mEnableFastAccess(BaseAddress, Bank) \

00206 XEmc_mSetControlReg(BaseAddress, Bank, \
00207 XEmc_mGetControlReg(BaseAddress, Bank) | XEMC_CR_FS_ENABLE)
00208
00209
00210 /**/
00211 /**
00212 *
00213 * Disable fast access in the given memory bank.
00214 *
00215 * @param BaseAddress is the base address of the device
00216 * @param Bank is the memory bank to set.
00217 *
00218 * @return None.
00219 *
00220 * @note None.
00221 *
00222 ***/
00223 #define XEmc_mDisableFastAccess(BaseAddress, Bank) \

00224 XEmc_mSetControlReg(BaseAddress, Bank, \
00225 XEmc_mGetControlReg(BaseAddress, Bank) & ~XEMC_CR_FS_ENABLE)
00226
00227
00228 /************************** Function Prototypes ******************************/
00229
00230 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc_selftest.c File
Reference

Detailed Description

The implementation of the XEmc component for the self-test functions.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 02/08/02 First release

#include "xemc.h"

#include "xemc_i.h"

Functions

XStatus XEmc_SelfTest (XEmc *InstancePtr)

Function Documentation

XStatus XEmc_SelfTest (XEmc * InstancePtr)

Runs a self-test on the driver/device. This includes the following tests:

● Control register read/write access for each bank.

Memory devices controlled by this component are not changed. However access speeds are toggled
which could possibly have undesirable effects.

Parameters:
InstancePtr is a pointer to the XEmc instance to be worked on. This parameter must have

been previously initialized with XEmc_Initialize().

Returns:

 XST_SUCCESS If test passed

XST_FAILURE If test failed

Note:
❍ Control register contents are restored to their original state when the test completes.
❍ This test does not abort if an error is detected.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv_vxworks.h
File Reference

Detailed Description

Defines common services that are typically found in a VxWorks target environment.

Note:
This file is not intended to be included directly by driver code. Instead, the generic xenv.h file is
intended to be included by driver code.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rmm 10/24/02 Added XENV_USLEEP macro
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "vxWorks.h"
#include "vxLib.h"
#include <string.h>

Go to the source code of this file.

Data Structures

struct XENV_TIME_STAMP

Defines

#define XENV_MEM_COPY(DestPtr, SrcPtr, Bytes)
#define XENV_MEM_FILL(DestPtr, Data, Bytes)
#define XENV_TIME_STAMP_GET(StampPtr)
#define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr, Stamp2Ptr)
#define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr, Stamp2Ptr)
#define XENV_USLEEP(delay)

Define Documentation

#define XENV_MEM_COPY(DestPtr,
SrcPtr,
Bytes)

Copies a non-overlapping block of memory.

Parameters:
DestPtr is the destination address to copy data to.
SrcPtr is the source address to copy data from.
Bytes is the number of bytes to copy.

Returns:
None.

Note:
Signature: void XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)

#define XENV_MEM_FILL(DestPtr,
Data,
Bytes)

Fills an area of memory with constant data.

Parameters:
DestPtr is the destination address to set.
Data contains the value to set.
Bytes is the number of bytes to set.

Returns:
None.

Note:
Signature: void XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)

#define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr,
Stamp2Ptr)

This macro is not yet implemented and always returns 0.

Parameters:
Stamp1Ptr is the first sampled time stamp.
Stamp2Ptr is the second sampled time stamp.

Returns:
0

Note:
None.

#define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr,
Stamp2Ptr)

This macro is not yet implemented and always returns 0.

Parameters:
Stamp1Ptr is the first sampled time stamp.
Stamp2Ptr is the second sampled time stamp.

Returns:
0

Note:
None.

#define XENV_TIME_STAMP_GET(StampPtr)

Time is derived from the 64 bit PPC timebase register

Parameters:
StampPtr is the storage for the retrieved time stamp.

Returns:
None.

Note:
Signature: void XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)

#define XENV_USLEEP(delay)

XENV_USLEEP(unsigned delay)

Delay the specified number of microseconds.

Parameters:
delay is the number of microseconds to delay.

Returns:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv.h File
Reference

Detailed Description

Defines common services that are typically found in a host operating. environment. This include file
simply includes an OS specific file based on the compile-time constant BUILD_ENV_*, where * is the
name of the target environment.

All services are defined as macros.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b ch 10/24/02 Added XENV_LINUX
 1.00a rmm 04/17/02 First release

#include "xenv_none.h"

Go to the source code of this file.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv_none.h
Go to the documentation of this file.

00001 /**
00002 *
00003 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00004 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00005 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00006 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00007 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00008 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00009 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00010 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00011 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00012 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00013 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00014 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00015 * FOR A PARTICULAR PURPOSE.
00016 *
00017 * (c) Copyright 2002 Xilinx Inc.
00018 * All rights reserved.
00019 *
00020 **/
00021 /***/
00022 /**
00023 *
00024 * @file common/v1_00_a/src/xenv_none.h
00025 *
00026 * Defines common services specified by xenv.h. Some of these services are
00027 * defined as not performing any action. The implementation of these services
00028 * are left to the user.
00029 *
00030 * @note
00031 *
00032 * This file is not intended to be included directly by driver code. Instead,
00033 * the generic xenv.h file is intended to be included by driver code.
00034 *
00035 * <pre>
00036 * MODIFICATION HISTORY:
00037 *
00038 * Ver Who Date Changes
00039 * ----- ---- -------- ---
00040 * 1.00a rmm 03/21/02 First release
00041 * </pre>
00042 *

00043 *
00044 **/
00045
00046 #ifndef XENV_NONE_H /* prevent circular inclusions */
00047 #define XENV_NONE_H /* by using protection macros */
00048
00049 /***************************** Include Files *********************************/
00050
00051 /***/
00052 /**
00053 *
00054 * Copies a non-overlapping block of memory.
00055 *
00056 * @param DestPtr is the destination address to copy data to.
00057 * @param SrcPtr is the source address to copy data from.
00058 * @param Bytes is the number of bytes to copy.
00059 *
00060 * @return
00061 *
00062 * None.
00063 *
00064 * @note
00065 *
00066 * Signature: void XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)
00067 *
00068 ***/
00069 #define XENV_MEM_COPY(DestPtr, SrcPtr, Bytes) \

00070 { \
00071 char *Dest = (char*)(DestPtr); \
00072 char *Src = (char*)(SrcPtr); \
00073 unsigned BytesLeft = (Bytes); \
00074 \
00075 while (BytesLeft--) *Dest++ = *Src++; \
00076 }
00077
00078 /***/
00079 /**
00080 *
00081 * Fills an area of memory with constant data.
00082 *
00083 * @param DestPtr is the destination address to set.
00084 * @param Data contains the value to set.
00085 * @param Bytes is the number of bytes to set.
00086 *
00087 * @return
00088 *
00089 * None.
00090 *
00091 * @note
00092 *
00093 * Signature: void XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)
00094 *

00095 ***/
00096 #define XENV_MEM_FILL(DestPtr, Data, Bytes) \

00097 { \
00098 char *Dest = (char*)(DestPtr); \
00099 char c = (Data); \
00100 unsigned BytesLeft = (Bytes); \
00101 \
00102 while (BytesLeft--) *Dest++ = c; \
00103 }
00104
00105 /**
00106 * A structure that contains a time stamp used by other time stamp macros
00107 * defined below. This structure is processor dependent.
00108 */
00109 typedef int XENV_TIME_STAMP;

00110
00111 /***/
00112 /**
00113 *
00114 * Time is derived from the 64 bit PPC timebase register
00115 *
00116 * @param StampPtr is the storage for the retrieved time stamp.
00117 *
00118 * @return
00119 *
00120 * None.
00121 *
00122 * @note
00123 *
00124 * Signature: void XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)
00125 *
00126 * @note
00127 *
00128 * This macro must be implemented by the user
00129 ***/
00130 #define XENV_TIME_STAMP_GET(StampPtr)

00131
00132 /***/
00133 /**
00134 *
00135 * This macro is not yet implemented and always returns 0.
00136 *
00137 * @param Stamp1Ptr is the first sampled time stamp.
00138 * @param Stamp2Ptr is the second sampled time stamp.
00139 *
00140 * @return 0
00141 *
00142 * @note
00143 *
00144 * This macro must be implemented by the user
00145 *
00146 ***/

00147 #define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr, Stamp2Ptr) (0)

00148
00149 /***/
00150 /**
00151 *
00152 * This macro is not yet implemented and always returns 0.
00153 *
00154 * @param Stamp1Ptr is the first sampled time stamp.
00155 * @param Stamp2Ptr is the second sampled time stamp.
00156 *
00157 * @return 0
00158 *
00159 * @note
00160 *
00161 * This macro must be implemented by the user
00162 *
00163 ***/
00164 #define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr, Stamp2Ptr) (0)

00165
00166 /***/
00167 /**
00168 *
00169 * XENV_USLEEP(unsigned delay)
00170 *
00171 * Delay the specified number of microseconds. Not implemented without OS
00172 * support.
00173 *
00174 * @param delay is the number of microseconds to delay.
00175 *
00176 * @return None
00177 */
00178 /***/
00179 #define XENV_USLEEP(delay)

00180
00181
00182 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv_none.h File
Reference

Detailed Description

Defines common services specified by xenv.h. Some of these services are defined as not performing any
action. The implementation of these services are left to the user.

Note:
This file is not intended to be included directly by driver code. Instead, the generic xenv.h file is
intended to be included by driver code.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/21/02 First release

Go to the source code of this file.

Defines

#define XENV_MEM_COPY(DestPtr, SrcPtr, Bytes)
#define XENV_MEM_FILL(DestPtr, Data, Bytes)
#define XENV_TIME_STAMP_GET(StampPtr)
#define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr, Stamp2Ptr)
#define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr, Stamp2Ptr)

#define XENV_USLEEP(delay)

Typedefs

typedef int XENV_TIME_STAMP

Define Documentation

#define XENV_MEM_COPY(DestPtr,
SrcPtr,
Bytes)

Copies a non-overlapping block of memory.

Parameters:
DestPtr is the destination address to copy data to.
SrcPtr is the source address to copy data from.
Bytes is the number of bytes to copy.

Returns:
None.

Note:
Signature: void XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)

#define XENV_MEM_FILL(DestPtr,
Data,
Bytes)

Fills an area of memory with constant data.

Parameters:
DestPtr is the destination address to set.
Data contains the value to set.
Bytes is the number of bytes to set.

Returns:
None.

Note:
Signature: void XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)

#define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr,
Stamp2Ptr)

This macro is not yet implemented and always returns 0.

Parameters:
Stamp1Ptr is the first sampled time stamp.
Stamp2Ptr is the second sampled time stamp.

Returns:
0

Note:
This macro must be implemented by the user

#define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr,
Stamp2Ptr)

This macro is not yet implemented and always returns 0.

Parameters:
Stamp1Ptr is the first sampled time stamp.
Stamp2Ptr is the second sampled time stamp.

Returns:
0

Note:
This macro must be implemented by the user

#define XENV_TIME_STAMP_GET(StampPtr)

Time is derived from the 64 bit PPC timebase register

Parameters:
StampPtr is the storage for the retrieved time stamp.

Returns:
None.

Note:
Signature: void XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)

Note:
This macro must be implemented by the user

#define XENV_USLEEP(delay)

XENV_USLEEP(unsigned delay)

Delay the specified number of microseconds. Not implemented without OS support.

Parameters:
delay is the number of microseconds to delay.

Returns:
None

Typedef Documentation

typedef int XENV_TIME_STAMP

A structure that contains a time stamp used by other time stamp macros defined below. This structure
is processor dependent.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv.h
Go to the documentation of this file.

00001 /**
00002 *
00003 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00004 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00005 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00006 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00007 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00008 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00009 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00010 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00011 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00012 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00013 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00014 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00015 * FOR A PARTICULAR PURPOSE.
00016 *
00017 * (c) Copyright 2002 Xilinx Inc.
00018 * All rights reserved.
00019 *
00020 **/
00021 /***/
00022 /**
00023 *
00024 * @file common/v1_00_a/src/xenv.h
00025 *
00026 * Defines common services that are typically found in a host operating.
00027 * environment. This include file simply includes an OS specific file based
00028 * on the compile-time constant BUILD_ENV_*, where * is the name of the target
00029 * environment.
00030 *
00031 * All services are defined as macros.
00032 *
00033 * <pre>
00034 * MODIFICATION HISTORY:
00035 *
00036 * Ver Who Date Changes
00037 * ----- ---- -------- ---
00038 * 1.00b ch 10/24/02 Added XENV_LINUX
00039 * 1.00a rmm 04/17/02 First release
00040 * </pre>
00041 *
00042 **/

00043
00044 #ifndef XENV_H /* prevent circular inclusions */
00045 #define XENV_H /* by using protection macros */
00046
00047 /*
00048 * Select which target environment we are operating under
00049 */
00050
00051 /* VxWorks target environment */
00052 #if defined XENV_VXWORKS
00053 #include "xenv_vxworks.h"

00054
00055 /* Linux target environment */
00056 #elif defined XENV_LINUX
00057 #include "xenv_linux.h"

00058
00059 /* Unit test environment */
00060 #elif defined XENV_UNITTEST
00061 #include "ut_xenv.h"
00062
00063 /* Integration test environment */
00064 #elif defined XENV_INTTEST
00065 #include "int_xenv.h"
00066
00067 /* No environment selected */
00068 #else
00069 #include "xenv_none.h"

00070 #endif
00071
00072
00073 /*
00074 * The following comments specify the types and macro wrappers that are
00075 * expected to be defined by the target specific header files
00076 */
00077
00078 /**************************** Type Definitions *******************************/
00079
00080 /***/
00081 /**
00082 *
00083 * XENV_TIME_STAMP
00084 *
00085 * A structure that contains a time stamp used by other time stamp macros
00086 * defined below. This structure is processor dependent.
00087 */
00088
00089
00090 /***************** Macros (Inline Functions) Definitions *********************/
00091
00092 /***/
00093 /**
00094 *

00095 * XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)
00096 *
00097 * Copies a non-overlapping block of memory.
00098 *
00099 * @param DestPtr is the destination address to copy data to.
00100 * @param SrcPtr is the source address to copy data from.
00101 * @param Bytes is the number of bytes to copy.
00102 *
00103 * @return None
00104 */
00105
00106 /***/
00107 /**
00108 *
00109 * XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)
00110 *
00111 * Fills an area of memory with constant data.
00112 *
00113 * @param DestPtr is the destination address to set.
00114 * @param Data contains the value to set.
00115 * @param Bytes is the number of bytes to set.
00116 *
00117 * @return None
00118 */
00119 /***/
00120 /**
00121 *
00122 * XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)
00123 *
00124 * Samples the processor's or external timer's time base counter.
00125 *
00126 * @param StampPtr is the storage for the retrieved time stamp.
00127 *
00128 * @return None
00129 */
00130
00131 /***/
00132 /**
00133 *
00134 * XENV_TIME_STAMP_DELTA_US(XTIME_STAMP *Stamp1Ptr, XTIME_STAMP* Stamp2Ptr)
00135 *
00136 * Computes the delta between the two time stamps.
00137 *
00138 * @param Stamp1Ptr - First sampled time stamp.
00139 * @param Stamp1Ptr - Sedond sampled time stamp.
00140 *
00141 * @return An unsigned int value with units of microseconds.
00142 */
00143
00144 /***/
00145 /**
00146 *
00147 * XENV_TIME_STAMP_DELTA_MS(XTIME_STAMP *Stamp1Ptr, XTIME_STAMP* Stamp2Ptr)

00148 *
00149 * Computes the delta between the two time stamps.
00150 *
00151 * @param Stamp1Ptr - First sampled time stamp.
00152 * @param Stamp1Ptr - Sedond sampled time stamp.
00153 *
00154 * @return An unsigned int value with units of milliseconds.
00155 */
00156
00157
/***//**
00158 *
00159 * XENV_USLEEP(unsigned delay)
00160 *
00161 * Delay the specified number of microseconds.
00162 *
00163 * @param delay is the number of microseconds to delay.
00164 *
00165 * @return None
00166 */
00167
00168 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv_vxworks.h
Go to the documentation of this file.

00001 /**
00002 *
00003 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00004 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00005 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00006 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00007 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00008 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00009 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00010 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00011 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00012 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00013 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00014 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00015 * FOR A PARTICULAR PURPOSE.
00016 *
00017 * (c) Copyright 2002 Xilinx Inc.
00018 * All rights reserved.
00019 *
00020 **/
00021 /***/
00022 /**
00023 *
00024 * @file common/v1_00_a/src/xenv_vxworks.h
00025 *
00026 * Defines common services that are typically found in a VxWorks target
00027 * environment.
00028 *
00029 * @note
00030 *
00031 * This file is not intended to be included directly by driver code. Instead,
00032 * the generic xenv.h file is intended to be included by driver code.
00033 *
00034 * <pre>
00035 * MODIFICATION HISTORY:
00036 *
00037 * Ver Who Date Changes
00038 * ----- ---- -------- ---
00039 * 1.00b rmm 10/24/02 Added XENV_USLEEP macro
00040 * 1.00a rmm 07/16/01 First release
00041 * </pre>
00042 *

00043 *
00044 **/
00045
00046 #ifndef XENV_VXWORKS_H /* prevent circular inclusions */
00047 #define XENV_VXWORKS_H /* by using protection macros */
00048
00049 /***************************** Include Files *********************************/
00050 #include "xbasic_types.h"

00051 #include "vxWorks.h"
00052 #include "vxLib.h"
00053 #include <string.h>
00054
00055 /***/
00056 /**
00057 *
00058 * Copies a non-overlapping block of memory.
00059 *
00060 * @param DestPtr is the destination address to copy data to.
00061 * @param SrcPtr is the source address to copy data from.
00062 * @param Bytes is the number of bytes to copy.
00063 *
00064 * @return
00065 *
00066 * None.
00067 *
00068 * @note
00069 *
00070 * Signature: void XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)
00071 *
00072 ***/
00073 #define XENV_MEM_COPY(DestPtr, SrcPtr, Bytes) \

00074 { \
00075 void *Dest = (DestPtr); \
00076 void *Src = (SrcPtr); \
00077 unsigned LengthBytes = (Bytes); \
00078 \
00079 memcpy(Dest, Src, (size_t)LengthBytes); \
00080 }
00081
00082 /***/
00083 /**
00084 *
00085 * Fills an area of memory with constant data.
00086 *
00087 * @param DestPtr is the destination address to set.
00088 * @param Data contains the value to set.
00089 * @param Bytes is the number of bytes to set.
00090 *
00091 * @return
00092 *
00093 * None.
00094 *

00095 * @note
00096 *
00097 * Signature: void XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)
00098 *
00099 ***/
00100 #define XENV_MEM_FILL(DestPtr, Data, Bytes) \

00101 { \
00102 void *Dest = (DestPtr); \
00103 char c = (Data); \
00104 unsigned LengthBytes = (Bytes); \
00105 \
00106 memset(Dest, (int)Data, (size_t)LengthBytes); \
00107 }
00108
00109 #if (CPU_FAMILY==PPC)
00110 /**
00111 * A structure that contains a time stamp used by other time stamp macros
00112 * defined below. This structure is processor dependent.
00113 */
00114 typedef struct

00115 {
00116 Xuint32 TimeBaseUpper;

00117 Xuint32 TimeBaseLower;

00118 } XENV_TIME_STAMP;
00119 #endif
00120
00121 /***/
00122 /**
00123 *
00124 * Time is derived from the 64 bit PPC timebase register
00125 *
00126 * @param StampPtr is the storage for the retrieved time stamp.
00127 *
00128 * @return
00129 *
00130 * None.
00131 *
00132 * @note
00133 *
00134 * Signature: void XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)
00135 *
00136 ***/
00137 #define XENV_TIME_STAMP_GET(StampPtr) \

00138 { \
00139 vxTimeBaseGet((UINT32*)&(StampPtr)->TimeBaseUpper, \
00140 (UINT32*)&(StampPtr)->TimeBaseLower); \
00141 }
00142
00143 /***/
00144 /**
00145 *
00146 * This macro is not yet implemented and always returns 0.

00147 *
00148 * @param Stamp1Ptr is the first sampled time stamp.
00149 * @param Stamp2Ptr is the second sampled time stamp.
00150 *
00151 * @return 0
00152 *
00153 * @note
00154 *
00155 * None.
00156 *
00157 ***/
00158 #define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr, Stamp2Ptr) (0)

00159
00160 /***/
00161 /**
00162 *
00163 * This macro is not yet implemented and always returns 0.
00164 *
00165 * @param Stamp1Ptr is the first sampled time stamp.
00166 * @param Stamp2Ptr is the second sampled time stamp.
00167 *
00168 * @return 0
00169 *
00170 * @note
00171 *
00172 * None.
00173 *
00174 ***/
00175 #define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr, Stamp2Ptr) (0)

00176
00177 /***/
00178 /**
00179 *
00180 * XENV_USLEEP(unsigned delay)
00181 *
00182 * Delay the specified number of microseconds.
00183 *
00184 * @param delay is the number of microseconds to delay.
00185 *
00186 * @return None
00187 *
00188 ***/
00189 #define XENV_USLEEP(delay) sysUsDelay(delay)

00190
00191
00192
00193 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XENV_TIME_STAMP Struct Reference
#include <xenv_vxworks.h>

Detailed Description

A structure that contains a time stamp used by other time stamp macros defined below. This structure is
processor dependent.

The documentation for this struct was generated from the following file:

● common/v1_00_a/src/xenv_vxworks.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv_linux.h File
Reference

Detailed Description

Defines common services specified by xenv.h. Some of these services are defined as not performing any
action. The implementation of these services are left to the user.

Note:
This file is not intended to be included directly by driver code. Instead, the generic xenv.h file is
intended to be included by driver code.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 10/24/02 First release

#include "sleep.h"

Go to the source code of this file.

Defines

#define XENV_MEM_COPY(DestPtr, SrcPtr, Bytes)
#define XENV_MEM_FILL(DestPtr, Data, Bytes)
#define XENV_TIME_STAMP_GET(StampPtr)

#define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr, Stamp2Ptr)
#define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr, Stamp2Ptr)
#define XENV_USLEEP(delay)

Typedefs

typedef int XENV_TIME_STAMP

Define Documentation

#define XENV_MEM_COPY(DestPtr,
SrcPtr,
Bytes)

Copies a non-overlapping block of memory.

Parameters:
DestPtr is the destination address to copy data to.
SrcPtr is the source address to copy data from.
Bytes is the number of bytes to copy.

Returns:
None.

Note:
Signature: void XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)

#define XENV_MEM_FILL(DestPtr,
Data,
Bytes)

Fills an area of memory with constant data.

Parameters:
DestPtr is the destination address to set.
Data contains the value to set.
Bytes is the number of bytes to set.

Returns:
None.

Note:
Signature: void XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)

#define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr,
Stamp2Ptr)

This macro is not yet implemented and always returns 0.

Parameters:
Stamp1Ptr is the first sampled time stamp.
Stamp2Ptr is the second sampled time stamp.

Returns:
0

Note:
This macro must be implemented by the user

#define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr,
Stamp2Ptr)

This macro is not yet implemented and always returns 0.

Parameters:
Stamp1Ptr is the first sampled time stamp.
Stamp2Ptr is the second sampled time stamp.

Returns:
0

Note:
This macro must be implemented by the user

#define XENV_TIME_STAMP_GET(StampPtr)

Time is derived from the 64 bit PPC timebase register

Parameters:
StampPtr is the storage for the retrieved time stamp.

Returns:
None.

Note:
Signature: void XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)

Note:
This macro must be implemented by the user

#define XENV_USLEEP(delay)

XENV_USLEEP(unsigned delay)

Delay the specified number of microseconds.

Parameters:
delay is the number of microseconds to delay.

Returns:
None

Typedef Documentation

typedef int XENV_TIME_STAMP

A structure that contains a time stamp used by other time stamp macros defined below. This structure
is processor dependent.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xenv_linux.h
Go to the documentation of this file.

00001 /**
00002 *
00003 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00004 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00005 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00006 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00007 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00008 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00009 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00010 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00011 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00012 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00013 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00014 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00015 * FOR A PARTICULAR PURPOSE.
00016 *
00017 * (c) Copyright 2002 Xilinx Inc.
00018 * All rights reserved.
00019 *
00020 **/
00021 /***/
00022 /**
00023 *
00024 * @file common/v1_00_a/src/xenv_linux.h
00025 *
00026 * Defines common services specified by xenv.h. Some of these services are
00027 * defined as not performing any action. The implementation of these services
00028 * are left to the user.
00029 *
00030 * @note
00031 *
00032 * This file is not intended to be included directly by driver code. Instead,
00033 * the generic xenv.h file is intended to be included by driver code.
00034 *
00035 * <pre>
00036 * MODIFICATION HISTORY:
00037 *
00038 * Ver Who Date Changes
00039 * ----- ---- -------- ---
00040 * 1.00a ch 10/24/02 First release
00041 * </pre>
00042 *

00043 *
00044 **/
00045
00046 #ifndef XENV_LINUX_H /* prevent circular inclusions */
00047 #define XENV_LINUX_H /* by using protection macros */
00048
00049 /***************************** Include Files *********************************/
00050 #include "sleep.h"
00051
00052 /***/
00053 /**
00054 *
00055 * Copies a non-overlapping block of memory.
00056 *
00057 * @param DestPtr is the destination address to copy data to.
00058 * @param SrcPtr is the source address to copy data from.
00059 * @param Bytes is the number of bytes to copy.
00060 *
00061 * @return
00062 *
00063 * None.
00064 *
00065 * @note
00066 *
00067 * Signature: void XENV_MEM_COPY(void *DestPtr, void *SrcPtr, unsigned Bytes)
00068 *
00069 ***/
00070 #define XENV_MEM_COPY(DestPtr, SrcPtr, Bytes) \

00071 { \
00072 char *Dest = (char*)(DestPtr); \
00073 char *Src = (char*)(SrcPtr); \
00074 unsigned BytesLeft = (Bytes); \
00075 \
00076 while (BytesLeft--) *Dest++ = *Src++; \
00077 }
00078
00079 /***/
00080 /**
00081 *
00082 * Fills an area of memory with constant data.
00083 *
00084 * @param DestPtr is the destination address to set.
00085 * @param Data contains the value to set.
00086 * @param Bytes is the number of bytes to set.
00087 *
00088 * @return
00089 *
00090 * None.
00091 *
00092 * @note
00093 *
00094 * Signature: void XENV_MEM_FILL(void *DestPtr, char Data, unsigned Bytes)

00095 *
00096 ***/
00097 #define XENV_MEM_FILL(DestPtr, Data, Bytes) \

00098 { \
00099 char *Dest = (char*)(DestPtr); \
00100 char c = (Data); \
00101 unsigned BytesLeft = (Bytes); \
00102 \
00103 while (BytesLeft--) *Dest++ = c; \
00104 }
00105
00106 /**
00107 * A structure that contains a time stamp used by other time stamp macros
00108 * defined below. This structure is processor dependent.
00109 */
00110 typedef int XENV_TIME_STAMP;

00111
00112 /***/
00113 /**
00114 *
00115 * Time is derived from the 64 bit PPC timebase register
00116 *
00117 * @param StampPtr is the storage for the retrieved time stamp.
00118 *
00119 * @return
00120 *
00121 * None.
00122 *
00123 * @note
00124 *
00125 * Signature: void XENV_TIME_STAMP_GET(XTIME_STAMP *StampPtr)
00126 *
00127 * @note
00128 *
00129 * This macro must be implemented by the user
00130 ***/
00131 #define XENV_TIME_STAMP_GET(StampPtr)

00132
00133 /***/
00134 /**
00135 *
00136 * This macro is not yet implemented and always returns 0.
00137 *
00138 * @param Stamp1Ptr is the first sampled time stamp.
00139 * @param Stamp2Ptr is the second sampled time stamp.
00140 *
00141 * @return 0
00142 *
00143 * @note
00144 *
00145 * This macro must be implemented by the user
00146 *

00147 ***/
00148 #define XENV_TIME_STAMP_DELTA_US(Stamp1Ptr, Stamp2Ptr) (0)

00149
00150 /***/
00151 /**
00152 *
00153 * This macro is not yet implemented and always returns 0.
00154 *
00155 * @param Stamp1Ptr is the first sampled time stamp.
00156 * @param Stamp2Ptr is the second sampled time stamp.
00157 *
00158 * @return 0
00159 *
00160 * @note
00161 *
00162 * This macro must be implemented by the user
00163 *
00164 ***/
00165 #define XENV_TIME_STAMP_DELTA_MS(Stamp1Ptr, Stamp2Ptr) (0)

00166
00167 /***/
00168 /**
00169 *
00170 * XENV_USLEEP(unsigned delay)
00171 *
00172 * Delay the specified number of microseconds.
00173 *
00174 * @param delay is the number of microseconds to delay.
00175 *
00176 * @return None
00177 *
00178 ***/
00179 #define XENV_USLEEP(delay) \

00180 { \
00181 usleep(delay); \
00182 }
00183
00184
00185
00186 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_cfi.h File
Reference

Detailed Description

This is a helper component for XFlash. It contains methods used to extract and interpret Common Flash
Interface (CFI) from a flash memory part that supports the CFI query command.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xflash.h"

#include "xflash_geometry.h"

#include "xflash_properties.h"

Go to the source code of this file.

Defines

#define XFL_CFI_POSITION_PTR(Ptr, BaseAddr, Interleave, ByteAddr)
#define XFL_CFI_READ8(Ptr, Interleave)
#define XFL_CFI_READ16(Ptr, Interleave, Data)

#define XFL_CFI_ADVANCE_PTR8(Ptr, Interleave)
#define XFL_CFI_ADVANCE_PTR16(Ptr, Interleave)

Functions

XStatus XFlashCFI_ReadCommon (XFlashGeometry *GeometryPtr, XFlashProperties
*PropertiesPtr)

Define Documentation

#define XFL_CFI_ADVANCE_PTR16(Ptr,
Interleave)

Advances the CFI pointer to the next 16-bit quantity.

Parameters:
Ptr is the pointer to advance. Can be a pointer to any type.
Interleave is the byte interleaving (based on part layout)

Returns:
Adjusted Ptr.

#define XFL_CFI_ADVANCE_PTR8(Ptr,
Interleave)

Advances the CFI pointer to the next byte

Parameters:
Ptr is the pointer to advance. Can be a pointer to any type.
Interleave is the byte interleaving (based on part layout)

Returns:
Adjusted Ptr.

#define XFL_CFI_POSITION_PTR(Ptr,
BaseAddr,
Interleave,
ByteAddr)

Moves the CFI data pointer to a physical address that corresponds to a specific CFI byte offset.

Parameters:
Ptr is the pointer to modify. Can be of any type
BaseAddr is the base address of flash part
Interleave is the byte interleaving (based on part layout)
ByteAddr is the byte offset within CFI data to read

Returns:
The Ptr argument is set to point at the the CFI byte specified by the ByteAddr parameter.

#define XFL_CFI_READ16(Ptr,
Interleave,
Data)

Reads 16-bits of data from the CFI data location into a local variable.

Parameters:
Ptr is the pointer to read. Can be a pointer to any type.
Interleave is the byte interleaving (based on part layout)
Data is the 16-bit storage location for the data to be read.

Returns:
The 16-bit value at Ptr adjusted for the interleave factor.

#define XFL_CFI_READ8(Ptr,
Interleave)

Reads 8-bits of data from the CFI data location into a local variable.

Parameters:
Ptr is the pointer to read. Can be a pointer to any type.
Interleave is the byte interleaving (based on part layout)

Returns:
The byte at Ptr adjusted for the interleave factor.

Function Documentation

XStatus XFlashCFI_ReadCommon (XFlashGeometry * GeometryPtr,
XFlashProperties * PropertiesPtr

)

Retrieves the standard CFI data from the part(s), interpret the data, and update the provided geometry
and properties structures.

Extended CFI data is part specific and ignored here. This data must be read by the specific part
component driver.

Parameters:
GeometryPtr is an input/output parameter. This function expects the BaseAddress and

MemoryLayout attributes to be correctly initialized. All other attributes of this
structure will be setup using translated CFI data read from the part.

PropertiesPtr is an output parameter. Timing, identification, and programming CFI data will
be translated and written to this structure.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_CFI_QUERY_ERROR if an error occurred interpreting the data.
❍ XST_FLASH_PART_NOT_SUPPORTED if invalid Layout parameter

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash.h
Go to the documentation of this file.

00001 /* $Id: xflash.h,v 1.8 2002/05/13 19:57:06 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file flash/v1_00_a/src/xflash.h
00026 *
00027 * This is the base component for XFlash. It provides the public
00028 * interface which upper layers use to communicate with specific flash
00029 * hardware.
00030 *
00031 * This driver supports "Common Flash Interface" (CFI) enabled flash hardware.
00032 * CFI allows entire families of flash parts to be supported with a single
00033 * driver sub-component.
00034 *
00035 * This driver is designed for devices external to the FPGA. As a result
00036 * interfaces such as IPIF and versioning are not incorporated into its
00037 * design. A more detailed description of the driver operation can be found
00038 * in XFlash.c
00039 *
00040 * @note
00041 *
00042 * This driver is intended to be RTOS and processor independent. It

00043 * works with physical addresses only. Any needs for dynamic memory
00044 * management, threads, mutual exclusion, virtual memory, cache
00045 * control, or HW write protection management must be satisfied by the
00046 * layer above this driver.
00047 *

00048 * All writes to flash occur in units of bus-width bytes. If more than one
00049 * part exists on the data bus, then the parts are written in parallel.
00050 * Reads from flash are performed in any width up to the width of the data
00051 * bus. It is assumed that the flash bus controller or local bus supports
00052 * these types of accesses.
00053 *
00054 * <pre>
00055 * MODIFICATION HISTORY:
00056 *
00057 * Ver Who Date Changes
00058 * ----- ---- -------- ---
00059 * 1.00a rmm 07/16/01 First release
00060 * </pre>
00061 *
00062 ***/
00063
00064 #ifndef XFLASH_H /* prevent circular inclusions */
00065 #define XFLASH_H /* by using protection macros */
00066
00067 /***************************** Include Files *********************************/
00068 #include "xbasic_types.h"

00069 #include "xstatus.h"

00070 #include "xflash_geometry.h"

00071 #include "xflash_properties.h"

00072
00073 /************************** Constant Definitions *****************************/
00074
00075 /**
00076 * Supported manufacturer IDs. Note, that not all parts from these listed
00077 * vendors are supported.
00078 */
00079 #define XFL_MANUFACTURER_ID_INTEL 0x89

00080
00081 /** @name Configuration options
00082 * @{
00083 */
00084 /**
00085 * <pre>
00086 * XFL_NON_BLOCKING_ERASE_OPTION Controls whether the interface blocks on
00087 * device erase until the operation is
00088 * completed 1=noblock, 0=block
00089 * XFL_NON_BLOCKING_WRITE_OPTION Controls whether the interface blocks on
00090 * device program until the operation is
00091 * completed 1=noblock, 0=block
00092 * </pre>
00093 */
00094 #define XFL_NON_BLOCKING_ERASE_OPTION 0x00000001UL

00095 #define XFL_NON_BLOCKING_WRITE_OPTION 0x00000002UL

00096 /*@}*/
00097
00098 #define XFL_MAX_VENDOR_DATA_LENGTH 20 /* Number of 32-bit integers
00099 reserved for vendor data as part
00100 of the XFlash sub-components */
00101
00102 /**************************** Type Definitions *******************************/
00103
00104
00105 /*
00106 * Define a type to contain part specific data to be maintained by
00107 * the part component. Within the component, a new type is defined that
00108 * overlays this type.
00109 */
00110 typedef Xuint32 XFlashVendorData[XFL_MAX_VENDOR_DATA_LENGTH];

00111
00112 /**
00113 * This typedef contains configuration information for the device.
00114 */
00115 typedef struct

00116 {
00117 Xuint16 DeviceId; /**< Unique ID of device */

00118 Xuint32 BaseAddr; /**< Base address of array */

00119 Xuint8 NumParts; /**< Number of parts in the array */

00120 Xuint8 PartWidth; /**< Width of each part in bytes */

00121 Xuint8 PartMode; /**< Operation mode of each part in bytes */

00122 } XFlash_Config;

00123
00124 /**
00125 * The XFlash driver instance data. The user is required to allocate a
00126 * variable of this type for every flash device in the system. A pointer
00127 * to a variable of this type is then passed to the driver API functions.
00128 */
00129 typedef struct XFlashTag

00130 {
00131 Xuint32 Options; /* Current device options */

00132 Xboolean IsReady; /* Device is initialized and ready */

00133 XFlashGeometry Geometry; /* Part geometry */

00134 XFlashProperties Properties; /* Part timing, programming, &

00135 identification properties */
00136 XFlashVendorData VendorData; /* Part specific data */
00137
00138 struct
00139 {
00140 XStatus (*ReadBlock)(struct XFlashTag *InstancePtr, Xuint16 Region,

00141 Xuint16 Block, Xuint32 Offset, Xuint32 Bytes,
00142 void* DestPtr);
00143
00144 XStatus (*WriteBlock)(struct XFlashTag *InstancePtr, Xuint16 Region,

00145 Xuint16 Block,Xuint32 Offset, Xuint32 Bytes,

00146 void* SrcPtr);
00147
00148 XStatus (*WriteBlockSuspend)(struct XFlashTag *InstancePtr,

00149 Xuint16 Region, Xuint16 Block,
00150 Xuint32 Offset);
00151
00152 XStatus (*WriteBlockResume)(struct XFlashTag *InstancePtr,

00153 Xuint16 Region, Xuint16 Block,
00154 Xuint32 Offset);
00155
00156 XStatus (*EraseBlock)(struct XFlashTag *InstancePtr, Xuint16 Region,

00157 Xuint16 Block, Xuint16 NumBlocks);
00158
00159 XStatus (*EraseBlockSuspend)(struct XFlashTag *InstancePtr,

00160 Xuint16 Region, Xuint16 Block);
00161
00162 XStatus (*EraseBlockResume)(struct XFlashTag *InstancePtr,

00163 Xuint16 Region, Xuint16 Block);
00164
00165 XStatus (*LockBlock)(struct XFlashTag *InstancePtr, Xuint16 Region,

00166 Xuint16 Block, Xuint16 NumBlocks);
00167
00168 XStatus (*UnlockBlock)(struct XFlashTag *InstancePtr, Xuint16 Region,

00169 Xuint16 Block, Xuint16 NumBlocks);
00170
00171 XStatus (*GetBlockStatus)(struct XFlashTag *InstancePtr, Xuint16

Region,
00172 Xuint16 Block);
00173
00174 XStatus (*Read)(struct XFlashTag *InstancePtr, Xuint32 Offset,

00175 Xuint32 Bytes, void* DestPtr);
00176
00177 XStatus (*Write)(struct XFlashTag *InstancePtr, Xuint32 Offset,

00178 Xuint32 Bytes, void* SrcPtr);
00179
00180 XStatus (*WriteSuspend)(struct XFlashTag *InstancePtr, Xuint32 Offset);

00181 XStatus (*WriteResume)(struct XFlashTag *InstancePtr, Xuint32 Offset);

00182
00183 XStatus (*Erase)(struct XFlashTag *InstancePtr, Xuint32 Offset,

00184 Xuint32 Bytes);
00185
00186 XStatus (*EraseSuspend)(struct XFlashTag *InstancePtr, Xuint32 Offset);

00187 XStatus (*EraseResume)(struct XFlashTag *InstancePtr, Xuint32 Offset);

00188
00189 XStatus (*Lock)(struct XFlashTag *InstancePtr, Xuint32 Offset,

00190 Xuint32 Bytes);
00191
00192 XStatus (*Unlock)(struct XFlashTag *InstancePtr, Xuint32 Offset,

00193 Xuint32 Bytes);
00194 XStatus (*GetStatus)(struct XFlashTag *InstancePtr, Xuint32 Offset);

00195
00196 XStatus (*EraseChip)(struct XFlashTag *InstancePtr);

00197 XStatus (*Initialize)(struct XFlashTag *Initialize);

00198 XStatus (*SelfTest)(struct XFlashTag *InstancePtr);

00199 XStatus (*Reset)(struct XFlashTag *InstancePtr);

00200 XStatus (*SetOptions)(struct XFlashTag *InstancePtr,

00201 Xuint32 OptionsFlag);
00202
00203 Xuint32 (*GetOptions)(struct XFlashTag *InstancePtr);

00204 XFlashProperties* (*GetProperties)(struct XFlashTag *InstancePtr);

00205 XFlashGeometry* (*GetGeometry)(struct XFlashTag *InstancePtr);

00206 XStatus (*DeviceControl)(struct XFlashTag *InstancePtr, Xuint32

Command,
00207 Xuint32 Param, Xuint32 *ReturnPtr);
00208 } VTable;
00209 } XFlash;

00210
00211
00212 /***************** Macros (Inline Functions) Definitions *********************/
00213
00214 /*
00215 * The following macros implement flash I/O primitives. All flash components
00216 * use these macros to access the flash devices. The only exceptions are read
00217 * functions which simply copy data using memcpy or equivalent utility funcs.
00218 *
00219 * The 8, 16, 32, 64 signify the access width.
00220 */
00221 #define READ_FLASH_8(Address) \
00222 (*(volatile Xuint8*)(Address))
00223
00224 #define READ_FLASH_16(Address) \
00225 (*(volatile Xuint16*)(Address))
00226
00227 #define READ_FLASH_32(Address) \
00228 (*(volatile Xuint32*)(Address))
00229
00230 #define READ_FLASH_64(Address, Data) \
00231 (XUINT64_MSW(Data) = *(volatile Xuint32*)(Address)); \
00232 (XUINT64_LSW(Data) = *(volatile Xuint32*)(((Xuint32)(Address) + 4)))
00233
00234 #define WRITE_FLASH_8(Address, Data) \
00235 (*(volatile Xuint8*)(Address) = (Xuint8)(Data))
00236
00237 #define WRITE_FLASH_16(Address, Data) \
00238 (*(volatile Xuint16*)(Address) = (Xuint16)(Data))
00239
00240 #define WRITE_FLASH_32(Address, Data) \
00241 (*(volatile Xuint32*)(Address) = (Xuint32)(Data))
00242
00243 #define WRITE_FLASH_64(Address, Data) \
00244 (*(volatile Xuint32*)(Address) = XUINT64_MSW(Data)); \

00245 (*(volatile Xuint32*)((Xuint32)(Address) + 4) = XUINT64_LSW(Data))
00246
00247 #define WRITE_FLASH_64x2(Address, Data1, Data2) \
00248 (*(volatile Xuint32*)(Address) = Data1); \
00249 (*(volatile Xuint32*)((Xuint32)(Address) + 4) = Data2)
00250
00251 /************************** Function Prototypes ******************************/
00252
00253 /*
00254 * Initialization, configuration, & control Functions
00255 */
00256 XStatus XFlash_Initialize(XFlash *InstancePtr, Xuint16 DeviceId);

00257 XStatus XFlash_SelfTest(XFlash *InstancePtr);

00258 XStatus XFlash_Reset(XFlash *InstancePtr);

00259 XFlash_Config *XFlash_LookupConfig(Xuint16 DeviceId);

00260 XStatus XFlash_SetOptions(XFlash *InstancePtr, Xuint32 OptionsFlag);

00261 Xuint32 XFlash_GetOptions(XFlash *InstancePtr);

00262 XFlashProperties* XFlash_GetProperties(XFlash *InstancePtr);

00263 XFlashGeometry* XFlash_GetGeometry(XFlash *InstancePtr);

00264
00265 XStatus XFlash_DeviceControl(XFlash *InstancePtr, Xuint32 Command,

00266 Xuint32 Param, Xuint32 *ReturnPtr);

00267
00268 /*
00269 * Non-geometry aware API
00270 */
00271 XStatus XFlash_Read(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes,

00272 void* DestPtr);
00273
00274 XStatus XFlash_Write(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes,

00275 void* SrcPtr);
00276
00277 XStatus XFlash_WriteSuspend(XFlash *InstancePtr, Xuint32 Offset);

00278 XStatus XFlash_WriteResume(XFlash *InstancePtr, Xuint32 Offset);

00279
00280 XStatus XFlash_Erase(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes);

00281 XStatus XFlash_EraseSuspend(XFlash *InstancePtr, Xuint32 Offset);

00282 XStatus XFlash_EraseResume(XFlash *InstancePtr, Xuint32 Offset);

00283
00284 XStatus XFlash_Lock(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes);

00285 XStatus XFlash_Unlock(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes);

00286 XStatus XFlash_GetStatus(XFlash *InstancePtr, Xuint32 Offset);

00287
00288 /*
00289 * Geometry aware API
00290 */
00291 XStatus XFlash_ReadBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

00292 Xuint32 Offset, Xuint32 Bytes, void* DestPtr);

00293
00294 XStatus XFlash_WriteBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

00295 Xuint32 Offset, Xuint32 Bytes, void* SrcPtr);

00296
00297 XStatus XFlash_WriteBlockSuspend(XFlash *InstancePtr, Xuint16 Region,

00298 Xuint16 Block, Xuint32 Offset);

00299
00300 XStatus XFlash_WriteBlockResume(XFlash *InstancePtr, Xuint16 Region,

00301 Xuint16 Block, Xuint32 Offset);

00302
00303 XStatus XFlash_EraseBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

00304 Xuint16 NumBlocks);

00305
00306 XStatus XFlash_EraseBlockSuspend(XFlash *InstancePtr, Xuint16 Region,

00307 Xuint16 Block);

00308
00309 XStatus XFlash_EraseBlockResume(XFlash *InstancePtr, Xuint16 Region,

00310 Xuint16 Block);

00311
00312 XStatus XFlash_LockBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

00313 Xuint16 NumBlocks);

00314
00315 XStatus XFlash_UnlockBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

00316 Xuint16 NumBlocks);

00317
00318 XStatus XFlash_GetBlockStatus(XFlash *InstancePtr, Xuint16 Region,

00319 Xuint16 Block);

00320
00321 /*
00322 * Other commands
00323 */
00324 XStatus XFlash_EraseChip(XFlash *InstancePtr);

00325
00326 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash.h File Reference

Detailed Description

This is the base component for XFlash. It provides the public interface which upper layers use to communicate
with specific flash hardware.

This driver supports "Common Flash Interface" (CFI) enabled flash hardware. CFI allows entire families of flash
parts to be supported with a single driver sub-component.

This driver is designed for devices external to the FPGA. As a result interfaces such as IPIF and versioning are
not incorporated into its design. A more detailed description of the driver operation can be found in XFlash.c

Note:
This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any
needs for dynamic memory management, threads, mutual exclusion, virtual memory, cache control, or
HW write protection management must be satisfied by the layer above this driver.

All writes to flash occur in units of bus-width bytes. If more than one part exists on the data bus, then the
parts are written in parallel. Reads from flash are performed in any width up to the width of the data bus. It
is assumed that the flash bus controller or local bus supports these types of accesses.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xflash_geometry.h"

#include "xflash_properties.h"

Go to the source code of this file.

Data Structures

struct XFlash_Config
struct XFlashTag

Configuration options

#define XFL_NON_BLOCKING_ERASE_OPTION
#define XFL_NON_BLOCKING_WRITE_OPTION

Defines

#define XFL_MANUFACTURER_ID_INTEL

Typedefs

typedef XFlashTag XFlash

Functions

XStatus XFlash_Initialize (XFlash *InstancePtr, Xuint16 DeviceId)
XStatus XFlash_SelfTest (XFlash *InstancePtr)
XStatus XFlash_Reset (XFlash *InstancePtr)

XFlash_Config * XFlash_LookupConfig (Xuint16 DeviceId)
XStatus XFlash_SetOptions (XFlash *InstancePtr, Xuint32 OptionsFlag)
Xuint32 XFlash_GetOptions (XFlash *InstancePtr)

XFlashProperties * XFlash_GetProperties (XFlash *InstancePtr)
XFlashGeometry * XFlash_GetGeometry (XFlash *InstancePtr)

XStatus XFlash_DeviceControl (XFlash *InstancePtr, Xuint32 Command, Xuint32 Param,
Xuint32 *ReturnPtr)

XStatus XFlash_Read (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void *DestPtr)
XStatus XFlash_Write (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void *SrcPtr)
XStatus XFlash_WriteSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_WriteResume (XFlash *InstancePtr, Xuint32 Offset)

XStatus XFlash_Erase (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlash_EraseSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_EraseResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_Lock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlash_Unlock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlash_GetStatus (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_ReadBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block, Xuint32

Offset, Xuint32 Bytes, void *DestPtr)
XStatus XFlash_WriteBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block, Xuint32

Offset, Xuint32 Bytes, void *SrcPtr)
XStatus XFlash_WriteBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint32 Offset)
XStatus XFlash_WriteBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint32 Offset)
XStatus XFlash_EraseBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block, Xuint16

NumBlocks)
XStatus XFlash_EraseBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block)
XStatus XFlash_EraseBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block)
XStatus XFlash_LockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block, Xuint16

NumBlocks)
XStatus XFlash_UnlockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block, Xuint16

NumBlocks)
XStatus XFlash_GetBlockStatus (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block)
XStatus XFlash_EraseChip (XFlash *InstancePtr)

Define Documentation

#define XFL_MANUFACTURER_ID_INTEL

 Supported manufacturer IDs. Note, that not all parts from these listed vendors are supported.

#define XFL_NON_BLOCKING_ERASE_OPTION

 XFL_NON_BLOCKING_ERASE_OPTION Controls whether the interface blocks on
 device erase until the operation is
 completed 1=noblock, 0=block
 XFL_NON_BLOCKING_WRITE_OPTION Controls whether the interface blocks on
 device program until the operation is
 completed 1=noblock, 0=block

#define XFL_NON_BLOCKING_WRITE_OPTION

 XFL_NON_BLOCKING_ERASE_OPTION Controls whether the interface blocks on
 device erase until the operation is
 completed 1=noblock, 0=block
 XFL_NON_BLOCKING_WRITE_OPTION Controls whether the interface blocks on
 device program until the operation is
 completed 1=noblock, 0=block

Typedef Documentation

typedef struct XFlashTag XFlash

The XFlash driver instance data. The user is required to allocate a variable of this type for every flash device
in the system. A pointer to a variable of this type is then passed to the driver API functions.

Function Documentation

XStatus XFlash_DeviceControl (XFlash * InstancePtr,
Xuint32 Command,
Xuint32 Param,
Xuint32 * ReturnPtr

)

Accesses device specific data or commands. For a list of commands, see derived component documentation.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Command is the device specific command to issue
Param is the command parameter
ReturnPtr is the result of command (if any)

Returns:
❍ XST_SUCCESS if successful
❍ XST_FLASH_NOT_SUPPORTED if the command is not recognized/supported by the

device(s).

Note:
None.

XStatus XFlash_Erase (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

Erases the specified address range.

Returns immediately if the XFL_NON_BLOCKING_ERASE_OPTION option is set. If clear, the device(s)
are polled until an error, timeout or the operation completes successfully.

Erase the specified range of the device(s). Returns immediately if the
XFL_NON_BLOCKING_ERASE_OPTION option is set. If clear, the device(s) are polled until an error,
timeout or the operation completes successfully.

The XFL_NON_BLOCKING_ERASE_OPTION option has an impact on the number of bytes that can be
erased in a single call to this function:

● If clear, then the number of bytes to erase can be any number as long as it is within the bounds of the
device(s).

● If set, then the number of bytes depends on the the block size of the device at the provided offset and
whether the device(s) contains a block erase queue.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin erasure.
Bytes is the number of bytes to erase.

Returns:
If XFL_NON_BLOCKING_ERASE_OPTION option is set, then the return value is one of the
following:

❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely within the

addressable areas of the device(s).
❍ XST_FLASH_BLOCKING_CALL_ERROR if the amount of data to be erased exceeds the

erase queue capacity of the device(s).
If XFL_NON_BLOCKING_ERASE_OPTION option is clear, then the following additional codes can
be returned:

❍ XST_FLASH_ERROR if an erase error occurred. This error is usually device specific. Use
XFlash_DeviceControl() to retrieve specific error conditions. When this error is returned, it is
possible that the target address range was only partially erased.

Note:
Due to flash memory design, the range actually erased may be larger than what was specified by the

Offset & Bytes parameters. This will occur if the parameters do not align to block boundaries.

XStatus XFlash_EraseBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

Erases the specified block.

Returns immediately if the XFL_NON_BLOCKING_ERASE_OPTION option is set. If clear, the device(s)
are polled until an error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_ERASE_OPTION option has an impact on the number of bytes that can be
erased in a single call to this function:

● If clear, then the number of bytes to erase can be any number as long as it is within the bounds of the
device(s).

● If set, then the number of bytes depends on the the block size of the device at the provided offset and
whether the device(s) contains a block erase queue.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
NumBlocks is the the number of blocks to erase.

Returns:
If XFL_NON_BLOCKING_ERASE_OPTION option is set, then the return value is one of the below.

❍ XST_SUCCESS if successfull.
❍ XST_FLASH_ADDRESS_ERROR if region and/or block do not specify a valid block within

the device.
If XFL_NON_BLOCKING_ERASE_OPTION option is clear, then the following additional codes can
be returned

❍ XST_FLASH_ERROR if an erase error occured. This error is usually device specific. Use
XFlash_DeviceControl() to retrieve specific error conditions. When this error is returned, it is
possible that the target address range was only partially erased.

Note:
The arguments point to a starting Region and Block. The NumBlocks parameter may cross over Region
boundaries as long as the entire range lies within the part(s) address range and the
XFL_NON_BLOCKING_ERASE_OPTION option is not set.

XStatus XFlash_EraseBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

Resumes an erase operation that was suspended with XFlash_EraseBlockSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being erased

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore Region &
Block parameters are ignored.

XStatus XFlash_EraseBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

Suspends a currently in progress erase operation and place the device(s) in read mode. When suspended, any
block not being erased can be read.

This function should be used only when the XFL_NON_BLOCKING_ERASE_OPTION option is set and a
previous call to XFlash_EraseBlock() has been made. Otherwise, undetermined results may occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being erased

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore Region &

Block parameters are ignored.

XStatus XFlash_EraseChip (XFlash * InstancePtr)

Erases the entire device(s).

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
If XFL_NON_BLOCKING_ERASE_OPTION option is set, then the return value is always
XST_SUCCESS. If XFL_NON_BLOCKING_ERASE_OPTION option is clear, then the following
additional codes can be returned:

❍ XST_FLASH_NOT_SUPPORTED if the chip erase is not supported by the device(s).
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error during the operation.

XFlash_DeviceControl() must be used to access the cause of the device specific error
condition.

Note:
None.

XStatus XFlash_EraseResume (XFlash * InstancePtr,
Xuint32 Offset

)

Resumes an erase operation that was suspended with XFlash_EraseSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where erase resumption should be Resumed.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the Offset
parameter is ignored.

XStatus XFlash_EraseSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

Suspends a currently in progress erase operation and place the device(s) in read mode. When suspended, any
block not being programmed can be read.

This function should be used only when the XFL_NON_BLOCKING_ERASE_OPTION option is set and a
previous call to XFlash_Erase() has been made. Otherwise, undetermined results may occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where suspension should occur.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the Offset
parameter is ignored.

XStatus XFlash_GetBlockStatus (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

Returns the status of the device. This function is intended to be used to poll the device in the following
circumstances:

● After calling XFlash_WriteBlock with XFL_NON_BLOCKING_WRITE_OPTION option set.
● After calling XFlash_EraseBlock with XFL_NON_BLOCKING_ERASE_OPTION option set.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.

Returns:
❍ XST_FLASH_READY if the device(s) have completed the previous operation without error.
❍ XST_FLASH_BUSY if the device(s) are currently performing an erase or write operation.
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error occuring during

another operation such as write, erase, or block locking. XFlash_DeviceControl() must be used
to access the cause of the device specific error condition.

Note:
With some types of flash devices, there may be no difference between using XFlash_GetBlockStatus or
XFlash_GetStatus. See your part data sheet for more information.

XFlashGeometry* XFlash_GetGeometry (XFlash * InstancePtr)

Gets the instance's geometry data

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
Instance's Geometry structure

Note:
None.

Xuint32 XFlash_GetOptions (XFlash * InstancePtr)

Gets interface options for this device instance.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
Current options flag

Note:
None.

XFlashProperties* XFlash_GetProperties (XFlash * InstancePtr)

Gets the instance's property data

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
Instance's Properties structure

Note:
None.

XStatus XFlash_GetStatus (XFlash * InstancePtr,
Xuint32 Offset

)

Returns the status of the device. This function is intended to be used to poll the device in the following
circumstances:

● After calling XFlash_Write with XFL_NON_BLOCKING_WRITE_OPTION option set.
● After calling XFlash_Erase or XFlash_EraseChip with XFL_NON_BLOCKING_ERASE_OPTION

option set.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the part.

Returns:
❍ XST_FLASH_READY if the device(s) have completed the previous operation without error.
❍ XST_FLASH_BUSY if the device(s) are currently performing an erase or write operation.
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error occuring during

another operation such as write, erase, or block locking. XFlash_DeviceControl() must be used
to access the cause of the device specific error condition.

Note:
With some types of flash devices, there may be no difference between using XFlash_GetBlockStatus or
XFlash_GetStatus. See your part data sheet for more information.

XStatus XFlash_Initialize (XFlash * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XFlash instance. The initialization entails:

● Issuing the CFI query command
● Get and translate relevent CFI query information.
● Set default options for the instance.
● Setup the VTable.
● Call the initialize function of the instance, which does the following:

❍ Get and translate extended vendor CFI query information.
❍ Some VTable functions may be replaced with more efficient ones based on data extracted from

the extended CFI query. A replacement example would be a buffered XFlash_WriteBlock
replacing a non-buffered XFlash_WriteBlock.

❍ Reset the device by clearing any status information and placing the device in read mode.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.
DeviceId is the unique id of the device controlled by this component. Passing in a device id

associates the generic component to a specific device, as chosen by the caller or
application developer.

Returns:
The return value is XST_SUCCESS if successful. On error, a code indicating the specific error is
returned. Possible error codes are:

❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device
with the supplied device ID.

❍ XST_FLASH_PART_NOT_SUPPORTED if the command set algorithm or Layout is not
supported by any derived component compiled into the system.

❍ XST_FLASH_TOO_MANY_REGIONS if the part contains too many erase regions. This can
be fixed by increasing the value of XFL_MAX_ERASE_REGIONS then re- compiling the
driver.

❍ XST_FLASH_CFI_QUERY_ERROR if the device would not enter CFI query mode. Either the
device(s) do not support CFI, the wrong BaseAddress param was used, an unsupported part
layout exists, or a hardware problem exists with the part.

Note:
None.

XStatus XFlash_Lock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

Locks the blocks in the specified range of the device(s).

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin block locking.
Bytes is the number of bytes to lock.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely within the

addressable areas of the device(s).
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
Due to flash memory design, the range actually locked may be larger than what was specified by the
Offset & Bytes parameters. This will occur if the parameters do not align to block boundaries.

XStatus XFlash_LockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

Locks the specified block. Prevents it from being erased or written.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
NumBlocks is the the number of blocks to erase. The number may extend into a different region.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if region and/or block do not specify a valid block within

the device.
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
None.

XFlash_Config* XFlash_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID.

Parameters:
DeviceId is the unique device ID to be searched for in the table

Returns:
Returns a pointer to the configuration data for the device, or XNULL if not device is found.

XStatus XFlash_Read (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

Copies data from the device(s) memory space to a user buffer. The source and destination addresses can be on
any alignment supported by the processor.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to read.
Bytes is the number of bytes to copy.
DestPtr is the destination address to copy data to.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the source address does not start within the addressable

areas of the device(s).

Note:
This function allows the transfer of data past the end of the device's address space. If this occurs, then
results are undefined.

XStatus XFlash_ReadBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

Copy data from a specific device block to a user buffer. The source and destination addresses can be on any
byte alignment supported by the target processor.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
Offset is the starting offset in the block where reading will begin.
Bytes is the number of bytes to copy.
DestPtr is the destination address to copy data to.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if Region, Block, and Offset parameters do not point to a

valid block.

Note:
The arguments point to a starting Region, Block, and Offset within that block. The Bytes parameter
may cross over Region and Block boundaries. If Bytes extends past the end of the device's address
space, then results are undefined.

XStatus XFlash_Reset (XFlash * InstancePtr)

Clears the device(s) status register(s) and place the device(s) into read mode.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_BUSY if the flash devices were in the middle of an operation and could not be

reset.
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error during the operation.

XFlash_DeviceControl() must be used to access the cause of the device specific error
condition.

Note:
None.

XStatus XFlash_SelfTest (XFlash * InstancePtr)

Runs a self-test on the driver/device. This is a destructive test. Tests performed include:

● Address bus test
● Data bus test

When the tests are complete, the device is reset back into read mode.

Parameters:
InstancePtr is a pointer to the XComponent instance to be worked on.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ERROR if any test fails.

Note:
None.

XStatus XFlash_SetOptions (XFlash * InstancePtr,
Xuint32 OptionsFlag

)

Sets interface options for this device instance.

Here are the currently available options: <pre XFL_NON_BLOCKING_WRITE_OPTION Blocking write on
or off XFL_NON_BLOCKING_ERASE_OPTION Blocking erase on or off To set multiple options, OR the
option constants together.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
OptionsFlag is the options to set. 1=set option, 0=clear option.

Returns:
❍ XST_SUCCESS if options successfully set.
❍ XST_FLASH_NOT_SUPPORTED if option is not supported.

Note:
None.

XStatus XFlash_Unlock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

Unlocks the blocks in the specified range of the device(s).

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin block unlocking.
Bytes is the number of bytes to unlock.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely within the

addressable areas of the device(s).
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
Due to flash memory design, the range actually unlocked may be larger than what was specified by the
Offset & Bytes parameters. This will occur if the parameters do not align to block boundaries.

XStatus XFlash_UnlockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

Unlocks the specified block.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
NumBlocks is the the number of blocks to erase. The number may extend into a different region.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if region and/or block do not specify a valid block within

the device.
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
None.

XStatus XFlash_Write (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

Programs the devices with data stored in the user buffer. The source and destination address must be aligned
to the width of the flash's data bus.

Returns immediately if the XFL_NON_BLOCKING_WRITE_OPTION option is set. If clear, the device(s)
are polled until an error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_WRITE_OPTION option has an impact on the number of bytes that can be
written:

● If clear, then the number of bytes to write can be any number as long as it is within the bounds of the
device(s).

● If set, then the number of bytes depends on the alignment and size of the device's write buffer. The rule
is that the number of bytes being written cannot cross over an alignment boundary. Alignment
information is obtained in the InstancePtr->Properties.ProgCap attribute.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin programming. Must be

aligned to the width of the flash's data bus.
Bytes is the number of bytes to program.
SrcPtr is the source address containing data to be programmed. Must be aligned to the width of

the flash's data bus.

Returns:
If XFL_NON_BLOCKING_WRITE_OPTION option is set, then the return value is one of the
following:

❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely within the

addressable areas of the device(s).
❍ XST_FLASH_ALIGNMENT_ERROR if the Offset or SrcPtr is not aligned to the width of the

flash's data bus.
❍ XST_BLOCKING_CALL_ERROR if the write would cross a write buffer boundary.

If XFL_NON_BLOCKING_WRITE_OPTION option is clear, then the following additional codes can
be returned:

❍ XST_FLASH_ERROR if a write error occurred. This error is usually device specific. Use
XFlash_DeviceControl() to retrieve specific error conditions. When this error is returned, it is

possible that the target address range was only partially programmed.

Note:
None.

XStatus XFlash_WriteBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

Programs the devices with data stored in the user buffer. The source and destination address can be on any
alignment supported by the processor. This function will block until the operation completes or an error is
detected.

Returns immediately if the XFL_NON_BLOCKING_WRITE_OPTION option is set. If clear, the device(s)
are polled until an error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_WRITE_OPTION option has an impact on the number of bytes that can be
written:

● If clear, then the number of bytes to write can be any number as long as it is within the bounds of the
device(s).

● If set, then the number of bytes depends on the alignment and size of the device's write buffer. The rule
is that the number of bytes being written cannot cross over an alignment boundary. Alignment
information is obtained in the InstancePtr->Properties.ProgCap attribute.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
Offset is the starting offset in the block where writing will begin.
Bytes is the number of bytes to write.
SrcPtr is the source address containing data to be programmed

Returns:
If XFL_NON_BLOCKING_WRITE_OPTION option is set, then the return value is XST_SUCCESS
if successful. On error, a code indicating the specific error is returned. Possible error codes are:

❍ XST_FLASH_ADDRESS_ERROR if Region, Block, and Offset parameters do not point to a
valid block. Or, the Bytes parameter causes the read to go past the last addressible byte in the
device(s).

❍ XST_FLASH_ALIGNMENT_ERROR if the Offset or SrcPtr is not aligned to the width of the

flash's data bus.
❍ XST_BLOCKING_CALL_ERROR if the write would cross a write buffer boundary.

If XFL_NON_BLOCKING_WRITE_OPTION option is clear, then the following additional codes can
be returned:

❍ XST_FLASH_ERROR if a write error occured. This error is usually device specific. Use
XFlash_DeviceControl() to retrieve specific error conditions. When this error is returned, it is
possible that the target address range was only partially programmed.

Note:
The arguments point to a starting Region, Block, and Offset within that block. The Bytes parameter
may cross over Region and Block boundaries as long as the entire range lies within the part(s) address
range and the XFL_NON_BLOCKING_WRITE_OPTION option is not set.

XStatus XFlash_WriteBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

Resumes a write operation that was suspended with XFlash_WriteBlockSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being erased
Offset is the offset in the device where resumption should occur

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore Region &
Block parameters are ignored.

XStatus XFlash_WriteBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

Suspends a currently in progress write opearation and place the device(s) in read mode. When suspended, any
block not being programmed can be read.

This function should be used only when the XFL_NON_BLOCKING_WRITE_OPTION option is set and a
previous call to XFlash_WriteBlock() has been made. Otherwise, undetermined results may occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being written
Offset is the offset in the device where suspension should occur

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore Region &
Block parameters are ignored in those cases.

XStatus XFlash_WriteResume (XFlash * InstancePtr,
Xuint32 Offset

)

Resumes a write operation that was suspended with XFlash_WriteSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where write resumption should occur.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the Offset
parameter is ignored.

XStatus XFlash_WriteSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

Suspends a currently in progress write operation and place the device(s) in read mode. When suspended, any
block not being programmed can be read.

This function should be used only when the XFL_NON_BLOCKING_ERASE_OPTION option is set and a
previous call to XFlash_Write() has been made. Otherwise, undetermined results may occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where suspension should occur.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the Offset
parameter is ignored.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash.c File Reference

Detailed Description

This module implements the base component for flash memory devices that conform to the "Common
Flash Interface" (CFI) standard. CFI allows a single flash driver to be used for an entire family of parts.

This is not a driver for a specific device, but for a set of command read/write/erase algorithms. CFI
allows us to determine which algorithm to utilize at runtime. It is this set of command algorithms that
will be implemented as the derived component.

Flash memory space is segmented into areas called blocks. The size of each block is based on a power of
2. A region is defined as a contiguous set of blocks of the same size. Some parts have several regions
while others have one. The arrangement of blocks and regions is refered to by this module as the part's
geometry.

The cells within the part can be programmed from a logic 1 to a logic 0 and not the other way around. To
change a cell back to a logic 1, the entire block containing that cell must be erased. When a block is
erased all bytes contain the value 0xFF. The number of times a block can be erased is finite. Eventually
the block will wear out and will no longer be capable of erasure. As of this writing, the typical flash
block can be erased 100,000 or more times.

Features provided by this module:

● Part timing, geometry, features, and command algorithm determined by CFI query.
● Supported architectures include:

❍ 16-bit data bus: Single x16 part in word mode
❍ 32-bit data bus: Two x16 parts in word mode.

● Two read/write/erase APIs.
● Erase/write suspension.
● Self test diagnostics.
● Block locking (if supported by specific part).
● Chip erase (if supported by specific part).

● Non-blocking write & erase function calls.
● Part specific control. Supported features of individual parts are listed within the driver module for

that part.

Features listed above not currently implemented include:

● Non-blocking write & erase function calls.
● Block locking.
● Support of more architectues.
● Self test diagnostics.

This component exports two differing types of read/write/erase APIs. The geometry un-aware API allows
the user to ignore the geometry of the underlying flash device. The geometry aware API operates on
specific blocks The former API is designed for casual use while the latter may prove useful for designers
wishing to use this driver under a flash file system. Both APIs can be used interchangeably.

Write and erase function calls can be set to return immediately (non-blocking) even though the intended
operation is incomplete. This is useful for systems that utilize a watchdog timer. It also facilitates the use
of an interrupt driven programming algorithm. This feature is dependent upon the capabilities of the flash
devices.

If the geometry un-aware API is used, then the user requires no knowledge of the underlying hardware.
Usage of this API along with non-blocking write/erase should be done carefully because non-blocking
write/erase assumes some knowledge of the device(s) geometry.

If part specific advanced features are required, then the XFlash_DeviceControl function is available
provided the feature has been implemented by the part driver module.

Note:
This driver is intended to be RTOS and processor independent. It works with physical addresses
only. Any needs for dynamic memory management, threads, mutual exclusion, virtual memory,
cache control, or HW write protection management must be satisfied by the layer above this
driver.

Use of this driver by multiple threads must be carefully thought out taking into consideration the
underlying flash devices in use. This driver does not use mutual exclusion or critical region
control.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---

 1.00a rmm 07/16/01 First release

#include "xflash.h"

#include "xflash_cfi.h"

#include "xparameters.h"

Functions

XStatus XFlash_Initialize (XFlash *InstancePtr, Xuint16 DeviceId)
XFlash_Config * XFlash_LookupConfig (Xuint16 DeviceId)

XStatus XFlash_ReadBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint32 Offset, Xuint32 Bytes, void *DestPtr)

XStatus XFlash_WriteBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint32 Offset, Xuint32 Bytes, void *SrcPtr)

XStatus XFlash_WriteBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16
Block, Xuint32 Offset)

XStatus XFlash_WriteBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16
Block, Xuint32 Offset)

XStatus XFlash_EraseBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint16 NumBlocks)

XStatus XFlash_EraseBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16
Block)

XStatus XFlash_EraseBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16
Block)

XStatus XFlash_LockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint16 NumBlocks)

XStatus XFlash_UnlockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint16 NumBlocks)

XStatus XFlash_GetBlockStatus (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block)
XStatus XFlash_Read (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void

*DestPtr)
XStatus XFlash_Write (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void

*SrcPtr)
XStatus XFlash_WriteSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_WriteResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_Erase (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)

XStatus XFlash_EraseSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_EraseResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_Lock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlash_Unlock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlash_GetStatus (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlash_EraseChip (XFlash *InstancePtr)
XStatus XFlash_SelfTest (XFlash *InstancePtr)
XStatus XFlash_Reset (XFlash *InstancePtr)
XStatus XFlash_SetOptions (XFlash *InstancePtr, Xuint32 OptionsFlag)
Xuint32 XFlash_GetOptions (XFlash *InstancePtr)

XFlashGeometry * XFlash_GetGeometry (XFlash *InstancePtr)
XFlashProperties * XFlash_GetProperties (XFlash *InstancePtr)

XStatus XFlash_DeviceControl (XFlash *InstancePtr, Xuint32 Command, Xuint32
Param, Xuint32 *ReturnPtr)

Xboolean XFlash_IsReady (XFlash *InstancePtr)

Function Documentation

XStatus XFlash_DeviceControl (XFlash * InstancePtr,
Xuint32 Command,
Xuint32 Param,
Xuint32 * ReturnPtr

)

Accesses device specific data or commands. For a list of commands, see derived component
documentation.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Command is the device specific command to issue
Param is the command parameter
ReturnPtr is the result of command (if any)

Returns:
❍ XST_SUCCESS if successful
❍ XST_FLASH_NOT_SUPPORTED if the command is not recognized/supported by the

device(s).

Note:
None.

XStatus XFlash_Erase (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

Erases the specified address range.

Returns immediately if the XFL_NON_BLOCKING_ERASE_OPTION option is set. If clear, the
device(s) are polled until an error, timeout or the operation completes successfully.

Erase the specified range of the device(s). Returns immediately if the
XFL_NON_BLOCKING_ERASE_OPTION option is set. If clear, the device(s) are polled until an
error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_ERASE_OPTION option has an impact on the number of bytes that
can be erased in a single call to this function:

● If clear, then the number of bytes to erase can be any number as long as it is within the bounds
of the device(s).

● If set, then the number of bytes depends on the the block size of the device at the provided
offset and whether the device(s) contains a block erase queue.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin erasure.
Bytes is the number of bytes to erase.

Returns:
If XFL_NON_BLOCKING_ERASE_OPTION option is set, then the return value is one of the
following:

❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely

within the addressable areas of the device(s).
❍ XST_FLASH_BLOCKING_CALL_ERROR if the amount of data to be erased exceeds

the erase queue capacity of the device(s).
If XFL_NON_BLOCKING_ERASE_OPTION option is clear, then the following additional

codes can be returned:
❍ XST_FLASH_ERROR if an erase error occurred. This error is usually device specific.

Use XFlash_DeviceControl() to retrieve specific error conditions. When this error is
returned, it is possible that the target address range was only partially erased.

Note:
Due to flash memory design, the range actually erased may be larger than what was specified
by the Offset & Bytes parameters. This will occur if the parameters do not align to block
boundaries.

XStatus XFlash_EraseBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

Erases the specified block.

Returns immediately if the XFL_NON_BLOCKING_ERASE_OPTION option is set. If clear, the
device(s) are polled until an error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_ERASE_OPTION option has an impact on the number of bytes that
can be erased in a single call to this function:

● If clear, then the number of bytes to erase can be any number as long as it is within the bounds
of the device(s).

● If set, then the number of bytes depends on the the block size of the device at the provided
offset and whether the device(s) contains a block erase queue.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
NumBlocks is the the number of blocks to erase.

Returns:
If XFL_NON_BLOCKING_ERASE_OPTION option is set, then the return value is one of the
below.

❍ XST_SUCCESS if successfull.

❍ XST_FLASH_ADDRESS_ERROR if region and/or block do not specify a valid block
within the device.

If XFL_NON_BLOCKING_ERASE_OPTION option is clear, then the following additional
codes can be returned

❍ XST_FLASH_ERROR if an erase error occured. This error is usually device specific.
Use XFlash_DeviceControl() to retrieve specific error conditions. When this error is
returned, it is possible that the target address range was only partially erased.

Note:
The arguments point to a starting Region and Block. The NumBlocks parameter may cross
over Region boundaries as long as the entire range lies within the part(s) address range and the
XFL_NON_BLOCKING_ERASE_OPTION option is not set.

XStatus XFlash_EraseBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

Resumes an erase operation that was suspended with XFlash_EraseBlockSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being erased

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore
Region & Block parameters are ignored.

XStatus XFlash_EraseBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

Suspends a currently in progress erase operation and place the device(s) in read mode. When
suspended, any block not being erased can be read.

This function should be used only when the XFL_NON_BLOCKING_ERASE_OPTION option is set
and a previous call to XFlash_EraseBlock() has been made. Otherwise, undetermined results may
occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being erased

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore
Region & Block parameters are ignored.

XStatus XFlash_EraseChip (XFlash * InstancePtr)

Erases the entire device(s).

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
If XFL_NON_BLOCKING_ERASE_OPTION option is set, then the return value is always
XST_SUCCESS. If XFL_NON_BLOCKING_ERASE_OPTION option is clear, then the
following additional codes can be returned:

❍ XST_FLASH_NOT_SUPPORTED if the chip erase is not supported by the device(s).
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error during the

operation. XFlash_DeviceControl() must be used to access the cause of the device
specific error condition.

Note:
None.

XStatus XFlash_EraseResume (XFlash * InstancePtr,
Xuint32 Offset

)

Resumes an erase operation that was suspended with XFlash_EraseSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where erase resumption should be Resumed.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the
Offset parameter is ignored.

XStatus XFlash_EraseSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

Suspends a currently in progress erase operation and place the device(s) in read mode. When
suspended, any block not being programmed can be read.

This function should be used only when the XFL_NON_BLOCKING_ERASE_OPTION option is set
and a previous call to XFlash_Erase() has been made. Otherwise, undetermined results may occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where suspension should occur.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:

Some devices such as Intel do not require a block address to suspend erasure. Therefore the
Offset parameter is ignored.

XStatus XFlash_GetBlockStatus (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

Returns the status of the device. This function is intended to be used to poll the device in the
following circumstances:

● After calling XFlash_WriteBlock with XFL_NON_BLOCKING_WRITE_OPTION option
set.

● After calling XFlash_EraseBlock with XFL_NON_BLOCKING_ERASE_OPTION option set.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.

Returns:
❍ XST_FLASH_READY if the device(s) have completed the previous operation without

error.
❍ XST_FLASH_BUSY if the device(s) are currently performing an erase or write

operation.
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error occuring

during another operation such as write, erase, or block locking.
XFlash_DeviceControl() must be used to access the cause of the device specific error
condition.

Note:
With some types of flash devices, there may be no difference between using
XFlash_GetBlockStatus or XFlash_GetStatus. See your part data sheet for more information.

XFlashGeometry* XFlash_GetGeometry (XFlash * InstancePtr)

Gets the instance's geometry data

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
Instance's Geometry structure

Note:
None.

Xuint32 XFlash_GetOptions (XFlash * InstancePtr)

Gets interface options for this device instance.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
Current options flag

Note:
None.

XFlashProperties* XFlash_GetProperties (XFlash * InstancePtr)

Gets the instance's property data

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
Instance's Properties structure

Note:
None.

XStatus XFlash_GetStatus (XFlash * InstancePtr,
Xuint32 Offset

)

Returns the status of the device. This function is intended to be used to poll the device in the
following circumstances:

● After calling XFlash_Write with XFL_NON_BLOCKING_WRITE_OPTION option set.
● After calling XFlash_Erase or XFlash_EraseChip with

XFL_NON_BLOCKING_ERASE_OPTION option set.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the part.

Returns:
❍ XST_FLASH_READY if the device(s) have completed the previous operation without

error.
❍ XST_FLASH_BUSY if the device(s) are currently performing an erase or write

operation.
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error occuring

during another operation such as write, erase, or block locking.
XFlash_DeviceControl() must be used to access the cause of the device specific error
condition.

Note:
With some types of flash devices, there may be no difference between using
XFlash_GetBlockStatus or XFlash_GetStatus. See your part data sheet for more information.

XStatus XFlash_Initialize (XFlash * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XFlash instance. The initialization entails:

● Issuing the CFI query command
● Get and translate relevent CFI query information.
● Set default options for the instance.
● Setup the VTable.
● Call the initialize function of the instance, which does the following:

❍ Get and translate extended vendor CFI query information.
❍ Some VTable functions may be replaced with more efficient ones based on data

extracted from the extended CFI query. A replacement example would be a buffered
XFlash_WriteBlock replacing a non-buffered XFlash_WriteBlock.

❍ Reset the device by clearing any status information and placing the device in read
mode.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.
DeviceId is the unique id of the device controlled by this component. Passing in a device id

associates the generic component to a specific device, as chosen by the caller or
application developer.

Returns:
The return value is XST_SUCCESS if successful. On error, a code indicating the specific error
is returned. Possible error codes are:

❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a
device with the supplied device ID.

❍ XST_FLASH_PART_NOT_SUPPORTED if the command set algorithm or Layout is
not supported by any derived component compiled into the system.

❍ XST_FLASH_TOO_MANY_REGIONS if the part contains too many erase regions.
This can be fixed by increasing the value of XFL_MAX_ERASE_REGIONS then re-
compiling the driver.

❍ XST_FLASH_CFI_QUERY_ERROR if the device would not enter CFI query mode.
Either the device(s) do not support CFI, the wrong BaseAddress param was used, an
unsupported part layout exists, or a hardware problem exists with the part.

Note:
None.

Xboolean XFlash_IsReady (XFlash * InstancePtr)

Checks the readiness of the device, which means it has been successfully initialized.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.

Returns:
XTRUE if the device has been initialized (but not necessarily started), and XFALSE
otherwise.

Note:
This function only exists in the base component since it is common across all derived
components. Asserts based on the IsReady flag exist only in the base component.

XStatus XFlash_Lock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

Locks the blocks in the specified range of the device(s).

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin block locking.
Bytes is the number of bytes to lock.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely

within the addressable areas of the device(s).
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
Due to flash memory design, the range actually locked may be larger than what was specified
by the Offset & Bytes parameters. This will occur if the parameters do not align to block
boundaries.

XStatus XFlash_LockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

Locks the specified block. Prevents it from being erased or written.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
NumBlocks is the the number of blocks to erase. The number may extend into a different

region.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if region and/or block do not specify a valid block

within the device.
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
None.

XFlash_Config* XFlash_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID.

Parameters:
DeviceId is the unique device ID to be searched for in the table

Returns:
Returns a pointer to the configuration data for the device, or XNULL if not device is found.

XStatus XFlash_Read (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

Copies data from the device(s) memory space to a user buffer. The source and destination addresses
can be on any alignment supported by the processor.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to read.
Bytes is the number of bytes to copy.
DestPtr is the destination address to copy data to.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the source address does not start within the

addressable areas of the device(s).

Note:
This function allows the transfer of data past the end of the device's address space. If this
occurs, then results are undefined.

XStatus XFlash_ReadBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

Copy data from a specific device block to a user buffer. The source and destination addresses can be
on any byte alignment supported by the target processor.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
Offset is the starting offset in the block where reading will begin.
Bytes is the number of bytes to copy.
DestPtr is the destination address to copy data to.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if Region, Block, and Offset parameters do not

point to a valid block.

Note:
The arguments point to a starting Region, Block, and Offset within that block. The Bytes
parameter may cross over Region and Block boundaries. If Bytes extends past the end of the
device's address space, then results are undefined.

XStatus XFlash_Reset (XFlash * InstancePtr)

Clears the device(s) status register(s) and place the device(s) into read mode.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_BUSY if the flash devices were in the middle of an operation and could

not be reset.
❍ XST_FLASH_ERROR if the device(s) have experienced an internal error during the

operation. XFlash_DeviceControl() must be used to access the cause of the device
specific error condition.

Note:
None.

XStatus XFlash_SelfTest (XFlash * InstancePtr)

Runs a self-test on the driver/device. This is a destructive test. Tests performed include:

● Address bus test
● Data bus test

When the tests are complete, the device is reset back into read mode.

Parameters:
InstancePtr is a pointer to the XComponent instance to be worked on.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ERROR if any test fails.

Note:
None.

XStatus XFlash_SetOptions (XFlash * InstancePtr,
Xuint32 OptionsFlag

)

Sets interface options for this device instance.

Here are the currently available options: <pre XFL_NON_BLOCKING_WRITE_OPTION Blocking
write on or off XFL_NON_BLOCKING_ERASE_OPTION Blocking erase on or off To set multiple
options, OR the option constants together.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
OptionsFlag is the options to set. 1=set option, 0=clear option.

Returns:
❍ XST_SUCCESS if options successfully set.
❍ XST_FLASH_NOT_SUPPORTED if option is not supported.

Note:
None.

XStatus XFlash_Unlock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

Unlocks the blocks in the specified range of the device(s).

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin block

unlocking.
Bytes is the number of bytes to unlock.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely

within the addressable areas of the device(s).
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
Due to flash memory design, the range actually unlocked may be larger than what was
specified by the Offset & Bytes parameters. This will occur if the parameters do not align to
block boundaries.

XStatus XFlash_UnlockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

Unlocks the specified block.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
NumBlocks is the the number of blocks to erase. The number may extend into a different

region.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if region and/or block do not specify a valid block

within the device.
❍ XST_FLASH_NOT_SUPPORTED if the device(s) do not support block locking.

Note:
None.

XStatus XFlash_Write (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

Programs the devices with data stored in the user buffer. The source and destination address must be
aligned to the width of the flash's data bus.

Returns immediately if the XFL_NON_BLOCKING_WRITE_OPTION option is set. If clear, the
device(s) are polled until an error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_WRITE_OPTION option has an impact on the number of bytes that
can be written:

● If clear, then the number of bytes to write can be any number as long as it is within the bounds
of the device(s).

● If set, then the number of bytes depends on the alignment and size of the device's write buffer.
The rule is that the number of bytes being written cannot cross over an alignment boundary.
Alignment information is obtained in the InstancePtr->Properties.ProgCap attribute.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset into the device(s) address space from which to begin programming.

Must be aligned to the width of the flash's data bus.
Bytes is the number of bytes to program.
SrcPtr is the source address containing data to be programmed. Must be aligned to the

width of the flash's data bus.

Returns:
If XFL_NON_BLOCKING_WRITE_OPTION option is set, then the return value is one of the
following:

❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the destination address range is not completely

within the addressable areas of the device(s).
❍ XST_FLASH_ALIGNMENT_ERROR if the Offset or SrcPtr is not aligned to the

width of the flash's data bus.
❍ XST_BLOCKING_CALL_ERROR if the write would cross a write buffer boundary.

If XFL_NON_BLOCKING_WRITE_OPTION option is clear, then the following additional
codes can be returned:

❍ XST_FLASH_ERROR if a write error occurred. This error is usually device specific.
Use XFlash_DeviceControl() to retrieve specific error conditions. When this error is
returned, it is possible that the target address range was only partially programmed.

Note:
None.

XStatus XFlash_WriteBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

Programs the devices with data stored in the user buffer. The source and destination address can be on
any alignment supported by the processor. This function will block until the operation completes or
an error is detected.

Returns immediately if the XFL_NON_BLOCKING_WRITE_OPTION option is set. If clear, the
device(s) are polled until an error, timeout or the operation completes successfully.

The XFL_NON_BLOCKING_WRITE_OPTION option has an impact on the number of bytes that
can be written:

● If clear, then the number of bytes to write can be any number as long as it is within the bounds
of the device(s).

● If set, then the number of bytes depends on the alignment and size of the device's write buffer.
The rule is that the number of bytes being written cannot cross over an alignment boundary.
Alignment information is obtained in the InstancePtr->Properties.ProgCap attribute.

Parameters:
InstancePtr is a pointer to the XFlash instance to be worked on.
Region is the erase region the block appears in.
Block is the block number within the erase region.
Offset is the starting offset in the block where writing will begin.
Bytes is the number of bytes to write.
SrcPtr is the source address containing data to be programmed

Returns:
If XFL_NON_BLOCKING_WRITE_OPTION option is set, then the return value is
XST_SUCCESS if successful. On error, a code indicating the specific error is returned.
Possible error codes are:

❍ XST_FLASH_ADDRESS_ERROR if Region, Block, and Offset parameters do not
point to a valid block. Or, the Bytes parameter causes the read to go past the last
addressible byte in the device(s).

❍ XST_FLASH_ALIGNMENT_ERROR if the Offset or SrcPtr is not aligned to the
width of the flash's data bus.

❍ XST_BLOCKING_CALL_ERROR if the write would cross a write buffer boundary.
If XFL_NON_BLOCKING_WRITE_OPTION option is clear, then the following additional
codes can be returned:

❍ XST_FLASH_ERROR if a write error occured. This error is usually device specific.
Use XFlash_DeviceControl() to retrieve specific error conditions. When this error is
returned, it is possible that the target address range was only partially programmed.

Note:

The arguments point to a starting Region, Block, and Offset within that block. The Bytes
parameter may cross over Region and Block boundaries as long as the entire range lies within
the part(s) address range and the XFL_NON_BLOCKING_WRITE_OPTION option is not
set.

XStatus XFlash_WriteBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

Resumes a write operation that was suspended with XFlash_WriteBlockSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being erased
Offset is the offset in the device where resumption should occur

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore
Region & Block parameters are ignored.

XStatus XFlash_WriteBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

Suspends a currently in progress write opearation and place the device(s) in read mode. When
suspended, any block not being programmed can be read.

This function should be used only when the XFL_NON_BLOCKING_WRITE_OPTION option is set
and a previous call to XFlash_WriteBlock() has been made. Otherwise, undetermined results may
occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the region containing block
Block is the block that is being written
Offset is the offset in the device where suspension should occur

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore
Region & Block parameters are ignored in those cases.

XStatus XFlash_WriteResume (XFlash * InstancePtr,
Xuint32 Offset

)

Resumes a write operation that was suspended with XFlash_WriteSuspend.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where write resumption should occur.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the
Offset parameter is ignored.

XStatus XFlash_WriteSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

Suspends a currently in progress write operation and place the device(s) in read mode. When
suspended, any block not being programmed can be read.

This function should be used only when the XFL_NON_BLOCKING_ERASE_OPTION option is set
and a previous call to XFlash_Write() has been made. Otherwise, undetermined results may occur.

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Offset is the offset with the device where suspension should occur.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_NOT_SUPPORTED if write suspension is not supported by the

device(s)

Note:
Some devices such as Intel do not require a block address to suspend erasure. Therefore the
Offset parameter is ignored.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_cfi.h
Go to the documentation of this file.

00001 /* $Id: xflash_cfi.h,v 1.6 2002/08/13 21:14:26 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file flash/v1_00_a/src/xflash_cfi.h
00026 *
00027 * This is a helper component for XFlash. It contains methods used to extract
00028 * and interpret Common Flash Interface (CFI) from a flash memory part that
00029 * supports the CFI query command.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a rmm 07/16/01 First release
00037 * </pre>
00038 *
00039 ***/
00040
00041 #ifndef XFLASH_CFI_H /* prevent circular inclusions */
00042 #define XFLASH_CFI_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045 #include "xbasic_types.h"

00046 #include "xstatus.h"

00047 #include "xflash.h"

00048 #include "xflash_geometry.h"

00049 #include "xflash_properties.h"

00050
00051 /************************** Constant Definitions *****************************/
00052
00053 /*
00054 * Vendor command set codes
00055 * Refer to industry document "CFI publication 100" for the latest list
00056 */
00057 #define XFL_CMDSET_INTEL_STANDARD 3
00058 #define XFL_CMDSET_INTEL_EXTENDED 1 /* Also includes Sharp */
00059 #define XFL_CMDSET_AMD_STANDARD 2 /* Also includes Fujitsu */
00060 #define XFL_CMDSET_AMD_EXTENDED 4 /* Also includes Fujitsu */
00061 #define XFL_CMDSET_MITSUBISHI_STANDARD 256
00062 #define XFL_CMDSET_MITSUBISHI_EXTENDED 257
00063
00064
00065 /**************************** Type Definitions *******************************/
00066
00067
00068 /***************** Macros (Inline Functions) Definitions *********************/
00069
00070 /*
00071 * XFL_CFI_ macros are used by the base and derived components to access data
00072 * from the flash device when it is in CFI query mode. The query data begins
00073 * at the base address of the part and is interleaved based on the part
00074 * layout:
00075 * XFL_LAYOUT_X16_X16_X1 Interleave=2
00076 * XFL_LAYOUT_X16_X16_X2 Interleave=4
00077 */
00078
00079 /***/
00080 /**
00081 *
00082 * Moves the CFI data pointer to a physical address that corresponds to a
00083 * specific CFI byte offset.
00084 *
00085 * @param Ptr is the pointer to modify. Can be of any type
00086 * @param BaseAddr is the base address of flash part
00087 * @param Interleave is the byte interleaving (based on part layout)
00088 * @param ByteAddr is the byte offset within CFI data to read
00089 *
00090 * @return
00091 *
00092 * The Ptr argument is set to point at the the CFI byte specified by the
00093 * ByteAddr parameter.
00094 *

00095 */
00096 #define XFL_CFI_POSITION_PTR(Ptr, BaseAddr, Interleave, ByteAddr) \

00097 (\
00098 Ptr = (void*)((Xuint32)BaseAddr + ((Xuint32)Interleave * \
00099 (Xuint32)ByteAddr)) \
00100)
00101
00102 /***/
00103 /**
00104 *
00105 * Reads 8-bits of data from the CFI data location into a local variable.
00106 *
00107 * @param Ptr is the pointer to read. Can be a pointer to any type.
00108 * @param Interleave is the byte interleaving (based on part layout)
00109 *
00110 * @return
00111 *
00112 * The byte at Ptr adjusted for the interleave factor.
00113 *
00114 */
00115 #define XFL_CFI_READ8(Ptr, Interleave) \

00116 READ_FLASH_8((Xuint32)Ptr + Interleave - 1)
00117
00118 /***/
00119 /**
00120 *
00121 * Reads 16-bits of data from the CFI data location into a local variable.
00122 *
00123 * @param Ptr is the pointer to read. Can be a pointer to any type.
00124 * @param Interleave is the byte interleaving (based on part layout)
00125 * @param Data is the 16-bit storage location for the data to be read.
00126 *
00127 * @return
00128 *
00129 * The 16-bit value at Ptr adjusted for the interleave factor.
00130 *
00131 */
00132 #define XFL_CFI_READ16(Ptr, Interleave, Data) \

00133 { \
00134 (Data) = (Xuint16)READ_FLASH_8((Xuint8*)(Ptr) + ((Interleave) * 2) - 1); \
00135 (Data) <<= 8; \
00136 (Data) |= (Xuint16)READ_FLASH_8((Xuint8*)(Ptr) + (Interleave) - 1); \
00137 }
00138
00139 /***/
00140 /**
00141 *
00142 * Advances the CFI pointer to the next byte
00143 *
00144 * @param Ptr is the pointer to advance. Can be a pointer to any type.
00145 * @param Interleave is the byte interleaving (based on part layout)
00146 *

00147 * @return
00148 *
00149 * Adjusted Ptr.
00150 *
00151 */
00152 #define XFL_CFI_ADVANCE_PTR8(Ptr, Interleave) \

00153 (Ptr = (void*)((Xuint32)Ptr + (Interleave)))
00154
00155 /***/
00156 /**
00157 *
00158 * Advances the CFI pointer to the next 16-bit quantity.
00159 *
00160 * @param Ptr is the pointer to advance. Can be a pointer to any type.
00161 * @param Interleave is the byte interleaving (based on part layout)
00162 *
00163 * @return
00164 *
00165 * Adjusted Ptr.
00166 *
00167 */
00168 #define XFL_CFI_ADVANCE_PTR16(Ptr, Interleave) \

00169 (Ptr = (void*)((Xuint32)Ptr + ((Interleave) << 1)))
00170
00171
00172 /************************** Function Prototypes ******************************/
00173
00174 XStatus XFlashCFI_ReadCommon(XFlashGeometry *GeometryPtr,

00175 XFlashProperties *PropertiesPtr);

00176
00177 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_geometry.h
Go to the documentation of this file.

00001 /* $Id: xflash_geometry.h,v 1.7 2002/04/19 16:19:42 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file flash/v1_00_a/src/xflash_geometry.h
00026 *
00027 * This is a helper component for XFlash. It contains the geometry information
00028 * for an XFlash instance with utilities to translate from absolute to block
00029 * coordinate systems.
00030 *
00031 * Absolute coordinates
00032 *
00033 * This coordinate system is simply an offset into the address space of the
00034 * flash instance.
00035 *
00036 * Block coordinates
00037 *
00038 * This coordinate system is dependent on the device's block geometry. All
00039 * flash devices are divisible by independent erase blocks which can be
00040 * addressed with this coordinate system. The coordinates are defined as:
00041 *
00042 * - BlockOffset - The offset within an erase block

00043 * - Block - An erase block
00044 * - Region - An area containing erase blocks of the same size
00045 *
00046 *
00047 * The picture below shows the differences between the coordinate systems.
00048 * The sample part has two regions of three blocks each.
00049 * <pre>
00050 * Absolute Region Block Offset
00051 * -------- ------ ----- ------
00052 * +-----------------------+ 0 0 0 0
00053 * | | 0 0 blocksizeA-1
00054 * +-----------------------+ 0 1 0
00055 * | | 0 1 blocksizeA-1
00056 * +-----------------------+ 0 2 0
00057 * | | 0 2 blocksizeA-1
00058 * +=======================+ 1 0 0
00059 * | |
00060 * | |
00061 * | |
00062 * | | 1 0 blocksizeB-1
00063 * +-----------------------+ 1 1 0
00064 * | |
00065 * | |
00066 * | |
00067 * | | 1 1 blocksizeB-1
00068 * +-----------------------+ 1 2 0
00069 * | |
00070 * | |
00071 * | |
00072 * | | 1 2 blocksizeB-1
00073 * +-----------------------+ 1 3 0
00074 * | |
00075 * | |
00076 * | |
00077 * | |
00078 * +-----------------------+ DevSize-1 1 3 blocksizeB-1
00079 * </pre>
00080 *
00081 * Multiple devices
00082 *
00083 * Some systems designs have more than one physical part wired in parallel
00084 * on the data bus with each part appearing to be interleaved in the address
00085 * space. The geometry takes these extra parts into consideration by
00086 * doubling the sizes of blocks and regions.
00087 *
00088 * <pre>
00089 * MODIFICATION HISTORY:
00090 *
00091 * Ver Who Date Changes
00092 * ----- ---- -------- ---
00093 * 1.00a rmm 03/15/02 Added XFL_LAYOUT_X16_X16_X4
00094 * 1.00a rmm 07/16/01 First release
00095 * </pre>

00096 *
00097 ***/
00098
00099 #ifndef XFLASH_GEOMETRY_H /* prevent circular inclusions */
00100 #define XFLASH_GEOMETRY_H /* by using protection macros */
00101
00102 /***************************** Include Files *********************************/
00103 #include "xbasic_types.h"

00104 #include "xstatus.h"

00105
00106 /************************** Constant Definitions *****************************/
00107
00108 /**
00109 * A block region is defined as a set of consecutive erase blocks of the
00110 * same size. Most flash devices only have a handful of regions. If a
00111 * part has more regions than defined by this constant, then the constant
00112 * must be modified to accomodate the part. The minimum value of this
00113 * constant is 1 and there is no maximum value. Note that increasing this
00114 * value also increases the amount of memory used by the geometry structure
00115 * approximately 12 bytes per increment.
00116 */
00117 #define XFL_MAX_ERASE_REGIONS 16

00118
00119 /*
00120 * Supported part arrangements.
00121 * This enumeration defines the supported arrangements of parts on the
00122 * data-bus. The naming convention for these constants is as follows:
00123 *
00124 * XFL_LAYOUT_Xa_Xb_Xc, where
00125 *
00126 * Xa is the part's physical data bus width. Xb is the is the part's selected
00127 * data bus width (this field is required because a x16 part can be placed in
00128 * x8 mode). Xc is the number of interleaved parts. For example one part can
00129 * be tied to D0-D15 and a second to data lines D15-D31.
00130 *
00131 * Parts arranged in series should be treated as separate instances. An example
00132 * of this layout: Two X16 parts operating in X16 mode. The first part occupies
00133 * address space FF000000 - FF0FFFFF and a second from FF100000 - FF1FFFFF.
00134 *
00135 * These constants are encoded using bitmasks defined in the next section.
00136 */
00137 #define XFL_LAYOUT_X16_X16_X1 0x02020201UL /* One 16-bit part operating in
00138 16-bit mode. Total data bus
width
00139 is 16-bits */
00140 #define XFL_LAYOUT_X16_X16_X2 0x04020202UL /* Two 16-bit parts operating in
00141 16-bit mode. Total data bus
width
00142 is 32-bits */
00143 #define XFL_LAYOUT_X16_X16_X4 0x08020204UL /* Four 16-bit parts operating in
00144 16-bit mode. Total data bus
width

00145 is 64-bits */
00146
00147 /*
00148 * LAYOUT constants are used to parse the XFL_LAYOUT_X* constants defined
00149 * above
00150 */
00151 #define XFL_LAYOUT_NUM_PARTS_MASK 0x000000FF
00152 #define XFL_LAYOUT_PART_MODE_MASK 0x0000FF00
00153 #define XFL_LAYOUT_PART_WIDTH_MASK 0x00FF0000
00154 #define XFL_LAYOUT_CFI_INTERL_MASK 0xFF000000
00155
00156 #define XFL_LAYOUT_NUM_PARTS_1 0x00000001
00157 #define XFL_LAYOUT_NUM_PARTS_2 0x00000002
00158 #define XFL_LAYOUT_NUM_PARTS_4 0x00000004
00159 #define XFL_LAYOUT_PART_MODE_8 0x00000100
00160 #define XFL_LAYOUT_PART_MODE_16 0x00000200
00161 #define XFL_LAYOUT_PART_WIDTH_8 0x00010000
00162 #define XFL_LAYOUT_PART_WIDTH_16 0x00020000
00163 #define XFL_LAYOUT_CFI_INTERL_1 0x01000000
00164 #define XFL_LAYOUT_CFI_INTERL_2 0x02000000
00165 #define XFL_LAYOUT_CFI_INTERL_4 0x04000000
00166 #define XFL_LAYOUT_CFI_INTERL_8 0x08000000
00167
00168 /**************************** Type Definitions *******************************/
00169
00170 /**
00171 * Flash geometry
00172 */
00173 typedef struct

00174 {
00175 Xuint32 BaseAddress; /**< Base address of part(s) */

00176 Xuint32 MemoryLayout; /**< How multiple parts are connected on

00177 the data bus. Choices are limited to
00178 XFL_LAYOUT_Xa_Xb_Xc constants */
00179 Xuint32 DeviceSize; /**< Total device size in bytes */

00180 Xuint32 NumEraseRegions; /**< Number of erase regions */

00181 Xuint16 NumBlocks; /**< Total number of blocks in device */

00182
00183 struct
00184 {
00185 Xuint32 AbsoluteOffset; /**< Offset within part where region begins

*/
00186 Xuint16 AbsoluteBlock; /**< Block number where region begins */

00187 Xuint16 Number; /**< Number of blocks in this region */

00188 Xuint32 Size; /**< Size of the block in bytes */

00189 } EraseRegion[XFL_MAX_ERASE_REGIONS+1];

00190
00191 } XFlashGeometry;

00192
00193 /***************** Macros (Inline Functions) Definitions *********************/
00194

00195 /***/
00196 /**
00197 *
00198 * Tests the given Region, Block, and Offset to verify they lie within the
00199 * address space defined by a geometry instance.
00200 *
00201 * @param GeometryPtr is the geometry instance that defines flash addressing
00202 * @param Region is the region to test
00203 * @param Block is the block to test
00204 * @param BlockOffset is the offset within block
00205 *
00206 * @return
00207 *
00208 * - 0 if Region, Block, & BlockOffset do not lie within the address space
00209 * described by GeometryPtr.
00210 * - 1 if Region, Block, & BlockOffset are within the address space
00211 *
00212 */
00213 #define XFL_GEOMETRY_IS_BLOCK_VALID(GeometryPtr, Region, Block, BlockOffset) \

00214 (((Region) < (GeometryPtr)->NumEraseRegions) && \
00215 ((Block) < (GeometryPtr)->EraseRegion[Region].Number) && \
00216 ((BlockOffset) < (GeometryPtr)->EraseRegion[Region].Size))
00217
00218
00219 /***/
00220 /**
00221 *
00222 * Tests the given absolute Offset to verify it lies within the bounds of the
00223 * address space defined by a geometry instance.
00224 *
00225 * @param GeometryPtr is the geometry instance that defines flash addressing
00226 * @param Offset is the offset to test
00227 *
00228 * @return
00229 *
00230 * - 0 if Offset do not lie within the address space described by GeometryPtr.
00231 * - 1 if Offset are within the address space
00232 *
00233 */
00234 #define XFL_GEOMETRY_IS_ABSOLUTE_VALID(GeometryPtr, Offset) \

00235 ((Offset) < (GeometryPtr)->DeviceSize)
00236
00237 /***/
00238 /**
00239 *
00240 * Calculates the number of blocks between the given coordinates and the end of
00241 * the device.
00242 *
00243 * @param GeometryPtr is the geometry instance that defines flash addressing
00244 * @param Region is the starting region
00245 * @param Block is the starting block.
00246 *

00247 * @return
00248 *
00249 * The number of blocks between Region/Block and the end of the device
00250 * (inclusive)
00251 *
00252 */
00253 #define XFL_GEOMETRY_BLOCKS_LEFT(GeometryPtr, Region, Block) \

00254 ((GeometryPtr)->NumBlocks - ((GeometryPtr)->EraseRegion[Region].AbsoluteBlock
+ Block))
00255
00256 /***/
00257 /**
00258 *
00259 * Calculates the number of blocks between the given start and end coordinates.
00260 *
00261 * @param GeometryPtr is the geometry instance that defines flash addressing
00262 * @param StartRegion is the starting region
00263 * @param StartBlock is the starting block.
00264 * @param EndRegion is the ending region
00265 * @param EndBlock is the ending block.
00266 *
00267 * @return
00268 *
00269 * The number of blocks between start Region/Block and end Region/Block
00270 * (inclusive)
00271 *
00272 */
00273 #define XFL_GEOMETRY_BLOCK_DIFF(GeometryPtr, StartRegion, StartBlock,

EndRegion, EndBlock) \
00274 (((GeometryPtr)->EraseRegion[EndRegion].AbsoluteBlock + (EndBlock)) - \
00275 ((GeometryPtr)->EraseRegion[StartRegion].AbsoluteBlock + (StartBlock)) + 1)
00276
00277 /***/
00278 /**
00279 *
00280 * Increments the given Region and Block to the next block address.
00281 *
00282 * @param GeometryPtr is the geometry instance that defines flash addressing
00283 * @param Region is the starting region.
00284 * @param Block is the starting block.
00285 *
00286 * @return
00287 *
00288 * Region parameter is incremented if the next block starts in a new region.
00289 * Block parameter is set to zero if the next block starts in a new region,
00290 * otherwise it is incremented by one.
00291 *
00292 */
00293 #define XFL_GEOMETRY_INCREMENT(GeometryPtr, Region, Block) \

00294 { \
00295 if ((GeometryPtr)->EraseRegion[Region].Number <= ++(Block)) \
00296 { \

00297 (Region)++; \
00298 (Block) = 0; \
00299 } \
00300 }
00301
00302 /************************** Function Prototypes ******************************/
00303 XStatus XFlashGeometry_ToBlock(XFlashGeometry *InstancePtr,

00304 Xuint32 AbsoluteOffset,

00305 Xuint16 *Region,

00306 Xuint16 *Block,

00307 Xuint32 *BlockOffset);

00308
00309 XStatus XFlashGeometry_ToAbsolute(XFlashGeometry *InstancePtr,

00310 Xuint16 Region,

00311 Xuint16 Block,

00312 Xuint32 BlockOffset,

00313 Xuint32 *AbsoluteOffsetPtr);

00314
00315 unsigned int XFlashGeometry_DiffBlocks(XFlashGeometry *GeometryPtr,

00316 Xuint16 StartRegion, Xuint16 StartBlock,

00317 Xuint16 EndRegion, Xuint16 EndBlock);

00318
00319 Xuint32 XFlashGeometry_ConvertLayout(Xuint8 NumParts, Xuint8 PartWidth,

00320 Xuint8 PartMode);

00321
00322 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_geometry.h File
Reference

Detailed Description

This is a helper component for XFlash. It contains the geometry information for an XFlash instance with
utilities to translate from absolute to block coordinate systems.

Absolute coordinates

This coordinate system is simply an offset into the address space of the flash instance.

Block coordinates

This coordinate system is dependent on the device's block geometry. All flash devices are divisible by
independent erase blocks which can be addressed with this coordinate system. The coordinates are defined
as:

● BlockOffset - The offset within an erase block
● Block - An erase block
● Region - An area containing erase blocks of the same size

The picture below shows the differences between the coordinate systems. The sample part has two regions of
three blocks each.

 Absolute Region Block Offset
 -------- ------ ----- ------
 +-----------------------+ 0 0 0 0
 | | 0 0 blocksizeA-1
 +-----------------------+ 0 1 0
 | | 0 1 blocksizeA-1
 +-----------------------+ 0 2 0
 | | 0 2 blocksizeA-1

 +=======================+ 1 0 0
 | |
 | |
 | |
 | | 1 0 blocksizeB-1
 +-----------------------+ 1 1 0
 | |
 | |
 | |
 | | 1 1 blocksizeB-1
 +-----------------------+ 1 2 0
 | |
 | |
 | |
 | | 1 2 blocksizeB-1
 +-----------------------+ 1 3 0
 | |
 | |
 | |
 | |
 +-----------------------+ DevSize-1 1 3 blocksizeB-1

Multiple devices

Some systems designs have more than one physical part wired in parallel on the data bus with each part
appearing to be interleaved in the address space. The geometry takes these extra parts into consideration by
doubling the sizes of blocks and regions.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/15/02 Added XFL_LAYOUT_X16_X16_X4
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XFlashGeometry

Defines

#define XFL_MAX_ERASE_REGIONS
#define XFL_GEOMETRY_IS_BLOCK_VALID(GeometryPtr, Region, Block, BlockOffset)
#define XFL_GEOMETRY_IS_ABSOLUTE_VALID(GeometryPtr, Offset)
#define XFL_GEOMETRY_BLOCKS_LEFT(GeometryPtr, Region, Block)
#define XFL_GEOMETRY_BLOCK_DIFF(GeometryPtr, StartRegion, StartBlock, EndRegion,

EndBlock)
#define XFL_GEOMETRY_INCREMENT(GeometryPtr, Region, Block)

Functions

XStatus XFlashGeometry_ToBlock (XFlashGeometry *InstancePtr, Xuint32 AbsoluteOffset, Xuint16
*Region, Xuint16 *Block, Xuint32 *BlockOffset)

XStatus XFlashGeometry_ToAbsolute (XFlashGeometry *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint32 BlockOffset, Xuint32 *AbsoluteOffsetPtr)

Xuint32 XFlashGeometry_ConvertLayout (Xuint8 NumParts, Xuint8 PartWidth, Xuint8 PartMode)

Define Documentation

#define XFL_GEOMETRY_BLOCK_DIFF(GeometryPtr,
StartRegion,
StartBlock,
EndRegion,
EndBlock)

Calculates the number of blocks between the given start and end coordinates.

Parameters:
GeometryPtr is the geometry instance that defines flash addressing
StartRegion is the starting region
StartBlock is the starting block.
EndRegion is the ending region
EndBlock is the ending block.

Returns:
The number of blocks between start Region/Block and end Region/Block (inclusive)

#define XFL_GEOMETRY_BLOCKS_LEFT(GeometryPtr,
Region,
Block)

Calculates the number of blocks between the given coordinates and the end of the device.

Parameters:
GeometryPtr is the geometry instance that defines flash addressing
Region is the starting region
Block is the starting block.

Returns:
The number of blocks between Region/Block and the end of the device (inclusive)

#define XFL_GEOMETRY_INCREMENT(GeometryPtr,
Region,
Block)

Increments the given Region and Block to the next block address.

Parameters:
GeometryPtr is the geometry instance that defines flash addressing
Region is the starting region.
Block is the starting block.

Returns:
Region parameter is incremented if the next block starts in a new region. Block parameter is set to
zero if the next block starts in a new region, otherwise it is incremented by one.

#define XFL_GEOMETRY_IS_ABSOLUTE_VALID(GeometryPtr,
Offset)

Tests the given absolute Offset to verify it lies within the bounds of the address space defined by a
geometry instance.

Parameters:
GeometryPtr is the geometry instance that defines flash addressing
Offset is the offset to test

Returns:
❍ 0 if Offset do not lie within the address space described by GeometryPtr.
❍ 1 if Offset are within the address space

#define XFL_GEOMETRY_IS_BLOCK_VALID(GeometryPtr,
Region,
Block,
BlockOffset)

Tests the given Region, Block, and Offset to verify they lie within the address space defined by a
geometry instance.

Parameters:
GeometryPtr is the geometry instance that defines flash addressing
Region is the region to test
Block is the block to test
BlockOffset is the offset within block

Returns:
❍ 0 if Region, Block, & BlockOffset do not lie within the address space described by

GeometryPtr.
❍ 1 if Region, Block, & BlockOffset are within the address space

#define XFL_MAX_ERASE_REGIONS

A block region is defined as a set of consecutive erase blocks of the same size. Most flash devices only
have a handful of regions. If a part has more regions than defined by this constant, then the constant must
be modified to accomodate the part. The minimum value of this constant is 1 and there is no maximum
value. Note that increasing this value also increases the amount of memory used by the geometry
structure approximately 12 bytes per increment.

Function Documentation

Xuint32 XFlashGeometry_ConvertLayout (Xuint8 NumParts,
Xuint8 PartWidth,
Xuint8 PartMode

)

Converts array layout into an XFL_LAYOUT_Xa_Xb_Xc constant. This function is typically called
during initialization to convert ordinal values delivered by a system generator into the XFL constants
which are optimized for use by the flash driver.

Parameters:
NumParts - Number of parts in the array.
PartWidth - Width of each part in bytes.
PartMode - Operation mode of each part in bytes.

Returns:
❍ XFL_LAYOUT_* - One of the supported layouts
❍ XNULL if a layout cannot be found that supports the given arguments

Note:
None.

XStatus XFlashGeometry_ToAbsolute (XFlashGeometry * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 BlockOffset,
Xuint32 * AbsoluteOffsetPtr

)

Converts block coordinates to a part offset. Region, Block, & BlockOffset are converted to PartOffset

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the physical address appears in.
Block is the block within Region the physical address appears in.
BlockOffset is the offset within Block where the physical address appears.
AbsoluteOffsetPtr is the returned offset value

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the block coordinates are invalid.

Note:
None.

XStatus XFlashGeometry_ToBlock (XFlashGeometry * InstancePtr,
Xuint32 AbsoluteOffset,
Xuint16 * RegionPtr,
Xuint16 * BlockPtr,
Xuint32 * BlockOffsetPtr

)

Converts part offset block coordinates. PartOffset is converted to Region, Block, & BlockOffset

Parameters:
InstancePtr is the pointer to the XFlashGeometry instance to be worked on.

AbsoluteOffset is the offset within part to find block coordinates for.
RegionPtr is the the region that corresponds to AbsoluteOffset. This is a return parameter.
BlockPtr is the the block within Region that corresponds to AbsoluteOffset. This is a return

parameter.
BlockOffsetPtr is the the offset within Block that corresponds to AbsoluteOffset. This is a return

parameter.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the block coordinates are invalid.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlashGeometry Struct Reference
#include <xflash_geometry.h>

Detailed Description

Flash geometry

Data Fields

Xuint32 BaseAddress
Xuint32 MemoryLayout
Xuint32 DeviceSize
Xuint32 NumEraseRegions
Xuint16 NumBlocks
Xuint32 AbsoluteOffset
Xuint16 AbsoluteBlock
Xuint16 Number
Xuint32 Size

Field Documentation

Xuint16 XFlashGeometry::AbsoluteBlock

 Block number where region begins

Xuint32 XFlashGeometry::AbsoluteOffset

 Offset within part where region begins

Xuint32 XFlashGeometry::BaseAddress

 Base address of part(s)

Xuint32 XFlashGeometry::DeviceSize

 Total device size in bytes

Xuint32 XFlashGeometry::MemoryLayout

How multiple parts are connected on the data bus. Choices are limited to XFL_LAYOUT_Xa_Xb_Xc
constants

Xuint16 XFlashGeometry::Number

 Number of blocks in this region

Xuint16 XFlashGeometry::NumBlocks

 Total number of blocks in device

Xuint32 XFlashGeometry::NumEraseRegions

 Number of erase regions

Xuint32 XFlashGeometry::Size

 Size of the block in bytes

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash_geometry.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_geometry.c File
Reference

Detailed Description

This module implements the helper component XFlashGeometry.

The helper component is responsible for containing the geometry information for the flash part(s) and for
converting from an absolute part offset to region/block/blockOffset coordinates.

XFlashGeometry describes the geometry of the entire instance, not the individual parts of that instance.
For example, if the user's board architecture uses two 16-bit parts in parallel for a 32-bit data path, then
the size of erase blocks and device sizes are multiplied by a factor of two.

Note:
This helper component is intended to be RTOS and processor independent. It works with physical
addresses only. Any needs for dynamic memory management, threads, mutual exclusion, virtual
memory, or cache control management must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xflash.h"

#include "xflash_geometry.h"

Functions

XStatus XFlashGeometry_ToAbsolute (XFlashGeometry *InstancePtr, Xuint16 Region, Xuint16
Block, Xuint32 BlockOffset, Xuint32 *AbsoluteOffsetPtr)

XStatus XFlashGeometry_ToBlock (XFlashGeometry *InstancePtr, Xuint32 AbsoluteOffset,
Xuint16 *RegionPtr, Xuint16 *BlockPtr, Xuint32 *BlockOffsetPtr)

Xuint32 XFlashGeometry_ConvertLayout (Xuint8 NumParts, Xuint8 PartWidth, Xuint8 PartMode)

Function Documentation

Xuint32 XFlashGeometry_ConvertLayout (Xuint8 NumParts,
Xuint8 PartWidth,
Xuint8 PartMode

)

Converts array layout into an XFL_LAYOUT_Xa_Xb_Xc constant. This function is typically called
during initialization to convert ordinal values delivered by a system generator into the XFL constants
which are optimized for use by the flash driver.

Parameters:
NumParts - Number of parts in the array.
PartWidth - Width of each part in bytes.
PartMode - Operation mode of each part in bytes.

Returns:
❍ XFL_LAYOUT_* - One of the supported layouts
❍ XNULL if a layout cannot be found that supports the given arguments

Note:
None.

XStatus XFlashGeometry_ToAbsolute (XFlashGeometry * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 BlockOffset,
Xuint32 * AbsoluteOffsetPtr

)

Converts block coordinates to a part offset. Region, Block, & BlockOffset are converted to PartOffset

Parameters:
InstancePtr is the pointer to the XFlash instance to be worked on.
Region is the erase region the physical address appears in.
Block is the block within Region the physical address appears in.
BlockOffset is the offset within Block where the physical address appears.
AbsoluteOffsetPtr is the returned offset value

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the block coordinates are invalid.

Note:
None.

XStatus XFlashGeometry_ToBlock (XFlashGeometry * InstancePtr,
Xuint32 AbsoluteOffset,
Xuint16 * RegionPtr,
Xuint16 * BlockPtr,
Xuint32 * BlockOffsetPtr

)

Converts part offset block coordinates. PartOffset is converted to Region, Block, & BlockOffset

Parameters:
InstancePtr is the pointer to the XFlashGeometry instance to be worked on.

AbsoluteOffset is the offset within part to find block coordinates for.
RegionPtr is the the region that corresponds to AbsoluteOffset. This is a return

parameter.
BlockPtr is the the block within Region that corresponds to AbsoluteOffset. This is a

return parameter.
BlockOffsetPtr is the the offset within Block that corresponds to AbsoluteOffset. This is a

return parameter.

Returns:
❍ XST_SUCCESS if successful.
❍ XST_FLASH_ADDRESS_ERROR if the block coordinates are invalid.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_properties.h
Go to the documentation of this file.

00001 /* $Id: xflash_properties.h,v 1.4 2002/03/09 00:14:46 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file flash/v1_00_a/src/xflash_properties.h
00026 *
00027 * This is a helper component for XFlash. It contains various datum
00028 * common to flash devices most of which can be derived from the CFI query.
00029 *
00030 * @note
00031 *
00032 * There is no implementation file with this component.
00033 *
00034 * <pre>
00035 * MODIFICATION HISTORY:
00036 *
00037 * Ver Who Date Changes
00038 * ----- ---- -------- ---
00039 * 1.00a rmm 07/16/01 First release
00040 * </pre>
00041 *
00042 ***/

00043
00044 #ifndef XFLASH_PROPERTIES_H /* prevent circular inclusions */
00045 #define XFLASH_PROPERTIES_H /* by using protection macros */
00046
00047 /***************************** Include Files *********************************/
00048 #include "xbasic_types.h"

00049 #include "xstatus.h"

00050
00051 /************************** Constant Definitions *****************************/
00052
00053
00054 /**************************** Type Definitions *******************************/
00055
00056 /**
00057 * Flash timing
00058 */
00059 typedef struct

00060 {
00061 Xuint16 WriteSingle_Us; /**< Time to program a single word unit

00062 Units are in microseconds */
00063 Xuint16 WriteBuffer_Us; /**< Time to program the contents of the

00064 write buffer. Units are in microseconds
00065 If the part does not support write
00066 buffers, then this value should be
00067 zero */
00068 Xuint16 EraseBlock_Ms; /**< Time to erase a single block

00069 Units are in milliseconds */
00070 Xuint16 EraseChip_Ms; /**< Time to perform a chip erase

00071 Units are in milliseconds */
00072 } XFlashTiming;

00073
00074 /**
00075 * Flash identification
00076 */
00077 typedef struct

00078 {
00079 Xuint8 ManufacturerID; /**< Manufacturer of parts */

00080 Xuint8 DeviceID; /**< Part number of manufacturer */

00081 Xuint16 CommandSet; /**< Command algorithm used by part.

Choices
00082 are defined in XFL_CMDSET constants */
00083 } XFlashPartID;

00084
00085 /**
00086 * Programming parameters
00087 */
00088 typedef struct

00089 {
00090 Xuint32 WriteBufferSize; /**< Number of bytes that can be

programmed
00091 at once */

00092 Xuint32 WriteBufferAlignmentMask;/**< Alignment of the write buffer */

00093 Xuint32 EraseQueueSize; /**< Number of erase blocks that can be

00094 queued up at once */
00095 } XFlashProgCap;

00096
00097
00098 /**
00099 * Consolidated parameters
00100 */
00101 typedef struct

00102 {
00103 XFlashPartID PartID; /**< Uniquely identifies the part */

00104 XFlashTiming TimeTypical; /**< Typical timing data */

00105 XFlashTiming TimeMax; /**< Worst case timing data */

00106 XFlashProgCap ProgCap; /**< Programming capabilities */

00107 } XFlashProperties;

00108
00109 /************************** Function Prototypes ******************************/
00110
00111 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_properties.h
File Reference

Detailed Description

This is a helper component for XFlash. It contains various datum common to flash devices most of which
can be derived from the CFI query.

Note:
There is no implementation file with this component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XFlashPartID
struct XFlashProgCap
struct XFlashProperties

struct XFlashTiming

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlashPartID Struct Reference
#include <xflash_properties.h>

Detailed Description

Flash identification

Data Fields

Xuint8 ManufacturerID
Xuint8 DeviceID

Xuint16 CommandSet

Field Documentation

Xuint16 XFlashPartID::CommandSet

 Command algorithm used by part. Choices are defined in XFL_CMDSET constants

Xuint8 XFlashPartID::DeviceID

 Part number of manufacturer

Xuint8 XFlashPartID::ManufacturerID

 Manufacturer of parts

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash_properties.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlashProgCap Struct Reference
#include <xflash_properties.h>

Detailed Description

Programming parameters

Data Fields

Xuint32 WriteBufferSize
Xuint32 WriteBufferAlignmentMask
Xuint32 EraseQueueSize

Field Documentation

Xuint32 XFlashProgCap::EraseQueueSize

 Number of erase blocks that can be queued up at once

Xuint32 XFlashProgCap::WriteBufferAlignmentMask

 Alignment of the write buffer

Xuint32 XFlashProgCap::WriteBufferSize

 Number of bytes that can be programmed at once

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash_properties.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlashProperties Struct Reference
#include <xflash_properties.h>

Detailed Description

Consolidated parameters

Data Fields

XFlashPartID PartID
XFlashTiming TimeTypical
XFlashTiming TimeMax

XFlashProgCap ProgCap

Field Documentation

XFlashPartID XFlashProperties::PartID

 Uniquely identifies the part

XFlashProgCap XFlashProperties::ProgCap

 Programming capabilities

XFlashTiming XFlashProperties::TimeMax

 Worst case timing data

XFlashTiming XFlashProperties::TimeTypical

 Typical timing data

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash_properties.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlashTiming Struct Reference
#include <xflash_properties.h>

Detailed Description

Flash timing

Data Fields

Xuint16 WriteSingle_Us
Xuint16 WriteBuffer_Us
Xuint16 EraseBlock_Ms
Xuint16 EraseChip_Ms

Field Documentation

Xuint16 XFlashTiming::EraseBlock_Ms

 Time to erase a single block Units are in milliseconds

Xuint16 XFlashTiming::EraseChip_Ms

 Time to perform a chip erase Units are in milliseconds

Xuint16 XFlashTiming::WriteBuffer_Us

Time to program the contents of the write buffer. Units are in microseconds If the part does not
support write buffers, then this value should be zero

Xuint16 XFlashTiming::WriteSingle_Us

 Time to program a single word unit Units are in microseconds

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash_properties.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_cfi.c File
Reference

Detailed Description

This module implements the helper component XFlashCFI.

The helper component is responsible for retrieval and translation of CFI data from a complient flash
device. CFI contains data that defines part geometry, write/erase timing, and programming data.

Data is retrieved using macros defined in this component's header file. The macros simplify data
extraction because they have been written to take into account the layout of parts on the data bus. To the
driver, CFI data appears as if it were always being read from a single 8-bit part
(XFL_LAYOUT_X8_X8_X1) Otherwise, the retrieval code would have to contend with all the formats
illustrated below. The illustration shows how the first three bytes of the CFI query data "QRY" appear in
flash memory space for various part layouts.

 Byte Offset (big-Endian)
 0123456789ABCDEF

 XFL_LAYOUT_X16_X16_X1 Q R Y
 XFL_LAYOUT_X16_X16_X2 Q Q R R Y Y

Where the holes between Q, R, and Y are NULL (all bits 0)

Note:
This helper component is intended to be RTOS and processor independent. It works with physical
addresses only. Any needs for dynamic memory management, threads, mutual exclusion, virtual
memory, or cache control management must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/15/02 Added 64 bit access
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xflash.h"

#include "xflash_cfi.h"

Functions

XStatus XFlashCFI_ReadCommon (XFlashGeometry *GeometryPtr, XFlashProperties
*PropertiesPtr)

Function Documentation

XStatus XFlashCFI_ReadCommon (XFlashGeometry * GeometryPtr,
XFlashProperties * PropertiesPtr

)

Retrieves the standard CFI data from the part(s), interpret the data, and update the provided geometry
and properties structures.

Extended CFI data is part specific and ignored here. This data must be read by the specific part
component driver.

Parameters:
GeometryPtr is an input/output parameter. This function expects the BaseAddress and

MemoryLayout attributes to be correctly initialized. All other attributes of this
structure will be setup using translated CFI data read from the part.

PropertiesPtr is an output parameter. Timing, identification, and programming CFI data will
be translated and written to this structure.

Returns:

❍ XST_SUCCESS if successful.
❍ XST_FLASH_CFI_QUERY_ERROR if an error occurred interpreting the data.
❍ XST_FLASH_PART_NOT_SUPPORTED if invalid Layout parameter

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlash_Config Struct Reference
#include <xflash.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddr
Xuint8 NumParts
Xuint8 PartWidth
Xuint8 PartMode

Field Documentation

Xuint32 XFlash_Config::BaseAddr

 Base address of array

Xuint16 XFlash_Config::DeviceId

 Unique ID of device

Xuint8 XFlash_Config::NumParts

 Number of parts in the array

Xuint8 XFlash_Config::PartMode

 Operation mode of each part in bytes

Xuint8 XFlash_Config::PartWidth

 Width of each part in bytes

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XFlashTag Struct Reference
#include <xflash.h>

Detailed Description

The XFlash driver instance data. The user is required to allocate a variable of this type for every flash
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● flash/v1_00_a/src/xflash.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_g.c File
Reference

Detailed Description

This file contains a table that specifies the configuration of devices in the system. In addition, there is a
lookup function used by the driver to access its configuration information.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 01/18/01 First release
 1.00a rpm 05/05/02 Added include of xparameters.h

#include "xflash.h"

#include "xparameters.h"

Variables

XFlash_Config XFlash_ConfigTable [XPAR_XFLASH_NUM_INSTANCES]

Variable Documentation

XFlash_Config XFlash_ConfigTable[XPAR_XFLASH_NUM_INSTANCES]

 This table contains configuration information for each flash device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_intel.h File
Reference

Detailed Description

This is an Intel specific Flash memory component driver for CFI enabled parts.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 07/16/01 First release

#include "xbasic_types.h"

#include "xflash.h"

Go to the source code of this file.

Functions

XStatus XFlashIntel_Initialize (XFlash *InstancePtr)
XStatus XFlashIntel_SelfTest (XFlash *InstancePtr)
XStatus XFlashIntel_Reset (XFlash *InstancePtr)
XStatus XFlashIntel_SetOptions (XFlash *InstancePtr, Xuint32 OptionsFlag)
Xuint32 XFlashIntel_GetOptions (XFlash *InstancePtr)

XFlashProperties * XFlashIntel_GetProperties (XFlash *InstancePtr)
XFlashGeometry * XFlashIntel_GetGeometry (XFlash *InstancePtr)

XStatus XFlashIntel_DeviceControl (XFlash *InstancePtr, Xuint32 Command, Xuint32 Param,
Xuint32 *ReturnPtr)

XStatus XFlashIntel_Read (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void
*DestPtr)

XStatus XFlashIntel_Write (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void *SrcPtr)
XStatus XFlashIntel_WriteSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_WriteResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_Erase (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlashIntel_EraseSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_EraseResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_Lock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlashIntel_Unlock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlashIntel_GetStatus (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_ReadBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint32 Offset, Xuint32 Bytes, void *DestPtr)
XStatus XFlashIntel_WriteBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint32 Offset, Xuint32 Bytes, void *SrcPtr)
XStatus XFlashIntel_WriteBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block, Xuint32 Offset)
XStatus XFlashIntel_WriteBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block, Xuint32 Offset)
XStatus XFlashIntel_EraseBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint16 NumBlocks)
XStatus XFlashIntel_EraseBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block)
XStatus XFlashIntel_EraseBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block)
XStatus XFlashIntel_LockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint16 NumBlocks)
XStatus XFlashIntel_UnlockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint16 NumBlocks)
XStatus XFlashIntel_GetBlockStatus (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block)
XStatus XFlashIntel_EraseChip (XFlash *InstancePtr)

Function Documentation

XStatus XFlashIntel_DeviceControl (XFlash * InstancePtr,
Xuint32 Command,
Xuint32 Param,
Xuint32 * ReturnPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
Intel specific commands:

 Command: XFL_INTEL_DEVCTL_SET_RYBY
 Description:
 Set the mode of the RYBY signal.

 Param:
 One of XFL_INTEL_RYBY_PULSE_OFF, XFL_INTEL_RYBY_PULSE_ON_ERASE,
 XFL_INTEL_RYBY_PULSE_ON_PROG, XFL_INTEL_RYBY_PULSE_ON_ERASE_PROG

 Return:
 None

 Command: XFL_INTEL_DEVCTL_GET_LAST_ERROR
 Description:
 Retrieve the last error condition. The data is in the form of the
 status register(s) read from the device(s) at the time the error
 was detected. The registers are formatted verbatim as they are
 seen on the data bus.

 Param:
 None

 Return:
 The contents of the Status registers at the time the last error was
 detected.

XStatus XFlashIntel_Erase (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_EraseBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_EraseBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region & Block parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_EraseBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region & Block parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_EraseChip (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_EraseResume (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_EraseSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_GetBlockStatus (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

See the base component for a description of this function, its return values, and arguments.

Note:
The Region & Block parameters are not used because the device's status register appears at every
addressible location.

XFlashGeometry* XFlashIntel_GetGeometry (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

Xuint32 XFlashIntel_GetOptions (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XFlashProperties* XFlashIntel_GetProperties (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_GetStatus (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
The Offset parameter is not used because the device's status register appears at every addressible
location.

XStatus XFlashIntel_Initialize (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Parameters:
InstancePtr is a pointer to the flash instance to be worked on.

Returns:
❍ XST_SUCCESS if successful
❍ XST_FLASH_PART_NOT_SUPPORTED if the part is not supported

Note:
Two geometry attributes MUST be defined prior to invoking this function:

❍ BaseAddress
❍ MemoryLayout

XStatus XFlashIntel_Lock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_LockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_Read (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_ReadBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
The part is assumed to be in read-array mode.

XStatus XFlashIntel_Reset (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_SelfTest (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_SetOptions (XFlash * InstancePtr,
Xuint32 OptionsFlag

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_Unlock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_UnlockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_Write (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_WriteBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_WriteBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region, Block, & Offset parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_WriteBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region, Block, & Offset parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_WriteResume (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_WriteSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_intel.h
Go to the documentation of this file.

00001 /* $Id: xflash_intel.h,v 1.3 2002/03/06 15:25:08 whittle Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file flash/v1_00_a/src/xflash_intel.h
00026 *
00027 * This is an Intel specific Flash memory component driver for CFI enabled
00028 * parts.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rmm 07/16/01 First release
00036 * </pre>
00037 *
00038 **/
00039
00040 #ifndef XFLASH_INTEL_H /* prevent circular inclusions */
00041 #define XFLASH_INTEL_H /* by using protection macros */
00042

00043 /***************************** Include Files *********************************/
00044
00045 #include "xbasic_types.h"

00046 #include "xflash.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 /*
00051 * XFlash_DeviceControl command list
00052 */
00053 #define XFL_INTEL_DEVCTL_SET_RYBY 0 /* Set RYBY pin mode */
00054 #define XFL_INTEL_DEVCTL_GET_LAST_ERROR 1 /* Retrieve the last error data */
00055
00056 /*
00057 * RYBY Options
00058 * These options control the RYBY signal. They can be accessed with the
00059 * XFL_INTEL_DEVCTL_SET_RYBY command.
00060 */
00061 #define XFL_INTEL_RYBY_PULSE_OFF 0 /* Do not pulse */
00062 #define XFL_INTEL_RYBY_PULSE_ON_ERASE 1 /* Pulse on erase complete
00063 only */
00064 #define XFL_INTEL_RYBY_PULSE_ON_PROG 2 /* Pulse on program complete
00065 only */
00066 #define XFL_INTEL_RYBY_PULSE_ON_ERASE_PROG 3 /* Pulse on erase & program
00067 complete */
00068
00069 /*
00070 * Status register bit definitions. Use these bitmaps to decipher the
00071 * return value of the XFL_INTEL_DEVCTL_GET_LAST_ERROR command.
00072 */
00073 #define XFL_INTEL_SR_WSM_READY 0x80
00074 #define XFL_INTEL_SR_ERASE_SUSPENDED 0x40
00075 #define XFL_INTEL_SR_ERASE_OR_UNLOCK_ERROR 0x20
00076 #define XFL_INTEL_SR_PROG_OR_LOCK_ERROR 0x10
00077 #define XFL_INTEL_SR_VOLTAGE_ERROR 0x08
00078 #define XFL_INTEL_SR_WRITE_SUSPENDED 0x04
00079 #define XFL_INTEL_SR_BLOCK_LOCKED_ERROR 0x02
00080
00081 /*
00082 * Extended capabilities list
00083 * These bits can be read with the XFL_INTEL_DEVCTL_GET_SUPPORT1 command.
00084 *
00085 * XFL_INTEL_SUPPORT1_CHIP_ERASE - The part supports the chip erase command.
00086 *
00087 * XFL_INTEL_SUPPORT1_SUSPEND_ERASE - The part supports suspension and
00088 * resumption of an erase operation.
00089 *
00090 * XFL_INTEL_SUPPORT1_SUSPEND_PROG - The part supports suspension and
00091 * resumption of a programming operation.
00092 *
00093 * XFL_INTEL_SUPPORT1_LEGACY_LOCK - The part supports legacy lock/unlock.
00094 *

00095 * XFL_INTEL_SUPPORT1_QUEUED_ERASE - The part supports the queueing up of
00096 * erase blocks.
00097 *
00098 * XFL_INTEL_SUPPORT1_INSTANT_LOCK - The part supports instant individual
00099 * block locking.
00100 *
00101 * XFL_INTEL_SUPPORT1_PROTECTION_BIT - The part supports protection bits.
00102 *
00103 * XFL_INTEL_SUPPORT1_PAGE_MODE_READ - The part supports page-mode reads.
00104 *
00105 * XFL_INTEL_SUPPORT1_SYNC_READ - The part supports synchronous reads.
00106 *
00107 */
00108 #define XFL_INTEL_SUPPORT1_CHIP_ERASE 0x80000000UL
00109 #define XFL_INTEL_SUPPORT1_SUSPEND_ERASE 0x40000000UL
00110 #define XFL_INTEL_SUPPORT1_SUSPEND_PROG 0x20000000UL
00111 #define XFL_INTEL_SUPPORT1_LEGACY_LOCK 0x10000000UL
00112 #define XFL_INTEL_SUPPORT1_QUEUED_ERASE 0x08000000UL
00113 #define XFL_INTEL_SUPPORT1_INSTANT_LOCK 0x04000000UL
00114 #define XFL_INTEL_SUPPORT1_PROTECTION_BIT 0x02000000UL
00115 #define XFL_INTEL_SUPPORT1_PAGE_MODE_READ 0x01000000UL
00116 #define XFL_INTEL_SUPPORT1_SYNC_READ 0x00800000UL
00117
00118 /*
00119 * Suspension capabilities list
00120 *
00121 * XFL_INTEL_PROG_AFTER_ERASE_SUSPEND - The part supports programming
00122 * after suspending an erase operation
00123 */
00124 #define XFL_INTEL_SUSPEND_SUPPORT_PROG_AFTER_ERASE 0x00000001UL
00125
00126 /**************************** Type Definitions *******************************/
00127
00128
00129 /***************** Macros (Inline Functions) Definitions *********************/
00130
00131
00132 /************************** Function Prototypes ******************************/
00133
00134 XStatus XFlashIntel_Initialize(XFlash *InstancePtr);

00135 XStatus XFlashIntel_SelfTest(XFlash *InstancePtr);

00136 XStatus XFlashIntel_Reset(XFlash *InstancePtr);

00137 XStatus XFlashIntel_SetOptions(XFlash *InstancePtr, Xuint32 OptionsFlag);

00138 Xuint32 XFlashIntel_GetOptions(XFlash *InstancePtr);

00139 XFlashProperties* XFlashIntel_GetProperties(XFlash *InstancePtr);

00140 XFlashGeometry* XFlashIntel_GetGeometry(XFlash *InstancePtr);

00141 XStatus XFlashIntel_DeviceControl(XFlash *InstancePtr, Xuint32 Command,

00142 Xuint32 Param, Xuint32 *ReturnPtr);

00143
00144 /*
00145 * Non-geometry aware API

00146 */
00147 XStatus XFlashIntel_Read(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes,

00148 void* DestPtr);
00149
00150 XStatus XFlashIntel_Write(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes,

00151 void* SrcPtr);
00152
00153 XStatus XFlashIntel_WriteSuspend(XFlash *InstancePtr, Xuint32 Offset);

00154 XStatus XFlashIntel_WriteResume(XFlash *InstancePtr, Xuint32 Offset);

00155
00156 XStatus XFlashIntel_Erase(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes);

00157 XStatus XFlashIntel_EraseSuspend(XFlash *InstancePtr, Xuint32 Offset);

00158 XStatus XFlashIntel_EraseResume(XFlash *InstancePtr, Xuint32 Offset);

00159
00160 XStatus XFlashIntel_Lock(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes);

00161 XStatus XFlashIntel_Unlock(XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes);

00162 XStatus XFlashIntel_GetStatus(XFlash *InstancePtr, Xuint32 Offset);

00163
00164 /*
00165 * Geometry aware API
00166 */
00167 XStatus XFlashIntel_ReadBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16

Block,
00168 Xuint32 Offset, Xuint32 Bytes, void* DestPtr);

00169
00170 XStatus XFlashIntel_WriteBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16

Block,
00171 Xuint32 Offset, Xuint32 Bytes, void* SrcPtr);

00172
00173 XStatus XFlashIntel_WriteBlockSuspend(XFlash *InstancePtr, Xuint16 Region,

00174 Xuint16 Block, Xuint32 Offset);

00175
00176 XStatus XFlashIntel_WriteBlockResume(XFlash *InstancePtr, Xuint16 Region,

00177 Xuint16 Block, Xuint32 Offset);

00178
00179 XStatus XFlashIntel_EraseBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16

Block,
00180 Xuint16 NumBlocks);

00181
00182 XStatus XFlashIntel_EraseBlockSuspend(XFlash *InstancePtr, Xuint16 Region,

00183 Xuint16 Block);

00184
00185 XStatus XFlashIntel_EraseBlockResume(XFlash *InstancePtr, Xuint16 Region,

00186 Xuint16 Block);

00187
00188 XStatus XFlashIntel_LockBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16

Block,
00189 Xuint16 NumBlocks);

00190

00191 XStatus XFlashIntel_UnlockBlock(XFlash *InstancePtr, Xuint16 Region, Xuint16

Block,
00192 Xuint16 NumBlocks);

00193
00194 XStatus XFlashIntel_GetBlockStatus(XFlash *InstancePtr, Xuint16 Region,

00195 Xuint16 Block);

00196
00197 /*
00198 * Other commands
00199 */
00200 XStatus XFlashIntel_EraseChip(XFlash *InstancePtr);

00201
00202 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_intel.c File
Reference

Detailed Description

The implementation of the Intel CFI Version of the XFlash component.

This module utilizes the XFlash base component, whose attributes have been defined mostly from a CFI data
query. This data is used to define the geometry of the part(s), timeout values for write & erase operations, and
optional features.

Note:
❍ Special consideration has to be given to varying data bus widths. To boost performance,

multiple devices in parallel on the data bus are accessed in parallel. Therefore to reduce
complexity and increase performance, many local primitive functions are duplicated with the
only difference being the width of writes to the devices.

Even with the performance boosting optimizations, the overhead associated with this component
is rather high due to the general purpose nature of its design.

Flash block erasing is a time consuming operation with nearly all latency occuring due to the
devices' themselves. It takes on the order of 1 second to erase each block.

Writes by comparison are much quicker so driver overhead becomes an issue. The write
algorithm has been optimized for bulk data programming and should provide relatively better
performance.

❍ The code/comments refers to WSM frequently. This stands for Write State Machine. WSM is
the internal programming engine of the devices.

❍ This driver and the underlying Intel flash memory does not allow re- programming while code is
executing from the same memory.

❍ If hardware is flakey or fails, then this driver could hang a thread of execution.
❍ This module has some dependencies on whether it is being unit tested. These areas are noted

with conditional compilation based on whether XENV_UNITTEST is defined. This is required
because unit testing occurs without real flash devices.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 07/16/01 First release
 1.00a rmm 03/14/02 Added 64 bit array support
 1.00a rmm 05/13/03 Fixed diab compiler warnings relating to asserts.

#include "xflash_intel.h"

#include "xflash_intel_l.h"

#include "xflash_cfi.h"

#include "xflash_geometry.h"

#include "xenv.h"

Data Structures

union StatReg
struct XFlashVendorData_IntelTag

Functions

XStatus XFlashIntel_Initialize (XFlash *InstancePtr)
XStatus XFlashIntel_ReadBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint32 Offset, Xuint32 Bytes, void *DestPtr)
XStatus XFlashIntel_WriteBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint32 Offset, Xuint32 Bytes, void *SrcPtr)
XStatus XFlashIntel_WriteBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block, Xuint32 Offset)
XStatus XFlashIntel_WriteBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block, Xuint32 Offset)
XStatus XFlashIntel_EraseBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,

Xuint16 NumBlocks)
XStatus XFlashIntel_EraseBlockSuspend (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block)
XStatus XFlashIntel_EraseBlockResume (XFlash *InstancePtr, Xuint16 Region, Xuint16

Block)

XStatus XFlashIntel_LockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint16 NumBlocks)

XStatus XFlashIntel_UnlockBlock (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block,
Xuint16 NumBlocks)

XStatus XFlashIntel_GetBlockStatus (XFlash *InstancePtr, Xuint16 Region, Xuint16 Block)
XStatus XFlashIntel_Read (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void

*DestPtr)
XStatus XFlashIntel_Write (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes, void *SrcPtr)
XStatus XFlashIntel_WriteSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_WriteResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_Erase (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlashIntel_EraseSuspend (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_EraseResume (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_Lock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlashIntel_Unlock (XFlash *InstancePtr, Xuint32 Offset, Xuint32 Bytes)
XStatus XFlashIntel_GetStatus (XFlash *InstancePtr, Xuint32 Offset)
XStatus XFlashIntel_EraseChip (XFlash *InstancePtr)
XStatus XFlashIntel_SelfTest (XFlash *InstancePtr)
XStatus XFlashIntel_Reset (XFlash *InstancePtr)
XStatus XFlashIntel_SetOptions (XFlash *InstancePtr, Xuint32 OptionsFlag)
Xuint32 XFlashIntel_GetOptions (XFlash *InstancePtr)

XFlashGeometry * XFlashIntel_GetGeometry (XFlash *InstancePtr)
XFlashProperties * XFlashIntel_GetProperties (XFlash *InstancePtr)

XStatus XFlashIntel_DeviceControl (XFlash *InstancePtr, Xuint32 Command, Xuint32 Param,
Xuint32 *ReturnPtr)

Function Documentation

XStatus XFlashIntel_DeviceControl (XFlash * InstancePtr,
Xuint32 Command,
Xuint32 Param,
Xuint32 * ReturnPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
Intel specific commands:

 Command: XFL_INTEL_DEVCTL_SET_RYBY
 Description:
 Set the mode of the RYBY signal.

 Param:
 One of XFL_INTEL_RYBY_PULSE_OFF, XFL_INTEL_RYBY_PULSE_ON_ERASE,
 XFL_INTEL_RYBY_PULSE_ON_PROG, XFL_INTEL_RYBY_PULSE_ON_ERASE_PROG

 Return:
 None

 Command: XFL_INTEL_DEVCTL_GET_LAST_ERROR
 Description:
 Retrieve the last error condition. The data is in the form of the
 status register(s) read from the device(s) at the time the error
 was detected. The registers are formatted verbatim as they are
 seen on the data bus.

 Param:
 None

 Return:
 The contents of the Status registers at the time the last error was
 detected.

XStatus XFlashIntel_Erase (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_EraseBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_EraseBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region & Block parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_EraseBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region & Block parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_EraseChip (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_EraseResume (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_EraseSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_GetBlockStatus (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block

)

See the base component for a description of this function, its return values, and arguments.

Note:
The Region & Block parameters are not used because the device's status register appears at every
addressible location.

XFlashGeometry* XFlashIntel_GetGeometry (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

Xuint32 XFlashIntel_GetOptions (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XFlashProperties* XFlashIntel_GetProperties (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_GetStatus (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
The Offset parameter is not used because the device's status register appears at every addressible
location.

XStatus XFlashIntel_Initialize (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Parameters:
InstancePtr is a pointer to the flash instance to be worked on.

Returns:
❍ XST_SUCCESS if successful
❍ XST_FLASH_PART_NOT_SUPPORTED if the part is not supported

Note:
Two geometry attributes MUST be defined prior to invoking this function:

❍ BaseAddress
❍ MemoryLayout

XStatus XFlashIntel_Lock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_LockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_Read (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_ReadBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * DestPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
The part is assumed to be in read-array mode.

XStatus XFlashIntel_Reset (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_SelfTest (XFlash * InstancePtr)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_SetOptions (XFlash * InstancePtr,
Xuint32 OptionsFlag

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_Unlock (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_UnlockBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint16 NumBlocks

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_Write (XFlash * InstancePtr,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_WriteBlock (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset,
Xuint32 Bytes,
void * SrcPtr

)

See the base component for a description of this function, its return values, and arguments.

Note:
None.

XStatus XFlashIntel_WriteBlockResume (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region, Block, & Offset parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_WriteBlockSuspend (XFlash * InstancePtr,
Xuint16 Region,
Xuint16 Block,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Region, Block, & Offset parameters are ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_WriteResume (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

XStatus XFlashIntel_WriteSuspend (XFlash * InstancePtr,
Xuint32 Offset

)

See the base component for a description of this function, its return values, and arguments.

Note:
Offset parameter is ignored.

Intel flash does not differentiate RESUME between erase and write. It depends on what the flash
was doing at the time the SUSPEND command was issued.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_intel_l.h
Go to the documentation of this file.

00001 /* $Id: xflash_intel_l.h,v 1.1 2002/05/13 19:55:51 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file flash/v1_00_a/src/xflash_intel_l.h
00026 *
00027 * Contains identifiers and low-level macros/functions for the Intel 28FxxxJ3A
00028 * StrataFlash driver.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rpm 05/06/02 First release
00036 * </pre>
00037 *
00038 **/
00039
00040 #ifndef XFLASH_INTEL_L_H /* prevent circular inclusions */
00041 #define XFLASH_INTEL_L_H /* by using protection macros */
00042

00043 /***************************** Include Files *********************************/
00044
00045 #include "xbasic_types.h"

00046 #include "xio.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 /*
00051 * Commands written to the devices are defined by the CMD_* constants below.
00052 * Each Command contains 8-bits of significant data. For x16 or greater
devices,
00053 * the command data should appear on the LSB. Other bytes may be written as
00054 * don't cares. To eliminate the need to know the bus layout, the width of
00055 * individual parts, or potential byte-swapping requirements, the CMD_*
00056 * constants are defined with the command data in every nibble.
00057 */
00058
00059 /*
00060 * BCS/SCS command codes
00061 */
00062 #define XFL_INTEL_CMD_READ_ARRAY 0xFFFFFFFFUL
00063 #define XFL_INTEL_CMD_READ_ID_CODES 0x90909090UL
00064 #define XFL_INTEL_CMD_READ_STATUS_REG 0x70707070UL
00065 #define XFL_INTEL_CMD_CLEAR_STATUS_REG 0x50505050UL
00066 #define XFL_INTEL_CMD_WRITE_BUFFER 0xE8E8E8E8UL
00067 #define XFL_INTEL_CMD_PROGRAM 0x40404040UL
00068 #define XFL_INTEL_CMD_BLOCK_ERASE 0x20202020UL
00069 #define XFL_INTEL_CMD_CONFIRM 0xD0D0D0D0UL
00070 #define XFL_INTEL_CMD_SUSPEND 0xB0B0B0B0UL
00071 #define XFL_INTEL_CMD_RESUME 0xD0D0D0D0UL
00072
00073 #define XFL_INTEL_STATUS_READY 0x00800080UL
00074
00075 /*
00076 * SCS command codes
00077 */
00078 #define XFL_INTEL_CMD_READ_QUERY 0x98989898UL
00079 #define XFL_INTEL_CMD_CONFIG 0xB8B8B8B8UL
00080 #define XFL_INTEL_CMD_LOCK_BLOCK_SET 0x60606060UL
00081 #define XFL_INTEL_CMD_LOCK_BLOCK_SET_CONFIRM 0x01010101UL
00082 #define XFL_INTEL_CMD_LOCK_BLOCK_CLEAR 0x60606060UL
00083
00084 /*
00085 * Other command codes
00086 */
00087 #define XFL_INTEL_CMD_PROTECTION 0xC0C0C0C0UL
00088
00089 /*
00090 * Configuration command codes
00091 */
00092 #define XFL_INTEL_CONFIG_RYBY_LEVEL 0x00000000UL
00093 #define XFL_INTEL_CONFIG_RYBY_PULSE_ERASE 0x01010101UL

00094 #define XFL_INTEL_CONFIG_RYBY_PULSE_WRITE 0x02020202UL
00095 #define XFL_INTEL_CONFIG_RYBY_PULSE_ALL 0x03030303UL
00096
00097
00098 /**************************** Type Definitions *******************************/
00099
00100 /***************** Macros (Inline Functions) Definitions *********************/
00101
00102 /***
00103 *
00104 * Low-level driver macros and functions. The list below provides signatures
00105 * to help the user use the macros.
00106 *
00107 * void XFlashIntel_mSendCmd(Xuint32 BaseAddress, Xuint32 Offset,
00108 * unsigned int Command)
00109 * int XFlashIntel_WaitReady(Xuint32 BaseAddress, Xuint32 Offset);
00110 *
00111 * int XFlashIntel_WriteAddr(Xuint32 BaseAddress, Xuint32 Offset,
00112 * Xuint8 *BufferPtr, unsigned int Length);
00113 * int XFlashIntel_ReadAddr(Xuint32 BaseAddress, Xuint32 Offset,
00114 * Xuint8 *BufferPtr, unsigned int Length);
00115 * int XFlashIntel_EraseAddr(Xuint32 BaseAddress, Xuint32 Offset);
00116 * int XFlashIntel_LockAddr(Xuint32 BaseAddress, Xuint32 Offset);
00117 * int XFlashIntel_UnlockAddr(Xuint32 BaseAddress, Xuint32 Offset);
00118 *
00119 ***/
00120
00121 /**/
00122 /**
00123 *
00124 * Send the specified command to the flash device.
00125 *
00126 * @param BaseAddress is the base address of the device
00127 * @param Offset is the offset address from the base address.
00128 * @param Command is the command to send.
00129 *
00130 * @return None.
00131 *
00132 * @note None.
00133 *
00134 ***/
00135 #define XFlashIntel_mSendCmd(BaseAddress, Offset, Command) \

00136 XIo_Out32((BaseAddress) + (Offset), (Command))
00137
00138 /************************** Variable Definitions *****************************/
00139
00140
00141 /************************** Function Prototypes ******************************/
00142
00143 int XFlashIntel_WaitReady(Xuint32 BaseAddress, Xuint32 Offset);

00144 int XFlashIntel_WriteAddr(Xuint32 BaseAddress, Xuint32 Offset,

00145 Xuint8 *BufferPtr, unsigned int Length);

00146 int XFlashIntel_ReadAddr(Xuint32 BaseAddress, Xuint32 Offset,

00147 Xuint8 *BufferPtr, unsigned int Length);

00148 int XFlashIntel_EraseAddr(Xuint32 BaseAddress, Xuint32 Offset);

00149 int XFlashIntel_LockAddr(Xuint32 BaseAddress, Xuint32 Offset);

00150 int XFlashIntel_UnlockAddr(Xuint32 BaseAddress, Xuint32 Offset);

00151
00152
00153 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_intel_l.h File
Reference

Detailed Description

Contains identifiers and low-level macros/functions for the Intel 28FxxxJ3A StrataFlash driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 05/06/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XFlashIntel_mSendCmd(BaseAddress, Offset, Command)

Functions

int XFlashIntel_WaitReady (Xuint32 BaseAddress, Xuint32 Offset)

int XFlashIntel_WriteAddr (Xuint32 BaseAddress, Xuint32 Offset, Xuint8 *BufferPtr, unsigned
int Length)

int XFlashIntel_ReadAddr (Xuint32 BaseAddress, Xuint32 Offset, Xuint8 *BufferPtr, unsigned
int Length)

int XFlashIntel_EraseAddr (Xuint32 BaseAddress, Xuint32 Offset)
int XFlashIntel_LockAddr (Xuint32 BaseAddress, Xuint32 Offset)
int XFlashIntel_UnlockAddr (Xuint32 BaseAddress, Xuint32 Offset)

Define Documentation

#define XFlashIntel_mSendCmd(BaseAddress,
Offset,
Command)

Send the specified command to the flash device.

Parameters:
BaseAddress is the base address of the device
Offset is the offset address from the base address.
Command is the command to send.

Returns:
None.

Note:
None.

Function Documentation

int XFlashIntel_EraseAddr (Xuint32 BaseAddress,
Xuint32 Offset

)

Erase the block beginning at the specified address. The user is assumed to know the block boundaries
and pass in an address/offset that is block aligned.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to begin erasing. This offset is

assumed to be a block boundary.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_LockAddr (Xuint32 BaseAddress,
Xuint32 Offset

)

Lock the block beginning at the specified address. The user is assumed to know the block boundaries
and pass in an address/offset that is block aligned.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to lock. This offset is assumed to be a

block boundary.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_ReadAddr (Xuint32 BaseAddress,
Xuint32 Offset,
Xuint8 * BufferPtr,
unsigned int Length

)

Read some number of bytes from the specified address.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to begin reading.
BufferPtr is the buffer used to store the bytes that are read.
Length is the number of bytes to read from flash.

Returns:
The number of bytes actually read.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_UnlockAddr (Xuint32 BaseAddress,
Xuint32 Offset

)

Unlock the block beginning at the specified address. The user is assumed to know the block
boundaries and pass in an address/offset that is block aligned.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to unlock. This offset is assumed to

be a block boundary.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_WaitReady (Xuint32 BaseAddress,
Xuint32 Offset

)

Wait for the flash array to be in the ready state (ready for a command).

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_WriteAddr (Xuint32 BaseAddress,
Xuint32 Offset,
Xuint8 * BufferPtr,
unsigned int Length

)

Write the specified address with some number of bytes.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to begin writing.
BufferPtr is the buffer that will be written to flash.
Length is the number of bytes in BufferPtr that will be written to flash.

Returns:
The number of bytes actually written.

Note:
This function assumes 32-bit access to the flash array.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

flash/v1_00_a/src/xflash_intel_l.c File
Reference

Detailed Description

Contains low-level functions for the XFlashIntel driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 05/06/02 First release

#include "xflash_intel_l.h"

Functions

int XFlashIntel_WriteAddr (Xuint32 BaseAddress, Xuint32 Offset, Xuint8 *BufferPtr, unsigned int
Length)

int XFlashIntel_ReadAddr (Xuint32 BaseAddress, Xuint32 Offset, Xuint8 *BufferPtr, unsigned int
Length)

int XFlashIntel_EraseAddr (Xuint32 BaseAddress, Xuint32 Offset)
int XFlashIntel_LockAddr (Xuint32 BaseAddress, Xuint32 Offset)
int XFlashIntel_UnlockAddr (Xuint32 BaseAddress, Xuint32 Offset)
int XFlashIntel_WaitReady (Xuint32 BaseAddress, Xuint32 Offset)

Function Documentation

int XFlashIntel_EraseAddr (Xuint32 BaseAddress,
Xuint32 Offset

)

Erase the block beginning at the specified address. The user is assumed to know the block boundaries
and pass in an address/offset that is block aligned.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to begin erasing. This offset is

assumed to be a block boundary.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_LockAddr (Xuint32 BaseAddress,
Xuint32 Offset

)

Lock the block beginning at the specified address. The user is assumed to know the block boundaries
and pass in an address/offset that is block aligned.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to lock. This offset is assumed to be a

block boundary.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_ReadAddr (Xuint32 BaseAddress,
Xuint32 Offset,
Xuint8 * BufferPtr,
unsigned int Length

)

Read some number of bytes from the specified address.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to begin reading.
BufferPtr is the buffer used to store the bytes that are read.
Length is the number of bytes to read from flash.

Returns:
The number of bytes actually read.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_UnlockAddr (Xuint32 BaseAddress,
Xuint32 Offset

)

Unlock the block beginning at the specified address. The user is assumed to know the block
boundaries and pass in an address/offset that is block aligned.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to unlock. This offset is assumed to

be a block boundary.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_WaitReady (Xuint32 BaseAddress,
Xuint32 Offset

)

Wait for the flash array to be in the ready state (ready for a command).

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address.

Returns:
0 if successful, or -1 if an error occurred.

Note:
This function assumes 32-bit access to the flash array.

int XFlashIntel_WriteAddr (Xuint32 BaseAddress,
Xuint32 Offset,
Xuint8 * BufferPtr,
unsigned int Length

)

Write the specified address with some number of bytes.

Parameters:
BaseAddress is the base address of the device.
Offset is the offset address from the base address to begin writing.
BufferPtr is the buffer that will be written to flash.
Length is the number of bytes in BufferPtr that will be written to flash.

Returns:
The number of bytes actually written.

Note:
This function assumes 32-bit access to the flash array.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac.h File Reference

Detailed Description

The Xilinx Ethernet driver component. This component supports the Xilinx Ethernet 1Gbit (GEMAC).

The Xilinx Ethernet 1Gbit MAC supports the following features:

● Scatter-gather & simple DMA operations, as well as simple memory mapped direct I/O interface (FIFOs)
● Gigabit Media Independent Interface (GMII) for connection to external 1Gbit Mbps PHY transceivers. Supports

125Mhz 10 bit interface (TBI) to external PHY and SerDes to external transceiver
● GMII management control reads and writes with GMII PHYs
● Independent internal transmit and receive FIFOs
● CSMA/CD compliant operations for half-duplex modes
● Internal loopback
● Automatic source address insertion or overwrite (programmable)
● Automatic FCS insertion and stripping (programmable)
● Automatic pad insertion and stripping (programmable)
● Pause frame (flow control) detection in full-duplex mode
● Programmable interframe gap
● VLAN frame support
● Jumbo frame support
● Pause frame support

Hardware limitations in this version

● Always in promiscuous mode
● Statistic counters not implemented
● Unicast, multicast, broadcast, and promiscuous address filtering not implemented
● Half-duplex mode not implemented
● Auto source address insertion not implemented

The device driver does not support the features listed below

● Programmable PHY reset signal

Device driver limitations in this version

● Simple DMA untested
● Polled fifo, interrupt driven fifo, and scatter-gather DMA work but have not been stress tested before release. Code that

processes error conditions has not been well tested.

Driver Description

The device driver enables higher layer software (e.g., an application) to communicate to the GEMAC. The driver handles
transmission and reception of Ethernet frames, as well as configuration of the controller. It does not handle protocol stack
functionality such as Link Layer Control (LLC) or the Address Resolution Protocol (ARP). The protocol stack that makes use
of the driver handles this functionality. This implies that the driver is simply a pass-through mechanism between a protocol
stack and the EMAC. A single device driver can support multiple EMACs.

The driver is designed for a zero-copy buffer scheme. That is, the driver will not copy buffers. This avoids potential throughput
bottlenecks within the driver.

Since the driver is a simple pass-through mechanism between a protocol stack and the GEMAC, no assembly or disassembly
of Ethernet frames is done at the driver-level. This assumes that the protocol stack passes a correctly formatted Ethernet frame
to the driver for transmission, and that the driver does not validate the contents of an incoming frame

PHY Communication

The driver currently does not provide an interface to read or write the PHY.

In the future, the driver provides rudimentary read and write functions to allow the higher layer software to access the PHY.
The GEMAC provides MII registers for the driver to access. This management interface can be parameterized away in the
FPGA implementation process. If this is the case, the PHY read and write functions of the driver return XST_NO_FEATURE.

External loopback is usually supported at the PHY. It is up to the user to turn external loopback on or off at the PHY. The
driver simply provides pass- through functions for configuring the PHY. After the initial reset of the PHY during driver
initialization, the driver does not read, write, or reset the PHY on its own. All control of the PHY must be done by the user.

Asynchronous Callbacks

The driver services interrupts and passes Ethernet frames to the higher layer software through asynchronous callback
functions. When using the driver directly (i.e., not with the RTOS protocol stack), the higher layer software must register its
callback functions during initialization. The driver requires callback functions for received frames, for confirmation of
transmitted frames, and for asynchronous errors.

Interrupts

The driver has no dependencies on the interrupt controller. The driver provides two interrupt handlers.
XGemac_IntrHandlerDma() handles interrupts when the GEMAC is configured with scatter-gather DMA.
XGemac_IntrHandlerFifo() handles interrupts when the GEMAC is configured for direct FIFO I/O or simple DMA. Either
of these routines can be connected to the system interrupt controller by the user.

Interrupt Frequency

When the GEMAC is configured with scatter-gather DMA, the frequency of interrupts can be controlled with the interrupt
coalescing features of the scatter-gather DMA engine. The frequency of interrupts can be adjusted using the driver API
functions for setting the packet count threshold and the packet wait bound values.

The scatter-gather DMA engine only interrupts when the packet count threshold is reached, instead of interrupting for each
packet. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case.

The packet wait bound is a timer value used during interrupt coalescing to trigger an interrupt when not enough packets have
been received to reach the packet count threshold.

Device Reset

Some errors that can occur in the device require a device reset. These errors are listed in the XGemac_SetErrorHandler()
function header. The user's error handler is responsible for resetting the device and re-configuring it based on its needs (the
driver does not save the current configuration). When integrating into an RTOS, these reset and re-configure obligations are
taken care of by the Xilinx adapter software.

Device Configuration

The device can be configured in various ways during the FPGA implementation process. Configuration parameters are stored
in the xgemac_g.c files. A table is defined where each entry contains configuration information for an EMAC device. This
information includes such things as the base address of the memory-mapped device, the base addresses of IPIF, DMA, and
FIFO modules within the device, and whether the device has DMA, counter registers, multicast support, MII support, and flow
control.

The driver tries to use the features built into the device. So if, for example, the hardware is configured with scatter-gather
DMA, the driver expects to start the scatter-gather channels and expects that the user has set up the buffer descriptor lists
already. If the user expects to use the driver in a mode different than how the hardware is configured, the user should modify
the configuration table to reflect the mode to be used. Modifying the configuration table is a workaround for now until we get
some experience with how users are intending to use the hardware in its different configurations. For example, if the hardware
is built with scatter-gather DMA but the user is intending to use only simple DMA, the user either needs to modify the config
table as a workaround or rebuild the hardware with only simple DMA. The recommendation at this point is to build the
hardware with the features you intend to use. If you're inclined to modify the table, do so before the call to
XGemac_Initialize(). Here is a snippet of code that changes a device to simple DMA (the hardware needs to have DMA for
this to work of course):

 XGemac_Config *ConfigPtr;

 ConfigPtr = XGemac_LookupConfig(DeviceId);
 ConfigPtr->IpIfDmaConfig = XGE_CFG_SIMPLE_DMA;

Simple DMA

Simple DMA is supported through the FIFO functions, FifoSend and FifoRecv, of the driver (i.e., there is no separate interface
for it). The driver makes use of the DMA engine for a simple DMA transfer if the device is configured with DMA, otherwise it
uses the FIFOs directly. While the simple DMA interface is therefore transparent to the user, the caching of network buffers is
not. If the device is configured with DMA and the FIFO interface is used, the user must ensure that the network buffers are not
cached or are cache coherent, since DMA will be used to transfer to and from the Emac device. If the device is configured with
DMA and the user really wants to use the FIFOs directly, the user should rebuild the hardware without DMA. If unable to do
this, there is a workaround (described above in Device Configuration) to modify the configuration table of the driver to fake
the driver into thinking the device has no DMA. A code snippet follows:

 XGemac_Config *ConfigPtr;

 ConfigPtr = XGemac_LookupConfig(DeviceId);
 ConfigPtr->IpIfDmaConfig = XGE_CFG_NO_DMA;

Asserts

Asserts are used within all Xilinx drivers to enforce constraints on argument values. Asserts can be turned off on a system-
wide basis by defining, at compile time, the NDEBUG identifier. By default, asserts are turned on and it is recommended that
application developers leave asserts on during development. Substantial performance improvements can be seen when asserts
are disabled.

Building the driver

The XGemac driver is composed of several source files. Why so many? This allows the user to build and link only those parts
of the driver that are necessary. Since the GEMAC hardware can be configured in various ways (e.g., with or without DMA),
the driver too can be built with varying features. For the most part, this means that besides always linking in xgemac.c, you
link in only the driver functionality you want. Some of the choices you have are polled vs. interrupt, interrupt with FIFOs only
vs. interrupt with DMA, self-test diagnostics, and driver statistics. Note that currently the DMA code must be linked in, even if
you don't have DMA in the device.

Note:
Xilinx drivers are typically composed of two components, one is the driver and the other is the adapter. The driver is
independent of OS and processor and is intended to be highly portable. The adapter is OS-specific and facilitates
communication between the driver and the OS.

This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any needs for
dynamic memory management, threads or thread mutual exclusion, virtual memory, or cache control must be satisfied
by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Dma added, interframe gap interface change, added auto-
 negotiate option, removed phy function prototypes,
 added constant to default to no hw counters

#include "xbasic_types.h"

#include "xstatus.h"

#include "xparameters.h"

#include "xpacket_fifo_v2_00_a.h"
#include "xdma_channel.h"

Go to the source code of this file.

Data Structures

struct XGemac
struct XGemac_Config

struct XGemac_SoftStats
struct XGemac_Stats

Configuration options

Device configuration options (see the XGemac_SetOptions() and XGemac_GetOptions() for information on how to use
these options)

#define XGE_UNICAST_OPTION
#define XGE_BROADCAST_OPTION
#define XGE_PROMISC_OPTION
#define XGE_FDUPLEX_OPTION
#define XGE_POLLED_OPTION
#define XGE_LOOPBACK_OPTION
#define XGE_FLOW_CONTROL_OPTION
#define XGE_INSERT_PAD_OPTION
#define XGE_INSERT_FCS_OPTION
#define XGE_STRIP_PAD_FCS_OPTION
#define XGE_AUTO_NEGOTIATE_OPTION

Typedefs for callbacks

Callback functions.

typedef void(* XGemac_SgHandler)(void *CallBackRef, XBufDescriptor *BdPtr, Xuint32 NumBds)
typedef void(* XGemac_FifoHandler)(void *CallBackRef)
typedef void(* XGemac_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Defines

#define XGemac_mIsSgDma(InstancePtr)
#define XGemac_mIsSimpleDma(InstancePtr)
#define XGemac_mIsDma(InstancePtr)

Functions

XStatus XGemac_Initialize (XGemac *InstancePtr, Xuint16 DeviceId)
XStatus XGemac_Start (XGemac *InstancePtr)
XStatus XGemac_Stop (XGemac *InstancePtr)

void XGemac_Reset (XGemac *InstancePtr)
XGemac_Config * XGemac_LookupConfig (Xuint16 DeviceId)

XStatus XGemac_SelfTest (XGemac *InstancePtr)

XStatus XGemac_PollSend (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XGemac_PollRecv (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)
XStatus XGemac_SgSend (XGemac *InstancePtr, XBufDescriptor *BdPtr, int Delay)
XStatus XGemac_SgRecv (XGemac *InstancePtr, XBufDescriptor *BdPtr)
XStatus XGemac_SetPktThreshold (XGemac *InstancePtr, Xuint32 Direction, Xuint8 Threshold)
XStatus XGemac_GetPktThreshold (XGemac *InstancePtr, Xuint32 Direction, Xuint8 *ThreshPtr)
XStatus XGemac_SetPktWaitBound (XGemac *InstancePtr, Xuint32 Direction, Xuint32 TimerValue)
XStatus XGemac_GetPktWaitBound (XGemac *InstancePtr, Xuint32 Direction, Xuint32 *WaitPtr)
XStatus XGemac_SetSgRecvSpace (XGemac *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)
XStatus XGemac_SetSgSendSpace (XGemac *InstancePtr, Xuint32 *MemoryPtr, Xuint32 ByteCount)

void XGemac_SetSgRecvHandler (XGemac *InstancePtr, void *CallBackRef, XGemac_SgHandler
FuncPtr)

void XGemac_SetSgSendHandler (XGemac *InstancePtr, void *CallBackRef, XGemac_SgHandler
FuncPtr)

void XGemac_IntrHandlerDma (void *InstancePtr)
XStatus XGemac_FifoSend (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XGemac_FifoRecv (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)

void XGemac_SetFifoRecvHandler (XGemac *InstancePtr, void *CallBackRef, XGemac_FifoHandler
FuncPtr)

void XGemac_SetFifoSendHandler (XGemac *InstancePtr, void *CallBackRef, XGemac_FifoHandler
FuncPtr)

void XGemac_IntrHandlerFifo (void *InstancePtr)
void XGemac_SetErrorHandler (XGemac *InstancePtr, void *CallBackRef, XGemac_ErrorHandler

FuncPtr)
XStatus XGemac_SetOptions (XGemac *InstancePtr, Xuint32 OptionFlag)
Xuint32 XGemac_GetOptions (XGemac *InstancePtr)
XStatus XGemac_SetMacAddress (XGemac *InstancePtr, Xuint8 *AddressPtr)

void XGemac_GetMacAddress (XGemac *InstancePtr, Xuint8 *BufferPtr)
XStatus XGemac_SetInterframeGap (XGemac *InstancePtr, Xuint8 Ifg)

void XGemac_GetInterframeGap (XGemac *InstancePtr, Xuint8 *IfgPtr)
void XGemac_GetStats (XGemac *InstancePtr, XGemac_Stats *StatsPtr)
void XGemac_ClearStats (XGemac *InstancePtr)

Define Documentation

#define XGE_AUTO_NEGOTIATE_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_BROADCAST_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_FDUPLEX_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_FLOW_CONTROL_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_INSERT_FCS_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_INSERT_PAD_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_LOOPBACK_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_POLLED_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_PROMISC_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_STRIP_PAD_FCS_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGE_UNICAST_OPTION

 XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
 XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
 XGE_PROMISC_OPTION Promiscuous addressing on or off (default is off)
 XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
 XGE_POLLED_OPTION Polled mode on or off (default is off)
 XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
 XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
 (default is off)
 XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
 XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
 XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
 (default is off)

#define XGemac_mIsDma(InstancePtr)

This macro determines if the device is currently configured with DMA (either simple DMA or scatter-gather DMA)

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
Boolean XTRUE if the device is configured with DMA, or XFALSE otherwise

Note:
Signature: Xboolean XGemac_mIsDma(XGemac *InstancePtr)

#define XGemac_mIsSgDma(InstancePtr)

This macro determines if the device is currently configured for scatter-gather DMA.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
Boolean XTRUE if the device is configured for scatter-gather DMA, or XFALSE if it is not.

Note:
Signature: Xboolean XGemac_mIsSgDma(XGemac *InstancePtr)

#define XGemac_mIsSimpleDma(InstancePtr)

This macro determines if the device is currently configured for simple DMA.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
Boolean XTRUE if the device is configured for simple DMA, or XFALSE otherwise

Note:
Signature: Xboolean XGemac_mIsSimpleDma(XGemac *InstancePtr)

Typedef Documentation

typedef void(* XGemac_ErrorHandler)(void *CallBackRef, XStatus ErrorCode)

Callback when an asynchronous error occurs.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed

back to the upper layer when the callback is invoked.
ErrorCode is a Xilinx error code defined in xstatus.h. Also see XGemac_SetErrorHandler() for a description

of possible errors.

typedef void(* XGemac_FifoHandler)(void *CallBackRef)

Callback when data is sent or received with direct FIFO communication. The user typically defines two callacks, one for
send and one for receive.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed

back to the upper layer when the callback is invoked.

typedef void(* XGemac_SgHandler)(void *CallBackRef, XBufDescriptor *BdPtr, Xuint32 NumBds)

Callback when data is sent or received with scatter-gather DMA.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed

back to the upper layer when the callback is invoked.
BdPtr is a pointer to the first buffer descriptor in a list of buffer descriptors.
NumBds is the number of buffer descriptors in the list pointed to by BdPtr.

Function Documentation

void XGemac_ClearStats (XGemac * InstancePtr)

Clear the XGemacStats structure for this driver.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
None.

Note:
None.

XStatus XGemac_FifoRecv (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame into the buffer passed as an argument. This function is called in response to the callback
function for received frames being called by the driver. The callback function is set up using SetFifoRecvHandler, and is
invoked when the driver receives an interrupt indicating a received frame. The driver expects the upper layer software to
call this function, FifoRecv, to receive the frame. The buffer supplied should be large enough to hold a maximum-size
Ethernet frame.

The buffer into which the frame will be received must be word-aligned.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from the Emac to memory. This
means that this buffer should not be cached. See the comment section "Simple DMA" in xgemac.h for more information.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame will be copied.
ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that contains the size of the

buffer on entry into the function and the size the received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the frame waiting in the

FIFO.
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The user should treat this

as a fatal error that requires a reset of the EMAC device.

Note:
The input buffer must be big enough to hold the largest Ethernet frame.

XStatus XGemac_FifoSend (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame using packet FIFO with interrupts. The caller provides a contiguous-memory buffer and its length.
The buffer must be word-aligned. The callback function set by using SetFifoSendHandler is invoked when the transmission
is complete.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the destination and
source addresses, the type/length field, and the data field.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from memory to the Emac. This
means that this buffer should not be cached. See the comment section "Simple DMA" in xgemac.h for more information.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was successfully sent. An interrupt is generated when the GEMAC transmits

the frame and the driver calls the callback set with XGemac_SetFifoSendHandler()
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_FIFO_NO_ROOM if there is no room in the FIFO for this frame
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The user should treat this

as a fatal error that requires a reset of the EMAC device.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there are to be
multiple threads that can call it.

void XGemac_GetInterframeGap (XGemac * InstancePtr,
Xuint8 * IfgPtr

)

Get the interframe gap. See the description of interframe gap above in XGemac_SetInterframeGap().

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

IfgPtr is a pointer to an 8-bit buffer into which the interframe gap value will be copied.

Returns:
None. The values of the interframe gap parts are copied into the output parameters.

void XGemac_GetMacAddress (XGemac * InstancePtr,
Xuint8 * BufferPtr

)

Get the MAC address for this driver/device.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufferPtr is an output parameter, and is a pointer to a buffer into which the current MAC address will be copied.
The buffer must be at least 6 bytes.

Returns:
None.

Note:
None.

Xuint32 XGemac_GetOptions (XGemac * InstancePtr)

Get Ethernet driver/device options. The 32-bit value returned is a bit-mask representing the options. A one (1) in the bit-
mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
The 32-bit value of the Ethernet options. The value is a bit-mask representing all options that are currently enabled.
See xgemac.h for a description of the available options.

Note:
None.

XStatus XGemac_GetPktThreshold (XGemac * InstancePtr,
Xuint32 Direction,
Xuint8 * ThreshPtr

)

Get the value of the packet count threshold for this driver/device. The packet count threshold is used for interrupt
coalescing, which reduces the frequency of interrupts from the device to the processor. In this case, the scatter-gather DMA
engine only interrupts when the packet count threshold is reached, instead of interrupting for each packet. A packet is a
generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
ThreshPtr is a pointer to the byte into which the current value of the packet threshold register will be copied. An

output parameter. A value of 0 indicates the use of packet threshold by the hardware is disabled.

Returns:
❍ XST_SUCCESS if the packet threshold was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

XStatus XGemac_GetPktWaitBound (XGemac * InstancePtr,
Xuint32 Direction,
Xuint32 * WaitPtr

)

Get the packet wait bound timer for this driver/device. The packet wait bound is used during interrupt coalescing to trigger
an interrupt when not enough packets have been received to reach the packet count threshold. A packet is a generic term
used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case. The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
WaitPtr is a pointer to the byte into which the current value of the packet wait bound register will be copied. An

output parameter. Units are in milliseconds in the range 0 - 1023. A value of 0 indicates the packet wait
bound timer is disabled.

Returns:
❍ XST_SUCCESS if the packet wait bound was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

void XGemac_GetStats (XGemac * InstancePtr,
XGemac_Stats * StatsPtr

)

Get a copy of the XGemacStats structure, which contains the current statistics for this driver. The statistics are only cleared
at initialization or on demand using the XGemac_ClearStats() function.

The DmaErrors and FifoErrors counts indicate that the device has been or needs to be reset. Reset of the device is the
responsibility of the upper layer software.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current statistics will be copied.

Returns:
None.

Note:
None.

XStatus XGemac_Initialize (XGemac * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XGemac instance/driver. The initialization entails:

● Initialize fields of the XGemac structure
● Clear the Ethernet statistics for this device
● Initialize the IPIF component with its register base address
● Configure the FIFO components with their register base addresses.
● If the device is configured with DMA, configure the DMA channel components with their register base addresses.

At some later time, memory pools for the scatter-gather descriptor lists are to be passed to the driver.
● Reset the Ethernet MAC

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

DeviceId is the unique id of the device controlled by this XGemac instance. Passing in a device id associates the
generic XGemac instance to a specific device, as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device with the

supplied device ID.

Note:
None.

void XGemac_IntrHandlerDma (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured with scatter- gather DMA.

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be: MAC, Recv Packet FIFO,
Send Packet FIFO, Recv DMA channel, or Send DMA channel. The packet FIFOs only interrupt during "deadlock"
conditions.

Parameters:
InstancePtr is a pointer to the XGemac instance that just interrupted.

Returns:
None.

Note:
None.

void XGemac_IntrHandlerFifo (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured for direct FIFO communication (as opposed to DMA).

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be: MAC, Recv Packet FIFO,
or Send Packet FIFO. The packet FIFOs only interrupt during "deadlock" conditions. All other FIFO-related interrupts are
generated by the MAC.

Parameters:
InstancePtr is a pointer to the XGemac instance that just interrupted.

Returns:
None.

Note:
None.

XGemac_Config* XGemac_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table EmacConfigTable contains the configuration
info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device being looked up.

Returns:
A pointer to the configuration table entry corresponding to the given device ID, or XNULL if no match is found.

Note:
None.

XStatus XGemac_PollRecv (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame in polled mode. The device/driver must be in polled mode before calling this function. The
driver receives the frame directly from the MAC's packet FIFO. This is a non-blocking receive, in that if there is no frame
ready to be received at the device, the function returns with an error. The MAC's error status is not checked, so statistics are
not updated for polled receive. The buffer into which the frame will be received must be word-aligned.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame will be copied.
ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that contains the size of the

buffer on entry into the function and the size the received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully

❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the frame waiting in the

FIFO.

Note:
Input buffer must be big enough to hold the largest Ethernet frame. Buffer must also be 32-bit aligned.

XStatus XGemac_PollSend (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame in polled mode. The device/driver must be in polled mode before calling this function. The driver
writes the frame directly to the MAC's packet FIFO, then enters a loop checking the device status for completion or error.
Statistics are updated if an error occurs. The buffer to be sent must be word-aligned.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the destination and
source addresses, the type/length field, and the data field. It is also assumed that upper layer software does not append FCS
at the end of the frame.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_FIFO_NO_ROOM if there is no room in the GEMAC's length FIFO for this frame
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical and requires the caller to reset

the device.
❍ XST_EMAC_COLLISION if the send failed due to excess deferral or late collision

Note:
There is the possibility that this function will not return if the hardware is broken (i.e., it never sets the status bit
indicating that transmission is done). If this is of concern to the user, the user should provide protection from this
problem - perhaps by using a different timer thread to monitor the PollSend thread. On a 1 Gbit (1000Mbps) MAC,
it takes about 12.1 usecs to transmit a maximum size Ethernet frame.

void XGemac_Reset (XGemac * InstancePtr)

Reset the Ethernet MAC. This is a graceful reset in that the device is stopped first. Resets the DMA channels, the FIFOs,
the transmitter, and the receiver. The PHY is not reset. Any frames in the scatter-gather descriptor lists will remain in the
lists. The side effect of doing this is that after a reset and following a restart of the device, frames that were in the list before
the reset may be transmitted or received. Reset must only be called after the driver has been initialized.

The configuration after this reset is as follows:

● Disabled transmitter and receiver
● Enabled PHY (the PHY is not reset)
● MAC transmitter does pad insertion, FCS insertion, and source address overwrite.
● MAC receiver does not strip padding or FCS
● Interframe Gap as recommended by IEEE Std. 802.3 (96 bit times)
● Unicast addressing enabled
● Broadcast addressing enabled
● Multicast addressing disabled (addresses are preserved)
● Promiscuous addressing disabled
● Default packet threshold and packet wait bound register values for scatter-gather DMA operation
● MAC address of all zeros

The upper layer software is responsible for re-configuring (if necessary) and restarting the MAC after the reset. Note that
the PHY is not reset. PHY control is left to the upper layer software. Note also that driver statistics are not cleared on reset.
It is up to the upper layer software to clear the statistics if needed.

When a reset is required due to an internal error, the driver notifies the upper layer software of this need through the
ErrorHandler callback and specific status codes. The upper layer software is responsible for calling this Reset function and
then re-configuring the device.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
None.

Note:
None.

XStatus XGemac_SelfTest (XGemac * InstancePtr)

Performs a self-test on the Ethernet device. The test includes:

● Run self-test on DMA channel, FIFO, and IPIF components
● Reset the Ethernet device, check its registers for proper reset values, and run an internal loopback test on the device.

The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default configuration. The
caller is responsible for re-configuring the device after the self-test is run, and starting it when ready to send and receive
frames.

It should be noted that data caching must be disabled when this function is called because the DMA self-test uses two local

buffers (on the stack) for the transfer test.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:

 XST_SUCCESS Self-test was successful
 XST_PFIFO_BAD_REG_VALUE FIFO failed register self-test
 XST_DMA_TRANSFER_ERROR DMA failed data transfer self-test
 XST_DMA_RESET_REGISTER_ERROR DMA control register value was incorrect
 after a reset
 XST_REGISTER_ERROR Ethernet failed register reset test
 XST_LOOPBACK_ERROR Internal loopback failed
 XST_IPIF_REG_WIDTH_ERROR An invalid register width was passed into
 the function
 XST_IPIF_RESET_REGISTER_ERROR The value of a register at reset was invalid
 XST_IPIF_DEVICE_STATUS_ERROR A write to the device status register did
 not read back correctly
 XST_IPIF_DEVICE_ACK_ERROR A bit in the device status register did not
 reset when acked
 XST_IPIF_DEVICE_ENABLE_ERROR The device interrupt enable register was not
 updated correctly by the hardware when other
 registers were written to
 XST_IPIF_IP_STATUS_ERROR A write to the IP interrupt status
 register did not read back correctly
 XST_IPIF_IP_ACK_ERROR One or more bits in the IP status
 register did not reset when acked
 XST_IPIF_IP_ENABLE_ERROR The IP interrupt enable register
 was not updated correctly when other
 registers were written to

Note:
This function makes use of options-related functions, and the XGemac_PollSend() and XGemac_PollRecv()
functions.

Because this test uses the PollSend function for its loopback testing, there is the possibility that this function will not
return if the hardware is broken (i.e., it never sets the status bit indicating that transmission is done). If this is of
concern to the user, the user should provide protection from this problem - perhaps by using a different timer thread
to monitor the self-test thread.

void XGemac_SetErrorHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_ErrorHandler FuncPtr

)

Set the callback function for handling asynchronous errors. The upper layer software should call this function during
initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are potentially
slow operations within the callback, these should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus error or bus timeout.
The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock condition in the packet
FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable MAC error occurred, usually an overrun or underrun. The
handler must reset and re-configure the device.

● XST_DMA_SG_NO_LIST indicates an attempt was made to access a scatter-gather DMA list that has not yet been
created.

● XST_DMA_SG_LIST_EMPTY indicates the driver tried to get a descriptor from the receive descriptor list, but the
list was empty.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XGemac_SetFifoRecvHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_FifoHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames when configured for direct memory-mapped I/O
using FIFOs. The upper layer software should call this function during initialization. The callback is called by the driver
once per frame sent. The callback is responsible for freeing the transmitted buffer if necessary.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are potentially slow
operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XGemac_SetFifoSendHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_FifoHandler FuncPtr

)

Set the callback function for handling received frames when configured for direct memory-mapped I/O using FIFOs. The
upper layer software should call this function during initialization. The callback is called once per frame received. During
the callback, the upper layer software should call FifoRecv to retrieve the received frame.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. Sending the received frame
up the protocol stack should be done at task-level. If there are other potentially slow operations within the callback, these
too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XGemac_SetInterframeGap (XGemac * InstancePtr,
Xuint8 Ifg

)

Set the Interframe Gap (IFG), which is the time the MAC delays between transmitting frames. There are two parts required.
The total interframe gap is the total of the two parts. The values provided for the Part1 and Part2 parameters are multiplied
by 4 to obtain the bit-time interval. The first part should be the first 2/3 of the total interframe gap. The MAC will reset the
interframe gap timer if carrier sense becomes true during the period defined by interframe gap Part1. Part1 may be shorter
than 2/3 the total and can be as small as zero. The second part should be the last 1/3 of the total interframe gap, but can be
as large as the total interframe gap. The MAC will not reset the interframe gap timer if carrier sense becomes true during
the period defined by interframe gap Part2.

The device must be stopped before setting the interframe gap.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Ifg is the interframe gap, MSB is 8-bit time.

Returns:
❍ XST_SUCCESS if the interframe gap was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not been stopped

Note:
None.

XStatus XGemac_SetMacAddress (XGemac * InstancePtr,
Xuint8 * AddressPtr

)

Set the MAC address for this driver/device. The address is a 48-bit value. The device must be stopped before calling this
function.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

AddressPtr is a pointer to a 6-byte MAC address.

Returns:
❍ XST_SUCCESS if the MAC address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XGemac_SetOptions (XGemac * InstancePtr,
Xuint32 OptionsFlag

)

Set Ethernet driver/device options. The device must be stopped before calling this function. The options are contained
within a bit-mask with each bit representing an option (i.e., you can OR the options together). A one (1) in the bit-mask
turns an option on, and a zero (0) turns the option off.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

OptionsFlag is a bit-mask representing the Ethernet options to turn on or off. See xgemac.h for a description of the
available options.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
This function is not thread-safe and makes use of internal resources that are shared between the Start, Stop, and
SetOptions functions, so if one task might be setting device options while another is trying to start the device,
protection of this shared data (typically using a semaphore) is required.

XStatus XGemac_SetPktThreshold (XGemac * InstancePtr,
Xuint32 Direction,
Xuint8 Threshold

)

Set the packet count threshold for this device. The device must be stopped before setting the threshold. The packet count
threshold is used for interrupt coalescing, which reduces the frequency of interrupts from the device to the processor. In this
case, the scatter-gather DMA engine only interrupts when the packet count threshold is reached, instead of interrupting for
each packet. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in
our case.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
Threshold is the value of the packet threshold count used during interrupt coalescing. A value of 0 disables the

use of packet threshold by the hardware.

Returns:
❍ XST_SUCCESS if the threshold was successfully set
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_DMA_SG_COUNT_EXCEEDED if the threshold must be equal to or less than the number of

descriptors in the list
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

XStatus XGemac_SetPktWaitBound (XGemac * InstancePtr,
Xuint32 Direction,
Xuint32 TimerValue

)

Set the packet wait bound timer for this driver/device. The device must be stopped before setting the timer value. The
packet wait bound is used during interrupt coalescing to trigger an interrupt when not enough packets have been received to
reach the packet count threshold. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent to an
Ethernet frame in our case. The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
TimerValue is the value of the packet wait bound used during interrupt coalescing. It is in milliseconds in the range

0 - 1023. A value of 0 disables the packet wait bound timer.

Returns:
❍ XST_SUCCESS if the packet wait bound was set successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA

❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts would also catch this

error.

Note:
None.

void XGemac_SetSgRecvHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_SgHandler FuncPtr

)

Set the callback function for handling received frames in scatter-gather DMA mode. The upper layer software should call
this function during initialization. The callback is called once per frame received. The head of a descriptor list is passed in
along with the number of descriptors in the list. Before leaving the callback, the upper layer software should attach a new
buffer to each descriptor in the list.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. Sending the received frame
up the protocol stack should be done at task-level. If there are other potentially slow operations within the callback, these
too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XGemac_SetSgRecvSpace (XGemac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This function should only
be called once, during initialization of the Ethernet driver. The memory space must be big enough to hold some number of
descriptors, depending on the needs of the system. The xgemac.h file defines minimum and default numbers of descriptors
which can be used to allocate this memory space.

The memory space must be aligned on an 8 byte boundary. An assert will occur if asserts are turned on and the memory is
not aligned correctly.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

MemoryPtr is a pointer to the 64-bit aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the XGemac_Initialize()
function because the DMA channel components must be initialized before the memory space is set.

void XGemac_SetSgSendHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_SgHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames in scatter-gather DMA mode. The upper layer
software should call this function during initialization. The callback is called once per frame sent. The head of a descriptor
list is passed in along with the number of descriptors in the list. The callback is responsible for freeing buffers attached to
these descriptors.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If there are potentially slow
operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps the adapter correlate
the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XGemac_SetSgSendSpace (XGemac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This function should only
be called once, during initialization of the Ethernet driver. The memory space must be big enough to hold some number of
descriptors, depending on the needs of the system. The xgemac.h file defines minimum and default numbers of descriptors
which can be used to allocate this memory space.

The memory space must be aligned on an 8 byte boundary. An assert will occur if asserts are turned on and the memory is
not aligned correctly.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

MemoryPtr is a pointer to the 64-bit aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the XGemac_Initialize()
function because the DMA channel components must be initialized before the memory space is set.

XStatus XGemac_SgRecv (XGemac * InstancePtr,
XBufDescriptor * BdPtr

)

Add a descriptor, with an attached empty buffer, into the receive descriptor list. The buffer attached to the descriptor must
be aligned on an 8 byte boundary. This is used by the upper layer software during initialization when first setting up the
receive descriptors, and also during reception of frames to replace filled buffers with empty buffers. This function can be
called when the device is started or stopped. Note that it does start the scatter-gather DMA engine. Although this is not
necessary during initialization, it is not a problem during initialization because the MAC receiver is not yet started.

The buffer attached to the descriptor must be 64-bit aligned on both the front end and the back end.

Notification of received frames are done asynchronously through the receive callback function.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full

❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list because a
locked descriptor exists at the insert point.

❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the DMA
channel believes there are no new descriptors to commit.

XStatus XGemac_SgSend (XGemac * InstancePtr,
XBufDescriptor * BdPtr,
int Delay

)

Send an Ethernet frame using scatter-gather DMA. The caller attaches the frame to one or more buffer descriptors, then
calls this function once for each descriptor. The caller is responsible for allocating and setting up the descriptor. An entire
Ethernet frame may or may not be contained within one descriptor. This function simply inserts the descriptor into the
scatter- gather engine's transmit list. The caller is responsible for providing mutual exclusion to guarantee that a frame is
contiguous in the transmit list. The buffer attached to the descriptor must be aligned on an 8 byte boundary.

The driver updates the descriptor with the device control register before being inserted into the transmit list. If this is the
last descriptor in the frame, the inserts are committed, which means the descriptors for this frame are now available for
transmission.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including the destination and
source addresses, the type/length field, and the data field. It is also assumed that upper layer software does not append FCS
at the end of the frame.

The buffer attached to the descriptor must be 64-bit aligned on the front end.

This call is non-blocking. Notification of error or successful transmission is done asynchronously through the send or error
callback function.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.
Delay indicates whether to start the scatter-gather DMA channel immediately, or whether to wait. This allows

the user to build up a list of more than one descriptor before starting the transmission of the packets,
which allows the application to keep up with DMA and have a constant stream of frames being
transmitted. Use XEM_SGDMA_NODELAY or XEM_SGDMA_DELAY, defined in xgemac.h, as
the value of this argument. If the user chooses to delay and build a list, the user must call this function
with the XEM_SGDMA_NODELAY option or call XGemac_Start() to kick off the tranmissions.

Returns:
❍ XST_SUCCESS if the buffer was successfull sent
❍ XST_DEVICE_IS_STOPPED if the Ethernet MAC has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into the list because a

locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the list, the DMA

channel believes there are no new descriptors to commit. If this is ever encountered, there is likely a thread
mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this function if there are to be
multiple threads that can call it.

XStatus XGemac_Start (XGemac * InstancePtr)

Start the Ethernet controller as follows:

● If in interrupt driven mode
❍ Set the internal interrupt enable registers appropriately
❍ Enable interrupts within the device itself. Note that connection of the driver's interrupt handler to the

interrupt source (typically done using the interrupt controller component) is done by the higher layer
software.

❍ If the device is configured with DMA, start the DMA channels if the descriptor lists are not empty
● Enable the transmitter
● Enable the receiver

The PHY is enabled after driver initialization. We assume the upper layer software has configured it and the GEMAC
appropriately before this function is called.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_NO_CALLBACK if a callback function has not yet been registered using the SetxxxHandler function.

This is required if in interrupt mode.
❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list has not yet been

created for the send or receive channel.

Note:
The driver tries to match the hardware configuration. So if the hardware is configured with scatter-gather DMA, the
driver expects to start the scatter-gather channels and expects that the user has set up the buffer descriptor lists
already. If the user expects to use the driver in a mode different than how the hardware is configured, the user should
modify the configuration table to reflect the mode to be used. Modifying the config table is a workaround for now
until we get some experience with how users are intending to use the hardware in its different configurations. For
example, if the hardware is built with scatter-gather DMA but the user is intending to use only simple DMA, the
user either needs to modify the config table as a workaround or rebuild the hardware with only simple DMA.

This function makes use of internal resources that are shared between the Start, Stop, and SetOptions functions. So if one
task might be setting device options while another is trying to start the device, the user is required to provide protection of
this shared data (typically using a semaphore).

XStatus XGemac_Stop (XGemac * InstancePtr)

Stop the Ethernet MAC as follows:

● If the device is configured with scatter-gather DMA, stop the DMA channels (wait for acknowledgment of stop)
● Disable the transmitter and receiver
● Disable interrupts if not in polled mode (the higher layer software is responsible for disabling interrupts at the

interrupt controller)

The PHY is left enabled after a Stop is called.

If the device is configured for scatter-gather DMA, the DMA engine stops at the next buffer descriptor in its list. The
remaining descriptors in the list are not removed, so anything in the list will be transmitted or received when the device is
restarted. The side effect of doing this is that the last buffer descriptor processed by the DMA engine before stopping may
not be the last descriptor in the Ethernet frame. So when the device is restarted, a partial frame (i.e., a bad frame) may be
transmitted/received. This is only a concern if a frame can span multiple buffer descriptors, which is dependent on the size
of the network buffers.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
This function makes use of internal resources that are shared between the Start, Stop, and SetOptions functions. So if
one task might be setting device options while another is trying to start the device, the user is required to provide
protection of this shared data (typically using a semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of GEMAC devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release

#include "xgemac.h"

#include "xparameters.h"

Variables

XGemac_Config XGemac_ConfigTable [XPAR_XGEMAC_NUM_INSTANCES]

Variable Documentation

XGemac_Config XGemac_ConfigTable[XPAR_XGEMAC_NUM_INSTANCES]

 This table contains configuration information for each GEMAC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac.h
Go to the documentation of this file.

00001 /* $Id: xgemac.h,v 1.1 2003/05/29 19:43:52 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file gemac/v1_00_c/src/xgemac.h
00026 *
00027 * The Xilinx Ethernet driver component. This component supports the Xilinx
00028 * Ethernet 1Gbit (GEMAC).
00029 *
00030 * The Xilinx Ethernet 1Gbit MAC supports the following features:
00031 * - Scatter-gather & simple DMA operations, as well as simple memory
00032 * mapped direct I/O interface (FIFOs)
00033 * - Gigabit Media Independent Interface (GMII) for connection to external
00034 * 1Gbit Mbps PHY transceivers. Supports 125Mhz 10 bit interface (TBI) to
00035 * external PHY and SerDes to external transceiver
00036 * - GMII management control reads and writes with GMII PHYs
00037 * - Independent internal transmit and receive FIFOs
00038 * - CSMA/CD compliant operations for half-duplex modes
00039 * - Internal loopback
00040 * - Automatic source address insertion or overwrite (programmable)
00041 * - Automatic FCS insertion and stripping (programmable)
00042 * - Automatic pad insertion and stripping (programmable)

00043 * - Pause frame (flow control) detection in full-duplex mode
00044 * - Programmable interframe gap
00045 * - VLAN frame support
00046 * - Jumbo frame support
00047 * - Pause frame support
00048 *
00049 * Hardware limitations in this version
00050 * - Always in promiscuous mode
00051 * - Statistic counters not implemented
00052 * - Unicast, multicast, broadcast, and promiscuous address filtering not
00053 * implemented
00054 * - Half-duplex mode not implemented
00055 * - Auto source address insertion not implemented
00056 *
00057 * The device driver does not support the features listed below
00058 * - Programmable PHY reset signal
00059 *
00060 * Device driver limitations in this version
00061 * - Simple DMA untested
00062 * - Polled fifo, interrupt driven fifo, and scatter-gather DMA work but have
00063 * not been stress tested before release. Code that processes error
00064 * conditions has not been well tested.
00065 *
00066 * Driver Description
00067 *
00068 * The device driver enables higher layer software (e.g., an application) to
00069 * communicate to the GEMAC. The driver handles transmission and reception of
00070 * Ethernet frames, as well as configuration of the controller. It does not
00071 * handle protocol stack functionality such as Link Layer Control (LLC) or the
00072 * Address Resolution Protocol (ARP). The protocol stack that makes use of the
00073 * driver handles this functionality. This implies that the driver is simply a
00074 * pass-through mechanism between a protocol stack and the EMAC. A single device
00075 * driver can support multiple EMACs.
00076 *
00077 * The driver is designed for a zero-copy buffer scheme. That is, the driver
will
00078 * not copy buffers. This avoids potential throughput bottlenecks within the
00079 * driver.
00080 *
00081 * Since the driver is a simple pass-through mechanism between a protocol stack
00082 * and the GEMAC, no assembly or disassembly of Ethernet frames is done at the
00083 * driver-level. This assumes that the protocol stack passes a correctly
00084 * formatted Ethernet frame to the driver for transmission, and that the driver
00085 * does not validate the contents of an incoming frame
00086 *
00087 * PHY Communication
00088 *
00089 * The driver currently does not provide an interface to read or write the PHY.
00090 *
00091 * In the future, the driver provides rudimentary read and write functions to
00092 * allow the higher layer software to access the PHY. The GEMAC provides MII
00093 * registers for the driver to access. This management interface can be
00094 * parameterized away in the FPGA implementation process. If this is the case,

00095 * the PHY read and write functions of the driver return XST_NO_FEATURE.
00096 *
00097 * External loopback is usually supported at the PHY. It is up to the user to
00098 * turn external loopback on or off at the PHY. The driver simply provides pass-
00099 * through functions for configuring the PHY. After the initial reset of the PHY
00100 * during driver initialization, the driver does not read, write, or reset the
00101 * PHY on its own. All control of the PHY must be done by the user.
00102 *
00103 * Asynchronous Callbacks
00104 *
00105 * The driver services interrupts and passes Ethernet frames to the higher layer
00106 * software through asynchronous callback functions. When using the driver
00107 * directly (i.e., not with the RTOS protocol stack), the higher layer
00108 * software must register its callback functions during initialization. The
00109 * driver requires callback functions for received frames, for confirmation of
00110 * transmitted frames, and for asynchronous errors.
00111 *
00112 * Interrupts
00113 *
00114 * The driver has no dependencies on the interrupt controller. The driver
00115 * provides two interrupt handlers. XGemac_IntrHandlerDma() handles interrupts
00116 * when the GEMAC is configured with scatter-gather DMA.
XGemac_IntrHandlerFifo()
00117 * handles interrupts when the GEMAC is configured for direct FIFO I/O or simple
00118 * DMA. Either of these routines can be connected to the system interrupt
00119 * controller by the user.
00120 *
00121 * Interrupt Frequency
00122 *
00123 * When the GEMAC is configured with scatter-gather DMA, the frequency of
00124 * interrupts can be controlled with the interrupt coalescing features of the
00125 * scatter-gather DMA engine. The frequency of interrupts can be adjusted using
00126 * the driver API functions for setting the packet count threshold and the
packet
00127 * wait bound values.
00128 *
00129 * The scatter-gather DMA engine only interrupts when the packet count threshold
00130 * is reached, instead of interrupting for each packet. A packet is a generic
00131 * term used by the scatter-gather DMA engine, and is equivalent to an Ethernet
00132 * frame in our case.
00133 *
00134 * The packet wait bound is a timer value used during interrupt coalescing to
00135 * trigger an interrupt when not enough packets have been received to reach the
00136 * packet count threshold.
00137 *
00138 * Device Reset
00139 *
00140 * Some errors that can occur in the device require a device reset. These errors
00141 * are listed in the XGemac_SetErrorHandler() function header. The user's error
00142 * handler is responsible for resetting the device and re-configuring it based
on
00143 * its needs (the driver does not save the current configuration). When

00144 * integrating into an RTOS, these reset and re-configure obligations are
00145 * taken care of by the Xilinx adapter software.
00146 *
00147 * Device Configuration
00148 *
00149 * The device can be configured in various ways during the FPGA implementation
00150 * process. Configuration parameters are stored in the xgemac_g.c files.
00151 * A table is defined where each entry contains configuration information
00152 * for an EMAC device. This information includes such things as the base
address
00153 * of the memory-mapped device, the base addresses of IPIF, DMA, and FIFO
modules
00154 * within the device, and whether the device has DMA, counter registers,
00155 * multicast support, MII support, and flow control.
00156 *
00157 * The driver tries to use the features built into the device. So if, for
00158 * example, the hardware is configured with scatter-gather DMA, the driver
00159 * expects to start the scatter-gather channels and expects that the user has
set
00160 * up the buffer descriptor lists already. If the user expects to use the driver
00161 * in a mode different than how the hardware is configured, the user should
00162 * modify the configuration table to reflect the mode to be used. Modifying the
00163 * configuration table is a workaround for now until we get some experience with
00164 * how users are intending to use the hardware in its different configurations.
00165 * For example, if the hardware is built with scatter-gather DMA but the user is
00166 * intending to use only simple DMA, the user either needs to modify the config
00167 * table as a workaround or rebuild the hardware with only simple DMA. The
00168 * recommendation at this point is to build the hardware with the features you
00169 * intend to use. If you're inclined to modify the table, do so before the call
00170 * to XGemac_Initialize(). Here is a snippet of code that changes a device to
00171 * simple DMA (the hardware needs to have DMA for this to work of course):
00172 * <pre>
00173 * XGemac_Config *ConfigPtr;
00174 *
00175 * ConfigPtr = XGemac_LookupConfig(DeviceId);
00176 * ConfigPtr->IpIfDmaConfig = XGE_CFG_SIMPLE_DMA;
00177 * </pre>
00178 *
00179 * Simple DMA
00180 *
00181 * Simple DMA is supported through the FIFO functions, FifoSend and FifoRecv, of
00182 * the driver (i.e., there is no separate interface for it). The driver makes
use
00183 * of the DMA engine for a simple DMA transfer if the device is configured with
00184 * DMA, otherwise it uses the FIFOs directly. While the simple DMA interface is
00185 * therefore transparent to the user, the caching of network buffers is not.
00186 * If the device is configured with DMA and the FIFO interface is used, the user
00187 * must ensure that the network buffers are not cached or are cache coherent,
00188 * since DMA will be used to transfer to and from the Emac device. If the device
00189 * is configured with DMA and the user really wants to use the FIFOs directly,
00190 * the user should rebuild the hardware without DMA. If unable to do this, there
00191 * is a workaround (described above in Device Configuration) to modify the
00192 * configuration table of the driver to fake the driver into thinking the device

00193 * has no DMA. A code snippet follows:
00194 * <pre>
00195 * XGemac_Config *ConfigPtr;
00196 *
00197 * ConfigPtr = XGemac_LookupConfig(DeviceId);
00198 * ConfigPtr->IpIfDmaConfig = XGE_CFG_NO_DMA;
00199 * </pre>
00200 *
00201 * Asserts
00202 *
00203 * Asserts are used within all Xilinx drivers to enforce constraints on argument
00204 * values. Asserts can be turned off on a system-wide basis by defining, at
compile
00205 * time, the NDEBUG identifier. By default, asserts are turned on and it is
00206 * recommended that application developers leave asserts on during development.
00207 * Substantial performance improvements can be seen when asserts are disabled.
00208 *
00209 * Building the driver
00210 *
00211 * The XGemac driver is composed of several source files. Why so many? This
00212 * allows the user to build and link only those parts of the driver that are
00213 * necessary. Since the GEMAC hardware can be configured in various ways (e.g.,
00214 * with or without DMA), the driver too can be built with varying features.
00215 * For the most part, this means that besides always linking in xgemac.c, you
00216 * link in only the driver functionality you want. Some of the choices you have
00217 * are polled vs. interrupt, interrupt with FIFOs only vs. interrupt with DMA,
00218 * self-test diagnostics, and driver statistics. Note that currently the DMA
code
00219 * must be linked in, even if you don't have DMA in the device.
00220 *
00221 * @note
00222 *
00223 * Xilinx drivers are typically composed of two components, one is the driver
00224 * and the other is the adapter. The driver is independent of OS and processor
00225 * and is intended to be highly portable. The adapter is OS-specific and
00226 * facilitates communication between the driver and the OS.
00227 *

00228 * This driver is intended to be RTOS and processor independent. It works
00229 * with physical addresses only. Any needs for dynamic memory management,
00230 * threads or thread mutual exclusion, virtual memory, or cache control must
00231 * be satisfied by the layer above this driver.
00232 *
00233 * <pre>
00234 * MODIFICATION HISTORY:
00235 *
00236 * Ver Who Date Changes
00237 * ----- ---- -------- ---
00238 * 1.00a ecm 01/13/03 First release
00239 * 1.00b ecm 03/25/03 Revision update
00240 * 1.00c rmm 05/28/03 Dma added, interframe gap interface change, added auto-
00241 * negotiate option, removed phy function prototypes,
00242 * added constant to default to no hw counters

00243 * </pre>
00244 *
00245 **/
00246
00247 #ifndef XGEMAC_H /* prevent circular inclusions */
00248 #define XGEMAC_H /* by using protection macros */
00249
00250 /***************************** Include Files *********************************/
00251
00252 #include "xbasic_types.h"

00253 #include "xstatus.h"

00254 #include "xparameters.h"

00255 #include "xpacket_fifo_v2_00_a.h" /* Uses v1.00b of Packet Fifo */
00256 #include "xdma_channel.h"
00257
00258 /************************** Constant Definitions *****************************/
00259
00260 /*
00261 * Device information
00262 */
00263 #define XGE_DEVICE_NAME "xgemac"
00264 #define XGE_DEVICE_DESC "Xilinx Ethernet 1Gbit MAC"
00265
00266 /*
00267 * Hardware counters not supported in this version
00268 */
00269 #define GEMAC_NO_HW_COUNTERS
00270
00271 /** @name Configuration options
00272 *
00273 * Device configuration options (see the XGemac_SetOptions() and
00274 * XGemac_GetOptions() for information on how to use these options)
00275 * @{
00276 */
00277 /**
00278 * <pre>
00279 * XGE_BROADCAST_OPTION Broadcast addressing on or off (default is on)
00280 * XGE_UNICAST_OPTION Unicast addressing on or off (default is on)
00281 * XGE_PROMISC_OPTION Promiscuous addressing on or off (default is
off)
00282 * XGE_FDUPLEX_OPTION Full duplex on or off (default is off)
00283 * XGE_POLLED_OPTION Polled mode on or off (default is off)
00284 * XGE_LOOPBACK_OPTION Internal loopback on or off (default is off)
00285 * XGE_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
00286 * (default is off)
00287 * XGE_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
00288 * XGE_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
00289 * XGE_STRIP_PAD_FCS_OPTION Strip padding and FCSfrom received frames
00290 * (default is off)
00291 * </pre>
00292 */
00293 #define XGE_UNICAST_OPTION 0x00000001UL

00294 #define XGE_BROADCAST_OPTION 0x00000002UL

00295 #define XGE_PROMISC_OPTION 0x00000004UL

00296 #define XGE_FDUPLEX_OPTION 0x00000008UL

00297 #define XGE_POLLED_OPTION 0x00000010UL

00298 #define XGE_LOOPBACK_OPTION 0x00000020UL

00299 #define XGE_FLOW_CONTROL_OPTION 0x00000080UL

00300 #define XGE_INSERT_PAD_OPTION 0x00000100UL

00301 #define XGE_INSERT_FCS_OPTION 0x00000200UL

00302 #define XGE_STRIP_PAD_FCS_OPTION 0x00002000UL

00303 #define XGE_AUTO_NEGOTIATE_OPTION 0x00004000UL

00304
00305 /*@}*/
00306 /*
00307 * Not supported yet:
00308 * XGE_MULTICAST_OPTION Multicast addressing on or off (default is
off)
00309 * XGE_INSERT_ADDR_OPTION Insert source address on transmit (default is
on)
00310 * XGE_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
00311 * only used if source address insertion is on.
00312 * (default is on)
00313 */
00314 /* NOT SUPPORTED YET... */
00315 #define XGE_MULTICAST_OPTION 0x00000040UL
00316 #define XGE_INSERT_ADDR_OPTION 0x00000400UL
00317 #define XGE_OVWRT_ADDR_OPTION 0x00000800UL
00318
00319 /*
00320 * Some default values for interrupt coalescing within the scatter-gather
00321 * DMA engine.
00322 */
00323 #define XGE_SGDMA_DFT_THRESHOLD 1 /* Default pkt threshold */
00324 #define XGE_SGDMA_MAX_THRESHOLD 255 /* Maximum pkt theshold */
00325 #define XGE_SGDMA_DFT_WAITBOUND 5 /* Default pkt wait bound (msec) */
00326 #define XGE_SGDMA_MAX_WAITBOUND 1023 /* Maximum pkt wait bound (msec) */
00327
00328 /*
00329 * Direction identifiers. These are used for setting values like packet
00330 * thresholds and wait bound for specific channels
00331 */
00332 #define XGE_SEND 1
00333 #define XGE_RECV 2
00334
00335 /*
00336 * Arguments to SgSend function to indicate whether to hold off starting
00337 * the scatter-gather engine.
00338 */
00339 #define XGE_SGDMA_NODELAY 0 /* start SG DMA immediately */
00340 #define XGE_SGDMA_DELAY 1 /* do not start SG DMA */
00341
00342 /*

00343 * Constants to determine the configuration of the hardware device. They are
00344 * used to allow the driver to verify it can operate with the hardware.
00345 */
00346 #define XGE_CFG_NO_IPIF 0 /* Not supported by the driver */
00347 #define XGE_CFG_NO_DMA 1 /* No DMA */
00348 #define XGE_CFG_SIMPLE_DMA 2 /* Simple DMA */
00349 #define XGE_CFG_DMA_SG 3 /* DMA scatter gather */
00350
00351 /*
00352 * The next few constants help upper layers determine the size of memory
00353 * pools used for Ethernet buffers and descriptor lists.
00354 */
00355 #define XGE_MAC_ADDR_SIZE 6 /* six-byte MAC address */
00356 #define XGE_MTU 1500 /* max size of Ethernet frame */
00357 #define XGE_HDR_SIZE 14 /* size of Ethernet header */
00358 #define XGE_HDR_VLAN_SIZE 18 /* size of Ethernet header with VLAN */
00359 #define XGE_TRL_SIZE 4 /* size of Ethernet trailer (FCS) */
00360 #define XGE_MAX_FRAME_SIZE (XGE_MTU + XGE_HDR_SIZE + XGE_TRL_SIZE)
00361 #define XGE_MAX_VLAN_FRAME_SIZE (XGE_MTU + XGE_HDR_VLAN_SIZE + XGE_TRL_SIZE)
00362
00363 /*
00364 * Define a default number of send and receive buffers
00365 */
00366 #define XGE_MIN_RECV_BUFS 32 /* minimum # of recv buffers */
00367 #define XGE_DFT_RECV_BUFS 64 /* default # of recv buffers */
00368
00369 #define XGE_MIN_SEND_BUFS 16 /* minimum # of send buffers */
00370 #define XGE_DFT_SEND_BUFS 32 /* default # of send buffers */
00371
00372 #define XGE_MIN_BUFFERS (XGE_MIN_RECV_BUFS + XGE_MIN_SEND_BUFS)
00373 #define XGE_DFT_BUFFERS (XGE_DFT_RECV_BUFS + XGE_DFT_SEND_BUFS)
00374
00375 /*
00376 * Define the number of send and receive buffer descriptors, used for
00377 * scatter-gather DMA
00378 */
00379 #define XGE_MIN_RECV_DESC 16 /* minimum # of recv descriptors */
00380 #define XGE_DFT_RECV_DESC 32 /* default # of recv descriptors */
00381
00382 #define XGE_MIN_SEND_DESC 8 /* minimum # of send descriptors */
00383 #define XGE_DFT_SEND_DESC 16 /* default # of send descriptors */
00384
00385 /**************************** Type Definitions *******************************/
00386
00387 /**
00388 * Ethernet statistics (see XGemac_GetStats() and XGemac_ClearStats())
00389 */
00390 typedef struct

00391 {
00392 Xuint32 XmitFramesMSL; /**< Number of frames transmitted upper 32

bits */
00393 Xuint32 XmitFrames; /**< Number of frames transmitted */

00394 Xuint32 XmitBytesMSL; /**< Number of bytes transmitted upper 32

bits */
00395 Xuint32 XmitBytes; /**< Number of bytes transmitted */

00396 Xuint32 XmitLateCollisionErrorsMSL; /**< Number of transmission failures

00397 due to late collisions upper 32 bits
*/
00398 Xuint32 XmitLateCollisionErrors; /**< Number of transmission failures

00399 due to late collisions */
00400 Xuint32 XmitExcessDeferralMSL; /**< Number of transmission failures

00401 due to excess collision deferrals
upper 32 bits */
00402 Xuint32 XmitExcessDeferral; /**< Number of transmission failures

00403 due to excess collision deferrals */
00404 Xuint32 XmitOverrunErrors; /**< Number of transmit overrun errors

upper 32 bits */
00405 Xuint32 XmitUnderrunErrorsMSL; /**< Number of transmit underrun errors */

00406 Xuint32 XmitUnderrunErrors; /**< Number of transmit underrun errors */

00407 Xuint32 RecvFramesMSL; /**< Number of frames received upper 32

bits */
00408 Xuint32 RecvFrames; /**< Number of frames received */

00409 Xuint32 RecvBytesMSL; /**< Number of bytes received upper 32

bits */
00410 Xuint32 RecvBytes; /**< Number of bytes received */

00411 Xuint32 RecvFcsErrorsMSL; /**< Number of frames discarded due

00412 to FCS errors upper 32 bits */
00413 Xuint32 RecvFcsErrors; /**< Number of frames discarded due

00414 to FCS errors */
00415 Xuint32 SlotLengthErrors; /**< Number of frames received with

00416 slot length errors */
00417 Xuint32 RecvOverrunErrors; /**< Number of frames discarded due

00418 to overrun errors */
00419 Xuint32 RecvUnderrunErrors; /**< Number of recv underrun errors */

00420 Xuint32 RecvMissedFrameErrors; /**< Number of frames missed by MAC */

00421 Xuint32 RecvCollisionErrorsMSL; /**< Number of frames discarded due

00422 to collisions upper 32 bits */
00423 Xuint32 RecvCollisionErrors; /**< Number of frames discarded due

00424 to collisions */
00425 Xuint32 RecvLengthFieldErrors; /**< Number of frames discarded with

00426 invalid length field */
00427 Xuint32 RecvShortErrors; /**< Number of short frames discarded */

00428 Xuint32 RecvLongErrors; /**< Number of long frames discarded */

00429 Xuint32 DmaErrors; /**< Number of DMA errors since init */

00430 Xuint32 FifoErrors; /**< Number of FIFO errors since init */

00431 Xuint32 RecvInterrupts; /**< Number of receive interrupts */

00432 Xuint32 XmitInterrupts; /**< Number of transmit interrupts */

00433 Xuint32 EmacInterrupts; /**< Number of MAC (device) interrupts */

00434 Xuint32 TotalIntrs; /**< Total interrupts */

00435 } XGemac_Stats;

00436

00437 /**
00438 * Ethernet statistics Soft - no hw counter so maintained in instance.
00439 */
00440 typedef struct

00441 {
00442 Xuint32 XmitOverrunErrors; /**< Number of transmit overrun errors */

00443 Xuint32 SlotLengthErrors; /**< Number of frames received with

00444 slot length errors */
00445 Xuint32 RecvOverrunErrors; /**< Number of frames discarded due

00446 to overrun errors */
00447 Xuint32 RecvUnderrunErrors; /**< Number of recv underrun errors */

00448 Xuint32 RecvMissedFrameErrors; /**< Number of frames missed by MAC */

00449 Xuint32 RecvCollisionErrors; /**< Number of frames discarded due

00450 to collisions */
00451 Xuint32 RecvLengthFieldErrors; /**< Number of frames discarded with

00452 invalid length field */
00453 Xuint32 RecvShortErrors; /**< Number of short frames discarded */

00454 Xuint32 RecvLongErrors; /**< Number of long frames discarded */

00455 Xuint32 DmaErrors; /**< Number of DMA errors since init */

00456 Xuint32 FifoErrors; /**< Number of FIFO errors since init */

00457 Xuint32 RecvInterrupts; /**< Number of receive interrupts */

00458 Xuint32 XmitInterrupts; /**< Number of transmit interrupts */

00459 Xuint32 EmacInterrupts; /**< Number of MAC (device) interrupts */

00460 Xuint32 TotalIntrs; /**< Total interrupts */

00461 } XGemac_SoftStats;

00462
00463 /**
00464 * This typedef contains configuration information for a device.
00465 */
00466 typedef struct

00467 {
00468 Xuint16 DeviceId; /**< Unique ID of device */

00469 Xuint32 BaseAddress; /**< Register base address */

00470 Xuint8 IpIfDmaConfig; /**< IPIF/DMA hardware configuration */

00471 Xboolean HasMii; /**< Does device support MII? */

00472
00473 } XGemac_Config;

00474
00475
00476 /** @name Typedefs for callbacks
00477 * Callback functions.
00478 * @{
00479 */
00480 /**
00481 * Callback when data is sent or received with scatter-gather DMA.
00482 *
00483 * @param CallBackRef is a callback reference passed in by the upper layer
00484 * when setting the callback functions, and passed back to the upper
00485 * layer when the callback is invoked.
00486 * @param BdPtr is a pointer to the first buffer descriptor in a list of

00487 * buffer descriptors.
00488 * @param NumBds is the number of buffer descriptors in the list pointed
00489 * to by BdPtr.
00490 */
00491 typedef void (*XGemac_SgHandler)(void *CallBackRef, XBufDescriptor *BdPtr,

00492 Xuint32 NumBds);

00493
00494 /**
00495 * Callback when data is sent or received with direct FIFO communication.
00496 * The user typically defines two callacks, one for send and one for receive.
00497 *
00498 * @param CallBackRef is a callback reference passed in by the upper layer
00499 * when setting the callback functions, and passed back to the upper
00500 * layer when the callback is invoked.
00501 */
00502 typedef void (*XGemac_FifoHandler)(void *CallBackRef);

00503
00504 /**
00505 * Callback when an asynchronous error occurs.
00506 *
00507 * @param CallBackRef is a callback reference passed in by the upper layer
00508 * when setting the callback functions, and passed back to the upper
00509 * layer when the callback is invoked.
00510 * @param ErrorCode is a Xilinx error code defined in xstatus.h. Also see
00511 * XGemac_SetErrorHandler() for a description of possible errors.
00512 */
00513 typedef void (*XGemac_ErrorHandler)(void *CallBackRef, XStatus ErrorCode);

00514 /*@}*/
00515
00516 /**
00517 * The XGemac driver instance data. The user is required to allocate a
00518 * variable of this type for every EMAC device in the system. A pointer
00519 * to a variable of this type is then passed to the driver API functions.
00520 */
00521 typedef struct

00522 {
00523 Xuint32 BaseAddress; /* Base address (of IPIF) */

00524 Xuint32 IsStarted; /* Device is currently started */

00525 Xuint32 IsReady; /* Device is initialized and ready */

00526 Xboolean IsPolled; /* Device is in polled mode */

00527 Xuint8 IpIfDmaConfig; /* IPIF/DMA hardware configuration */

00528 Xboolean HasMii; /* Does device support MII? */

00529 Xboolean HasMulticastHash; /* Does device support multicast hash table?

*/
00530
00531 XGemac_SoftStats Stats;

00532 XPacketFifoV200a RecvFifo; /* FIFO used by receive DMA channel */
00533 XPacketFifoV200a SendFifo; /* FIFO used by send DMA channel */
00534
00535 /*
00536 * Callbacks

00537 */
00538 XGemac_FifoHandler FifoRecvHandler; /* callback for non-DMA interrupts */

00539 void *FifoRecvRef;
00540 XGemac_FifoHandler FifoSendHandler; /* callback for non-DMA interrupts */

00541 void *FifoSendRef;
00542 XGemac_ErrorHandler ErrorHandler; /* callback for asynchronous errors */

00543 void *ErrorRef;
00544
00545 XDmaChannel RecvChannel; /* DMA receive channel driver */
00546 XDmaChannel SendChannel; /* DMA send channel driver */
00547
00548 XGemac_SgHandler SgRecvHandler; /* callback for scatter-gather DMA */

00549 void *SgRecvRef;
00550 XGemac_SgHandler SgSendHandler; /* callback for scatter-gather DMA */

00551 void *SgSendRef;
00552 } XGemac;

00553
00554
00555 /***************** Macros (Inline Functions) Definitions *********************/
00556
00557 /***/
00558 /**
00559 *
00560 * This macro determines if the device is currently configured for
00561 * scatter-gather DMA.
00562 *
00563 * @param InstancePtr is a pointer to the XGemac instance to be worked on.
00564 *
00565 * @return
00566 *
00567 * Boolean XTRUE if the device is configured for scatter-gather DMA, or XFALSE
00568 * if it is not.
00569 *
00570 * @note
00571 *
00572 * Signature: Xboolean XGemac_mIsSgDma(XGemac *InstancePtr)
00573 *
00574 **/
00575 #define XGemac_mIsSgDma(InstancePtr) \

00576 ((InstancePtr)->IpIfDmaConfig == XGE_CFG_DMA_SG)
00577
00578 /***/
00579 /**
00580 *
00581 * This macro determines if the device is currently configured for simple DMA.
00582 *
00583 * @param InstancePtr is a pointer to the XGemac instance to be worked on.
00584 *
00585 * @return
00586 *
00587 * Boolean XTRUE if the device is configured for simple DMA, or XFALSE otherwise
00588 *

00589 * @note
00590 *
00591 * Signature: Xboolean XGemac_mIsSimpleDma(XGemac *InstancePtr)
00592 *
00593 **/
00594 #define XGemac_mIsSimpleDma(InstancePtr) \

00595 ((InstancePtr)->IpIfDmaConfig == XGE_CFG_SIMPLE_DMA)
00596
00597 /***/
00598 /**
00599 *
00600 * This macro determines if the device is currently configured with DMA (either
00601 * simple DMA or scatter-gather DMA)
00602 *
00603 * @param InstancePtr is a pointer to the XGemac instance to be worked on.
00604 *
00605 * @return
00606 *
00607 * Boolean XTRUE if the device is configured with DMA, or XFALSE otherwise
00608 *
00609 * @note
00610 *
00611 * Signature: Xboolean XGemac_mIsDma(XGemac *InstancePtr)
00612 *
00613 **/
00614 #define XGemac_mIsDma(InstancePtr) \

00615 (XGemac_mIsSimpleDma(InstancePtr) || XGemac_mIsSgDma(InstancePtr))
00616
00617
00618 /************************** Function Prototypes ******************************/
00619
00620 /*
00621 * Initialization functions in xgemac.c
00622 */
00623 XStatus XGemac_Initialize(XGemac *InstancePtr, Xuint16 DeviceId);

00624 XStatus XGemac_Start(XGemac *InstancePtr);

00625 XStatus XGemac_Stop(XGemac *InstancePtr);

00626 void XGemac_Reset(XGemac *InstancePtr);

00627 XGemac_Config *XGemac_LookupConfig(Xuint16 DeviceId);

00628
00629 /*
00630 * Diagnostic functions in xgemac_selftest.c
00631 */
00632 XStatus XGemac_SelfTest(XGemac *InstancePtr);

00633
00634 /*
00635 * Polled functions in xgemac_polled.c
00636 */
00637 XStatus XGemac_PollSend(XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32

ByteCount);
00638 XStatus XGemac_PollRecv(XGemac *InstancePtr, Xuint8 *BufPtr,

00639 Xuint32 *ByteCountPtr);

00640
00641 /*
00642 * Interrupts with scatter-gather DMA functions in xgemac_intr_dma.c
00643 * This functionality is not yet supported, calling any of these functions
00644 * will result in an assert.
00645 */
00646 XStatus XGemac_SgSend(XGemac *InstancePtr, XBufDescriptor *BdPtr, int Delay);

00647 XStatus XGemac_SgRecv(XGemac *InstancePtr, XBufDescriptor *BdPtr);

00648 XStatus XGemac_SetPktThreshold(XGemac *InstancePtr, Xuint32 Direction,

00649 Xuint8 Threshold);

00650 XStatus XGemac_GetPktThreshold(XGemac *InstancePtr, Xuint32 Direction,

00651 Xuint8 *ThreshPtr);

00652 XStatus XGemac_SetPktWaitBound(XGemac *InstancePtr, Xuint32 Direction,

00653 Xuint32 TimerValue);

00654 XStatus XGemac_GetPktWaitBound(XGemac *InstancePtr, Xuint32 Direction,

00655 Xuint32 *WaitPtr);

00656 XStatus XGemac_SetSgRecvSpace(XGemac *InstancePtr, Xuint32 *MemoryPtr,

00657 Xuint32 ByteCount);

00658 XStatus XGemac_SetSgSendSpace(XGemac *InstancePtr, Xuint32 *MemoryPtr,

00659 Xuint32 ByteCount);

00660 void XGemac_SetSgRecvHandler(XGemac *InstancePtr, void *CallBackRef,

00661 XGemac_SgHandler FuncPtr);

00662 void XGemac_SetSgSendHandler(XGemac *InstancePtr, void *CallBackRef,

00663 XGemac_SgHandler FuncPtr);

00664
00665 void XGemac_IntrHandlerDma(void *InstancePtr); /* interrupt handler */

00666
00667 /*
00668 * Interrupts with direct FIFO functions in xgemac_intr_fifo.c
00669 */
00670 XStatus XGemac_FifoSend(XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32

ByteCount);
00671 XStatus XGemac_FifoRecv(XGemac *InstancePtr, Xuint8 *BufPtr,

00672 Xuint32 *ByteCountPtr);

00673 void XGemac_SetFifoRecvHandler(XGemac *InstancePtr, void *CallBackRef,

00674 XGemac_FifoHandler FuncPtr);

00675 void XGemac_SetFifoSendHandler(XGemac *InstancePtr, void *CallBackRef,

00676 XGemac_FifoHandler FuncPtr);

00677
00678 void XGemac_IntrHandlerFifo(void *InstancePtr); /* interrupt handler */

00679
00680 /*
00681 * General interrupt-related functions in xgemac_intr.c
00682 */
00683 void XGemac_SetErrorHandler(XGemac *InstancePtr, void *CallBackRef,

00684 XGemac_ErrorHandler FuncPtr);

00685
00686 /*

00687 * MAC configuration in xgemac_options.c
00688 */
00689 XStatus XGemac_SetOptions(XGemac *InstancePtr, Xuint32 OptionFlag);

00690 Xuint32 XGemac_GetOptions(XGemac *InstancePtr);

00691 XStatus XGemac_SetMacAddress(XGemac *InstancePtr, Xuint8 *AddressPtr);

00692 void XGemac_GetMacAddress(XGemac *InstancePtr, Xuint8 *BufferPtr);

00693 XStatus XGemac_SetInterframeGap(XGemac *InstancePtr, Xuint8 Ifg);

00694 void XGemac_GetInterframeGap(XGemac *InstancePtr, Xuint8 *IfgPtr);

00695
00696 /*
00697 * Multicast functions in xgemac_multicast.c
00698 */
00699 XStatus XGemac_MulticastAdd(XGemac *InstancePtr, Xuint8 *AddressPtr);

00700 XStatus XGemac_MulticastClear(XGemac *InstancePtr);

00701
00702
00703 /*
00704 * Statistics in xgemac_stats.c
00705 */
00706 void XGemac_GetStats(XGemac *InstancePtr, XGemac_Stats *StatsPtr);

00707 void XGemac_ClearStats(XGemac *InstancePtr);

00708
00709
00710 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XGemac_Stats Struct Reference
#include <xgemac.h>

Detailed Description

Ethernet statistics (see XGemac_GetStats() and XGemac_ClearStats())

Data Fields

Xuint32 XmitFramesMSL
Xuint32 XmitFrames
Xuint32 XmitBytesMSL
Xuint32 XmitBytes
Xuint32 XmitLateCollisionErrorsMSL
Xuint32 XmitLateCollisionErrors
Xuint32 XmitExcessDeferralMSL
Xuint32 XmitExcessDeferral
Xuint32 XmitOverrunErrors
Xuint32 XmitUnderrunErrorsMSL
Xuint32 XmitUnderrunErrors
Xuint32 RecvFramesMSL
Xuint32 RecvFrames
Xuint32 RecvBytesMSL
Xuint32 RecvBytes
Xuint32 RecvFcsErrorsMSL
Xuint32 RecvFcsErrors
Xuint32 SlotLengthErrors

Xuint32 RecvOverrunErrors
Xuint32 RecvUnderrunErrors
Xuint32 RecvMissedFrameErrors
Xuint32 RecvCollisionErrorsMSL
Xuint32 RecvCollisionErrors
Xuint32 RecvLengthFieldErrors
Xuint32 RecvShortErrors
Xuint32 RecvLongErrors
Xuint32 DmaErrors
Xuint32 FifoErrors
Xuint32 RecvInterrupts
Xuint32 XmitInterrupts
Xuint32 EmacInterrupts
Xuint32 TotalIntrs

Field Documentation

Xuint32 XGemac_Stats::DmaErrors

 Number of DMA errors since init

Xuint32 XGemac_Stats::EmacInterrupts

 Number of MAC (device) interrupts

Xuint32 XGemac_Stats::FifoErrors

 Number of FIFO errors since init

Xuint32 XGemac_Stats::RecvBytes

 Number of bytes received

Xuint32 XGemac_Stats::RecvBytesMSL

 Number of bytes received upper 32 bits

Xuint32 XGemac_Stats::RecvCollisionErrors

 Number of frames discarded due to collisions

Xuint32 XGemac_Stats::RecvCollisionErrorsMSL

 Number of frames discarded due to collisions upper 32 bits

Xuint32 XGemac_Stats::RecvFcsErrors

 Number of frames discarded due to FCS errors

Xuint32 XGemac_Stats::RecvFcsErrorsMSL

 Number of frames discarded due to FCS errors upper 32 bits

Xuint32 XGemac_Stats::RecvFrames

 Number of frames received

Xuint32 XGemac_Stats::RecvFramesMSL

 Number of frames received upper 32 bits

Xuint32 XGemac_Stats::RecvInterrupts

 Number of receive interrupts

Xuint32 XGemac_Stats::RecvLengthFieldErrors

 Number of frames discarded with invalid length field

Xuint32 XGemac_Stats::RecvLongErrors

 Number of long frames discarded

Xuint32 XGemac_Stats::RecvMissedFrameErrors

 Number of frames missed by MAC

Xuint32 XGemac_Stats::RecvOverrunErrors

 Number of frames discarded due to overrun errors

Xuint32 XGemac_Stats::RecvShortErrors

 Number of short frames discarded

Xuint32 XGemac_Stats::RecvUnderrunErrors

 Number of recv underrun errors

Xuint32 XGemac_Stats::SlotLengthErrors

 Number of frames received with slot length errors

Xuint32 XGemac_Stats::TotalIntrs

 Total interrupts

Xuint32 XGemac_Stats::XmitBytes

 Number of bytes transmitted

Xuint32 XGemac_Stats::XmitBytesMSL

 Number of bytes transmitted upper 32 bits

Xuint32 XGemac_Stats::XmitExcessDeferral

 Number of transmission failures due to excess collision deferrals

Xuint32 XGemac_Stats::XmitExcessDeferralMSL

 Number of transmission failures due to excess collision deferrals upper 32 bits

Xuint32 XGemac_Stats::XmitFrames

 Number of frames transmitted

Xuint32 XGemac_Stats::XmitFramesMSL

 Number of frames transmitted upper 32 bits

Xuint32 XGemac_Stats::XmitInterrupts

 Number of transmit interrupts

Xuint32 XGemac_Stats::XmitLateCollisionErrors

 Number of transmission failures due to late collisions

Xuint32 XGemac_Stats::XmitLateCollisionErrorsMSL

 Number of transmission failures due to late collisions upper 32 bits

Xuint32 XGemac_Stats::XmitOverrunErrors

 Number of transmit overrun errors upper 32 bits

Xuint32 XGemac_Stats::XmitUnderrunErrors

 Number of transmit underrun errors

Xuint32 XGemac_Stats::XmitUnderrunErrorsMSL

 Number of transmit underrun errors

The documentation for this struct was generated from the following file:

● gemac/v1_00_c/src/xgemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XGemac_SoftStats Struct Reference
#include <xgemac.h>

Detailed Description

Ethernet statistics Soft - no hw counter so maintained in instance.

Data Fields

Xuint32 XmitOverrunErrors
Xuint32 SlotLengthErrors
Xuint32 RecvOverrunErrors
Xuint32 RecvUnderrunErrors
Xuint32 RecvMissedFrameErrors
Xuint32 RecvCollisionErrors
Xuint32 RecvLengthFieldErrors
Xuint32 RecvShortErrors
Xuint32 RecvLongErrors
Xuint32 DmaErrors
Xuint32 FifoErrors
Xuint32 RecvInterrupts
Xuint32 XmitInterrupts
Xuint32 EmacInterrupts
Xuint32 TotalIntrs

Field Documentation

Xuint32 XGemac_SoftStats::DmaErrors

 Number of DMA errors since init

Xuint32 XGemac_SoftStats::EmacInterrupts

 Number of MAC (device) interrupts

Xuint32 XGemac_SoftStats::FifoErrors

 Number of FIFO errors since init

Xuint32 XGemac_SoftStats::RecvCollisionErrors

 Number of frames discarded due to collisions

Xuint32 XGemac_SoftStats::RecvInterrupts

 Number of receive interrupts

Xuint32 XGemac_SoftStats::RecvLengthFieldErrors

 Number of frames discarded with invalid length field

Xuint32 XGemac_SoftStats::RecvLongErrors

 Number of long frames discarded

Xuint32 XGemac_SoftStats::RecvMissedFrameErrors

 Number of frames missed by MAC

Xuint32 XGemac_SoftStats::RecvOverrunErrors

 Number of frames discarded due to overrun errors

Xuint32 XGemac_SoftStats::RecvShortErrors

 Number of short frames discarded

Xuint32 XGemac_SoftStats::RecvUnderrunErrors

 Number of recv underrun errors

Xuint32 XGemac_SoftStats::SlotLengthErrors

 Number of frames received with slot length errors

Xuint32 XGemac_SoftStats::TotalIntrs

 Total interrupts

Xuint32 XGemac_SoftStats::XmitInterrupts

 Number of transmit interrupts

Xuint32 XGemac_SoftStats::XmitOverrunErrors

 Number of transmit overrun errors

The documentation for this struct was generated from the following file:

● gemac/v1_00_c/src/xgemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XGemac_Config Struct Reference
#include <xgemac.h>

Detailed Description

This typedef contains configuration information for a device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint8 IpIfDmaConfig

Xboolean HasMii

Field Documentation

Xuint32 XGemac_Config::BaseAddress

 Register base address

Xuint16 XGemac_Config::DeviceId

 Unique ID of device

Xboolean XGemac_Config::HasMii

 Does device support MII?

Xuint8 XGemac_Config::IpIfDmaConfig

 IPIF/DMA hardware configuration

The documentation for this struct was generated from the following file:

● gemac/v1_00_c/src/xgemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XGemac Struct Reference
#include <xgemac.h>

Detailed Description

The XGemac driver instance data. The user is required to allocate a variable of this type for every EMAC
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● gemac/v1_00_c/src/xgemac.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac.c File
Reference

Detailed Description

The XGemac driver. Functions in this file are the minimum required functions for this driver. See
xgemac.h for a detailed description of the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 DMA mods

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XGemac_Initialize (XGemac *InstancePtr, Xuint16 DeviceId)
XStatus XGemac_Start (XGemac *InstancePtr)
XStatus XGemac_Stop (XGemac *InstancePtr)

void XGemac_Reset (XGemac *InstancePtr)

XStatus XGemac_SetMacAddress (XGemac *InstancePtr, Xuint8 *AddressPtr)
void XGemac_GetMacAddress (XGemac *InstancePtr, Xuint8 *BufferPtr)

XGemac_Config * XGemac_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XGemac_GetMacAddress (XGemac * InstancePtr,
Xuint8 * BufferPtr

)

Get the MAC address for this driver/device.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufferPtr is an output parameter, and is a pointer to a buffer into which the current MAC
address will be copied. The buffer must be at least 6 bytes.

Returns:
None.

Note:
None.

XStatus XGemac_Initialize (XGemac * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XGemac instance/driver. The initialization entails:

● Initialize fields of the XGemac structure
● Clear the Ethernet statistics for this device
● Initialize the IPIF component with its register base address
● Configure the FIFO components with their register base addresses.
● If the device is configured with DMA, configure the DMA channel components with their

register base addresses. At some later time, memory pools for the scatter-gather descriptor lists
are to be passed to the driver.

● Reset the Ethernet MAC

Parameters:

InstancePtr is a pointer to the XGemac instance to be worked on.

DeviceId is the unique id of the device controlled by this XGemac instance. Passing in a
device id associates the generic XGemac instance to a specific device, as chosen
by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a

device with the supplied device ID.

Note:
None.

XGemac_Config* XGemac_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table EmacConfigTable contains
the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device being looked up.

Returns:
A pointer to the configuration table entry corresponding to the given device ID, or XNULL if
no match is found.

Note:
None.

void XGemac_Reset (XGemac * InstancePtr)

Reset the Ethernet MAC. This is a graceful reset in that the device is stopped first. Resets the DMA
channels, the FIFOs, the transmitter, and the receiver. The PHY is not reset. Any frames in the scatter-
gather descriptor lists will remain in the lists. The side effect of doing this is that after a reset and
following a restart of the device, frames that were in the list before the reset may be transmitted or
received. Reset must only be called after the driver has been initialized.

The configuration after this reset is as follows:

● Disabled transmitter and receiver
● Enabled PHY (the PHY is not reset)
● MAC transmitter does pad insertion, FCS insertion, and source address overwrite.
● MAC receiver does not strip padding or FCS
● Interframe Gap as recommended by IEEE Std. 802.3 (96 bit times)
● Unicast addressing enabled
● Broadcast addressing enabled
● Multicast addressing disabled (addresses are preserved)
● Promiscuous addressing disabled
● Default packet threshold and packet wait bound register values for scatter-gather DMA

operation
● MAC address of all zeros

The upper layer software is responsible for re-configuring (if necessary) and restarting the MAC after
the reset. Note that the PHY is not reset. PHY control is left to the upper layer software. Note also
that driver statistics are not cleared on reset. It is up to the upper layer software to clear the statistics if
needed.

When a reset is required due to an internal error, the driver notifies the upper layer software of this
need through the ErrorHandler callback and specific status codes. The upper layer software is
responsible for calling this Reset function and then re-configuring the device.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
None.

Note:
None.

XStatus XGemac_SetMacAddress (XGemac * InstancePtr,
Xuint8 * AddressPtr

)

Set the MAC address for this driver/device. The address is a 48-bit value. The device must be stopped
before calling this function.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

AddressPtr is a pointer to a 6-byte MAC address.

Returns:
❍ XST_SUCCESS if the MAC address was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
None.

XStatus XGemac_Start (XGemac * InstancePtr)

Start the Ethernet controller as follows:

● If in interrupt driven mode
❍ Set the internal interrupt enable registers appropriately
❍ Enable interrupts within the device itself. Note that connection of the driver's interrupt

handler to the interrupt source (typically done using the interrupt controller component)
is done by the higher layer software.

❍ If the device is configured with DMA, start the DMA channels if the descriptor lists are
not empty

● Enable the transmitter
● Enable the receiver

The PHY is enabled after driver initialization. We assume the upper layer software has configured it
and the GEMAC appropriately before this function is called.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was started successfully

❍ XST_NO_CALLBACK if a callback function has not yet been registered using the
SetxxxHandler function. This is required if in interrupt mode.

❍ XST_DEVICE_IS_STARTED if the device is already started
❍ XST_DMA_SG_NO_LIST if configured for scatter-gather DMA and a descriptor list

has not yet been created for the send or receive channel.

Note:
The driver tries to match the hardware configuration. So if the hardware is configured with
scatter-gather DMA, the driver expects to start the scatter-gather channels and expects that the
user has set up the buffer descriptor lists already. If the user expects to use the driver in a mode
different than how the hardware is configured, the user should modify the configuration table
to reflect the mode to be used. Modifying the config table is a workaround for now until we
get some experience with how users are intending to use the hardware in its different
configurations. For example, if the hardware is built with scatter-gather DMA but the user is
intending to use only simple DMA, the user either needs to modify the config table as a
workaround or rebuild the hardware with only simple DMA.

This function makes use of internal resources that are shared between the Start, Stop, and SetOptions
functions. So if one task might be setting device options while another is trying to start the device, the
user is required to provide protection of this shared data (typically using a semaphore).

XStatus XGemac_Stop (XGemac * InstancePtr)

Stop the Ethernet MAC as follows:

● If the device is configured with scatter-gather DMA, stop the DMA channels (wait for
acknowledgment of stop)

● Disable the transmitter and receiver
● Disable interrupts if not in polled mode (the higher layer software is responsible for disabling

interrupts at the interrupt controller)

The PHY is left enabled after a Stop is called.

If the device is configured for scatter-gather DMA, the DMA engine stops at the next buffer
descriptor in its list. The remaining descriptors in the list are not removed, so anything in the list will
be transmitted or received when the device is restarted. The side effect of doing this is that the last
buffer descriptor processed by the DMA engine before stopping may not be the last descriptor in the
Ethernet frame. So when the device is restarted, a partial frame (i.e., a bad frame) may be
transmitted/received. This is only a concern if a frame can span multiple buffer descriptors, which is
dependent on the size of the network buffers.

Parameters:

InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
❍ XST_SUCCESS if the device was stopped successfully
❍ XST_DEVICE_IS_STOPPED if the device is already stopped

Note:
This function makes use of internal resources that are shared between the Start, Stop, and
SetOptions functions. So if one task might be setting device options while another is trying to
start the device, the user is required to provide protection of this shared data (typically using a
semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_i.h
Go to the documentation of this file.

00001 /* $Id: xgemac_i.h,v 1.1 2003/05/29 19:43:52 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file gemac/v1_00_c/src/xgemac_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between XGemac components. The identifiers in this file are not intended for
00029 * use external to the driver.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a ecm 01/13/03 First release
00037 * 1.00b ecm 03/25/03 Revision update
00038 * 1.00c rmm 05/28/03 Revision update
00039 * </pre>
00040 *
00041 **/
00042

00043 #ifndef XGEMAC_I_H /* prevent circular inclusions */
00044 #define XGEMAC_I_H /* by using protection macros */
00045
00046 /***************************** Include Files *********************************/
00047
00048 #include "xgemac.h"

00049 #include "xgemac_l.h"

00050
00051 /************************** Constant Definitions *****************************/
00052
00053 /*
00054 * Default buffer descriptor control word masks. The default send BD control
00055 * is set for incrementing the source address by one for each byte transferred,
00056 * and specify that the destination address (FIFO) is local to the device. The
00057 * default receive BD control is set for incrementing the destination address
00058 * by one for each byte transferred, and specify that the source address is
00059 * local to the device.
00060 */
00061 #define XGE_DFT_SEND_BD_MASK (XDC_DMACR_SOURCE_INCR_MASK | \
00062 XDC_DMACR_DEST_LOCAL_MASK)
00063 #define XGE_DFT_RECV_BD_MASK (XDC_DMACR_DEST_INCR_MASK | \
00064 XDC_DMACR_SOURCE_LOCAL_MASK)
00065
00066 /*
00067 * Masks for the IPIF Device Interrupt enable and status registers.
00068 */
00069 #define XGE_IPIF_EMAC_MASK 0x00000004UL /* MAC interrupt */
00070 #define XGE_IPIF_SEND_DMA_MASK 0x00000008UL /* Send DMA interrupt */
00071 #define XGE_IPIF_RECV_DMA_MASK 0x00000010UL /* Receive DMA interrupt */
00072 #define XGE_IPIF_RECV_FIFO_MASK 0x00000020UL /* Receive FIFO interrupt */
00073 #define XGE_IPIF_SEND_FIFO_MASK 0x00000040UL /* Send FIFO interrupt */
00074
00075 /*
00076 * Default IPIF Device Interrupt mask when configured for DMA
00077 */
00078 #define XGE_IPIF_DMA_DFT_MASK (XGE_IPIF_SEND_DMA_MASK | \
00079 XGE_IPIF_RECV_DMA_MASK | \
00080 XGE_IPIF_EMAC_MASK | \
00081 XGE_IPIF_SEND_FIFO_MASK | \
00082 XGE_IPIF_RECV_FIFO_MASK)
00083
00084 /*
00085 * Default IPIF Device Interrupt mask when configured without DMA
00086 */
00087 #define XGE_IPIF_FIFO_DFT_MASK (XGE_IPIF_EMAC_MASK | \
00088 XGE_IPIF_SEND_FIFO_MASK | \
00089 XGE_IPIF_RECV_FIFO_MASK)
00090
00091 #define XGE_IPIF_DMA_DEV_INTR_COUNT 7 /* Number of interrupt sources */
00092 #define XGE_IPIF_FIFO_DEV_INTR_COUNT 5 /* Number of interrupt sources */
00093 #define XGE_IPIF_DEVICE_INTR_COUNT 7 /* Number of interrupt sources */
00094 #define XGE_IPIF_IP_INTR_COUNT 22 /* Number of MAC interrupts */

00095
00096
00097 /* a mask for all transmit interrupts, used in polled mode */
00098 #define XGE_EIR_XMIT_ALL_MASK (XGE_EIR_XMIT_DONE_MASK | \
00099 XGE_EIR_XMIT_ERROR_MASK | \
00100 XGE_EIR_XMIT_SFIFO_EMPTY_MASK | \
00101 XGE_EIR_XMIT_LFIFO_FULL_MASK)
00102
00103 /* a mask for all receive interrupts, used in polled mode */
00104 #define XGE_EIR_RECV_ALL_MASK (XGE_EIR_RECV_DONE_MASK | \
00105 XGE_EIR_RECV_ERROR_MASK | \
00106 XGE_EIR_RECV_LFIFO_EMPTY_MASK | \
00107 XGE_EIR_RECV_LFIFO_OVER_MASK | \
00108 XGE_EIR_RECV_LFIFO_UNDER_MASK | \
00109 XGE_EIR_RECV_DFIFO_OVER_MASK | \
00110 XGE_EIR_RECV_MISSED_FRAME_MASK | \
00111 XGE_EIR_RECV_COLLISION_MASK | \
00112 XGE_EIR_RECV_FCS_ERROR_MASK | \
00113 XGE_EIR_RECV_LEN_ERROR_MASK | \
00114 XGE_EIR_RECV_SHORT_ERROR_MASK | \
00115 XGE_EIR_RECV_LONG_ERROR_MASK | \
00116 XGE_EIR_SLOT_LENGTH_ERROR_MASK)
00117
00118 /* a default interrupt mask for scatter-gather DMA operation */
00119 #define XGE_EIR_DFT_SG_MASK (XGE_EIR_RECV_ERROR_MASK | \
00120 XGE_EIR_RECV_LFIFO_OVER_MASK | \
00121 XGE_EIR_RECV_LFIFO_UNDER_MASK | \
00122 XGE_EIR_XMIT_SFIFO_OVER_MASK | \
00123 XGE_EIR_XMIT_SFIFO_UNDER_MASK | \
00124 XGE_EIR_XMIT_LFIFO_OVER_MASK | \
00125 XGE_EIR_XMIT_LFIFO_UNDER_MASK | \
00126 XGE_EIR_RECV_DFIFO_OVER_MASK | \
00127 XGE_EIR_RECV_MISSED_FRAME_MASK | \
00128 XGE_EIR_RECV_COLLISION_MASK | \
00129 XGE_EIR_RECV_FCS_ERROR_MASK | \
00130 XGE_EIR_RECV_LEN_ERROR_MASK | \
00131 XGE_EIR_RECV_SHORT_ERROR_MASK | \
00132 XGE_EIR_RECV_LONG_ERROR_MASK | \
00133 XGE_EIR_SLOT_LENGTH_ERROR_MASK)
00134
00135 /* a default interrupt mask for non-DMA operation (direct FIFOs) */
00136 #define XGE_EIR_DFT_FIFO_MASK (XGE_EIR_XMIT_DONE_MASK | \
00137 XGE_EIR_RECV_DONE_MASK | \
00138 XGE_EIR_DFT_SG_MASK)
00139
00140
00141 /*
00142 * Mask for the DMA interrupt enable and status registers.
00143 */
00144 #define XGE_DMA_SG_INTR_MASK (XDC_IXR_DMA_ERROR_MASK | \
00145 XDC_IXR_PKT_THRESHOLD_MASK | \
00146 XDC_IXR_PKT_WAIT_BOUND_MASK | \
00147 XDC_IXR_SG_END_MASK)

00148
00149 /**************************** Type Definitions *******************************/
00150
00151 /***************** Macros (Inline Functions) Definitions *********************/
00152
00153
00154 /***/
00155 /*
00156 *
00157 * Clears a structure of given size, in bytes, by setting each byte to 0.
00158 *
00159 * @param StructPtr is a pointer to the structure to be cleared.
00160 * @param NumBytes is the number of bytes in the structure.
00161 *
00162 * @return
00163 *
00164 * None.
00165 *
00166 * @note
00167 *
00168 * Signature: void XGemac_mClearStruct(Xuint8 *StructPtr, unsigned int NumBytes)
00169 *
00170 **/
00171 #define XGemac_mClearStruct(StructPtr, NumBytes) \
00172 { \
00173 int i; \
00174 Xuint8 *BytePtr = (Xuint8 *)(StructPtr); \
00175 for (i=0; i < (unsigned int)(NumBytes); i++) \
00176 { \
00177 *BytePtr++ = 0; \
00178 } \
00179 }
00180
00181 /************************** Variable Definitions *****************************/
00182
00183 extern XGemac_Config XGemac_ConfigTable[];

00184
00185 /************************** Function Prototypes ******************************/
00186
00187 void XGemac_CheckEmacError(XGemac *InstancePtr, Xuint32 IntrStatus);

00188 void XGemac_CheckFifoRecvError(XGemac *InstancePtr);

00189 void XGemac_CheckFifoSendError(XGemac *InstancePtr);

00190
00191 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_i.h File
Reference

Detailed Description

This header file contains internal identifiers, which are those shared between XGemac components. The
identifiers in this file are not intended for use external to the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Revision update

#include "xgemac.h"

#include "xgemac_l.h"

Go to the source code of this file.

Variables

XGemac_Config XGemac_ConfigTable []

Variable Documentation

XGemac_Config XGemac_ConfigTable[] ()

 This table contains configuration information for each GEMAC device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_l.h
Go to the documentation of this file.

00001 /* $Id: xgemac_l.h,v 1.1 2003/05/29 19:43:53 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file gemac/v1_00_c/src/xgemac_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xgemac.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a ecm 01/13/03 First release
00037 * 1.00b ecm 03/25/03 Revision update
00038 * 1.00c rmm 05/28/03 Removed tabs characters in file, added auto negotiate
00039 * bit to ECR constants.
00040 * </pre>
00041 *
00042 **/

00043
00044 #ifndef XGEMAC_L_H /* prevent circular inclusions */
00045 #define XGEMAC_L_H /* by using protection macros */
00046
00047 /***************************** Include Files *********************************/
00048
00049 #include "xbasic_types.h"

00050 #include "xio.h"

00051
00052 /************************** Constant Definitions *****************************/
00053
00054 /* Offset of the MAC registers from the IPIF base address */
00055 #define XGE_REG_OFFSET 0x1000UL
00056
00057 /*
00058 * Register offsets for the Ethernet MAC. Each register is 32 bits.
00059 */
00060 #define XGE_EMIR_OFFSET (XGE_REG_OFFSET + 0x0) /* GEMAC Module ID */
00061 #define XGE_ECR_OFFSET (XGE_REG_OFFSET + 0x4) /* MAC Control */
00062 #define XGE_IFGP_OFFSET (XGE_REG_OFFSET + 0x8) /* Interframe Gap */
00063 #define XGE_SAH_OFFSET (XGE_REG_OFFSET + 0xC) /* Station addr, high */
00064 #define XGE_SAL_OFFSET (XGE_REG_OFFSET + 0x10) /* Station addr, low */
00065 #define XGE_MGTCR_OFFSET (XGE_REG_OFFSET + 0x14) /* MII mgmt control */
00066 #define XGE_MGTDR_OFFSET (XGE_REG_OFFSET + 0x18) /* MII mgmt data */
00067 #define XGE_RPLR_OFFSET (XGE_REG_OFFSET + 0x1C) /* Rx packet length */
00068 #define XGE_TPLR_OFFSET (XGE_REG_OFFSET + 0x20) /* Tx packet length */
00069 #define XGE_TSR_OFFSET (XGE_REG_OFFSET + 0x24) /* Tx status */
00070 #define XGE_TPPR_OFFSET (XGE_REG_OFFSET + 0x28) /* Tx Pause Pkt */
00071 #define XGE_CEAH_OFFSET (XGE_REG_OFFSET + 0x2C) /* CAM Entry Address High */
00072 #define XGE_CEAL_OFFSET (XGE_REG_OFFSET + 0x30) /* CAM Entry Address Low */
00073 #define XGE_SLEC_OFFSET (XGE_REG_OFFSET + 0x34) /* Slot Length errors */
00074 #define XGE_TEDC_OFFSET (XGE_REG_OFFSET + 0x38) /* Transmit excess
00075 * deferral cnt */
00076
00077 /*
00078 * Register offsets for the IPIF components
00079 */
00080 #define XGE_ISR_OFFSET 0x20UL /* Interrupt status */
00081
00082 #define XGE_DMA_OFFSET 0x2300UL
00083 #define XGE_DMA_SEND_OFFSET (XGE_DMA_OFFSET + 0x0) /* DMA send channel */
00084 #define XGE_DMA_RECV_OFFSET (XGE_DMA_OFFSET + 0x40) /* DMA recv channel */
00085
00086 #define XGE_PFIFO_OFFSET 0x2000UL
00087 #define XGE_PFIFO_TXREG_OFFSET (XGE_PFIFO_OFFSET + 0x0) /* Tx registers */
00088 #define XGE_PFIFO_RXREG_OFFSET (XGE_PFIFO_OFFSET + 0x10) /* Rx registers */
00089 #define XGE_PFIFO_TXDATA_OFFSET (XGE_PFIFO_OFFSET + 0x100) /* Tx keyhole */
00090 #define XGE_PFIFO_RXDATA_OFFSET (XGE_PFIFO_OFFSET + 0x200) /* Rx keyhole */
00091
00092 /*
00093 * GEMAC Module Identification Register (EMIR)
00094 */

00095 #define XGE_EMIR_VERSION_MASK 0xFFFF0000UL /* Device version */
00096 #define XGE_EMIR_TYPE_MASK 0x0000FF00UL /* Device type */
00097
00098 /*
00099 * GEMAC Control Register (ECR)
00100 */
00101 #define XGE_ECR_FULL_DUPLEX_MASK 0x80000000UL /* Full duplex mode */
00102 #define XGE_ECR_XMIT_RESET_MASK 0x40000000UL /* Reset transmitter */
00103 #define XGE_ECR_XMIT_ENABLE_MASK 0x20000000UL /* Enable transmitter */
00104 #define XGE_ECR_RECV_RESET_MASK 0x10000000UL /* Reset receiver */
00105 #define XGE_ECR_RECV_ENABLE_MASK 0x08000000UL /* Enable receiver */
00106 #define XGE_ECR_PHY_ENABLE_MASK 0x04000000UL /* Enable PHY */
00107 #define XGE_ECR_XMIT_PAD_ENABLE_MASK 0x02000000UL /* Enable xmit pad insert
*/
00108 #define XGE_ECR_XMIT_FCS_ENABLE_MASK 0x01000000UL /* Enable xmit FCS insert
*/
00109 #define XGE_ECR_XMIT_ADDR_INSERT_MASK 0x00800000UL /* Enable xmit source
addr
00110 * insertion */
00111 #define XGE_ECR_XMIT_ERROR_INSERT_MASK 0x00400000UL /* Insert xmit error */
00112 #define XGE_ECR_XMIT_ADDR_OVWRT_MASK 0x00200000UL /* Enable xmit source
addr
00113 * overwrite */
00114 #define XGE_ECR_LOOPBACK_MASK 0x00100000UL /* Enable internal
00115 * loopback */
00116 #define XGE_ECR_RECV_STRIP_ENABLE_MASK 0x00080000UL /* Enable recv pad/fcs
strip */
00117 #define XGE_ECR_UNICAST_ENABLE_MASK 0x00020000UL /* Enable unicast addr */
00118 #define XGE_ECR_MULTI_ENABLE_MASK 0x00010000UL /* Enable multicast addr
*/
00119 #define XGE_ECR_BROAD_ENABLE_MASK 0x00008000UL /* Enable broadcast addr
*/
00120 #define XGE_ECR_PROMISC_ENABLE_MASK 0x00004000UL /* Enable promiscuous
mode */
00121
00122 #define XGE_ECR_REO_ENABLE_MASK 0x00002000UL /* Enable Receive Error
00123 * Override */
00124 #define XGE_ECR_RECV_JUMBO_ENABLE_MASK 0x00001000UL /* Enable RX of Jumbo
Frames */
00125 #define XGE_ECR_XMIT_PAUSE_ENABLE_MASK 0x00000800UL /* Enable TX of Pause
Pkts */
00126 #define XGE_ECR_RECV_PAUSE_ENABLE_MASK 0x00000400UL /* Enable RX of Pause
Pkts */
00127 #define XGE_ECR_XMIT_VLAN_ENABLE_MASK 0x00000200UL /* Enable TX of VLAN Pkts
*/
00128 #define XGE_ECR_RECV_VLAN_ENABLE_MASK 0x00000100UL /* Enable RX of VLAN Pkts
*/
00129 #define XGE_ECR_AUTONEG_ENABLE_MASK 0x00000080UL /* Enable PCS/PMA
autonegotiate */
00130
00131 #define XGE_ECR_ADD_HASH_ADDR_MASK 0x00000FFFUL /* Todo - fix */
00132 #define XGE_ECR_CLEAR_HASH_MASK 0x00000000UL /* Todo - fix */
00133

00134 /*
00135 * Interframe Gap Register (IFGR)
00136 */
00137 #define XGE_IFGP_MASK 0xFF000000UL /* Interframe Gap Mask */
00138 #define XGE_IFGP_SHIFT 24
00139
00140 /*
00141 * Station Address High Register (SAH)
00142 */
00143 #define XGE_SAH_ADDR_MASK 0x0000FFFFUL /* Station address high bytes
*/
00144
00145 /*
00146 * Station Address Low Register (SAL)
00147 */
00148 #define XGE_SAL_ADDR_MASK 0xFFFFFFFFUL /* Station address low bytes
*/
00149
00150 /*
00151 * MII Management Control Register (MGTCR)
00152 */
00153 #define XGE_MGTCR_START_MASK 0x80000000UL /* Start/Busy */
00154 #define XGE_MGTCR_RW_NOT_MASK 0x40000000UL /* Read/Write Not (direction)
*/
00155 #define XGE_MGTCR_PHY_ADDR_MASK 0x3E000000UL /* PHY address */
00156 #define XGE_MGTCR_PHY_ADDR_SHIFT 25 /* PHY address shift */
00157 #define XGE_MGTCR_REG_ADDR_MASK 0x01F00000UL /* Register address */
00158 #define XGE_MGTCR_REG_ADDR_SHIFT 20 /* Register addr shift */
00159 #define XGE_MGTCR_MII_ENABLE_MASK 0x00080000UL /* Enable MII from GEMAC */
00160 #define XGE_MGTCR_RD_ERROR_MASK 0x00040000UL /* MII mgmt read error */
00161
00162 /*
00163 * MII Management Data Register (MGTDR)
00164 */
00165 #define XGE_MGTDR_DATA_MASK 0x0000FFFFUL /* MII data */
00166
00167 /*
00168 * Receive Packet Length Register (RPLR)
00169 */
00170 #define XGE_RPLR_LENGTH_MASK 0x0000FFFFUL /* Receive packet length */
00171
00172 /*
00173 * Transmit Packet Length Register (TPLR)
00174 */
00175 #define XGE_TPLR_LENGTH_MASK 0x0000FFFFUL /* Transmit packet length */
00176
00177 /*
00178 * Transmit Status Register (TSR)
00179 */
00180 #define XGE_TSR_EXCESS_DEFERRAL_MASK 0x80000000UL /* Transmit excess deferral
*/
00181 #define XGE_TSR_FIFO_UNDERRUN_MASK 0x40000000UL /* Packet FIFO underrun */

00182 #define XGE_TSR_ATTEMPTS_MASK 0x3E000000UL /* Transmission attempts */
00183 #define XGE_TSR_LATE_COLLISION_MASK 0x01000000UL /* Transmit late collision */
00184
00185 /*
00186 * Transmit Pause Packet Register (TPPR)
00187 */
00188 #define XGE_TPPR_DATA_MASK 0x0000FFFFUL
00189
00190 /*
00191 * CAM Entry Address High Register (CEAH)
00192 */
00193 #define XGE_CLOC_DATA_MASK 0x000F0000UL
00194 #define XGE_CEAH_DATA_MASK 0x0000FFFFUL
00195
00196 /*
00197 * Transmit Excess Deferral Count (TEDC)
00198 */
00199 #define XGE_TEDC_DATA_MASK 0x0000FFFFUL
00200
00201
00202 /*
00203 * GEMAC Interrupt Registers (Status and Enable) masks. These registers are
00204 * part of the IPIF IP Interrupt registers
00205 */
00206 #define XGE_EIR_XMIT_DONE_MASK 0x00000001UL /* Xmit complete */
00207 #define XGE_EIR_RECV_DONE_MASK 0x00000002UL /* Recv complete */
00208 #define XGE_EIR_XMIT_ERROR_MASK 0x00000004UL /* Xmit error */
00209 #define XGE_EIR_RECV_ERROR_MASK 0x00000008UL /* Recv error */
00210 #define XGE_EIR_XMIT_SFIFO_EMPTY_MASK 0x00000010UL /* Xmit status fifo empty
*/
00211 #define XGE_EIR_RECV_LFIFO_EMPTY_MASK 0x00000020UL /* Recv length fifo empty
*/
00212 #define XGE_EIR_XMIT_LFIFO_FULL_MASK 0x00000040UL /* Xmit length fifo full */
00213 #define XGE_EIR_RECV_LFIFO_OVER_MASK 0x00000080UL /* Recv length fifo
00214 * overrun */
00215 #define XGE_EIR_RECV_LFIFO_UNDER_MASK 0x00000100UL /* Recv length fifo
00216 * underrun */
00217 #define XGE_EIR_XMIT_SFIFO_OVER_MASK 0x00000200UL /* Xmit status fifo
00218 * overrun */
00219 #define XGE_EIR_XMIT_SFIFO_UNDER_MASK 0x00000400UL /* Transmit status fifo
00220 * underrun */
00221 #define XGE_EIR_XMIT_LFIFO_OVER_MASK 0x00000800UL /* Transmit length fifo
00222 * overrun */
00223 #define XGE_EIR_XMIT_LFIFO_UNDER_MASK 0x00001000UL /* Transmit length fifo
00224 * underrun */
00225 #define XGE_EIR_XMIT_PAUSE_MASK 0x00002000UL /* Transmit pause pkt
00226 * received */
00227 #define XGE_EIR_RECV_DFIFO_OVER_MASK 0x00004000UL /* Receive data fifo
00228 * overrun */
00229 #define XGE_EIR_RECV_MISSED_FRAME_MASK 0x00008000UL /* Receive missed frame
00230 * error */
00231 #define XGE_EIR_RECV_COLLISION_MASK 0x00010000UL /* Receive collision
00232 * error */

00233 #define XGE_EIR_RECV_FCS_ERROR_MASK 0x00020000UL /* Receive FCS error */
00234 #define XGE_EIR_RECV_LEN_ERROR_MASK 0x00040000UL /* Receive length field
00235 * error */
00236 #define XGE_EIR_RECV_SHORT_ERROR_MASK 0x00080000UL /* Receive short frame
00237 * error */
00238 #define XGE_EIR_RECV_LONG_ERROR_MASK 0x00100000UL /* Receive long frame
00239 * error */
00240 #define XGE_EIR_RECV_ALIGN_ERROR_MASK 0x00200000UL /* Receive alignment
00241 * error */
00242 #define XGE_EIR_SLOT_LENGTH_ERROR_MASK 0x00200000UL /* Slot Length
00243 * error */
00244
00245 /* Offset of the MAC Statistics registers from the IPIF base address */
00246 #define XGE_STAT_REG_OFFSET 0x1100UL
00247
00248 /*
00249 * Register offsets for the MAC Statistics registers. Each register is 32 bits.
00250 */
00251
00252 /* Frames RX'd ok */
00253 #define XGE_STAT_RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x00)
00254
00255 /* RX FCS error */
00256 #define XGE_STAT_FCSERR_OFFSET (XGE_STAT_REG_OFFSET + 0x08)
00257
00258 /* Broadcast Frames RX'd ok */
00259 #define XGE_STAT_BFRXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x10)
00260
00261 /* Multicast Frames RX'd ok */
00262 #define XGE_STAT_MCRXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x18)
00263
00264 /* 64 byte frames RX'd ok */
00265 #define XGE_STAT_64RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x20)
00266
00267 /* 65-127 byte frames RX'd ok */
00268 #define XGE_STAT_127RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x28)
00269
00270 /* 128-255 byte frames RX'd ok */
00271 #define XGE_STAT_255RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x30)
00272
00273 /* 256-511 byte frames RX'd ok */
00274 #define XGE_STAT_511RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x38)
00275
00276 /* 512-1023 byte frames RX'd ok */
00277 #define XGE_STAT_1023RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x40)
00278
00279 /* 1024-1518 byte frames RX'd ok */
00280 #define XGE_STAT_1518RXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x48)
00281
00282 /* Control Frames RX'd ok */
00283 #define XGE_STAT_CFRXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x50)
00284

00285 /* length/type out of range */
00286 #define XGE_STAT_LTERROR_OFFSET (XGE_STAT_REG_OFFSET + 0x58)
00287
00288 /* VLAN Frames RX'd ok */
00289 #define XGE_STAT_VLANRXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x60)
00290
00291 /* Pause Frames RX'd ok */
00292 #define XGE_STAT_PFRXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x68)
00293
00294 /* Control Frames with unsupported opcode RX's */
00295 #define XGE_STAT_CFUNSUP_OFFSET (XGE_STAT_REG_OFFSET + 0x70)
00296
00297 /* Oversize Frames RX'd ok */
00298 #define XGE_STAT_OFRXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x78)
00299
00300 /* Undersize Frames RX'd */
00301 #define XGE_STAT_UFRX_OFFSET (XGE_STAT_REG_OFFSET + 0x80)
00302
00303 /* Fragment Frames RX'd */
00304 #define XGE_STAT_FRAGRX_OFFSET (XGE_STAT_REG_OFFSET + 0x88)
00305
00306 /* RX Byte Count */
00307 #define XGE_STAT_RXBYTES_OFFSET (XGE_STAT_REG_OFFSET + 0x90)
00308
00309 /* TX Byte Count */
00310 #define XGE_STAT_TXBYTES_OFFSET (XGE_STAT_REG_OFFSET + 0x98)
00311
00312 /* Frames TX'd ok */
00313 #define XGE_STAT_TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xA0)
00314
00315 /* Broadcast Frames TX'd ok */
00316 #define XGE_STAT_BFTXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xA8)
00317
00318 /* Multicast Frames TX'd ok */
00319 #define XGE_STAT_MFTXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xB0)
00320
00321 /* TX Underrun error */
00322 #define XGE_STAT_TXURUNERR_OFFSET (XGE_STAT_REG_OFFSET + 0xB8)
00323
00324 /* Control Frames TX'd ok */
00325 #define XGE_STAT_CFTXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xC0)
00326
00327 /* 64 byte frames RX's ok*/
00328 #define XGE_STAT_64TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xC8)
00329
00330 /* 65-127 byte frames TX'd ok*/
00331 #define XGE_STAT_127TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xD0)
00332
00333 /* 128-255 byte frames TX'd ok*/
00334 #define XGE_STAT_255TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xD8)
00335
00336 /* 256-511 byte frames TX'd ok*/
00337 #define XGE_STAT_511TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xE0)

00338
00339 /* 512-1023 byte frames TX'd ok */
00340 #define XGE_STAT_1023TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xE8)
00341
00342 /* 1024-1518 byte frames TX'd ok */
00343 #define XGE_STAT_1518TXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xF0)
00344
00345 /* VLAN Frames TX'd ok */
00346 #define XGE_STAT_VLANTXOK_OFFSET (XGE_STAT_REG_OFFSET + 0xF8)
00347
00348 /* Pause Frames TX'd ok */
00349 #define XGE_STAT_PFTXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x100)
00350
00351 /* Oversize Frames TX'd ok */
00352 #define XGE_STAT_OFTXOK_OFFSET (XGE_STAT_REG_OFFSET + 0x108)
00353
00354 /* Single Collision Frames */
00355 #define XGE_STAT_SCOLL_OFFSET (XGE_STAT_REG_OFFSET + 0x110)
00356
00357 /* Multiple Collision Frames */
00358 #define XGE_STAT_MCOLL_OFFSET (XGE_STAT_REG_OFFSET + 0x118)
00359
00360 /* Deferred Frames */
00361 #define XGE_STAT_DEFERRED_OFFSET (XGE_STAT_REG_OFFSET + 0x120)
00362
00363 /* Late Collision Frames */
00364 #define XGE_STAT_LATECOLL_OFFSET (XGE_STAT_REG_OFFSET + 0x128)
00365
00366 /* Frames aborted due to excess collisions */
00367 #define XGE_STAT_TXABORTED_OFFSET (XGE_STAT_REG_OFFSET + 0x130)
00368
00369 /* Carrier sense errors */
00370 #define XGE_STAT_CARRIERERR_OFFSET (XGE_STAT_REG_OFFSET + 0x138)
00371
00372 /* Excess Deferral error */
00373 #define XGE_STAT_EXCESSDEF_OFFSET (XGE_STAT_REG_OFFSET + 0x140)
00374
00375 /**************************** Type Definitions *******************************/
00376
00377 /***************** Macros (Inline Functions) Definitions *********************/
00378
00379 /***
00380 *
00381 * Low-level driver macros and functions. The list below provides signatures
00382 * to help the user use the macros.
00383 *
00384 * Xuint32 XGemac_mReadReg(Xuint32 BaseAddress, int RegOffset)
00385 * void XGemac_mWriteReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Mask)
00386 *
00387 * void XGemac_mSetControlReg(Xuint32 BaseAddress, Xuint32 Mask)
00388 * void XGemac_mSetMacAddress(Xuint32 BaseAddress, Xuint8 *AddressPtr)
00389 *

00390 * void XGemac_mEnable(Xuint32 BaseAddress)
00391 * void XGemac_mDisable(Xuint32 BaseAddress)
00392 *
00393 * Xboolean XGemac_mIsTxDone(Xuint32 BaseAddress)
00394 * Xboolean XGemac_mIsRxEmpty(Xuint32 BaseAddress)
00395 *
00396 * void XGemac_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, int Size)
00397 * int XGemac_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr)
00398 *
00399 ***/
00400
00401 /**/
00402 /**
00403 *
00404 * Read the given register.
00405 *
00406 * @param BaseAddress is the base address of the device
00407 * @param RegOffset is the register offset to be read
00408 *
00409 * @return The 32-bit value of the register
00410 *
00411 * @note None.
00412 *
00413 ***/
00414 #define XGemac_mReadReg(BaseAddress, RegOffset) \

00415 XIo_In32((BaseAddress) + (RegOffset))
00416
00417
00418 /**/
00419 /**
00420 *
00421 * Write the given register.
00422 *
00423 * @param BaseAddress is the base address of the device
00424 * @param RegOffset is the register offset to be written
00425 * @param Data is the 32-bit value to write to the register
00426 *
00427 * @return None.
00428 *
00429 * @note None.
00430 *
00431 ***/
00432 #define XGemac_mWriteReg(BaseAddress, RegOffset, Data) \

00433 XIo_Out32((BaseAddress) + (RegOffset), (Data))
00434
00435
00436 /**/
00437 /**
00438 *
00439 * Set the contents of the control register. Use the XGE_ECR_* constants
00440 * defined above to create the bit-mask to be written to the register.
00441 *

00442 * @param BaseAddress is the base address of the device
00443 * @param Mask is the 16-bit value to write to the control register
00444 *
00445 * @return None.
00446 *
00447 * @note None.
00448 *
00449 ***/
00450 #define XGemac_mSetControlReg(BaseAddress, Mask) \

00451 XIo_Out32((BaseAddress) + XGE_ECR_OFFSET, (Mask))
00452
00453
00454 /**/
00455 /**
00456 *
00457 * Set the station address of the GEMAC device.
00458 *
00459 * @param BaseAddress is the base address of the device
00460 * @param AddressPtr is a pointer to a 6-byte MAC address
00461 *
00462 * @return None.
00463 *
00464 * @note None.
00465 *
00466 ***/
00467 #define XGemac_mSetMacAddress(BaseAddress, AddressPtr) \

00468 { \
00469 Xuint32 MacAddr; \
00470 \
00471 MacAddr = ((AddressPtr)[0] << 8) | (AddressPtr)[1]; \
00472 XIo_Out32((BaseAddress) + XGE_SAH_OFFSET, MacAddr); \
00473 \
00474 MacAddr = ((AddressPtr)[2] << 24) | ((AddressPtr)[3] << 16) | \
00475 ((AddressPtr)[4] << 8) | (AddressPtr)[5]; \
00476 \
00477 XIo_Out32((BaseAddress) + XGE_SAL_OFFSET, MacAddr); \
00478 }
00479
00480
00481 /**/
00482 /**
00483 *
00484 * Enable the transmitter and receiver. Preserve the contents of the control
00485 * register.
00486 *
00487 * @param BaseAddress is the base address of the device
00488 *
00489 * @return None.
00490 *
00491 * @note None.
00492 *
00493 ***/

00494 #define XGemac_mEnable(BaseAddress) \

00495 { \
00496 Xuint32 Control; \
00497 Control = XIo_In32((BaseAddress) + XGE_ECR_OFFSET); \
00498 Control &= ~(XGE_ECR_XMIT_RESET_MASK | XGE_ECR_RECV_RESET_MASK); \
00499 Control |= (XGE_ECR_XMIT_ENABLE_MASK | XGE_ECR_RECV_ENABLE_MASK); \
00500 XIo_Out32((BaseAddress) + XGE_ECR_OFFSET, Control); \
00501 }
00502
00503
00504 /**/
00505 /**
00506 *
00507 * Disable the transmitter and receiver. Preserve the contents of the control
00508 * register.
00509 *
00510 * @param BaseAddress is the base address of the device
00511 *
00512 * @return None.
00513 *
00514 * @note None.
00515 *
00516 ***/
00517 #define XGemac_mDisable(BaseAddress) \

00518 XIo_Out32((BaseAddress) + XGE_ECR_OFFSET, \
00519 XIo_In32((BaseAddress) + XGE_ECR_OFFSET) & \
00520 ~(XGE_ECR_XMIT_ENABLE_MASK | XGE_ECR_RECV_ENABLE_MASK))
00521
00522
00523 /**/
00524 /**
00525 *
00526 * Check to see if the transmission is complete.
00527 *
00528 * @param BaseAddress is the base address of the device
00529 *
00530 * @return XTRUE if it is done, or XFALSE if it is not.
00531 *
00532 * @note None.
00533 *
00534 ***/
00535 #define XGemac_mIsTxDone(BaseAddress) \

00536 (XIo_In32((BaseAddress) + XGE_ISR_OFFSET) &
XGE_EIR_XMIT_DONE_MASK)
00537
00538
00539 /**/
00540 /**
00541 *
00542 * Check to see if the receive FIFO is empty.
00543 *
00544 * @param BaseAddress is the base address of the device

00545 *
00546 * @return XTRUE if it is empty, or XFALSE if it is not.
00547 *
00548 * @note None.
00549 *
00550 ***/
00551 #define XGemac_mIsRxEmpty(BaseAddress) \

00552 (!(XIo_In32((BaseAddress) + XGE_ISR_OFFSET) &
XGE_EIR_RECV_DONE_MASK))
00553
00554
00555 /**/
00556 /**
00557 *
00558 * Reset MII compliant PHY
00559 *
00560 * @param BaseAddress is the base address of the device
00561 *
00562 * @return None.
00563 *
00564 * @note None.
00565 *
00566 ***/
00567 #define XGemac_mPhyReset(BaseAddress) \

00568 { \
00569 Xuint32 Control; \
00570 Control = XIo_In32((BaseAddress) + XGE_ECR_OFFSET); \
00571 Control &= ~XGE_ECR_PHY_ENABLE_MASK; \
00572 XIo_Out32((BaseAddress) + XGE_ECR_OFFSET, Control); \
00573 Control |= XGE_ECR_PHY_ENABLE_MASK; \
00574 XIo_Out32((BaseAddress) + XGE_ECR_OFFSET, Control); \
00575 }
00576
00577
00578 /************************** Function Prototypes ******************************/
00579
00580 void XGemac_SendFrame(Xuint32 BaseAddress, Xuint8 *FramePtr, int Size);

00581 int XGemac_RecvFrame(Xuint32 BaseAddress, Xuint8 *FramePtr);

00582
00583
00584 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access the
device. High-level driver functions are defined in xgemac.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Removed tabs characters in file, added auto negotiate
 bit to ECR constants.

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XGemac_mReadReg(BaseAddress, RegOffset)
#define XGemac_mWriteReg(BaseAddress, RegOffset, Data)
#define XGemac_mSetControlReg(BaseAddress, Mask)
#define XGemac_mSetMacAddress(BaseAddress, AddressPtr)
#define XGemac_mEnable(BaseAddress)

#define XGemac_mDisable(BaseAddress)
#define XGemac_mIsTxDone(BaseAddress)
#define XGemac_mIsRxEmpty(BaseAddress)
#define XGemac_mPhyReset(BaseAddress)

Define Documentation

#define XGemac_mDisable(BaseAddress)

Disable the transmitter and receiver. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XGemac_mEnable(BaseAddress)

Enable the transmitter and receiver. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XGemac_mIsRxEmpty(BaseAddress)

Check to see if the receive FIFO is empty.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is empty, or XFALSE if it is not.

Note:
None.

#define XGemac_mIsTxDone(BaseAddress)

Check to see if the transmission is complete.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if it is done, or XFALSE if it is not.

Note:
None.

#define XGemac_mPhyReset(BaseAddress)

Reset MII compliant PHY

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XGemac_mReadReg(BaseAddress,
RegOffset)

Read the given register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be read

Returns:
The 32-bit value of the register

Note:
None.

#define XGemac_mSetControlReg(BaseAddress,
Mask)

Set the contents of the control register. Use the XGE_ECR_* constants defined above to create the bit-
mask to be written to the register.

Parameters:
BaseAddress is the base address of the device
Mask is the 16-bit value to write to the control register

Returns:
None.

Note:
None.

#define XGemac_mSetMacAddress(BaseAddress,
AddressPtr)

Set the station address of the GEMAC device.

Parameters:
BaseAddress is the base address of the device
AddressPtr is a pointer to a 6-byte MAC address

Returns:
None.

Note:
None.

#define XGemac_mWriteReg(BaseAddress,
RegOffset,
Data)

Write the given register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the register offset to be written
Data is the 32-bit value to write to the register

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_selftest.c File
Reference

Detailed Description

Self-test and diagnostic functions of the XGemac driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Revision update

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XGemac_SelfTest (XGemac *InstancePtr)

Function Documentation

XStatus XGemac_SelfTest (XGemac * InstancePtr)

Performs a self-test on the Ethernet device. The test includes:

● Run self-test on DMA channel, FIFO, and IPIF components
● Reset the Ethernet device, check its registers for proper reset values, and run an internal loopback test on the device.

The internal loopback uses the device in polled mode.

This self-test is destructive. On successful completion, the device is reset and returned to its default configuration. The
caller is responsible for re-configuring the device after the self-test is run, and starting it when ready to send and receive
frames.

It should be noted that data caching must be disabled when this function is called because the DMA self-test uses two local
buffers (on the stack) for the transfer test.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:

 XST_SUCCESS Self-test was successful
 XST_PFIFO_BAD_REG_VALUE FIFO failed register self-test
 XST_DMA_TRANSFER_ERROR DMA failed data transfer self-test
 XST_DMA_RESET_REGISTER_ERROR DMA control register value was incorrect
 after a reset
 XST_REGISTER_ERROR Ethernet failed register reset test
 XST_LOOPBACK_ERROR Internal loopback failed
 XST_IPIF_REG_WIDTH_ERROR An invalid register width was passed into
 the function
 XST_IPIF_RESET_REGISTER_ERROR The value of a register at reset was invalid
 XST_IPIF_DEVICE_STATUS_ERROR A write to the device status register did
 not read back correctly
 XST_IPIF_DEVICE_ACK_ERROR A bit in the device status register did not
 reset when acked
 XST_IPIF_DEVICE_ENABLE_ERROR The device interrupt enable register was not
 updated correctly by the hardware when other
 registers were written to
 XST_IPIF_IP_STATUS_ERROR A write to the IP interrupt status
 register did not read back correctly
 XST_IPIF_IP_ACK_ERROR One or more bits in the IP status
 register did not reset when acked
 XST_IPIF_IP_ENABLE_ERROR The IP interrupt enable register
 was not updated correctly when other
 registers were written to

Note:
This function makes use of options-related functions, and the XGemac_PollSend() and XGemac_PollRecv()
functions.

Because this test uses the PollSend function for its loopback testing, there is the possibility that this function will not
return if the hardware is broken (i.e., it never sets the status bit indicating that transmission is done). If this is of
concern to the user, the user should provide protection from this problem - perhaps by using a different timer thread

to monitor the self-test thread.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_polled.c File
Reference

Detailed Description

Contains functions used when the driver is in polled mode. Use the XGemac_SetOptions() function to
put the driver into polled mode.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Revision update

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XGemac_PollSend (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XGemac_PollRecv (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)

Function Documentation

XStatus XGemac_PollRecv (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame in polled mode. The device/driver must be in polled mode before calling
this function. The driver receives the frame directly from the MAC's packet FIFO. This is a non-
blocking receive, in that if there is no frame ready to be received at the device, the function returns
with an error. The MAC's error status is not checked, so statistics are not updated for polled receive.
The buffer into which the frame will be received must be word-aligned.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame
will be copied.

ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that
contains the size of the buffer on entry into the function and the size the
received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the

frame waiting in the FIFO.

Note:
Input buffer must be big enough to hold the largest Ethernet frame. Buffer must also be 32-bit
aligned.

XStatus XGemac_PollSend (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame in polled mode. The device/driver must be in polled mode before calling this
function. The driver writes the frame directly to the MAC's packet FIFO, then enters a loop checking
the device status for completion or error. Statistics are updated if an error occurs. The buffer to be
sent must be word-aligned.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including
the destination and source addresses, the type/length field, and the data field. It is also assumed that
upper layer software does not append FCS at the end of the frame.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_POLLED if the device is not in polled mode
❍ XST_FIFO_NO_ROOM if there is no room in the GEMAC's length FIFO for this

frame
❍ XST_FIFO_ERROR if the FIFO was overrun or underrun. This error is critical and

requires the caller to reset the device.
❍ XST_EMAC_COLLISION if the send failed due to excess deferral or late collision

Note:
There is the possibility that this function will not return if the hardware is broken (i.e., it never
sets the status bit indicating that transmission is done). If this is of concern to the user, the user
should provide protection from this problem - perhaps by using a different timer thread to
monitor the PollSend thread. On a 1 Gbit (1000Mbps) MAC, it takes about 12.1 usecs to
transmit a maximum size Ethernet frame.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_intr_dma.c
File Reference

Detailed Description

Contains functions used in interrupt mode when configured with scatter-gather DMA.

The interrupt handler, XGemac_IntrHandlerDma(), must be connected by the user to the interrupt
controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00c rmm 05/28/03 New capability for driver

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

#include "xbuf_descriptor.h"
#include "xdma_channel.h"
#include "xipif_v1_23_b.h"

Functions

XStatus XGemac_SgSend (XGemac *InstancePtr, XBufDescriptor *BdPtr, int Delay)
XStatus XGemac_SgRecv (XGemac *InstancePtr, XBufDescriptor *BdPtr)

void XGemac_IntrHandlerDma (void *InstancePtr)
XStatus XGemac_SetPktThreshold (XGemac *InstancePtr, Xuint32 Direction, Xuint8 Threshold)
XStatus XGemac_GetPktThreshold (XGemac *InstancePtr, Xuint32 Direction, Xuint8 *ThreshPtr)
XStatus XGemac_SetPktWaitBound (XGemac *InstancePtr, Xuint32 Direction, Xuint32

TimerValue)
XStatus XGemac_GetPktWaitBound (XGemac *InstancePtr, Xuint32 Direction, Xuint32 *WaitPtr)
XStatus XGemac_SetSgRecvSpace (XGemac *InstancePtr, Xuint32 *MemoryPtr, Xuint32

ByteCount)
XStatus XGemac_SetSgSendSpace (XGemac *InstancePtr, Xuint32 *MemoryPtr, Xuint32

ByteCount)
void XGemac_SetSgRecvHandler (XGemac *InstancePtr, void *CallBackRef,

XGemac_SgHandler FuncPtr)
void XGemac_SetSgSendHandler (XGemac *InstancePtr, void *CallBackRef,

XGemac_SgHandler FuncPtr)

Function Documentation

XStatus XGemac_GetPktThreshold (XGemac * InstancePtr,
Xuint32 Direction,
Xuint8 * ThreshPtr

)

Get the value of the packet count threshold for this driver/device. The packet count threshold is used
for interrupt coalescing, which reduces the frequency of interrupts from the device to the processor. In
this case, the scatter-gather DMA engine only interrupts when the packet count threshold is reached,
instead of interrupting for each packet. A packet is a generic term used by the scatter-gather DMA
engine, and is equivalent to an Ethernet frame in our case.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
ThreshPtr is a pointer to the byte into which the current value of the packet threshold

register will be copied. An output parameter. A value of 0 indicates the use of
packet threshold by the hardware is disabled.

Returns:
❍ XST_SUCCESS if the packet threshold was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts

would also catch this error.

Note:
None.

XStatus XGemac_GetPktWaitBound (XGemac * InstancePtr,
Xuint32 Direction,
Xuint32 * WaitPtr

)

Get the packet wait bound timer for this driver/device. The packet wait bound is used during interrupt
coalescing to trigger an interrupt when not enough packets have been received to reach the packet
count threshold. A packet is a generic term used by the scatter-gather DMA engine, and is equivalent
to an Ethernet frame in our case. The timer is in milliseconds.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
WaitPtr is a pointer to the byte into which the current value of the packet wait bound

register will be copied. An output parameter. Units are in milliseconds in the
range 0 - 1023. A value of 0 indicates the packet wait bound timer is disabled.

Returns:
❍ XST_SUCCESS if the packet wait bound was retrieved successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts

would also catch this error.

Note:
None.

void XGemac_IntrHandlerDma (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured with scatter- gather DMA.

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be:
MAC, Recv Packet FIFO, Send Packet FIFO, Recv DMA channel, or Send DMA channel. The packet
FIFOs only interrupt during "deadlock" conditions.

Parameters:
InstancePtr is a pointer to the XGemac instance that just interrupted.

Returns:
None.

Note:
None.

XStatus XGemac_SetPktThreshold (XGemac * InstancePtr,
Xuint32 Direction,
Xuint8 Threshold

)

Set the packet count threshold for this device. The device must be stopped before setting the
threshold. The packet count threshold is used for interrupt coalescing, which reduces the frequency of
interrupts from the device to the processor. In this case, the scatter-gather DMA engine only interrupts
when the packet count threshold is reached, instead of interrupting for each packet. A packet is a
generic term used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our
case.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
Threshold is the value of the packet threshold count used during interrupt coalescing. A

value of 0 disables the use of packet threshold by the hardware.

Returns:
❍ XST_SUCCESS if the threshold was successfully set
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_DMA_SG_COUNT_EXCEEDED if the threshold must be equal to or less than

the number of descriptors in the list
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts

would also catch this error.

Note:
None.

XStatus XGemac_SetPktWaitBound (XGemac * InstancePtr,
Xuint32 Direction,
Xuint32 TimerValue

)

Set the packet wait bound timer for this driver/device. The device must be stopped before setting the
timer value. The packet wait bound is used during interrupt coalescing to trigger an interrupt when
not enough packets have been received to reach the packet count threshold. A packet is a generic term
used by the scatter-gather DMA engine, and is equivalent to an Ethernet frame in our case. The timer
is in milliseconds.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Direction indicates the channel, send or receive, from which the threshold register is read.
TimerValue is the value of the packet wait bound used during interrupt coalescing. It is in

milliseconds in the range 0 - 1023. A value of 0 disables the packet wait bound
timer.

Returns:
❍ XST_SUCCESS if the packet wait bound was set successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DEVICE_IS_STARTED if the device has not been stopped
❍ XST_INVALID_PARAM if the Direction parameter is invalid. Turning on asserts

would also catch this error.

Note:
None.

void XGemac_SetSgRecvHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_SgHandler FuncPtr

)

Set the callback function for handling received frames in scatter-gather DMA mode. The upper layer
software should call this function during initialization. The callback is called once per frame received.
The head of a descriptor list is passed in along with the number of descriptors in the list. Before
leaving the callback, the upper layer software should attach a new buffer to each descriptor in the list.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly.
Sending the received frame up the protocol stack should be done at task-level. If there are other
potentially slow operations within the callback, these too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XGemac_SetSgRecvSpace (XGemac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA receive descriptor list. This
function should only be called once, during initialization of the Ethernet driver. The memory space
must be big enough to hold some number of descriptors, depending on the needs of the system. The
xgemac.h file defines minimum and default numbers of descriptors which can be used to allocate this
memory space.

The memory space must be aligned on an 8 byte boundary. An assert will occur if asserts are turned
on and the memory is not aligned correctly.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

MemoryPtr is a pointer to the 64-bit aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XGemac_Initialize() function because the DMA channel components must be initialized
before the memory space is set.

void XGemac_SetSgSendHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_SgHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames in scatter-gather DMA
mode. The upper layer software should call this function during initialization. The callback is called
once per frame sent. The head of a descriptor list is passed in along with the number of descriptors in
the list. The callback is responsible for freeing buffers attached to these descriptors.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

XStatus XGemac_SetSgSendSpace (XGemac * InstancePtr,
Xuint32 * MemoryPtr,
Xuint32 ByteCount

)

Give the driver the memory space to be used for the scatter-gather DMA transmit descriptor list. This
function should only be called once, during initialization of the Ethernet driver. The memory space
must be big enough to hold some number of descriptors, depending on the needs of the system. The
xgemac.h file defines minimum and default numbers of descriptors which can be used to allocate this
memory space.

The memory space must be aligned on an 8 byte boundary. An assert will occur if asserts are turned
on and the memory is not aligned correctly.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

MemoryPtr is a pointer to the 64-bit aligned memory.
ByteCount is the length, in bytes, of the memory space.

Returns:
❍ XST_SUCCESS if the space was initialized successfully
❍ XST_NOT_SGDMA if the MAC is not configured for scatter-gather DMA
❍ XST_DMA_SG_LIST_EXISTS if this list space has already been created

Note:
If the device is configured for scatter-gather DMA, this function must be called AFTER the
XGemac_Initialize() function because the DMA channel components must be initialized
before the memory space is set.

XStatus XGemac_SgRecv (XGemac * InstancePtr,
XBufDescriptor * BdPtr

)

Add a descriptor, with an attached empty buffer, into the receive descriptor list. The buffer attached to
the descriptor must be aligned on an 8 byte boundary. This is used by the upper layer software during
initialization when first setting up the receive descriptors, and also during reception of frames to
replace filled buffers with empty buffers. This function can be called when the device is started or
stopped. Note that it does start the scatter-gather DMA engine. Although this is not necessary during
initialization, it is not a problem during initialization because the MAC receiver is not yet started.

The buffer attached to the descriptor must be 64-bit aligned on both the front end and the back end.

Notification of received frames are done asynchronously through the receive callback function.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BdPtr is a pointer to the buffer descriptor that will be added to the descriptor list.

Returns:
❍ XST_SUCCESS if a descriptor was successfully returned to the driver
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the receive descriptor list is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into

the list because a locked descriptor exists at the insert point.
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit.

XStatus XGemac_SgSend (XGemac * InstancePtr,
XBufDescriptor * BdPtr,
int Delay

)

Send an Ethernet frame using scatter-gather DMA. The caller attaches the frame to one or more buffer
descriptors, then calls this function once for each descriptor. The caller is responsible for allocating
and setting up the descriptor. An entire Ethernet frame may or may not be contained within one
descriptor. This function simply inserts the descriptor into the scatter- gather engine's transmit list.
The caller is responsible for providing mutual exclusion to guarantee that a frame is contiguous in the
transmit list. The buffer attached to the descriptor must be aligned on an 8 byte boundary.

The driver updates the descriptor with the device control register before being inserted into the
transmit list. If this is the last descriptor in the frame, the inserts are committed, which means the
descriptors for this frame are now available for transmission.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including
the destination and source addresses, the type/length field, and the data field. It is also assumed that
upper layer software does not append FCS at the end of the frame.

The buffer attached to the descriptor must be 64-bit aligned on the front end.

This call is non-blocking. Notification of error or successful transmission is done asynchronously
through the send or error callback function.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BdPtr is the address of a descriptor to be inserted into the transmit ring.
Delay indicates whether to start the scatter-gather DMA channel immediately, or

whether to wait. This allows the user to build up a list of more than one
descriptor before starting the transmission of the packets, which allows the
application to keep up with DMA and have a constant stream of frames being
transmitted. Use XEM_SGDMA_NODELAY or XEM_SGDMA_DELAY,
defined in xgemac.h, as the value of this argument. If the user chooses to delay
and build a list, the user must call this function with the
XEM_SGDMA_NODELAY option or call XGemac_Start() to kick off the
tranmissions.

Returns:
❍ XST_SUCCESS if the buffer was successfull sent
❍ XST_DEVICE_IS_STOPPED if the Ethernet MAC has not been started yet
❍ XST_NOT_SGDMA if the device is not in scatter-gather DMA mode
❍ XST_DMA_SG_LIST_FULL if the descriptor list for the DMA channel is full
❍ XST_DMA_SG_BD_LOCKED if the DMA channel cannot insert the descriptor into

the list because a locked descriptor exists at the insert point
❍ XST_DMA_SG_NOTHING_TO_COMMIT if even after inserting a descriptor into the

list, the DMA channel believes there are no new descriptors to commit. If this is ever
encountered, there is likely a thread mutual exclusion problem on transmit.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_intr_fifo.c
File Reference

Detailed Description

Contains functions related to interrupt mode using direct FIFO communication.

The interrupt handler, XGemac_IntrHandlerFifo(), must be connected by the user to the interrupt
controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00a ecm 02/05/03 includes support for simple DMA
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Revision update

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XGemac_FifoSend (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 ByteCount)
XStatus XGemac_FifoRecv (XGemac *InstancePtr, Xuint8 *BufPtr, Xuint32 *ByteCountPtr)

void XGemac_IntrHandlerFifo (void *InstancePtr)
void XGemac_SetFifoRecvHandler (XGemac *InstancePtr, void *CallBackRef,

XGemac_FifoHandler FuncPtr)
void XGemac_SetFifoSendHandler (XGemac *InstancePtr, void *CallBackRef,

XGemac_FifoHandler FuncPtr)

Function Documentation

XStatus XGemac_FifoRecv (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 * ByteCountPtr

)

Receive an Ethernet frame into the buffer passed as an argument. This function is called in response
to the callback function for received frames being called by the driver. The callback function is set up
using SetFifoRecvHandler, and is invoked when the driver receives an interrupt indicating a received
frame. The driver expects the upper layer software to call this function, FifoRecv, to receive the
frame. The buffer supplied should be large enough to hold a maximum-size Ethernet frame.

The buffer into which the frame will be received must be word-aligned.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from the Emac
to memory. This means that this buffer should not be cached. See the comment section "Simple
DMA" in xgemac.h for more information.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer into which the received Ethernet frame
will be copied.

ByteCountPtr is both an input and an output parameter. It is a pointer to a 32-bit word that
contains the size of the buffer on entry into the function and the size the
received frame on return from the function.

Returns:
❍ XST_SUCCESS if the frame was sent successfully
❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_NO_DATA if there is no frame to be received from the FIFO
❍ XST_BUFFER_TOO_SMALL if the buffer to receive the frame is too small for the

frame waiting in the FIFO.
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The

user should treat this as a fatal error that requires a reset of the EMAC device.

Note:
The input buffer must be big enough to hold the largest Ethernet frame.

XStatus XGemac_FifoSend (XGemac * InstancePtr,
Xuint8 * BufPtr,
Xuint32 ByteCount

)

Send an Ethernet frame using packet FIFO with interrupts. The caller provides a contiguous-memory
buffer and its length. The buffer must be word-aligned. The callback function set by using
SetFifoSendHandler is invoked when the transmission is complete.

It is assumed that the upper layer software supplies a correctly formatted Ethernet frame, including
the destination and source addresses, the type/length field, and the data field.

If the device is configured with DMA, simple DMA will be used to transfer the buffer from memory
to the Emac. This means that this buffer should not be cached. See the comment section "Simple
DMA" in xgemac.h for more information.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

BufPtr is a pointer to a word-aligned buffer containing the Ethernet frame to be sent.
ByteCount is the size of the Ethernet frame.

Returns:
❍ XST_SUCCESS if the frame was successfully sent. An interrupt is generated when the

GEMAC transmits the frame and the driver calls the callback set with
XGemac_SetFifoSendHandler()

❍ XST_DEVICE_IS_STOPPED if the device has not yet been started
❍ XST_NOT_INTERRUPT if the device is not in interrupt mode
❍ XST_FIFO_NO_ROOM if there is no room in the FIFO for this frame
❍ XST_DEVICE_BUSY if configured for simple DMA and the DMA engine is busy
❍ XST_DMA_ERROR if an error occurred during the DMA transfer (simple DMA). The

user should treat this as a fatal error that requires a reset of the EMAC device.

Note:
This function is not thread-safe. The user must provide mutually exclusive access to this
function if there are to be multiple threads that can call it.

void XGemac_IntrHandlerFifo (void * InstancePtr)

The interrupt handler for the Ethernet driver when configured for direct FIFO communication (as
opposed to DMA).

Get the interrupt status from the IpIf to determine the source of the interrupt. The source can be:
MAC, Recv Packet FIFO, or Send Packet FIFO. The packet FIFOs only interrupt during "deadlock"
conditions. All other FIFO-related interrupts are generated by the MAC.

Parameters:
InstancePtr is a pointer to the XGemac instance that just interrupted.

Returns:
None.

Note:
None.

void XGemac_SetFifoRecvHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_FifoHandler FuncPtr

)

Set the callback function for handling confirmation of transmitted frames when configured for direct
memory-mapped I/O using FIFOs. The upper layer software should call this function during
initialization. The callback is called by the driver once per frame sent. The callback is responsible for
freeing the transmitted buffer if necessary.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback, these should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

void XGemac_SetFifoSendHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_FifoHandler FuncPtr

)

Set the callback function for handling received frames when configured for direct memory-mapped
I/O using FIFOs. The upper layer software should call this function during initialization. The callback
is called once per frame received. During the callback, the upper layer software should call FifoRecv
to retrieve the received frame.

The callback is invoked by the driver within interrupt context, so it needs to do its job quickly.
Sending the received frame up the protocol stack should be done at task-level. If there are other
potentially slow operations within the callback, these too should be done at task-level.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_intr.c File
Reference

Detailed Description

This file contains general interrupt-related functions of the XGemac driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Revision update

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

void XGemac_SetErrorHandler (XGemac *InstancePtr, void *CallBackRef, XGemac_ErrorHandler
FuncPtr)

Function Documentation

void XGemac_SetErrorHandler (XGemac * InstancePtr,
void * CallBackRef,
XGemac_ErrorHandler FuncPtr

)

Set the callback function for handling asynchronous errors. The upper layer software should call this
function during initialization.

The error callback is invoked by the driver within interrupt context, so it needs to do its job quickly. If
there are potentially slow operations within the callback, these should be done at task-level.

The Xilinx errors that must be handled by the callback are:

● XST_DMA_ERROR indicates an unrecoverable DMA error occurred. This is typically a bus
error or bus timeout. The handler must reset and re-configure the device.

● XST_FIFO_ERROR indicates an unrecoverable FIFO error occurred. This is a deadlock
condition in the packet FIFO. The handler must reset and re-configure the device.

● XST_RESET_ERROR indicates an unrecoverable MAC error occurred, usually an overrun or
underrun. The handler must reset and re-configure the device.

● XST_DMA_SG_NO_LIST indicates an attempt was made to access a scatter-gather DMA list
that has not yet been created.

● XST_DMA_SG_LIST_EMPTY indicates the driver tried to get a descriptor from the receive
descriptor list, but the list was empty.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

CallBackRef is a reference pointer to be passed back to the adapter in the callback. This helps
the adapter correlate the callback to a particular driver.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_options.c File
Reference

Detailed Description

Functions in this file handle configuration of the XGemac driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Changed interframe gap API, process auto negotiate option

#include "xbasic_types.h"

#include "xgemac_i.h"

#include "xio.h"

Data Structures

struct OptionMap

Functions

XStatus XGemac_SetOptions (XGemac *InstancePtr, Xuint32 OptionsFlag)
Xuint32 XGemac_GetOptions (XGemac *InstancePtr)
XStatus XGemac_SetInterframeGap (XGemac *InstancePtr, Xuint8 Ifg)

void XGemac_GetInterframeGap (XGemac *InstancePtr, Xuint8 *IfgPtr)

Function Documentation

void XGemac_GetInterframeGap (XGemac * InstancePtr,
Xuint8 * IfgPtr

)

Get the interframe gap. See the description of interframe gap above in XGemac_SetInterframeGap().

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

IfgPtr is a pointer to an 8-bit buffer into which the interframe gap value will be copied.

Returns:
None. The values of the interframe gap parts are copied into the output parameters.

Xuint32 XGemac_GetOptions (XGemac * InstancePtr)

Get Ethernet driver/device options. The 32-bit value returned is a bit-mask representing the options. A one (1) in
the bit-mask means the option is on, and a zero (0) means the option is off.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
The 32-bit value of the Ethernet options. The value is a bit-mask representing all options that are currently
enabled. See xgemac.h for a description of the available options.

Note:
None.

XStatus XGemac_SetInterframeGap (XGemac * InstancePtr,
Xuint8 Ifg

)

Set the Interframe Gap (IFG), which is the time the MAC delays between transmitting frames. There are two
parts required. The total interframe gap is the total of the two parts. The values provided for the Part1 and Part2
parameters are multiplied by 4 to obtain the bit-time interval. The first part should be the first 2/3 of the total
interframe gap. The MAC will reset the interframe gap timer if carrier sense becomes true during the period
defined by interframe gap Part1. Part1 may be shorter than 2/3 the total and can be as small as zero. The second
part should be the last 1/3 of the total interframe gap, but can be as large as the total interframe gap. The MAC
will not reset the interframe gap timer if carrier sense becomes true during the period defined by interframe gap
Part2.

The device must be stopped before setting the interframe gap.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Ifg is the interframe gap, MSB is 8-bit time.

Returns:
❍ XST_SUCCESS if the interframe gap was set successfully
❍ XST_DEVICE_IS_STARTED if the device has not been stopped

Note:
None.

XStatus XGemac_SetOptions (XGemac * InstancePtr,
Xuint32 OptionsFlag

)

Set Ethernet driver/device options. The device must be stopped before calling this function. The options are
contained within a bit-mask with each bit representing an option (i.e., you can OR the options together). A one
(1) in the bit-mask turns an option on, and a zero (0) turns the option off.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

OptionsFlag is a bit-mask representing the Ethernet options to turn on or off. See xgemac.h for a
description of the available options.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_DEVICE_IS_STARTED if the device has not yet been stopped

Note:
This function is not thread-safe and makes use of internal resources that are shared between the Start,
Stop, and SetOptions functions, so if one task might be setting device options while another is trying to
start the device, protection of this shared data (typically using a semaphore) is required.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gemac/v1_00_c/src/xgemac_stats.c File
Reference

Detailed Description

Contains functions to get and clear the XGemac driver statistics.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/13/03 First release
 1.00b ecm 03/25/03 Revision update
 1.00c rmm 05/28/03 Revision update

#include "xbasic_types.h"

#include "xgemac_i.h"

Functions

void XGemac_GetStats (XGemac *InstancePtr, XGemac_Stats *StatsPtr)
void XGemac_ClearStats (XGemac *InstancePtr)

Function Documentation

void XGemac_ClearStats (XGemac * InstancePtr)

Clear the XGemacStats structure for this driver.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

Returns:
None.

Note:
None.

void XGemac_GetStats (XGemac * InstancePtr,
XGemac_Stats * StatsPtr

)

Get a copy of the XGemacStats structure, which contains the current statistics for this driver. The
statistics are only cleared at initialization or on demand using the XGemac_ClearStats() function.

The DmaErrors and FifoErrors counts indicate that the device has been or needs to be reset. Reset of
the device is the responsibility of the upper layer software.

Parameters:
InstancePtr is a pointer to the XGemac instance to be worked on.

StatsPtr is an output parameter, and is a pointer to a stats buffer into which the current
statistics will be copied.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_i.h File
Reference

Detailed Description

This header file contains internal identifiers, which are those shared between the files of the driver. It is
intended for internal use only.

NOTES:

None.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/13/02 First release

#include "xgpio.h"

Go to the source code of this file.

Variables

XGpio_Config XGpio_ConfigTable []

Variable Documentation

XGpio_Config XGpio_ConfigTable[] ()

 This table contains configuration information for each GPIO device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio.h
Go to the documentation of this file.

00001 /* $Id: xgpio.h,v 1.4 2002/05/02 20:44:36 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 * @file gpio/v1_00_a/src/xgpio.h
00025 *
00026 * This file contains the software API definition of the Xilinx General Purpose
00027 * I/O (XGpio) component.
00028 *
00029 * The Xilinx GPIO controller is a soft IP core designed for Xilinx FPGAs and
00030 * contains the following general features:
00031 * - Support for 8, 16, or 32 I/O discretes
00032 * - Each of the discretes can be configured for input or output.
00033 *
00034 * @note
00035 *
00036 * This API utilizes 32 bit I/O to the GPIO registers. With 16 and 8 bit GPIO
00037 * components, the unused bits from registers are read as zero and written as
00038 * don't cares.
00039 *
00040 * <pre>
00041 * MODIFICATION HISTORY:
00042 *

00043 * Ver Who Date Changes
00044 * ----- ---- -------- ---
00045 * 1.00a rmm 03/13/02 First release
00046 * </pre>
00047 ***/
00048
00049 #ifndef XGPIO_H /* prevent circular inclusions */
00050 #define XGPIO_H /* by using protection macros */
00051
00052 /***************************** Include Files ********************************/
00053
00054 #include "xbasic_types.h"

00055 #include "xstatus.h"

00056 #include "xgpio_l.h"

00057
00058 /************************** Constant Definitions ****************************/
00059
00060 /**************************** Type Definitions ******************************/
00061
00062 /*
00063 * This typedef contains configuration information for the device.
00064 */
00065 typedef struct
00066 {
00067 Xuint16 DeviceId; /* Unique ID of device */

00068 Xuint32 BaseAddress; /* Device base address */

00069 } XGpio_Config;
00070
00071 /**
00072 * The XGpio driver instance data. The user is required to allocate a
00073 * variable of this type for every GPIO device in the system. A pointer
00074 * to a variable of this type is then passed to the driver API functions.
00075 */
00076 typedef struct

00077 {
00078 Xuint32 BaseAddress; /* Device base address */

00079 Xuint32 IsReady; /* Device is initialized and ready */

00080 } XGpio;

00081
00082
00083 /***************** Macros (Inline Functions) Definitions ********************/
00084
00085
00086 /************************** Function Prototypes *****************************/
00087
00088 /*
00089 * API Basic functions implemented in xgpio.c
00090 */
00091 XStatus XGpio_Initialize(XGpio *InstancePtr, Xuint16 DeviceId);

00092 void XGpio_SetDataDirection(XGpio *InstancePtr, Xuint32 DirectionMask);

00093 Xuint32 XGpio_DiscreteRead(XGpio *InstancePtr);

00094 void XGpio_DiscreteWrite(XGpio *InstancePtr, Xuint32 Mask);

00095
00096 XGpio_Config *XGpio_LookupConfig(Xuint16 DeviceId);

00097
00098 /*
00099 * API Functions implemented in xgpio_extra.c
00100 */
00101 void XGpio_DiscreteSet(XGpio *InstancePtr, Xuint32 Mask);

00102 void XGpio_DiscreteClear(XGpio *InstancePtr, Xuint32 Mask);

00103
00104 /*
00105 * API Functions implemented in xgpio_selftest.c
00106 */
00107 XStatus XGpio_SelfTest(XGpio *InstancePtr);

00108 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio.h File Reference

Detailed Description

This file contains the software API definition of the Xilinx General Purpose I/O (XGpio) component.

The Xilinx GPIO controller is a soft IP core designed for Xilinx FPGAs and contains the following
general features:

● Support for 8, 16, or 32 I/O discretes
● Each of the discretes can be configured for input or output.

Note:
This API utilizes 32 bit I/O to the GPIO registers. With 16 and 8 bit GPIO components, the
unused bits from registers are read as zero and written as don't cares.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/13/02 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xgpio_l.h"

Go to the source code of this file.

Data Structures

struct XGpio
struct XGpio_Config

Functions

XStatus XGpio_Initialize (XGpio *InstancePtr, Xuint16 DeviceId)
void XGpio_SetDataDirection (XGpio *InstancePtr, Xuint32 DirectionMask)

Xuint32 XGpio_DiscreteRead (XGpio *InstancePtr)
void XGpio_DiscreteWrite (XGpio *InstancePtr, Xuint32 Mask)

XGpio_Config * XGpio_LookupConfig (Xuint16 DeviceId)
void XGpio_DiscreteSet (XGpio *InstancePtr, Xuint32 Mask)
void XGpio_DiscreteClear (XGpio *InstancePtr, Xuint32 Mask)

XStatus XGpio_SelfTest (XGpio *InstancePtr)

Function Documentation

void XGpio_DiscreteClear (XGpio * InstancePtr,
Xuint32 Mask

)

Set output discrete(s) to logic 0.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Mask is the set of bits that will be set to 0 in the discrete data register. All other bits in
the data register are unaffected.

Note:
None

Xuint32 XGpio_DiscreteRead (XGpio * InstancePtr)

Read state of discretes.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Returns:
Current copy of the discretes register.

Note:
None

void XGpio_DiscreteSet (XGpio * InstancePtr,
Xuint32 Mask

)

Set output discrete(s) to logic 1.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Mask is the set of bits that will be set to 1 in the discrete data register. All other bits in
the data register are unaffected.

Note:
None

void XGpio_DiscreteWrite (XGpio * InstancePtr,
Xuint32 Data

)

Write to discretes register

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Data is the value to be written to the discretes register.

Note:
See also XGpio_DiscreteSet() and XGpio_DiscreteClear().

XStatus XGpio_Initialize (XGpio * InstancePtr,
Xuint16 DeviceId

)

Initialize the XGpio instance provided by the caller based on the given DeviceID.

Nothing is done except to initialize the InstancePtr.

Parameters:
InstancePtr is a pointer to an XGpio instance. The memory the pointer references must be pre-

allocated by the caller. Further calls to manipulate the component through the
XGpio API must be made with this pointer.

DeviceId is the unique id of the device controlled by this XGpio component. Passing in a
device id associates the generic XGpio instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS Initialization was successfull.
❍ XST_DEVICE_NOT_FOUND Device configuration data was not found for a device

with the supplied device ID.

NOTES:

None

XGpio_Config* XGpio_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceID is the device identifier to lookup.

Returns:
❍ XGpio configuration structure pointer if DeviceID is found.
❍ XNULL if DeviceID is not found.

XStatus XGpio_SelfTest (XGpio * InstancePtr)

Run a self-test on the driver/device. This includes the following tests:

● Register reads.

ARGUMENTS:

Parameters:
InstancePtr is a pointer to the XGpio instance to be worked on. This parameter must have

been previously initialized with XGpio_Initialize().

Returns:
❍ XST_SUCCESS If test passed
❍ XST_FAILURE If test failed

Note:
Assume that the device is in it's reset state which means that the TRI register is set to all
inputs. We cannot twiddle bits in the data register since this may lead to a real disaster (i.e.
whatever is hooked to those pins gets activated when you'd least expect).

void XGpio_SetDataDirection (XGpio * InstancePtr,
Xuint32 DirectionMask

)

Set the input/output direction of all discrete signals.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

DirectionMask is a bitmask specifying which discretes are input and which are output. Bits
set to 0 are output and bits set to 1 are input.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XGpio Struct Reference
#include <xgpio.h>

Detailed Description

The XGpio driver instance data. The user is required to allocate a variable of this type for every GPIO
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● gpio/v1_00_a/src/xgpio.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_l.h
Go to the documentation of this file.

00001 /* $Id: xgpio_l.h,v 1.1 2002/05/02 20:39:10 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file gpio/v1_00_a/src/xgpio_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xgpio.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00b jhl 04/24/02 First release
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XGPIO_L_H /* prevent circular inclusions */

00043 #define XGPIO_L_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xio.h"

00049
00050 /************************** Constant Definitions *****************************/
00051
00052 /** @name Registers
00053 *
00054 * Register offsets for this device. This device does not utilize IPIF
registers.
00055 * @{
00056 */
00057 /**
00058 * - XGPIO_DATA_OFFSET Data register
00059 * - XGPIO_TRI_OFFSET Three state register (sets input/output direction)
00060 * 0 configures pin for output and 1 for input.
00061 */
00062 #define XGPIO_DATA_OFFSET 0x00000000

00063 #define XGPIO_TRI_OFFSET 0x00000004

00064 /* @} */
00065
00066 /**************************** Type Definitions *******************************/
00067
00068
00069 /***************** Macros (Inline Functions) Definitions *********************/
00070
00071
00072 /***
00073 *
00074 * Low-level driver macros. The list below provides signatures to help the
00075 * user use the macros.
00076 *
00077 * Xuint32 XGpio_mReadReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Data)
00078 * void XGpio_mWriteReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Data)
00079 *
00080 * void XGpio_mSetDataDirection(Xuint32 BaseAddress, Xuint32 DirectionMask)
00081 *
00082 * Xuint32 XGpio_mGetDataReg(Xuint32 BaseAddress)
00083 * void XGpio_mSetDataReg(Xuint32 BaseAddress, Xuint32 Mask)
00084 *
00085 ***/
00086
00087 /**/
00088 /**
00089 *
00090 * Write a value to a GPIO register. A 32 bit write is performed. If the
00091 * GPIO component is implemented in a smaller width, only the least
00092 * significant data is written.
00093 *

00094 * @param BaseAddress is the base address of the GPIO device.
00095 * @param RegOffset is the register offset from the base to write to.
00096 * @param Data is the data written to the register.
00097 *
00098 * @return None.
00099 *
00100 * @note None.
00101 *
00102 **/
00103 #define XGpio_mWriteReg(BaseAddress, RegOffset, Data) \

00104 (XIo_Out32((BaseAddress) + (RegOffset), (Xuint32)(Data)))
00105
00106 /**/
00107 /**
00108 *
00109 * Read a value from a GPIO register. A 32 bit read is performed. If the
00110 * GPIO component is implemented in a smaller width, only the least
00111 * significant data is read from the register. The most significant data
00112 * will be read as 0.
00113 *
00114 * @param BaseAddress is the base address of the GPIO device.
00115 * @param Register is the register offset from the base to write to.
00116 * @param Data is the data written to the register.
00117 *
00118 * @return None.
00119 *
00120 * @note None.
00121 *
00122 **/
00123 #define XGpio_mReadReg(BaseAddress, RegOffset) \

00124 (XIo_In32((BaseAddress) + (RegOffset)))
00125
00126 /***
00127 *
00128 * Set the input/output direction of all signals.
00129 *
00130 * @param BaseAddress contains the base address of the GPIO device.
00131 * @param DirectionMask is a bitmask specifying which discretes are input and
00132 * which are output. Bits set to 0 are output and bits set to 1 are
00133 * input.
00134 *
00135 * @return None.
00136 *
00137 * @note None.
00138 *
00139 **/
00140 #define XGpio_mSetDataDirection(BaseAddress, DirectionMask) \
00141 XGpio_mWriteReg((BaseAddress), XGPIO_TRI_OFFSET, (DirectionMask))
00142
00143
00144 /**/
00145 /**

00146 * Get the data register.
00147 *
00148 * @param BaseAddress contains the base address of the GPIO device.
00149 *
00150 * @return The contents of the data register.
00151 *
00152 * @note None.
00153 *
00154 ***/
00155 #define XGpio_mGetDataReg(BaseAddress) \

00156 XGpio_mReadReg(BaseAddress, XGPIO_DATA_OFFSET)
00157
00158 /**/
00159 /**
00160 * Set the data register.
00161 *
00162 * @param BaseAddress contains the base address of the GPIO device.
00163 * @param Data is the value to be written to the data register.
00164 *
00165 * @return None.
00166 *
00167 * @note None.
00168 *
00169 ***/
00170 #define XGpio_mSetDataReg(BaseAddress, Data) \

00171 XGpio_mWriteReg((BaseAddress), XGPIO_DATA_OFFSET, (Data));
00172
00173
00174 /************************** Function Prototypes ******************************/
00175
00176 /************************** Variable Definitions *****************************/
00177
00178 #endif /* end of protection macro */
00179

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. The user should refer to the hardware device specification for more details of the device
operation. High-level driver functions are defined in xgpio.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Registers

Register offsets for this device. This device does not utilize IPIF registers.

#define XGPIO_DATA_OFFSET
#define XGPIO_TRI_OFFSET

Defines

#define XGpio_mWriteReg(BaseAddress, RegOffset, Data)
#define XGpio_mReadReg(BaseAddress, RegOffset)
#define XGpio_mGetDataReg(BaseAddress)
#define XGpio_mSetDataReg(BaseAddress, Data)

Define Documentation

#define XGPIO_DATA_OFFSET

● XGPIO_DATA_OFFSET Data register
❍ XGPIO_TRI_OFFSET Three state register (sets input/output direction) 0 configures

pin for output and 1 for input.

#define XGpio_mGetDataReg(BaseAddress)

Get the data register.

Parameters:
BaseAddress contains the base address of the GPIO device.

Returns:
The contents of the data register.

Note:
None.

#define XGpio_mReadReg(BaseAddress,
RegOffset)

Read a value from a GPIO register. A 32 bit read is performed. If the GPIO component is
implemented in a smaller width, only the least significant data is read from the register. The most
significant data will be read as 0.

Parameters:
BaseAddress is the base address of the GPIO device.
Register is the register offset from the base to write to.
Data is the data written to the register.

Returns:
None.

Note:
None.

#define XGpio_mSetDataReg(BaseAddress,
Data)

Set the data register.

Parameters:
BaseAddress contains the base address of the GPIO device.
Data is the value to be written to the data register.

Returns:
None.

Note:
None.

#define XGpio_mWriteReg(BaseAddress,
RegOffset,
Data)

Write a value to a GPIO register. A 32 bit write is performed. If the GPIO component is implemented
in a smaller width, only the least significant data is written.

Parameters:
BaseAddress is the base address of the GPIO device.
RegOffset is the register offset from the base to write to.
Data is the data written to the register.

Returns:
None.

Note:
None.

#define XGPIO_TRI_OFFSET

● XGPIO_DATA_OFFSET Data register
❍ XGPIO_TRI_OFFSET Three state register (sets input/output direction) 0 configures

pin for output and 1 for input.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio.c File Reference

Detailed Description

The implementation of the XGpio component's basic functionality. See xgpio.h for more information
about the component.

Note:
None

#include "xparameters.h"

#include "xgpio.h"

#include "xgpio_i.h"

#include "xstatus.h"

Functions

XStatus XGpio_Initialize (XGpio *InstancePtr, Xuint16 DeviceId)
XGpio_Config * XGpio_LookupConfig (Xuint16 DeviceId)

void XGpio_SetDataDirection (XGpio *InstancePtr, Xuint32 DirectionMask)
Xuint32 XGpio_DiscreteRead (XGpio *InstancePtr)

void XGpio_DiscreteWrite (XGpio *InstancePtr, Xuint32 Data)

Function Documentation

Xuint32 XGpio_DiscreteRead (XGpio * InstancePtr)

Read state of discretes.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Returns:
Current copy of the discretes register.

Note:
None

void XGpio_DiscreteWrite (XGpio * InstancePtr,
Xuint32 Data

)

Write to discretes register

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Data is the value to be written to the discretes register.

Note:
See also XGpio_DiscreteSet() and XGpio_DiscreteClear().

XStatus XGpio_Initialize (XGpio * InstancePtr,
Xuint16 DeviceId

)

Initialize the XGpio instance provided by the caller based on the given DeviceID.

Nothing is done except to initialize the InstancePtr.

Parameters:
InstancePtr is a pointer to an XGpio instance. The memory the pointer references must be pre-

allocated by the caller. Further calls to manipulate the component through the
XGpio API must be made with this pointer.

DeviceId is the unique id of the device controlled by this XGpio component. Passing in a
device id associates the generic XGpio instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS Initialization was successfull.
❍ XST_DEVICE_NOT_FOUND Device configuration data was not found for a device

with the supplied device ID.

NOTES:

None

XGpio_Config* XGpio_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceID is the device identifier to lookup.

Returns:
❍ XGpio configuration structure pointer if DeviceID is found.
❍ XNULL if DeviceID is not found.

void XGpio_SetDataDirection (XGpio * InstancePtr,
Xuint32 DirectionMask

)

Set the input/output direction of all discrete signals.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

DirectionMask is a bitmask specifying which discretes are input and which are output. Bits
set to 0 are output and bits set to 1 are input.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_i.h
Go to the documentation of this file.

00001 /* $Id: xgpio_i.h,v 1.3 2002/05/02 20:44:36 linnj Exp $: */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022
/**/
00023 /**
00024 * @file gpio/v1_00_a/src/xgpio_i.h
00025 *
00026 * This header file contains internal identifiers, which are those shared
00027 * between the files of the driver. It is intended for internal use only.
00028 *
00029 * NOTES:
00030 *
00031 * None.
00032 *
00033 * <pre>
00034 * MODIFICATION HISTORY:
00035 *
00036 * Ver Who Date Changes
00037 * ----- ---- -------- ---
00038 * 1.00a rmm 03/13/02 First release
00039 * </pre>
00040 **/
00041

00042 #ifndef XGPIO_I_H /* prevent circular inclusions */
00043 #define XGPIO_I_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xgpio.h"

00048
00049 /************************** Constant Definitions ****************************/
00050
00051
00052 /**************************** Type Definitions *******************************/
00053
00054
00055 /***************** Macros (Inline Functions) Definitions *********************/
00056
00057
00058 /************************** Function Prototypes ******************************/
00059
00060
00061 /************************** Variable Definitions ****************************/
00062
00063 extern XGpio_Config XGpio_ConfigTable[];

00064
00065 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_extra.c File
Reference

Detailed Description

The implementation of the XGpio component's advanced discrete functions. See xgpio.h for more
information about the component.

Note:
None

#include "xgpio.h"

Functions

void XGpio_DiscreteSet (XGpio *InstancePtr, Xuint32 Mask)
void XGpio_DiscreteClear (XGpio *InstancePtr, Xuint32 Mask)

Function Documentation

void XGpio_DiscreteClear (XGpio * InstancePtr,
Xuint32 Mask

)

Set output discrete(s) to logic 0.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Mask is the set of bits that will be set to 0 in the discrete data register. All other bits in
the data register are unaffected.

Note:
None

void XGpio_DiscreteSet (XGpio * InstancePtr,
Xuint32 Mask

)

Set output discrete(s) to logic 1.

Parameters:
InstancePtr is a pointer to an XGpio instance to be worked on.

Mask is the set of bits that will be set to 1 in the discrete data register. All other bits in
the data register are unaffected.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_selftest.c File
Reference

Detailed Description

The implementation of the XGpio component's self test function. See xgpio.h for more information
about the component.

Note:
None

#include "xgpio.h"

Functions

XStatus XGpio_SelfTest (XGpio *InstancePtr)

Function Documentation

XStatus XGpio_SelfTest (XGpio * InstancePtr)

Run a self-test on the driver/device. This includes the following tests:

● Register reads.

ARGUMENTS:

Parameters:
InstancePtr is a pointer to the XGpio instance to be worked on. This parameter must have

been previously initialized with XGpio_Initialize().

Returns:
❍ XST_SUCCESS If test passed
❍ XST_FAILURE If test failed

Note:
Assume that the device is in it's reset state which means that the TRI register is set to all
inputs. We cannot twiddle bits in the data register since this may lead to a real disaster (i.e.
whatever is hooked to those pins gets activated when you'd least expect).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

gpio/v1_00_a/src/xgpio_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of GPIO devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 02/04/02 First release

#include "xgpio.h"

#include "xparameters.h"

Variables

XGpio_Config XGpio_ConfigTable []

Variable Documentation

XGpio_Config XGpio_ConfigTable[]

 This table contains configuration information for each GPIO device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic.h File Reference

Detailed Description

XIic is the driver for an IIC master or slave device.

In order to reduce the memory requirements of the driver it is partitioned such that there are optional parts of the driver. Slave, master,
and multimaster features are optional such that these files are not required. In order to use the slave and multimaster features of the
driver, the user must call functions (XIic_SlaveInclude and XIic_MultiMasterInclude) to dynamically include the code . These
functions may be called at any time.

Bus Throttling

The IIC hardware provides bus throttling which allows either the device, as either a master or a slave, to stop the clock on the IIC bus.
This feature allows the software to perform the appropriate processing for each interrupt without an unreasonable response restriction.
With this design, it is important for the user to understand the implications of bus throttling.

Repeated Start

An application can send multiple messages, as a master, to a slave device and re-acquire the IIC bus each time a message is sent. The
repeated start option allows the application to send multiple messages without re-acquiring the IIC bus for each message. This feature
also could cause the application to lock up, or monopolize the IIC bus, should repeated start option be enabled and sequences of
messages never end (periodic data collection). Also when repeated start is not disable before the last master message is sent or received,
will leave the bus captive to the master, but unused.

Addressing

The IIC hardware is parameterized such that it can be built for 7 or 10 bit addresses. The driver provides the ability to control which
address size is sent in messages as a master to a slave device. The address size which the hardware responds to as a slave is
parameterized as 7 or 10 bits but fixed by the hardware build.

Addresses are represented as hex values with no adjustment for the data direction bit as the software manages address bit placement.
This is especially important as the bit placement is not handled the same depending on which options are used such as repeated start
and 7 vs 10 bit addessing.

Data Rates

The IIC hardware is parameterized such that it can be built to support data rates from DC to 400KBit. The frequency of the interrupts
which occur is proportional to the data rate.

Polled Mode Operation

This driver does not provide a polled mode of operation primarily because polled mode which is non-blocking is difficult with the
amount of interaction with the hardware that is necessary.

Interrupts

The device has many interrupts which allow IIC data transactions as well as bus status processing to occur.

The interrupts are divided into two types, data and status. Data interrupts indicate data has been received or transmitted while the status
interrupts indicate the status of the IIC bus. Some of the interrupts, such as Not Addressed As Slave and Bus Not Busy, are only used
when these specific events must be recognized as opposed to being enabled at all times.

Many of the interrupts are not a single event in that they are continuously present such that they must be disabled after recognition or
when undesired. Some of these interrupts, which are data related, may be acknowledged by the software by reading or writing data to
the appropriate register, or must be disabled. The following interrupts can be continuous rather than single events.

● Data Transmit Register Empty/Transmit FIFO Empty
● Data Receive Register Full/Receive FIFO
● Transmit FIFO Half Empty
● Bus Not Busy
● Addressed As Slave
● Not Addressed As Slave

The following interrupts are not passed directly to the application thru the status callback. These are only used internally for the driver
processing and may result in the receive and send handlers being called to indicate completion of an operation. The following interrupts
are data related rather than status.

● Data Transmit Register Empty/Transmit FIFO Empty
● Data Receive Register Full/Receive FIFO
● Transmit FIFO Half Empty
● Slave Transmit Complete

Interrupt To Event Mapping

The following table provides a mapping of the interrupts to the events which are passed to the status handler and the intended role
(master or slave) for the event. Some interrupts can cause multiple events which are combined together into a single status event such
as XII_MASTER_WRITE_EVENT and XII_GENERAL_CALL_EVENT

 Interrupt Event(s) Role

 Arbitration Lost Interrupt XII_ARB_LOST_EVENT Master
 Transmit Error XII_SLAVE_NO_ACK_EVENT Master
 IIC Bus Not Busy XII_BUS_NOT_BUSY_EVENT Master
 Addressed As Slave XII_MASTER_READ_EVENT, Slave
 XII_MASTER_WRITE_EVENT, Slave
 XII_GENERAL_CALL_EVENT Slave

Not Addressed As Slave Interrupt

The Not Addressed As Slave interrupt is not passed directly to the application thru the status callback. It is used to determine the end of
a message being received by a slave when there was no stop condition (repeated start). It will cause the receive handler to be called to
indicate completion of the operation.

RTOS Independence

This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any needs for dynamic memory
management, threads or thread mutual exclusion, virtual memory, or cache control must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.01a rfp 10/19/01 release
 1.01c ecm 12/05/02 new rev

#include "xbasic_types.h"

#include "xstatus.h"

#include "xipif_v1_23_b.h"
#include "xiic_l.h"

Go to the source code of this file.

Data Structures

struct XIic
struct XIic_Config
struct XIicStats

Configuration options

The following options may be specified or retrieved for the device and enable/disable additional features of the IIC bus. Each of the
options are bit fields such that more than one may be specified.

#define XII_GENERAL_CALL_OPTION
#define XII_REPEATED_START_OPTION
#define XII_SEND_10_BIT_OPTION

Status events

The following status events occur during IIC bus processing and are passed to the status callback. Each event is only valid during the
appropriate processing of the IIC bus. Each of these events are bit fields such that more than one may be specified.

#define XII_BUS_NOT_BUSY_EVENT
#define XII_ARB_LOST_EVENT
#define XII_SLAVE_NO_ACK_EVENT
#define XII_MASTER_READ_EVENT
#define XII_MASTER_WRITE_EVENT
#define XII_GENERAL_CALL_EVENT

Defines

#define XII_ADDR_TO_SEND_TYPE
#define XII_ADDR_TO_RESPOND_TYPE

Typedefs

typedef void(* XIic_Handler)(void *CallBackRef, int ByteCount)
typedef void(* XIic_StatusHandler)(void *CallBackRef, XStatus StatusEvent)

Functions

XStatus XIic_Initialize (XIic *InstancePtr, Xuint16 DeviceId)
XStatus XIic_Start (XIic *InstancePtr)
XStatus XIic_Stop (XIic *InstancePtr)

void XIic_Reset (XIic *InstancePtr)
XStatus XIic_SetAddress (XIic *InstancePtr, int AddressType, int Address)
Xuint16 XIic_GetAddress (XIic *InstancePtr, int AddressType)

XIic_Config * XIic_LookupConfig (Xuint16 DeviceId)
void XIic_InterruptHandler (void *InstancePtr)
void XIic_SetRecvHandler (XIic *InstancePtr, void *CallBackRef, XIic_Handler FuncPtr)
void XIic_SetSendHandler (XIic *InstancePtr, void *CallBackRef, XIic_Handler FuncPtr)
void XIic_SetStatusHandler (XIic *InstancePtr, void *CallBackRef, XIic_StatusHandler FuncPtr)

XStatus XIic_MasterRecv (XIic *InstancePtr, Xuint8 *RxMsgPtr, int ByteCount)
XStatus XIic_MasterSend (XIic *InstancePtr, Xuint8 *TxMsgPtr, int ByteCount)

void XIic_GetStats (XIic *InstancePtr, XIicStats *StatsPtr)
void XIic_ClearStats (XIic *InstancePtr)

XStatus XIic_SelfTest (XIic *InstancePtr)
void XIic_SetOptions (XIic *InstancePtr, Xuint32 Options)

Xuint32 XIic_GetOptions (XIic *InstancePtr)
void XIic_MultiMasterInclude (void)

Define Documentation

#define XII_ADDR_TO_RESPOND_TYPE

 this device's bus address when slave

#define XII_ADDR_TO_SEND_TYPE

 bus address of slave device

#define XII_ARB_LOST_EVENT

 XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
 XII_ARB_LOST_EVENT arbitration was lost
 XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
 XII_MASTER_READ_EVENT master reading from slave
 XII_MASTER_WRITE_EVENT master writing to slave
 XII_GENERAL_CALL_EVENT general call to all slaves

#define XII_BUS_NOT_BUSY_EVENT

 XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
 XII_ARB_LOST_EVENT arbitration was lost
 XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
 XII_MASTER_READ_EVENT master reading from slave
 XII_MASTER_WRITE_EVENT master writing to slave
 XII_GENERAL_CALL_EVENT general call to all slaves

#define XII_GENERAL_CALL_EVENT

 XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
 XII_ARB_LOST_EVENT arbitration was lost
 XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
 XII_MASTER_READ_EVENT master reading from slave
 XII_MASTER_WRITE_EVENT master writing to slave
 XII_GENERAL_CALL_EVENT general call to all slaves

#define XII_GENERAL_CALL_OPTION

 XII_GENERAL_CALL_OPTION The general call option allows an IIC slave to
 recognized the general call address. The status
 handler is called as usual indicating the device
 has been addressed as a slave with a general
 call. It is the application's responsibility to
 perform any special processing for the general
 call.

 XII_REPEATED_START_OPTION The repeated start option allows multiple
 messages to be sent/received on the IIC bus
 without rearbitrating for the bus. The messages
 are sent as a series of messages such that the
 option must be enabled before the 1st message of
 the series, to prevent an stop condition from
 being generated on the bus, and disabled before
 the last message of the series, to allow the
 stop condition to be generated.

 XII_SEND_10_BIT_OPTION The send 10 bit option allows 10 bit addresses
 to be sent on the bus when the device is a
 master. The device can be configured to respond
 as to 7 bit addresses even though it may be
 communicating with other devices that support 10
 bit addresses. When this option is not enabled,
 only 7 bit addresses are sent on the bus.

#define XII_MASTER_READ_EVENT

 XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
 XII_ARB_LOST_EVENT arbitration was lost
 XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
 XII_MASTER_READ_EVENT master reading from slave
 XII_MASTER_WRITE_EVENT master writing to slave
 XII_GENERAL_CALL_EVENT general call to all slaves

#define XII_MASTER_WRITE_EVENT

 XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
 XII_ARB_LOST_EVENT arbitration was lost
 XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
 XII_MASTER_READ_EVENT master reading from slave
 XII_MASTER_WRITE_EVENT master writing to slave
 XII_GENERAL_CALL_EVENT general call to all slaves

#define XII_REPEATED_START_OPTION

 XII_GENERAL_CALL_OPTION The general call option allows an IIC slave to
 recognized the general call address. The status
 handler is called as usual indicating the device
 has been addressed as a slave with a general
 call. It is the application's responsibility to
 perform any special processing for the general
 call.

 XII_REPEATED_START_OPTION The repeated start option allows multiple
 messages to be sent/received on the IIC bus
 without rearbitrating for the bus. The messages
 are sent as a series of messages such that the
 option must be enabled before the 1st message of
 the series, to prevent an stop condition from
 being generated on the bus, and disabled before
 the last message of the series, to allow the
 stop condition to be generated.

 XII_SEND_10_BIT_OPTION The send 10 bit option allows 10 bit addresses
 to be sent on the bus when the device is a
 master. The device can be configured to respond
 as to 7 bit addresses even though it may be
 communicating with other devices that support 10
 bit addresses. When this option is not enabled,
 only 7 bit addresses are sent on the bus.

#define XII_SEND_10_BIT_OPTION

 XII_GENERAL_CALL_OPTION The general call option allows an IIC slave to
 recognized the general call address. The status
 handler is called as usual indicating the device
 has been addressed as a slave with a general
 call. It is the application's responsibility to
 perform any special processing for the general
 call.

 XII_REPEATED_START_OPTION The repeated start option allows multiple
 messages to be sent/received on the IIC bus
 without rearbitrating for the bus. The messages
 are sent as a series of messages such that the
 option must be enabled before the 1st message of
 the series, to prevent an stop condition from
 being generated on the bus, and disabled before
 the last message of the series, to allow the
 stop condition to be generated.

 XII_SEND_10_BIT_OPTION The send 10 bit option allows 10 bit addresses
 to be sent on the bus when the device is a
 master. The device can be configured to respond
 as to 7 bit addresses even though it may be
 communicating with other devices that support 10
 bit addresses. When this option is not enabled,
 only 7 bit addresses are sent on the bus.

#define XII_SLAVE_NO_ACK_EVENT

 XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
 XII_ARB_LOST_EVENT arbitration was lost
 XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
 XII_MASTER_READ_EVENT master reading from slave
 XII_MASTER_WRITE_EVENT master writing to slave
 XII_GENERAL_CALL_EVENT general call to all slaves

Typedef Documentation

typedef void(* XIic_Handler)(void *CallBackRef, int ByteCount)

This callback function data type is defined to handle the asynchronous processing of sent and received data of the IIC driver. The
application using this driver is expected to define a handler of this type to support interrupt driven mode. The handlers are called in
an interrupt context such that minimal processing should be performed. The handler data type is utilized for both send and receive
handlers.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed back to the

upper layer when the callback is invoked. Its type is unimportant to the driver component, so it is a void
pointer.

ByteCount indicates the number of bytes remaining to be sent or received. A value of zero indicates that the requested
number of bytes were sent or received.

typedef void(* XIic_StatusHandler)(void *CallBackRef, XStatus StatusEvent)

This callback function data type is defined to handle the asynchronous processing of status events of the IIC driver. The application
using this driver is expected to define a handler of this type to support interrupt driven mode. The handler is called in an interrupt
context such that minimal processing should be performed.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions, and passed back to the

upper layer when the callback is invoked. Its type is unimportant to the driver component, so it is a void
pointer.

StatusEvent indicates one or more status events that occurred. See the definition of the status events above.

Function Documentation

void XIic_ClearStats (XIic * InstancePtr)

Clears the statistics for the IIC device by zeroing all counts.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
None.

Note:
None.

Xuint16 XIic_GetAddress (XIic * InstancePtr,
int AddressType

)

This function gets the addresses for the IIC device driver. The addresses include the device address that the device responds to as a
slave, or the slave address to communicate with on the bus. The address returned has the same format whether 7 or 10 bits.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

AddressType indicates which address, the address which this responds to on the IIC bus as a slave, or the slave address to
communicate with when this device is a master. One of the following values must be contained in this
argument.

 XII_ADDRESS_TO_SEND_TYPE slave being addressed as a master
 XII_ADDRESS_TO_RESPOND_TYPE slave address to respond to as a slave

If neither of the two valid arguments are used, the function returns the address of the slave device

Returns:
The address retrieved.

Note:
None.

Xuint32 XIic_GetOptions (XIic * InstancePtr)

This function gets the current options for the IIC device. Options control the how the device behaves on the IIC bus. See SetOptions
for more information on options.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
The options of the IIC device. See xiic.h for a list of available options.

Note:
Options enabled will have a 1 in its appropriate bit position.

void XIic_GetStats (XIic * InstancePtr,
XIicStats * StatsPtr

)

Gets a copy of the statistics for an IIC device.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

StatsPtr is a pointer to a XIicStats structure which will get a copy of current statistics.

Returns:
None.

Note:
None.

XStatus XIic_Initialize (XIic * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XIic instance. The initialization entails:

● Check the device has an entry in the configuration table.
● Initialize the driver to allow access to the device registers and initialize other subcomponents necessary for the operation of

the device.
● Default options to:

❍ 7-bit slave addressing
❍ Send messages as a slave device
❍ Repeated start off
❍ General call recognition disabled

● Clear messageing and error statistics

The XIic_Start() function must be called after this function before the device is ready to send and receive data on the IIC bus.

Before XIic_Start() is called, the interrupt control must connect the ISR routine to the interrupt handler. This is done by the user,
and not XIic_Start() to allow the user to use an interrupt controller of their choice.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

DeviceId is the unique id of the device controlled by this XIic instance. Passing in a device id associates the generic XIic
instance to a specific device, as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS when successful
❍ XST_DEVICE_IS_STARTED indicates the device is started (i.e. interrupts enabled and messaging is possible). Must

stop before re-initialization is allowed.

Note:
None.

void XIic_InterruptHandler (void * InstancePtr)

This function is the interrupt handler for the XIic driver. This function should be connected to the interrupt system.

Only one interrupt source is handled for each interrupt allowing higher priority system interrupts quicker response time.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
None.

XIic_Config* XIic_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table IicConfigTable contains the configuration info for each
device in the system.

Parameters:
DeviceId is the unique device ID to look for

Returns:
A pointer to the configuration data of the device, or XNULL if no match is found.

Note:
None.

XStatus XIic_MasterRecv (XIic * InstancePtr,
Xuint8 * RxMsgPtr,
int ByteCount

)

This function receives data as a master from a slave device on the IIC bus. If the bus is busy, it will indicate so and then enable an
interrupt such that the status handler will be called when the bus is no longer busy. The slave address which has been set with the
XIic_SetAddress() function is the address from which data is received. Receiving data on the bus performs a read operation.

Parameters:
InstancePtr is a pointer to the Iic instance to be worked on.
RxMsgPtr is a pointer to the data to be transmitted
ByteCount is the number of message bytes to be sent

Returns:
❍ XST_SUCCESS indicates the message reception processes has been initiated.
❍ XST_IIC_BUS_BUSY indicates the bus was in use and that the BusNotBusy interrupt is enabled which will update

the EventStatus when the bus is no longer busy.
❍ XST_IIC_GENERAL_CALL_ADDRESS indicates the slave address is set to the the general call address. This is not

allowed for Master receive mode.

XStatus XIic_MasterSend (XIic * InstancePtr,
Xuint8 * TxMsgPtr,
int ByteCount

)

This function sends data as a master on the IIC bus. If the bus is busy, it will indicate so and then enable an interrupt such that the
status handler will be called when the bus is no longer busy. The slave address which has been set with the XIic_SetAddress()
function is the address to which the specific data is sent. Sending data on the bus performs a write operation.

Parameters:
InstancePtr points to the Iic instance to be worked on.
TxMsgPtr points to the data to be transmitted
ByteCount is the number of message bytes to be sent

Returns:
❍ XST_SUCCESS indicates the message transmission has been initiated.
❍ XST_IIC_BUS_BUSY indicates the bus was in use and that the BusNotBusy interrupt is enabled which will update

the EventStatus when the bus is no longer busy.

Note:
None

void XIic_MultiMasterInclude (void)

This function includes multi-master code such that multi-master events are handled properly. Multi-master events include a loss of
arbitration and the bus transitioning from busy to not busy. This function allows the multi-master processing to be optional. This
function must be called prior to allowing any multi-master events to occur, such as after the driver is initialized.

Note:
None

void XIic_Reset (XIic * InstancePtr)

Resets the IIC device. Reset must only be called after the driver has been initialized. The configuration after this reset is as follows:

● Repeated start is disabled
● General call is disabled

The upper layer software is responsible for initializing and re-configuring (if necessary) and restarting the IIC device after the reset.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
None.

Note:
None.

XStatus XIic_SelfTest (XIic * InstancePtr)

Runs a limited self-test on the driver/device. The self-test is destructive in that a reset of the device is performed in order to check
the reset values of the registers and to get the device into a known state. There is no loopback capabilities for the device such that
this test does not send or receive data.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:

 XST_SUCCESS No errors found
 XST_IIC_STAND_REG_ERROR One or more IIC regular registers did
 not zero on reset or read back
 correctly based on what was written
 to it
 XST_IIC_TX_FIFO_REG_ERROR One or more IIC parametrizable TX
 FIFO registers did not zero on reset
 or read back correctly based on what
 was written to it

 XST_IIC_RX_FIFO_REG_ERROR One or more IIC parametrizable RX
 FIFO registers did not zero on reset
 or read back correctly based on what
 was written to it
 XST_IIC_STAND_REG_RESET_ERROR A non parameterizable reg value after
 reset not valid
 XST_IIC_TX_FIFO_REG_RESET_ERROR Tx fifo, included in design, value
 after reset not valid
 XST_IIC_RX_FIFO_REG_RESET_ERROR Rx fifo, included in design, value
 after reset not valid
 XST_IIC_TBA_REG_RESET_ERROR 10 bit addr, incl in design, value
 after reset not valid
 XST_IIC_CR_READBACK_ERROR Read of the control register didn't
 return value written
 XST_IIC_DTR_READBACK_ERROR Read of the data Tx reg didn't return
 value written
 XST_IIC_DRR_READBACK_ERROR Read of the data Receive reg didn't
 return value written
 XST_IIC_ADR_READBACK_ERROR Read of the data Tx reg didn't return
 value written
 XST_IIC_TBA_READBACK_ERROR Read of the 10 bit addr reg didn't
 return written value

Note:
Only the registers that have be included into the hardware design are tested, such as, 10-bit vs 7-bit addressing.

XStatus XIic_SetAddress (XIic * InstancePtr,
int AddressType,
int Address

)

This function sets the bus addresses. The addresses include the device address that the device responds to as a slave, or the slave
address to communicate with on the bus. The IIC device hardware is built to allow either 7 or 10 bit slave addressing only at build
time rather than at run time. When this device is a master, slave addressing can be selected at run time to match addressing modes
for other bus devices.

Addresses are represented as hex values with no adjustment for the data direction bit as the software manages address bit placement.
Example: For a 7 address written to the device of 1010 011X where X is the transfer direction (send/recv), the address parameter for
this function needs to be 01010011 or 0x53 where the correct bit alllignment will be handled for 7 as well as 10 bit devices. This is
especially important as the bit placement is not handled the same depending on which options are used such as repeated start.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

AddressType indicates which address is being modified; the address which this device responds to on the IIC bus as a slave,
or the slave address to communicate with when this device is a master. One of the following values must be
contained in this argument.

 XII_ADDRESS_TO_SEND Slave being addressed by a this master
 XII_ADDRESS_TO_RESPOND Address to respond to as a slave device

Address contains the address to be set; 7 bit or 10 bit address. A ten bit address must be within the range: 0 - 1023 and
a 7 bit address must be within the range 0 - 127.

Returns:
XST_SUCCESS is returned if the address was successfully set, otherwise one of the following errors is returned.

❍ XST_IIC_NO_10_BIT_ADDRESSING indicates only 7 bit addressing supported.
❍ XST_INVALID_PARAM indicates an invalid parameter was specified.

Note:
Upper bits of 10-bit address is written only when current device is built as a ten bit device.

void XIic_SetOptions (XIic * InstancePtr,
Xuint32 NewOptions

)

This function sets the options for the IIC device driver. The options control how the device behaves relative to the IIC bus. If an
option applies to how messages are sent or received on the IIC bus, it must be set prior to calling functions which send or receive
data.

To set multiple options, the values must be ORed together. To not change existing options, read/modify/write with the current
options using XIic_GetOptions().

USAGE EXAMPLE:

Read/modify/write to enable repeated start:

 Xuint8 Options;
 Options = XIic_GetOptions(&Iic);
 XIic_SetOptions(&Iic, Options | XII_REPEATED_START_OPTION);

Disabling General Call:

 Options = XIic_GetOptions(&Iic);
 XIic_SetOptions(&Iic, Options &= ~XII_GENERAL_CALL_OPTION);

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

NewOptions are the options to be set. See xiic.h for a list of the available options.

Returns:
None.

Note:
Sending or receiving messages with repeated start enabled, and then disabling repeated start, will not take effect until another
master transaction is completed. i.e. After using repeated start, the bus will continue to be throttled after repeated start is
disabled until a master transaction occurs allowing the IIC to release the bus.

Options enabled will have a 1 in its appropriate bit position.

void XIic_SetRecvHandler (XIic * InstancePtr,
void * CallBackRef,
XIic_Handler FuncPtr

)

Sets the receive callback function, the receive handler, which the driver calls when it finishes receiving data. The number of bytes
used to signal when the receive is complete is the number of bytes set in the XIic_Recv function.

The handler executes in an interrupt context such that it must minimize the amount of processing performed such as transferring
data to a thread context.

The number of bytes received is passed to the handler as an argument.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context ...

void XIic_SetSendHandler (XIic * InstancePtr,
void * CallBackRef,
XIic_Handler FuncPtr

)

Sets the send callback function, the send handler, which the driver calls when it receives confirmation of sent data. The handler
executes in an interrupt context such that it must minimize the amount of processing performed such as transferring data to a thread
context.

Parameters:
InstancePtr the pointer to the XIic instance to be worked on.

CallBackRef the upper layer callback reference passed back when the callback function is invoked.
FuncPtr the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context ...

void XIic_SetStatusHandler (XIic * InstancePtr,
void * CallBackRef,
XIic_StatusHandler FuncPtr

)

Sets the status callback function, the status handler, which the driver calls when it encounters conditions which are not data related.
The handler executes in an interrupt context such that it must minimize the amount of processing performed such as transferring
data to a thread context. The status events that can be returned are described in xiic.h.

Parameters:
InstancePtr points to the XIic instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context ...

XStatus XIic_Start (XIic * InstancePtr)

This function starts the IIC device and driver by enabling the proper interrupts such that data may be sent and received on the IIC
bus. This function must be called before the functions to send and receive data.

Before XIic_Start() is called, the interrupt control must connect the ISR routine to the interrupt handler. This is done by the user,
and not XIic_Start() to allow the user to use an interrupt controller of their choice.

Start enables:

● IIC device
● Interrupts:

❍ Addressed as slave to allow messages from another master
❍ Arbitration Lost to detect Tx arbitration errors
❍ Global IIC interrupt within the IPIF interface

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
XST_SUCCESS always

Note:
The device interrupt is connected to the interrupt controller, but no "messaging" interrupts are enabled. Addressed as Slave is
enabled to reception of messages when this devices address is written to the bus. The correct messaging interrupts are
enabled when sending or receiving via the IicSend() and IicRecv() functions. No action is required by the user to control any
IIC interrupts as the driver completely manages all 8 interrupts. Start and Stop control the ability to use the device. Stopping
the device completely stops all device interrupts from the processor.

XStatus XIic_Stop (XIic * InstancePtr)

This function stops the IIC device and driver such that data is no longer sent or received on the IIC bus. This function stops the
device by disabling interrupts. This function only disables interrupts within the device such that the caller is responsible for
disconnecting the interrupt handler of the device from the interrupt source and disabling interrupts at other levels.

Due to bus throttling that could hold the bus between messages when using repeated start option, stop will not occur when the
device is actively sending or receiving data from the IIC bus or the bus is being throttled by this device, but instead return
XST_IIC_BUS_BUSY.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
❍ XST_SUCCESS indicates all IIC interrupts are disabled. No messages can be received or transmitted until

XIic_Start() is called.
❍ XST_IIC_BUS_BUSY indicates this device is currently engaged in message traffic and cannot be stopped.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XIic Struct Reference
#include <xiic.h>

Detailed Description

The XIic driver instance data. The user is required to allocate a variable of this type for every IIC device
in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● iic/v1_01_c/src/xiic.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic.h
Go to the documentation of this file.

00001 /* $Id: xiic.h,v 1.3 2003/01/13 21:47:59 meinelte Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file iic/v1_01_c/src/xiic.h
00026 *
00027 * XIic is the driver for an IIC master or slave device.
00028
00029 * In order to reduce the memory requirements of the driver it is partitioned
00030 * such that there are optional parts of the driver. Slave, master, and
00031 * multimaster features are optional such that these files are not required.
00032 * In order to use the slave and multimaster features of the driver, the user
00033 * must call functions (XIic_SlaveInclude and XIic_MultiMasterInclude)
00034 * to dynamically include the code . These functions may be called at any time.
00035 *
00036 * Bus Throttling
00037 *
00038 * The IIC hardware provides bus throttling which allows either the device, as
00039 * either a master or a slave, to stop the clock on the IIC bus. This feature
00040 * allows the software to perform the appropriate processing for each interrupt
00041 * without an unreasonable response restriction. With this design, it is
00042 * important for the user to understand the implications of bus throttling.

00043 *
00044 * Repeated Start
00045 *
00046 * An application can send multiple messages, as a master, to a slave device
00047 * and re-acquire the IIC bus each time a message is sent. The repeated start
00048 * option allows the application to send multiple messages without re-acquiring
00049 * the IIC bus for each message. This feature also could cause the application
00050 * to lock up, or monopolize the IIC bus, should repeated start option be
00051 * enabled and sequences of messages never end (periodic data collection).
00052 * Also when repeated start is not disable before the last master message is
00053 * sent or received, will leave the bus captive to the master, but unused.
00054 *
00055 * Addressing
00056 *
00057 * The IIC hardware is parameterized such that it can be built for 7 or 10
00058 * bit addresses. The driver provides the ability to control which address
00059 * size is sent in messages as a master to a slave device. The address size
00060 * which the hardware responds to as a slave is parameterized as 7 or 10 bits
00061 * but fixed by the hardware build.
00062 *
00063 * Addresses are represented as hex values with no adjustment for the data
00064 * direction bit as the software manages address bit placement. This is
00065 * especially important as the bit placement is not handled the same depending
00066 * on which options are used such as repeated start and 7 vs 10 bit addessing.
00067 *
00068 * Data Rates
00069 *
00070 * The IIC hardware is parameterized such that it can be built to support
00071 * data rates from DC to 400KBit. The frequency of the interrupts which
00072 * occur is proportional to the data rate.
00073 *
00074 * Polled Mode Operation
00075 *
00076 * This driver does not provide a polled mode of operation primarily because
00077 * polled mode which is non-blocking is difficult with the amount of
00078 * interaction with the hardware that is necessary.
00079 *
00080 * Interrupts
00081 *
00082 * The device has many interrupts which allow IIC data transactions as well
00083 * as bus status processing to occur.
00084 *
00085 * The interrupts are divided into two types, data and status. Data interrupts
00086 * indicate data has been received or transmitted while the status interrupts
00087 * indicate the status of the IIC bus. Some of the interrupts, such as Not
00088 * Addressed As Slave and Bus Not Busy, are only used when these specific
00089 * events must be recognized as opposed to being enabled at all times.
00090 *
00091 * Many of the interrupts are not a single event in that they are continuously
00092 * present such that they must be disabled after recognition or when undesired.
00093 * Some of these interrupts, which are data related, may be acknowledged by the
00094 * software by reading or writing data to the appropriate register, or must
00095 * be disabled. The following interrupts can be continuous rather than single

00096 * events.
00097 * - Data Transmit Register Empty/Transmit FIFO Empty
00098 * - Data Receive Register Full/Receive FIFO
00099 * - Transmit FIFO Half Empty
00100 * - Bus Not Busy
00101 * - Addressed As Slave
00102 * - Not Addressed As Slave
00103 *
00104 * The following interrupts are not passed directly to the application thru the
00105 * status callback. These are only used internally for the driver processing
00106 * and may result in the receive and send handlers being called to indicate
00107 * completion of an operation. The following interrupts are data related
00108 * rather than status.
00109 * - Data Transmit Register Empty/Transmit FIFO Empty
00110 * - Data Receive Register Full/Receive FIFO
00111 * - Transmit FIFO Half Empty
00112 * - Slave Transmit Complete
00113 *
00114 * Interrupt To Event Mapping
00115 *
00116 * The following table provides a mapping of the interrupts to the events which
00117 * are passed to the status handler and the intended role (master or slave) for
00118 * the event. Some interrupts can cause multiple events which are combined
00119 * together into a single status event such as XII_MASTER_WRITE_EVENT and
00120 * XII_GENERAL_CALL_EVENT
00121 * <pre>
00122 * Interrupt Event(s) Role
00123 *
00124 * Arbitration Lost Interrupt XII_ARB_LOST_EVENT Master
00125 * Transmit Error XII_SLAVE_NO_ACK_EVENT Master
00126 * IIC Bus Not Busy XII_BUS_NOT_BUSY_EVENT Master
00127 * Addressed As Slave XII_MASTER_READ_EVENT, Slave
00128 * XII_MASTER_WRITE_EVENT, Slave
00129 * XII_GENERAL_CALL_EVENT Slave
00130 * </pre>
00131 * Not Addressed As Slave Interrupt
00132 *
00133 * The Not Addressed As Slave interrupt is not passed directly to the
00134 * application thru the status callback. It is used to determine the end of
00135 * a message being received by a slave when there was no stop condition
00136 * (repeated start). It will cause the receive handler to be called to
00137 * indicate completion of the operation.
00138 *
00139 * RTOS Independence
00140 *
00141 * This driver is intended to be RTOS and processor independent. It works
00142 * with physical addresses only. Any needs for dynamic memory management,
00143 * threads or thread mutual exclusion, virtual memory, or cache control must
00144 * be satisfied by the layer above this driver.
00145 *
00146 * <pre>
00147 * MODIFICATION HISTORY:

00148 *
00149 * Ver Who Date Changes
00150 * ----- ---- -------- ---
00151 * 1.01a rfp 10/19/01 release
00152 * 1.01c ecm 12/05/02 new rev
00153 * </pre>
00154 *
00155 **/
00156
00157 #ifndef XIIC_H /* prevent circular inclusions */
00158 #define XIIC_H /* by using protection macros */
00159
00160 /***************************** Include Files *********************************/
00161
00162 #include "xbasic_types.h"

00163 #include "xstatus.h"

00164 #include "xipif_v1_23_b.h"
00165 #include "xiic_l.h"

00166
00167 /************************** Constant Definitions *****************************/
00168
00169 /** @name Configuration options
00170 *
00171 * The following options may be specified or retrieved for the device and
00172 * enable/disable additional features of the IIC bus. Each of the options
00173 * are bit fields such that more than one may be specified.
00174 * @{
00175 */
00176 /**
00177 * <pre>
00178 * XII_GENERAL_CALL_OPTION The general call option allows an IIC slave to
00179 * recognized the general call address. The status
00180 * handler is called as usual indicating the
device
00181 * has been addressed as a slave with a general
00182 * call. It is the application's responsibility to
00183 * perform any special processing for the general
00184 * call.
00185 *
00186 * XII_REPEATED_START_OPTION The repeated start option allows multiple
00187 * messages to be sent/received on the IIC bus
00188 * without rearbitrating for the bus. The
messages
00189 * are sent as a series of messages such that the
00190 * option must be enabled before the 1st message
of
00191 * the series, to prevent an stop condition from
00192 * being generated on the bus, and disabled before
00193 * the last message of the series, to allow the
00194 * stop condition to be generated.
00195 *
00196 * XII_SEND_10_BIT_OPTION The send 10 bit option allows 10 bit addresses

00197 * to be sent on the bus when the device is a
00198 * master. The device can be configured to respond
00199 * as to 7 bit addresses even though it may be
00200 * communicating with other devices that support
10
00201 * bit addresses. When this option is not
enabled,
00202 * only 7 bit addresses are sent on the bus.
00203 *
00204 * </pre>
00205 */
00206 #define XII_GENERAL_CALL_OPTION 0x00000001

00207 #define XII_REPEATED_START_OPTION 0x00000002

00208 #define XII_SEND_10_BIT_OPTION 0x00000004

00209
00210 /*@}*/
00211
00212 /** @name Status events
00213 *
00214 * The following status events occur during IIC bus processing and are passed
00215 * to the status callback. Each event is only valid during the appropriate
00216 * processing of the IIC bus. Each of these events are bit fields such that
00217 * more than one may be specified.
00218 * @{
00219 */
00220 /**
00221 * <pre>
00222 * XII_BUS_NOT_BUSY_EVENT bus transitioned to not busy
00223 * XII_ARB_LOST_EVENT arbitration was lost
00224 * XII_SLAVE_NO_ACK_EVENT slave did not acknowledge data (had error)
00225 * XII_MASTER_READ_EVENT master reading from slave
00226 * XII_MASTER_WRITE_EVENT master writing to slave
00227 * XII_GENERAL_CALL_EVENT general call to all slaves
00228 * </pre>
00229 */
00230 #define XII_BUS_NOT_BUSY_EVENT 0x00000001

00231 #define XII_ARB_LOST_EVENT 0x00000002

00232 #define XII_SLAVE_NO_ACK_EVENT 0x00000004

00233 #define XII_MASTER_READ_EVENT 0x00000008

00234 #define XII_MASTER_WRITE_EVENT 0x00000010

00235 #define XII_GENERAL_CALL_EVENT 0x00000020

00236 /*@}*/
00237
00238
00239 /* The following address types are used when setting and getting the addresses
00240 * of the driver. These are mutually exclusive such that only one or the other
00241 * may be specified.
00242 */
00243 /** bus address of slave device */
00244 #define XII_ADDR_TO_SEND_TYPE 1

00245 /** this device's bus address when slave */

00246 #define XII_ADDR_TO_RESPOND_TYPE 2

00247
00248 /**************************** Type Definitions *******************************/
00249
00250 /**
00251 * This typedef contains configuration information for the device.
00252 */
00253 typedef struct

00254 {
00255 Xuint16 DeviceId; /**< Unique ID of device */

00256 Xuint32 BaseAddress; /**< Device base address */

00257 Xboolean Has10BitAddr; /**< does device have 10 bit address decoding */

00258 } XIic_Config;

00259
00260 /**
00261 * This callback function data type is defined to handle the asynchronous
00262 * processing of sent and received data of the IIC driver. The application
00263 * using this driver is expected to define a handler of this type to support
00264 * interrupt driven mode. The handlers are called in an interrupt context such
00265 * that minimal processing should be performed. The handler data type is
00266 * utilized for both send and receive handlers.
00267 *
00268 * @param CallBackRef is a callback reference passed in by the upper layer when
00269 * setting the callback functions, and passed back to the upper layer
00270 * when the callback is invoked. Its type is unimportant to the driver
00271 * component, so it is a void pointer.
00272 *
00273 * @param ByteCount indicates the number of bytes remaining to be sent or
00274 * received. A value of zero indicates that the requested number of
00275 * bytes were sent or received.
00276 */
00277 typedef void (*XIic_Handler)(void *CallBackRef, int ByteCount);

00278
00279 /**
00280 * This callback function data type is defined to handle the asynchronous
00281 * processing of status events of the IIC driver. The application using
00282 * this driver is expected to define a handler of this type to support
00283 * interrupt driven mode. The handler is called in an interrupt context such
00284 * that minimal processing should be performed.
00285 *
00286 * @param CallBackRef is a callback reference passed in by the upper layer when
00287 * setting the callback functions, and passed back to the upper layer
00288 * when the callback is invoked. Its type is unimportant to the driver
00289 * component, so it is a void pointer.
00290 *
00291 * @param StatusEvent indicates one or more status events that occurred. See
00292 * the definition of the status events above.
00293 */
00294 typedef void (*XIic_StatusHandler)(void *CallBackRef, XStatus StatusEvent);

00295
00296 /**
00297 * XIic statistics

00298 */
00299 typedef struct

00300 {
00301 Xuint8 ArbitrationLost; /**< Number of times arbitration was lost */

00302 Xuint8 RepeatedStarts; /**< Number of repeated starts */

00303 Xuint8 BusBusy; /**< Number of times bus busy status returned */

00304 Xuint8 RecvBytes; /**< Number of bytes received */

00305 Xuint8 RecvInterrupts; /**< Number of receive interrupts */

00306 Xuint8 SendBytes; /**< Number of transmit bytes received */

00307 Xuint8 SendInterrupts; /**< Number of transmit interrupts */

00308 Xuint8 TxErrors; /**< Number of transmit errors (no ack) */

00309 Xuint8 IicInterrupts; /**< Number of IIC (device) interrupts */

00310 } XIicStats;

00311
00312
00313 /**
00314 * The XIic driver instance data. The user is required to allocate a
00315 * variable of this type for every IIC device in the system. A pointer
00316 * to a variable of this type is then passed to the driver API functions.
00317 */
00318 typedef struct

00319 {
00320 XIicStats Stats; /* Statistics */

00321 Xuint32 BaseAddress; /* Device base address */

00322 Xboolean Has10BitAddr; /* XTRUE when 10 bit addressing in design */

00323 Xuint32 IsReady; /* Device is initialized and ready */

00324 Xuint32 IsStarted; /* Device has been started */

00325 int AddrOfSlave; /* Slave addr writing to */
00326
00327 Xuint32 Options; /* current operating options */

00328 Xuint8 *SendBufferPtr; /* Buffer to send (state) */

00329 Xuint8 *RecvBufferPtr; /* Buffer to receive (state) */

00330 Xuint8 TxAddrMode; /* State of Tx Address transmission */

00331 int SendByteCount; /* Number of data bytes in buffer (state) */
00332 int RecvByteCount; /* Number of empty bytes in buffer (state) */
00333
00334 Xboolean BNBOnly; /* XTRUE when BNB interrupt needs to */

00335 /* call callback */
00336
00337 XIic_StatusHandler StatusHandler;

00338 void *StatusCallBackRef; /* Callback reference for status handler */
00339 XIic_Handler RecvHandler;

00340 void *RecvCallBackRef; /* Callback reference for recv handler */
00341 XIic_Handler SendHandler;

00342 void *SendCallBackRef; /* Callback reference for send handler */
00343
00344 } XIic;

00345
00346

00347 /***************** Macros (Inline Functions) Definitions *********************/
00348
00349
00350 /************************** Function Prototypes ******************************/
00351
00352 /*
00353 * Required functions in xiic.c
00354 */
00355 XStatus XIic_Initialize(XIic *InstancePtr, Xuint16 DeviceId);

00356
00357 XStatus XIic_Start(XIic *InstancePtr);

00358 XStatus XIic_Stop(XIic *InstancePtr);

00359
00360 void XIic_Reset(XIic *InstancePtr);

00361
00362 XStatus XIic_SetAddress(XIic *InstancePtr, int AddressType, int Address);

00363 Xuint16 XIic_GetAddress(XIic *InstancePtr, int AddressType);

00364
00365 XIic_Config *XIic_LookupConfig(Xuint16 DeviceId);

00366
00367 /*
00368 * Interrupt (currently required) functions in xiic_intr.c
00369 */
00370 void XIic_InterruptHandler(void *InstancePtr);

00371 void XIic_SetRecvHandler(XIic *InstancePtr, void *CallBackRef,

00372 XIic_Handler FuncPtr);

00373 void XIic_SetSendHandler(XIic *InstancePtr, void *CallBackRef,

00374 XIic_Handler FuncPtr);

00375 void XIic_SetStatusHandler(XIic *InstancePtr, void *CallBackRef,

00376 XIic_StatusHandler FuncPtr);

00377 /*
00378 * Master send and receive functions in xiic_master.c
00379 */
00380 XStatus XIic_MasterRecv(XIic *InstancePtr, Xuint8 *RxMsgPtr, int ByteCount);

00381 XStatus XIic_MasterSend(XIic *InstancePtr, Xuint8 *TxMsgPtr, int ByteCount);

00382
00383 /*
00384 * Slave send and receive functions in xiic_slave.c
00385 */
00386 void XIic_SlaveInclude(void);
00387 XStatus XIic_SlaveRecv(XIic *InstancePtr, Xuint8 *RxMsgPtr, int ByteCount);

00388 XStatus XIic_SlaveSend(XIic *InstancePtr, Xuint8 *TxMsgPtr, int ByteCount);

00389
00390 /*
00391 * Statistics functions in xiic_stats.c
00392 */
00393 void XIic_GetStats(XIic *InstancePtr, XIicStats *StatsPtr);

00394 void XIic_ClearStats(XIic *InstancePtr);

00395
00396 /*

00397 * Self test functions in xiic_selftest.c
00398 */
00399 XStatus XIic_SelfTest(XIic *InstancePtr);

00400
00401 /*
00402 * Options functions in xiic_options.c
00403 */
00404 void XIic_SetOptions(XIic *InstancePtr, Xuint32 Options);

00405 Xuint32 XIic_GetOptions(XIic *InstancePtr);

00406
00407 /*
00408 * Multi-master functions in xiic_multi_master.c
00409 */
00410 void XIic_MultiMasterInclude(void);

00411
00412
00413 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_l.h File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xiic.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 05/07/02 First release
 1.01c ecm 12/05/02 new rev

#include "xbasic_types.h"

Go to the source code of this file.

Functions

unsigned XIic_Recv (Xuint32 BaseAddress, Xuint8 Address, Xuint8 *BufferPtr, unsigned ByteCount)
unsigned XIic_Send (Xuint32 BaseAddress, Xuint8 Address, Xuint8 *BufferPtr, unsigned ByteCount)

Function Documentation

unsigned XIic_Recv (Xuint32 BaseAddress,
Xuint8 Address,
Xuint8 * BufferPtr,
unsigned ByteCount

)

Receive data as a master on the IIC bus. This function receives the data using polled I/O and blocks
until the data has been received. It only supports 7 bit addressing and non-repeated start modes of
operation. The user is responsible for ensuring the bus is not busy if multiple masters are present on
the bus.

Parameters:
BaseAddress contains the base address of the IIC device.
Address contains the 7 bit IIC address of the device to send the specified data to.
BufferPtr points to the data to be sent.
ByteCount is the number of bytes to be sent.

Returns:
The number of bytes received.

Note:
None

unsigned XIic_Send (Xuint32 BaseAddress,
Xuint8 Address,
Xuint8 * BufferPtr,
unsigned ByteCount

)

Send data as a master on the IIC bus. This function sends the data using polled I/O and blocks until
the data has been sent. It only supports 7 bit addressing and non-repeated start modes of operation.
The user is responsible for ensuring the bus is not busy if multiple masters are present on the bus.

Parameters:
BaseAddress contains the base address of the IIC device.
Address contains the 7 bit IIC address of the device to send the specified data to.
BufferPtr points to the data to be sent.
ByteCount is the number of bytes to be sent.

Returns:

The number of bytes sent.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_l.h
Go to the documentation of this file.

00001 /* $Id: xiic_l.h,v 1.2 2002/12/05 19:32:40 meinelte Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file iic/v1_01_c/src/xiic_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xiic.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b jhl 05/07/02 First release
00037 * 1.01c ecm 12/05/02 new rev
00038 * </pre>
00039 *
00040 ***/
00041

00042 #ifndef XIIC_L_H /* prevent circular inclusions */
00043 #define XIIC_L_H /* by using protection macros */
00044
00045 /***************************** Include Files ********************************/
00046
00047 #include "xbasic_types.h"

00048
00049 /************************** Constant Definitions ****************************/
00050
00051 #define XIIC_MSB_OFFSET 3
00052
00053 #define XIIC_REG_OFFSET 0x100 + XIIC_MSB_OFFSET
00054
00055 /*
00056 * Register offsets in bytes from RegisterBase. Three is added to the
00057 * base offset to access LSB (IBM style) of the word
00058 */
00059 #define XIIC_CR_REG_OFFSET 0x00+XIIC_REG_OFFSET /* Control Register */
00060 #define XIIC_SR_REG_OFFSET 0x04+XIIC_REG_OFFSET /* Status Register */
00061 #define XIIC_DTR_REG_OFFSET 0x08+XIIC_REG_OFFSET /* Data Tx Register */
00062 #define XIIC_DRR_REG_OFFSET 0x0C+XIIC_REG_OFFSET /* Data Rx Register */
00063 #define XIIC_ADR_REG_OFFSET 0x10+XIIC_REG_OFFSET /* Address Register */
00064 #define XIIC_TFO_REG_OFFSET 0x14+XIIC_REG_OFFSET /* Tx FIFO Occupancy */
00065 #define XIIC_RFO_REG_OFFSET 0x18+XIIC_REG_OFFSET /* Rx FIFO Occupancy */
00066 #define XIIC_TBA_REG_OFFSET 0x1C+XIIC_REG_OFFSET /* 10 Bit Address reg */
00067 #define XIIC_RFD_REG_OFFSET 0x20+XIIC_REG_OFFSET /* Rx FIFO Depth reg */
00068
00069 /* Control Register masks */
00070
00071 #define XIIC_CR_ENABLE_DEVICE_MASK 0x01 /* Device enable = 1 */
00072 #define XIIC_CR_TX_FIFO_RESET_MASK 0x02 /* Transmit FIFO reset=1 */
00073 #define XIIC_CR_MSMS_MASK 0x04 /* Master starts Txing=1 */
00074 #define XIIC_CR_DIR_IS_TX_MASK 0x08 /* Dir of tx. Txing=1 */
00075 #define XIIC_CR_NO_ACK_MASK 0x10 /* Tx Ack. NO ack = 1 */
00076 #define XIIC_CR_REPEATED_START_MASK 0x20 /* Repeated start = 1 */
00077 #define XIIC_CR_GENERAL_CALL_MASK 0x40 /* Gen Call enabled = 1 */
00078
00079 /* Status Register masks */
00080
00081 #define XIIC_SR_GEN_CALL_MASK 0x01 /* 1=a mstr issued a GC */
00082 #define XIIC_SR_ADDR_AS_SLAVE_MASK 0x02 /* 1=when addr as slave */
00083 #define XIIC_SR_BUS_BUSY_MASK 0x04 /* 1 = bus is busy */
00084 #define XIIC_SR_MSTR_RDING_SLAVE_MASK 0x08 /* 1=Dir: mstr <-- slave */
00085 #define XIIC_SR_TX_FIFO_FULL_MASK 0x10 /* 1 = Tx FIFO full */
00086 #define XIIC_SR_RX_FIFO_FULL_MASK 0x20 /* 1 = Rx FIFO full */
00087 #define XIIC_SR_RX_FIFO_EMPTY_MASK 0x40 /* 1 = Rx FIFO empty */
00088
00089 /* IPIF Interrupt Status Register masks Interrupt occurs when... */
00090
00091 #define XIIC_INTR_ARB_LOST_MASK 0x01 /* 1 = arbitration lost */
00092 #define XIIC_INTR_TX_ERROR_MASK 0x02 /* 1=Tx error/msg complete*/
00093 #define XIIC_INTR_TX_EMPTY_MASK 0x04 /* 1 = Tx FIFO/reg empty */

00094 #define XIIC_INTR_RX_FULL_MASK 0x08 /* 1=Rx FIFO/reg=OCY level*/
00095 #define XIIC_INTR_BNB_MASK 0x10 /* 1 = Bus not busy */
00096 #define XIIC_INTR_AAS_MASK 0x20 /* 1 = when addr as slave */
00097 #define XIIC_INTR_NAAS_MASK 0x40 /* 1 = not addr as slave */
00098 #define XIIC_INTR_TX_HALF_MASK 0x80 /* 1 = TX FIFO half empty */
00099
00100 /* IPIF Device Interrupt Register masks */
00101
00102 #define XIIC_IPIF_IIC_MASK 0x00000004UL /* 1=inter enabled */
00103 #define XIIC_IPIF_ERROR_MASK 0x00000001UL /* 1=inter enabled */
00104 #define XIIC_IPIF_INTER_ENABLE_MASK (XIIC_IPIF_IIC_MASK | \
00105 XIIC_IPIF_ERROR_MASK)
00106
00107 #define XIIC_TX_ADDR_SENT 0x00
00108 #define XIIC_TX_ADDR_MSTR_RECV_MASK 0x02
00109
00110 /* The following constants specify the depth of the FIFOs */
00111
00112 #define IIC_RX_FIFO_DEPTH 16 /* Rx fifo capacity */
00113 #define IIC_TX_FIFO_DEPTH 16 /* Tx fifo capacity */
00114
00115 /* The following constants specify groups of interrupts that are typically
00116 * enabled or disables at the same time
00117 */
00118 #define XIIC_TX_INTERRUPTS \
00119 (XIIC_INTR_TX_ERROR_MASK | XIIC_INTR_TX_EMPTY_MASK | \
00120 XIIC_INTR_TX_HALF_MASK)
00121
00122 #define XIIC_TX_RX_INTERRUPTS (XIIC_INTR_RX_FULL_MASK | XIIC_TX_INTERRUPTS)
00123
00124 /* The following constants are used with the following macros to specify the
00125 * operation, a read or write operation.
00126 */
00127 #define XIIC_READ_OPERATION 1
00128 #define XIIC_WRITE_OPERATION 0
00129
00130 /* The following constants are used with the transmit FIFO fill function to
00131 * specify the role which the IIC device is acting as, a master or a slave.
00132 */
00133 #define XIIC_MASTER_ROLE 1
00134 #define XIIC_SLAVE_ROLE 0
00135
00136 /**************************** Type Definitions ******************************/
00137
00138
00139 /***************** Macros (Inline Functions) Definitions ********************/
00140
00141
00142 /************************** Function Prototypes *****************************/
00143
00144 unsigned XIic_Recv(Xuint32 BaseAddress, Xuint8 Address,

00145 Xuint8 *BufferPtr, unsigned ByteCount);

00146
00147 unsigned XIic_Send(Xuint32 BaseAddress, Xuint8 Address,

00148 Xuint8 *BufferPtr, unsigned ByteCount);

00149
00150 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_l.c File Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer to the hardware device
specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 5/13/02 First release
 1.01b jhl 10/14/02 Corrected bug in the receive function, the setup of the
 interrupt status mask was not being
done in the loop such
 that a read would sometimes fail on
the last byte because
 the transmit error which should have
been ignored was
 being used. This would leave an
extra byte in the FIFO
 and the bus throttled such that the
next operation would
 also fail. Also updated the receive
function to not
 disable the device after the last
byte until after the
 bus transitions to not busy which is
more consistent
 with the expected behavior.
 1.01c ecm 12/05/02 new rev

#include "xbasic_types.h"

#include "xio.h"

#include "xipif_v1_23_b.h"
#include "xiic_l.h"

Functions

unsigned XIic_Recv (Xuint32 BaseAddress, Xuint8 Address, Xuint8 *BufferPtr, unsigned ByteCount)
unsigned XIic_Send (Xuint32 BaseAddress, Xuint8 Address, Xuint8 *BufferPtr, unsigned ByteCount)

Function Documentation

unsigned XIic_Recv (Xuint32 BaseAddress,
Xuint8 Address,
Xuint8 * BufferPtr,
unsigned ByteCount

)

Receive data as a master on the IIC bus. This function receives the data using polled I/O and blocks until the data has been
received. It only supports 7 bit addressing and non-repeated start modes of operation. The user is responsible for ensuring
the bus is not busy if multiple masters are present on the bus.

Parameters:
BaseAddress contains the base address of the IIC device.
Address contains the 7 bit IIC address of the device to send the specified data to.
BufferPtr points to the data to be sent.
ByteCount is the number of bytes to be sent.

Returns:
The number of bytes received.

Note:
None

unsigned XIic_Send (Xuint32 BaseAddress,
Xuint8 Address,
Xuint8 * BufferPtr,
unsigned ByteCount

)

Send data as a master on the IIC bus. This function sends the data using polled I/O and blocks until the data has been sent.
It only supports 7 bit addressing and non-repeated start modes of operation. The user is responsible for ensuring the bus is
not busy if multiple masters are present on the bus.

Parameters:
BaseAddress contains the base address of the IIC device.
Address contains the 7 bit IIC address of the device to send the specified data to.
BufferPtr points to the data to be sent.
ByteCount is the number of bytes to be sent.

Returns:
The number of bytes sent.

Note:

None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XIic_Config Struct Reference
#include <xiic.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress

Xboolean Has10BitAddr

Field Documentation

Xuint32 XIic_Config::BaseAddress

 Device base address

Xuint16 XIic_Config::DeviceId

 Unique ID of device

Xboolean XIic_Config::Has10BitAddr

 does device have 10 bit address decoding

The documentation for this struct was generated from the following file:

● iic/v1_01_c/src/xiic.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XIicStats Struct Reference
#include <xiic.h>

Detailed Description

XIic statistics

Data Fields

Xuint8 ArbitrationLost
Xuint8 RepeatedStarts
Xuint8 BusBusy
Xuint8 RecvBytes
Xuint8 RecvInterrupts
Xuint8 SendBytes
Xuint8 SendInterrupts
Xuint8 TxErrors
Xuint8 IicInterrupts

Field Documentation

Xuint8 XIicStats::ArbitrationLost

 Number of times arbitration was lost

Xuint8 XIicStats::BusBusy

 Number of times bus busy status returned

Xuint8 XIicStats::IicInterrupts

 Number of IIC (device) interrupts

Xuint8 XIicStats::RecvBytes

 Number of bytes received

Xuint8 XIicStats::RecvInterrupts

 Number of receive interrupts

Xuint8 XIicStats::RepeatedStarts

 Number of repeated starts

Xuint8 XIicStats::SendBytes

 Number of transmit bytes received

Xuint8 XIicStats::SendInterrupts

 Number of transmit interrupts

Xuint8 XIicStats::TxErrors

 Number of transmit errors (no ack)

The documentation for this struct was generated from the following file:

● iic/v1_01_c/src/xiic.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic.c File Reference

Detailed Description

Contains required functions for the XIic component. See xiic.h for more information on the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01a rfp 10/19/01 release
 1.01c ecm 12/05/02 new rev
 1.01c rmm 05/14/03 Fixed diab compiler warnings relating to asserts.

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

#include "xparameters.h"

Functions

XStatus XIic_Initialize (XIic *InstancePtr, Xuint16 DeviceId)
XStatus XIic_Start (XIic *InstancePtr)
XStatus XIic_Stop (XIic *InstancePtr)

void XIic_Reset (XIic *InstancePtr)
XStatus XIic_SetAddress (XIic *InstancePtr, int AddressType, int Address)
Xuint16 XIic_GetAddress (XIic *InstancePtr, int AddressType)

Xboolean XIic_IsSlave (XIic *InstancePtr)
void XIic_SetRecvHandler (XIic *InstancePtr, void *CallBackRef, XIic_Handler FuncPtr)
void XIic_SetSendHandler (XIic *InstancePtr, void *CallBackRef, XIic_Handler FuncPtr)
void XIic_SetStatusHandler (XIic *InstancePtr, void *CallBackRef, XIic_StatusHandler FuncPtr)

XIic_Config * XIic_LookupConfig (Xuint16 DeviceId)

Function Documentation

Xuint16 XIic_GetAddress (XIic * InstancePtr,
int AddressType

)

This function gets the addresses for the IIC device driver. The addresses include the device address that the device responds to as a
slave, or the slave address to communicate with on the bus. The address returned has the same format whether 7 or 10 bits.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

AddressType indicates which address, the address which this responds to on the IIC bus as a slave, or the slave address to
communicate with when this device is a master. One of the following values must be contained in this
argument.

 XII_ADDRESS_TO_SEND_TYPE slave being addressed as a master
 XII_ADDRESS_TO_RESPOND_TYPE slave address to respond to as a slave

If neither of the two valid arguments are used, the function returns the address of the slave device

Returns:
The address retrieved.

Note:
None.

XStatus XIic_Initialize (XIic * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XIic instance. The initialization entails:

● Check the device has an entry in the configuration table.
● Initialize the driver to allow access to the device registers and initialize other subcomponents necessary for the operation of

the device.
● Default options to:

❍ 7-bit slave addressing
❍ Send messages as a slave device
❍ Repeated start off
❍ General call recognition disabled

● Clear messageing and error statistics

The XIic_Start() function must be called after this function before the device is ready to send and receive data on the IIC bus.

Before XIic_Start() is called, the interrupt control must connect the ISR routine to the interrupt handler. This is done by the user,
and not XIic_Start() to allow the user to use an interrupt controller of their choice.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

DeviceId is the unique id of the device controlled by this XIic instance. Passing in a device id associates the generic XIic
instance to a specific device, as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS when successful
❍ XST_DEVICE_IS_STARTED indicates the device is started (i.e. interrupts enabled and messaging is possible). Must

stop before re-initialization is allowed.

Note:
None.

Xboolean XIic_IsSlave (XIic * InstancePtr)

A function to determine if the device is currently addressed as a slave

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
XTRUE if the device is addressed as slave, and XFALSE otherwise.

Note:
None.

XIic_Config* XIic_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table IicConfigTable contains the configuration info for each
device in the system.

Parameters:
DeviceId is the unique device ID to look for

Returns:
A pointer to the configuration data of the device, or XNULL if no match is found.

Note:
None.

void XIic_Reset (XIic * InstancePtr)

Resets the IIC device. Reset must only be called after the driver has been initialized. The configuration after this reset is as follows:

● Repeated start is disabled
● General call is disabled

The upper layer software is responsible for initializing and re-configuring (if necessary) and restarting the IIC device after the reset.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
None.

Note:
None.

XStatus XIic_SetAddress (XIic * InstancePtr,
int AddressType,
int Address

)

This function sets the bus addresses. The addresses include the device address that the device responds to as a slave, or the slave
address to communicate with on the bus. The IIC device hardware is built to allow either 7 or 10 bit slave addressing only at build
time rather than at run time. When this device is a master, slave addressing can be selected at run time to match addressing modes
for other bus devices.

Addresses are represented as hex values with no adjustment for the data direction bit as the software manages address bit placement.
Example: For a 7 address written to the device of 1010 011X where X is the transfer direction (send/recv), the address parameter for
this function needs to be 01010011 or 0x53 where the correct bit alllignment will be handled for 7 as well as 10 bit devices. This is
especially important as the bit placement is not handled the same depending on which options are used such as repeated start.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

AddressType indicates which address is being modified; the address which this device responds to on the IIC bus as a slave,
or the slave address to communicate with when this device is a master. One of the following values must be
contained in this argument.

 XII_ADDRESS_TO_SEND Slave being addressed by a this master
 XII_ADDRESS_TO_RESPOND Address to respond to as a slave device

Address contains the address to be set; 7 bit or 10 bit address. A ten bit address must be within the range: 0 - 1023 and
a 7 bit address must be within the range 0 - 127.

Returns:
XST_SUCCESS is returned if the address was successfully set, otherwise one of the following errors is returned.

❍ XST_IIC_NO_10_BIT_ADDRESSING indicates only 7 bit addressing supported.
❍ XST_INVALID_PARAM indicates an invalid parameter was specified.

Note:
Upper bits of 10-bit address is written only when current device is built as a ten bit device.

void XIic_SetRecvHandler (XIic * InstancePtr,
void * CallBackRef,
XIic_Handler FuncPtr

)

Sets the receive callback function, the receive handler, which the driver calls when it finishes receiving data. The number of bytes
used to signal when the receive is complete is the number of bytes set in the XIic_Recv function.

The handler executes in an interrupt context such that it must minimize the amount of processing performed such as transferring
data to a thread context.

The number of bytes received is passed to the handler as an argument.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context ...

void XIic_SetSendHandler (XIic * InstancePtr,
void * CallBackRef,
XIic_Handler FuncPtr

)

Sets the send callback function, the send handler, which the driver calls when it receives confirmation of sent data. The handler
executes in an interrupt context such that it must minimize the amount of processing performed such as transferring data to a thread
context.

Parameters:
InstancePtr the pointer to the XIic instance to be worked on.

CallBackRef the upper layer callback reference passed back when the callback function is invoked.
FuncPtr the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context ...

void XIic_SetStatusHandler (XIic * InstancePtr,
void * CallBackRef,
XIic_StatusHandler FuncPtr

)

Sets the status callback function, the status handler, which the driver calls when it encounters conditions which are not data related.
The handler executes in an interrupt context such that it must minimize the amount of processing performed such as transferring
data to a thread context. The status events that can be returned are described in xiic.h.

Parameters:
InstancePtr points to the XIic instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context ...

XStatus XIic_Start (XIic * InstancePtr)

This function starts the IIC device and driver by enabling the proper interrupts such that data may be sent and received on the IIC
bus. This function must be called before the functions to send and receive data.

Before XIic_Start() is called, the interrupt control must connect the ISR routine to the interrupt handler. This is done by the user,
and not XIic_Start() to allow the user to use an interrupt controller of their choice.

Start enables:

● IIC device
● Interrupts:

❍ Addressed as slave to allow messages from another master
❍ Arbitration Lost to detect Tx arbitration errors
❍ Global IIC interrupt within the IPIF interface

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
XST_SUCCESS always

Note:
The device interrupt is connected to the interrupt controller, but no "messaging" interrupts are enabled. Addressed as Slave is
enabled to reception of messages when this devices address is written to the bus. The correct messaging interrupts are
enabled when sending or receiving via the IicSend() and IicRecv() functions. No action is required by the user to control any
IIC interrupts as the driver completely manages all 8 interrupts. Start and Stop control the ability to use the device. Stopping
the device completely stops all device interrupts from the processor.

XStatus XIic_Stop (XIic * InstancePtr)

This function stops the IIC device and driver such that data is no longer sent or received on the IIC bus. This function stops the
device by disabling interrupts. This function only disables interrupts within the device such that the caller is responsible for
disconnecting the interrupt handler of the device from the interrupt source and disabling interrupts at other levels.

Due to bus throttling that could hold the bus between messages when using repeated start option, stop will not occur when the
device is actively sending or receiving data from the IIC bus or the bus is being throttled by this device, but instead return
XST_IIC_BUS_BUSY.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
❍ XST_SUCCESS indicates all IIC interrupts are disabled. No messages can be received or transmitted until

XIic_Start() is called.
❍ XST_IIC_BUS_BUSY indicates this device is currently engaged in message traffic and cannot be stopped.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_i.h
Go to the documentation of this file.

00001 /* $Id: xiic_i.h,v 1.2 2002/12/05 19:32:40 meinelte Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file iic/v1_01_c/src/xiic_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between XIic components. The identifiers in this file are not intended for
00029 * use external to the driver.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.01a rfp 10/19/01 release
00037 * 1.01c ecm 12/05/02 new rev
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XIIC_I_H /* prevent circular inclusions */

00043 #define XIIC_I_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xstatus.h"

00049
00050 /************************** Constant Definitions *****************************/
00051
00052
00053 /**************************** Type Definitions *******************************/
00054
00055
00056 /***************** Macros (Inline Functions) Definitions *********************/
00057
00058
00059 /**
00060 *
00061 * This macro sends the first byte of the address for a 10 bit address during
00062 * both read and write operations. It takes care of the details to format the
00063 * address correctly.
00064 *
00065 * address = 1111_0xxD xx = address MSBits
00066 * D = Tx direction = 0 = write
00067 *
00068 * @param SlaveAddress contains the address of the slave to send to.
00069 *
00070 * @param Operation indicates XIIC_READ_OPERATION or XIIC_WRITE_OPERATION
00071 *
00072 * @return
00073 *
00074 * None.
00075 *
00076 * @note
00077 *
00078 * Signature: void XIic_mSend10BitAddrByte1(Xuint16 SlaveAddress, Xuint8
Operation);
00079 *
00080 **/
00081 #define XIic_mSend10BitAddrByte1(SlaveAddress, Operation) \
00082 { \
00083 Xuint8 LocalAddr = (Xuint8)((SlaveAddress) >> 7); \
00084 LocalAddr = (LocalAddr & 0xF6) | 0xF0 | (Operation); \
00085 XIo_Out8(InstancePtr->BaseAddress + XIIC_DTR_REG_OFFSET, LocalAddr); \
00086 }
00087
00088 /**
00089 *
00090 * This macro sends the second byte of the address for a 10 bit address during
00091 * both read and write operations. It takes care of the details to format the
00092 * address correctly.
00093 *

00094 * @param SlaveAddress contains the address of the slave to send to.
00095 *
00096 * @return
00097 *
00098 * None.
00099 *
00100 * @note
00101 *
00102 * Signature: void XIic_mSend10BitAddrByte2(Xuint16 SlaveAddress,
00103 * Xuint8 Operation);
00104 *
00105 **/
00106 #define XIic_mSend10BitAddrByte2(SlaveAddress) \
00107 XIo_Out8(InstancePtr->BaseAddress + XIIC_DTR_REG_OFFSET, \
00108 (Xuint8)(SlaveAddress));
00109
00110 /**
00111 *
00112 * This macro sends the address for a 7 bit address during both read and write
00113 * operations. It takes care of the details to format the address correctly.
00114 *
00115 * @param SlaveAddress contains the address of the slave to send to.
00116 *
00117 * @param Operation indicates XIIC_READ_OPERATION or XIIC_WRITE_OPERATION
00118 *
00119 * @return
00120 *
00121 * None.
00122 *
00123 * @note
00124 *
00125 * Signature: void XIic_mSend7BitAddr(Xuint16 SlaveAddress, Xuint8 Operation);
00126 *
00127 **/
00128 #define XIic_mSend7BitAddr(SlaveAddress, Operation) \
00129 { \
00130 Xuint8 LocalAddr = (Xuint8)(SlaveAddress << 1); \
00131 LocalAddr = (LocalAddr & 0xFE) | (Operation); \
00132 XIo_Out8(InstancePtr->BaseAddress + XIIC_DTR_REG_OFFSET, LocalAddr); \
00133 }
00134
00135 /**
00136 *
00137 * This macro disables the specified interrupts in the IPIF interrupt enable
00138 * register. It is non-destructive in that the register is read and only the
00139 * interrupts specified is changed.
00140 *
00141 * @param BaseAddress contains the IPIF registers base address.
00142 *
00143 * @param InterruptMask contains the interrupts to be disabled
00144 *
00145 * @return
00146 *

00147 * None.
00148 *
00149 * @note
00150 *
00151 * Signature: void XIic_mDisableIntr(Xuint32 BaseAddress,
00152 * Xuint32 InterruptMask);
00153 *
00154 **/
00155 #define XIic_mDisableIntr(BaseAddress, InterruptMask) \
00156 XIIF_V123B_WRITE_IIER((BaseAddress), \
00157 XIIF_V123B_READ_IIER(BaseAddress) & ~(InterruptMask))
00158
00159 /**
00160 *
00161 * This macro enables the specified interrupts in the IPIF interrupt enable
00162 * register. It is non-destructive in that the register is read and only the
00163 * interrupts specified is changed.
00164 *
00165 * @param BaseAddress contains the IPIF registers base address.
00166 *
00167 * @param InterruptMask contains the interrupts to be disabled
00168 *
00169 * @return
00170 *
00171 * None.
00172 *
00173 * @note
00174 *
00175 * Signature: void XIic_mEnableIntr(Xuint32 BaseAddress,
00176 * Xuint32 InterruptMask);
00177 *
00178 **/
00179 #define XIic_mEnableIntr(BaseAddress, InterruptMask) \
00180 XIIF_V123B_WRITE_IIER((BaseAddress), \
00181 XIIF_V123B_READ_IIER(BaseAddress) | (InterruptMask))
00182
00183 /**
00184 *
00185 * This macro clears the specified interrupt in the IPIF interrupt status
00186 * register. It is non-destructive in that the register is read and only the
00187 * interrupt specified is cleared. Clearing an interrupt acknowledges it.
00188 *
00189 * @param BaseAddress contains the IPIF registers base address.
00190 *
00191 * @param InterruptMask contains the interrupts to be disabled
00192 *
00193 * @return
00194 *
00195 * None.
00196 *
00197 * @note
00198 *

00199 * Signature: void XIic_mClearIntr(Xuint32 BaseAddress,
00200 * Xuint32 InterruptMask);
00201 *
00202 **/
00203 #define XIic_mClearIntr(BaseAddress, InterruptMask) \
00204 XIIF_V123B_WRITE_IISR((BaseAddress), \
00205 XIIF_V123B_READ_IISR(BaseAddress) & (InterruptMask))
00206
00207 /**
00208 *
00209 * This macro clears and enables the specified interrupt in the IPIF interrupt
00210 * status and enable registers. It is non-destructive in that the registers are
00211 * read and only the interrupt specified is modified.
00212 * Clearing an interrupt acknowledges it.
00213 *
00214 * @param BaseAddress contains the IPIF registers base address.
00215 *
00216 * @param InterruptMask contains the interrupts to be cleared and enabled
00217 *
00218 * @return
00219 *
00220 * None.
00221 *
00222 * @note
00223 *
00224 * Signature: void XIic_mClearEnableIntr(Xuint32 BaseAddress,
00225 * Xuint32 InterruptMask);
00226 *
00227 **/
00228 #define XIic_mClearEnableIntr(BaseAddress, InterruptMask) \
00229 { \
00230 XIIF_V123B_WRITE_IISR(BaseAddress, \
00231 (XIIF_V123B_READ_IISR(BaseAddress) & (InterruptMask))); \
00232 \
00233 XIIF_V123B_WRITE_IIER(BaseAddress, \
00234 (XIIF_V123B_READ_IIER(BaseAddress) | (InterruptMask))); \
00235 }
00236
00237 /**
00238 *
00239 * This macro flushes the receive FIFO such that all bytes contained within it
00240 * are discarded.
00241 *
00242 * @param InstancePtr is a pointer to the IIC instance containing the FIFO
00243 * to be flushed.
00244 *
00245 * @return
00246 *
00247 * None.
00248 *
00249 * @note
00250 *
00251 * Signature: void XIic_mFlushRxFifo(XIic *InstancePtr);

00252 *
00253 **/
00254 #define XIic_mFlushRxFifo(InstancePtr) \
00255 { \
00256 int LoopCnt; \
00257 Xuint8 Temp; \
00258 Xuint8 BytesToRead = XIo_In8(InstancePtr->BaseAddress + \
00259 XIIC_RFO_REG_OFFSET) + 1; \
00260 for(LoopCnt = 0; LoopCnt < BytesToRead; LoopCnt++) \
00261 { \
00262 Temp = XIo_In8(InstancePtr->BaseAddress + XIIC_DRR_REG_OFFSET); \
00263 } \
00264 }
00265
00266 /**
00267 *
00268 * This macro flushes the transmit FIFO such that all bytes contained within it
00269 * are discarded.
00270 *
00271 * @param InstancePtr is a pointer to the IIC instance containing the FIFO
00272 * to be flushed.
00273 *
00274 * @return
00275 *
00276 * None.
00277 *
00278 * @note
00279 *
00280 * Signature: void XIic_mFlushTxFifo(XIic *InstancePtr);
00281 *
00282 **/
00283 #define XIic_mFlushTxFifo(InstancePtr); \
00284 { \
00285 Xuint8 CntlReg = XIo_In8(InstancePtr->BaseAddress + \
00286 XIIC_CR_REG_OFFSET); \
00287 XIo_Out8(InstancePtr->BaseAddress + XIIC_CR_REG_OFFSET, \
00288 CntlReg | XIIC_CR_TX_FIFO_RESET_MASK); \
00289 XIo_Out8(InstancePtr->BaseAddress + XIIC_CR_REG_OFFSET, CntlReg); \
00290 }
00291
00292 /**
00293 *
00294 * This macro reads the next available received byte from the receive FIFO
00295 * and updates all the data structures to reflect it.
00296 *
00297 * @param InstancePtr is a pointer to the IIC instance to be operated on.
00298 *
00299 * @return
00300 *
00301 * None.
00302 *
00303 * @note

00304 *
00305 * Signature: void XIic_mReadRecvByte(XIic *InstancePtr);
00306 *
00307 **/
00308 #define XIic_mReadRecvByte(InstancePtr) \
00309 { \
00310 *InstancePtr->RecvBufferPtr++ = \
00311 XIo_In8(InstancePtr->BaseAddress + XIIC_DRR_REG_OFFSET); \
00312 InstancePtr->RecvByteCount--; \
00313 InstancePtr->Stats.RecvBytes++; \
00314 }
00315
00316 /**
00317 *
00318 * This macro writes the next byte to be sent to the transmit FIFO
00319 * and updates all the data structures to reflect it.
00320 *
00321 * @param InstancePtr is a pointer to the IIC instance to be operated on.
00322 *
00323 * @return
00324 *
00325 * None.
00326 *
00327 * @note
00328 *
00329 * Signature: void XIic_mWriteSendByte(XIic *InstancePtr);
00330 *
00331 **/
00332 #define XIic_mWriteSendByte(InstancePtr) \
00333 { \
00334 XIo_Out8(InstancePtr->BaseAddress + XIIC_DTR_REG_OFFSET, \
00335 *InstancePtr->SendBufferPtr++); \
00336 InstancePtr->SendByteCount--; \
00337 InstancePtr->Stats.SendBytes++; \
00338 }
00339
00340 /**
00341 *
00342 * This macro sets up the control register for a master receive operation.
00343 * A write is necessary if a 10 bit operation is being performed.
00344 *
00345 * @param InstancePtr is a pointer to the IIC instance to be operated on.
00346 *
00347 * @param ControlRegister contains the contents of the IIC device control
00348 * register
00349 *
00350 * @param ByteCount contains the number of bytes to be received for the
00351 * master receive operation
00352 *
00353 * @return
00354 *
00355 * None.
00356 *

00357 * @note
00358 *
00359 * Signature: void XIic_mSetControlRegister(XIic *InstancePtr,
00360 * Xuint8 ControlRegister,
00361 * int ByteCount);
00362 *
00363 **/
00364 #define XIic_mSetControlRegister(InstancePtr, ControlRegister, ByteCount) \
00365 { \
00366 (ControlRegister) &= ~(XIIC_CR_NO_ACK_MASK | XIIC_CR_DIR_IS_TX_MASK); \
00367 if (InstancePtr->Options & XII_SEND_10_BIT_OPTION) \
00368 { \
00369 (ControlRegister) |= XIIC_CR_DIR_IS_TX_MASK; \
00370 } \
00371 else \
00372 { \
00373 if ((ByteCount) == 1) \
00374 { \
00375 (ControlRegister) |= XIIC_CR_NO_ACK_MASK; \
00376 } \
00377 } \
00378 }
00379
00380 /**
00381 *
00382 * This macro enters a critical region by disabling the global interrupt bit
00383 * in the IPIF.
00384 *
00385 * @param BaseAddress contains the IPIF registers base address.
00386 *
00387 * @return
00388 *
00389 * None.
00390 *
00391 * @note
00392 *
00393 * Signature: void XIic_mEnterCriticalRegion(Xuint32 BaseAddress)
00394 *
00395 **/
00396 #define XIic_mEnterCriticalRegion(BaseAddress) \
00397 XIIF_V123B_GINTR_DISABLE(BaseAddress)
00398
00399 /**
00400 *
00401 * This macro exits a critical region by enabling the global interrupt bit
00402 * in the IPIF.
00403 *
00404 * @param BaseAddress contains the IPIF registers base address.
00405 *
00406 * @return
00407 *
00408 * None.

00409 *
00410 * @note
00411 *
00412 * Signature: void XIic_mExitCriticalRegion(Xuint32 BaseAddress)
00413 *
00414 **/
00415 #define XIic_mExitCriticalRegion(BaseAddress) \
00416 XIIF_V123B_GINTR_ENABLE(BaseAddress)
00417
00418 /**
00419 *
00420 * This macro clears the statistics of an instance such that it can be common
00421 * such that some parts of the driver may be optional.
00422 *
00423 * @param InstancePtr is a pointer to the IIC instance to be operated on.
00424 *
00425 * @return
00426 *
00427 * None.
00428 *
00429 * @note
00430 *
00431 * Signature: void XIIC_CLEAR_STATS(XIic *InstancePtr)
00432 *
00433 **/
00434 #define XIIC_CLEAR_STATS(InstancePtr) \
00435 { \
00436 Xuint8 NumBytes; \
00437 Xuint8 *DestPtr; \
00438 \
00439 DestPtr = (Xuint8 *)&InstancePtr->Stats; \
00440 for (NumBytes = 0; NumBytes < sizeof(XIicStats); NumBytes++) \
00441 { \
00442 *DestPtr++ = 0; \
00443 } \
00444 }
00445
00446 /************************** Function Prototypes ******************************/
00447
00448 extern XIic_Config XIic_ConfigTable[];

00449
00450 /* The following variables are shared across files of the driver and
00451 * are function pointers that are necessary to break dependencies allowing
00452 * optional parts of the driver to be used without condition compilation
00453 */
00454 extern void (*XIic_AddrAsSlaveFuncPtr)(XIic *InstancePtr);

00455 extern void (*XIic_NotAddrAsSlaveFuncPtr)(XIic *InstancePtr);

00456 extern void (*XIic_RecvSlaveFuncPtr)(XIic *InstancePtr);

00457 extern void (*XIic_SendSlaveFuncPtr)(XIic *InstancePtr);

00458 extern void (*XIic_RecvMasterFuncPtr)(XIic *InstancePtr);

00459 extern void (*XIic_SendMasterFuncPtr)(XIic *InstancePtr);

00460 extern void (*XIic_ArbLostFuncPtr)(XIic *InstancePtr);

00461 extern void (*XIic_BusNotBusyFuncPtr)(XIic *InstancePtr);

00462
00463 void XIic_TransmitFifoFill(XIic *InstancePtr, int Role);

00464
00465 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_i.h File Reference

Detailed Description

This header file contains internal identifiers, which are those shared between XIic components. The
identifiers in this file are not intended for use external to the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.01a rfp 10/19/01 release
 1.01c ecm 12/05/02 new rev

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Variables

XIic_Config XIic_ConfigTable []

Variable Documentation

XIic_Config XIic_ConfigTable[] ()

 The IIC configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_intr.c File Reference

Detailed Description

Contains interrupt functions of the XIic driver. This file is required for the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.01a rfp 10/19/01 release
 1.01c ecm 12/05/02 new rev
 1.01c rmm 05/14/03 Fixed diab compiler warnings relating to asserts.

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Functions

void XIic_InterruptHandler (void *InstancePtr)

Function Documentation

void XIic_InterruptHandler (void * InstancePtr)

This function is the interrupt handler for the XIic driver. This function should be connected to the
interrupt system.

Only one interrupt source is handled for each interrupt allowing higher priority system interrupts
quicker response time.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_master.c File
Reference

Detailed Description

Contains master functions for the XIic component. This file is necessary to send or receive as a master
on the IIC bus.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 3/27/02 Reparitioned the driver
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Functions

XStatus XIic_MasterSend (XIic *InstancePtr, Xuint8 *TxMsgPtr, int ByteCount)
XStatus XIic_MasterRecv (XIic *InstancePtr, Xuint8 *RxMsgPtr, int ByteCount)

Function Documentation

XStatus XIic_MasterRecv (XIic * InstancePtr,
Xuint8 * RxMsgPtr,
int ByteCount

)

This function receives data as a master from a slave device on the IIC bus. If the bus is busy, it will
indicate so and then enable an interrupt such that the status handler will be called when the bus is no
longer busy. The slave address which has been set with the XIic_SetAddress() function is the address
from which data is received. Receiving data on the bus performs a read operation.

Parameters:
InstancePtr is a pointer to the Iic instance to be worked on.
RxMsgPtr is a pointer to the data to be transmitted
ByteCount is the number of message bytes to be sent

Returns:
❍ XST_SUCCESS indicates the message reception processes has been initiated.
❍ XST_IIC_BUS_BUSY indicates the bus was in use and that the BusNotBusy interrupt

is enabled which will update the EventStatus when the bus is no longer busy.
❍ XST_IIC_GENERAL_CALL_ADDRESS indicates the slave address is set to the the

general call address. This is not allowed for Master receive mode.

XStatus XIic_MasterSend (XIic * InstancePtr,
Xuint8 * TxMsgPtr,
int ByteCount

)

This function sends data as a master on the IIC bus. If the bus is busy, it will indicate so and then
enable an interrupt such that the status handler will be called when the bus is no longer busy. The
slave address which has been set with the XIic_SetAddress() function is the address to which the
specific data is sent. Sending data on the bus performs a write operation.

Parameters:
InstancePtr points to the Iic instance to be worked on.
TxMsgPtr points to the data to be transmitted
ByteCount is the number of message bytes to be sent

Returns:
❍ XST_SUCCESS indicates the message transmission has been initiated.
❍ XST_IIC_BUS_BUSY indicates the bus was in use and that the BusNotBusy interrupt

is enabled which will update the EventStatus when the bus is no longer busy.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_stats.c File
Reference

Detailed Description

Contains statistics functions for the XIic component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 3/26/02 repartioned the driver
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Functions

void XIic_GetStats (XIic *InstancePtr, XIicStats *StatsPtr)
void XIic_ClearStats (XIic *InstancePtr)

Function Documentation

void XIic_ClearStats (XIic * InstancePtr)

Clears the statistics for the IIC device by zeroing all counts.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
None.

Note:
None.

void XIic_GetStats (XIic * InstancePtr,
XIicStats * StatsPtr

)

Gets a copy of the statistics for an IIC device.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

StatsPtr is a pointer to a XIicStats structure which will get a copy of current statistics.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_selftest.c File Reference

Detailed Description

Contains selftest functions for the XIic component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 3/26/02 repartioned the driver
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Functions

XStatus XIic_SelfTest (XIic *InstancePtr)

Function Documentation

XStatus XIic_SelfTest (XIic * InstancePtr)

Runs a limited self-test on the driver/device. The self-test is destructive in that a reset of the device is performed in order
to check the reset values of the registers and to get the device into a known state. There is no loopback capabilities for the
device such that this test does not send or receive data.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:

 XST_SUCCESS No errors found
 XST_IIC_STAND_REG_ERROR One or more IIC regular registers did
 not zero on reset or read back
 correctly based on what was written
 to it
 XST_IIC_TX_FIFO_REG_ERROR One or more IIC parametrizable TX
 FIFO registers did not zero on reset
 or read back correctly based on what
 was written to it
 XST_IIC_RX_FIFO_REG_ERROR One or more IIC parametrizable RX
 FIFO registers did not zero on reset
 or read back correctly based on what
 was written to it
 XST_IIC_STAND_REG_RESET_ERROR A non parameterizable reg value after
 reset not valid
 XST_IIC_TX_FIFO_REG_RESET_ERROR Tx fifo, included in design, value
 after reset not valid
 XST_IIC_RX_FIFO_REG_RESET_ERROR Rx fifo, included in design, value
 after reset not valid
 XST_IIC_TBA_REG_RESET_ERROR 10 bit addr, incl in design, value
 after reset not valid
 XST_IIC_CR_READBACK_ERROR Read of the control register didn't
 return value written
 XST_IIC_DTR_READBACK_ERROR Read of the data Tx reg didn't return
 value written
 XST_IIC_DRR_READBACK_ERROR Read of the data Receive reg didn't
 return value written
 XST_IIC_ADR_READBACK_ERROR Read of the data Tx reg didn't return
 value written
 XST_IIC_TBA_READBACK_ERROR Read of the 10 bit addr reg didn't
 return written value

Note:
Only the registers that have be included into the hardware design are tested, such as, 10-bit vs 7-bit addressing.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_options.c File
Reference

Detailed Description

Contains options functions for the XIic component. This file is not required unless the functions in this
file are called.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 3/26/02 repartioned the driver
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Functions

void XIic_SetOptions (XIic *InstancePtr, Xuint32 NewOptions)
Xuint32 XIic_GetOptions (XIic *InstancePtr)

Function Documentation

Xuint32 XIic_GetOptions (XIic * InstancePtr)

This function gets the current options for the IIC device. Options control the how the device behaves
on the IIC bus. See SetOptions for more information on options.

Parameters:
InstancePtr is a pointer to the XIic instance to be worked on.

Returns:
The options of the IIC device. See xiic.h for a list of available options.

Note:
Options enabled will have a 1 in its appropriate bit position.

void XIic_SetOptions (XIic * InstancePtr,
Xuint32 NewOptions

)

This function sets the options for the IIC device driver. The options control how the device behaves
relative to the IIC bus. If an option applies to how messages are sent or received on the IIC bus, it
must be set prior to calling functions which send or receive data.

To set multiple options, the values must be ORed together. To not change existing options,
read/modify/write with the current options using XIic_GetOptions().

USAGE EXAMPLE:

Read/modify/write to enable repeated start:

 Xuint8 Options;
 Options = XIic_GetOptions(&Iic);
 XIic_SetOptions(&Iic, Options | XII_REPEATED_START_OPTION);

Disabling General Call:

 Options = XIic_GetOptions(&Iic);
 XIic_SetOptions(&Iic, Options &= ~XII_GENERAL_CALL_OPTION);

Parameters:

InstancePtr is a pointer to the XIic instance to be worked on.

NewOptions are the options to be set. See xiic.h for a list of the available options.

Returns:
None.

Note:
Sending or receiving messages with repeated start enabled, and then disabling repeated start,
will not take effect until another master transaction is completed. i.e. After using repeated start,
the bus will continue to be throttled after repeated start is disabled until a master transaction
occurs allowing the IIC to release the bus.

Options enabled will have a 1 in its appropriate bit position.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_multi_master.c File
Reference

Detailed Description

Contains multi-master functions for the XIic component. This file is necessary if multiple masters are on
the IIC bus such that arbitration can be lost or the bus can be busy.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 3/27/02 Reparitioned the driver
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Functions

void XIic_MultiMasterInclude ()

Function Documentation

void XIic_MultiMasterInclude (void)

This function includes multi-master code such that multi-master events are handled properly. Multi-
master events include a loss of arbitration and the bus transitioning from busy to not busy. This
function allows the multi-master processing to be optional. This function must be called prior to
allowing any multi-master events to occur, such as after the driver is initialized.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_g.c File Reference

Detailed Description

This file contains a configuration table that specifies the configuration of IIC devices in the system. Each
IIC device should have an entry in this table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01a rfp 10/19/01 release
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xparameters.h"

Variables

XIic_Config XIic_ConfigTable [XPAR_XIIC_NUM_INSTANCES]

Variable Documentation

XIic_Config XIic_ConfigTable[XPAR_XIIC_NUM_INSTANCES]

 The IIC configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc.h File Reference

Detailed Description

The Xilinx interrupt controller driver component. This component supports the Xilinx interrupt controller. A more
detailed description of the API for the component can be found in the xintc.c file.

The interrupt controller driver uses the idea of priority for the various handlers. Priority is an integer within the
range of 0 and 31 inclusive with 0 being the highest priority interrupt source.

The Xilinx interrupt controller supports the following features:

● specific individual interrupt enabling/disabling
● specific individual interrupt acknowledging
● attaching specific callback function to handle interrupt source
● master enable/disable
● single callback per interrupt or all pending interrupts handled for each interrupt of the processor

The acknowledgement of the interrupt within the interrupt controller is selectable, either prior to the device's
handler being called or after the handler is called. This is necessary to support interrupt signal inputs which are
either edge or level signals. Edge driven interrupt signals require that the interrupt is acknowledged prior to the
interrupt being serviced in order to prevent the loss of interrupts which are occuring extremely close together. A
level driven interrupt input signal requires the interrupt to acknowledged after servicing the interrupt to ensure that
the interrupt only generates a single interrupt condition.

Details about connecting the interrupt handler of the driver are contained in the source file specific to interrupt
processing, xintc_intr.c.

This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any needs
for dynamic memory management, threads or thread mutual exclusion, virtual memory, or cache control must be
satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release

 1.00a rpm 01/09/02 Removed the AckLocation argument from XIntc_Connect().

 This information is now internal in xintc_g.c.

 1.00b jhl 02/13/02 Repartitioned the driver for smaller files
 1.00b jhl 04/24/02 Made LookupConfig function global and relocated config
 data type

#include "xbasic_types.h"

#include "xparameters.h"

#include "xstatus.h"

#include "xintc_l.h"

Go to the source code of this file.

Data Structures

struct XIntc
struct XIntc_Config

Configuration options

These options are used in XIntc_SetOptions() to configure the device.

#define XIN_SVC_SGL_ISR_OPTION
#define XIN_SVC_ALL_ISRS_OPTION

Start modes

One of these values is passed to XIntc_Start() to start the device.

#define XIN_SIMULATION_MODE
#define XIN_REAL_MODE

Functions

XStatus XIntc_Initialize (XIntc *InstancePtr, Xuint16 DeviceId)
XStatus XIntc_Start (XIntc *InstancePtr, Xuint8 Mode)

void XIntc_Stop (XIntc *InstancePtr)
XStatus XIntc_Connect (XIntc *InstancePtr, Xuint8 Id, XInterruptHandler Handler, void

*CallBackRef)
void XIntc_Disconnect (XIntc *InstancePtr, Xuint8 Id)
void XIntc_Enable (XIntc *InstancePtr, Xuint8 Id)
void XIntc_Disable (XIntc *InstancePtr, Xuint8 Id)
void XIntc_Acknowledge (XIntc *InstancePtr, Xuint8 Id)

XIntc_Config * XIntc_LookupConfig (Xuint16 DeviceId)
void XIntc_VoidInterruptHandler ()
void XIntc_InterruptHandler (XIntc *InstancePtr)

XStatus XIntc_SetOptions (XIntc *InstancePtr, Xuint32 Options)
Xuint32 XIntc_GetOptions (XIntc *InstancePtr)
XStatus XIntc_SelfTest (XIntc *InstancePtr)
XStatus XIntc_SimulateIntr (XIntc *InstancePtr, Xuint8 Id)

Define Documentation

#define XIN_REAL_MODE

 Real mode, no simulation allowed, hardware interrupts recognized

#define XIN_SIMULATION_MODE

 Simulation only mode, no hardware interrupts recognized

#define XIN_SVC_ALL_ISRS_OPTION

 XIN_SVC_SGL_ISR_OPTION Service the highest priority pending interrupt
 and then return.
 XIN_SVC_ALL_ISRS_OPTION Service all of the pending interrupts and then
 return.

#define XIN_SVC_SGL_ISR_OPTION

 XIN_SVC_SGL_ISR_OPTION Service the highest priority pending interrupt
 and then return.
 XIN_SVC_ALL_ISRS_OPTION Service all of the pending interrupts and then
 return.

Function Documentation

void XIntc_Acknowledge (XIntc * InstancePtr,
Xuint8 Id

)

Acknowledges the interrupt source provided as the argument Id. When the interrupt is acknowledged, it causes
the interrupt controller to clear its interrupt condition.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

XStatus XIntc_Connect (XIntc * InstancePtr,
Xuint8 Id,
XInterruptHandler Handler,
void * CallBackRef

)

Makes the connection between the Id of the interrupt source and the associated handler that is to run when the
interrupt is recognized. The argument provided in this call as the Callbackref is used as the argument for the
handler when it is called.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Handler to the handler for that interrupt.
CallBackRef is the callback reference, usually the instance pointer of the connecting driver.

Returns:
❍ XST_SUCCESS if the handler was connected correctly.
❍ XST_INTC_CONNECT_ERROR if the handler is already in use. Must disconnect existing

handler assignment prior to calling connect again.

Note:

None.

void XIntc_Disable (XIntc * InstancePtr,
Xuint8 Id

)

Disables the interrupt source provided as the argument Id such that the interrupt controller will not cause
interrupts for the specified Id. The interrupt controller will continue to hold an interrupt condition for the Id, but
will not cause an interrupt.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

void XIntc_Disconnect (XIntc * InstancePtr,
Xuint8 Id

)

Updates the interrupt table with the Null Handler and XNULL arguments at the location pointed at by the Id.
This effectively disconnects that interrupt source from any handler. The interrupt is disabled also.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

void XIntc_Enable (XIntc * InstancePtr,
Xuint8 Id

)

Enables the interrupt source provided as the argument Id. Any pending interrupt condition for the specified Id
will occur after this function is called.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

Xuint32 XIntc_GetOptions (XIntc * InstancePtr)

Return the currently set options.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
The currently set options. The options are described in xintc.h.

Note:
None.

XStatus XIntc_Initialize (XIntc * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific interrupt controller instance/driver. The initialization entails:

● Initialize fields of the XIntc structure
● Initial vector table with stub function calls
● All interrupt sources are disabled
● Interrupt output is disabled

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

DeviceId is the unique id of the device controlled by this XIntc instance. Passing in a device id
associates the generic XIntc instance to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device

with the supplied device ID.

Note:
None.

void XIntc_InterruptHandler (XIntc * InstancePtr)

The interrupt handler for the driver. This function determines the pending interrupts and calls the appropriate
handlers in the priority based order.

This specific function allows multiple interrupt controller instances to be handled. The user must connect this
function to the interrupt system such that it is called whenever the devices which are connected to it cause an
interrupt.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
None.

Note:
None.

XIntc_Config* XIntc_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration info for
each device in the system.

Parameters:
DeviceId is the unique identifier for a device.

Returns:
A pointer to the XIntc configuration structure for the specified device, or XNULL if the device was not
found.

Note:
None.

XStatus XIntc_SelfTest (XIntc * InstancePtr)

Run a self-test on the driver/device. This is a destructive test.

This involves forcing interrupts into the controller and verifying that they are recognized and can be
acknowledged. This test will not succeed if the interrupt controller has been started in real mode such that
interrupts cannot be forced.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
❍ XST_SUCCESS if self-test is successful.
❍ XST_INTC_FAIL_SELFTEST if the Interrupt controller fails the self-test. It will fail the self test

if the device has previously been started in real mode.

Note:
None.

XStatus XIntc_SetOptions (XIntc * InstancePtr,
Xuint32 Options

)

Set the options for the interrupt controller driver.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Options to be set. The available options are described in xintc.h.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_INVALID_PARAM if the specified option was not valid

Note:
None.

XStatus XIntc_SimulateIntr (XIntc * InstancePtr,
Xuint8 Id

)

Allows software to simulate an interrupt in the interrupt controller. This function will only be successful when
the interrupt controller has been started in simulation mode. Once it has been started in real mode, interrupts
cannot be simulated. A simulated interrupt allows the interrupt controller to be tested without any device to
drive an interrupt input signal into it.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id is the interrupt ID for which to simulate an interrupt.

Returns:
XST_SUCCESS if successful, or XST_FAILURE if the interrupt could not be simulated because the
interrupt controller is or has previously been in real mode.

Note:
None.

XStatus XIntc_Start (XIntc * InstancePtr,
Xuint8 Mode

)

Starts the interrupt controller by enabling the output from the controller to the processor. Interrupts may be
generated by the interrupt controller after this function is called.

It is necessary for the caller to connect the interrupt handler of this component to the proper interrupt source.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Mode determines if software is allowed to simulate interrupts or real interrupts are allowed to
occur. Note that these modes are mutually exclusive. The interrupt controller hardware
resets in a mode that allows software to simulate interrupts until this mode is exited. It
cannot be reentered once it has been exited. One of the following values should be used for
the mode.

● XIN_SIMULATION_MODE enables simulation of interrupts only
● XIN_REAL_MODE enables hardware interrupts only

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_FAILURE if simulation mode was specified and it could not be set because real mode has

already been entered.

Note:
Must be called after XIntc initialization is completed.

void XIntc_Stop (XIntc * InstancePtr)

Stops the interrupt controller by disabling the output from the controller so that no interrupts will be caused by
the interrupt controller.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
None.

Note:
None.

void XIntc_VoidInterruptHandler ()

Interrupt handler for the driver. This function determines the pending interrupts and calls the appropriate
handlers in the priority based order.

This specific function does not support multiple interrupt controller instances to be handled. The user must
connect this function to the interrupt system such that it is called whenever the devices which are connected to it
cause an interrupt.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc.c File Reference

Detailed Description

Contains required functions for the XIntc driver for the Xilinx Interrupt Controller. See xintc.h for a detailed
description of the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
 1.00b jhl 04/24/02 Made LookupConfig global and compressed ack before table
 in the configuration into a bit mask

#include "xbasic_types.h"

#include "xintc.h"

#include "xintc_l.h"

#include "xintc_i.h"

Functions

XStatus XIntc_Initialize (XIntc *InstancePtr, Xuint16 DeviceId)
XStatus XIntc_Start (XIntc *InstancePtr, Xuint8 Mode)

void XIntc_Stop (XIntc *InstancePtr)
XStatus XIntc_Connect (XIntc *InstancePtr, Xuint8 Id, XInterruptHandler Handler, void

*CallBackRef)
void XIntc_Disconnect (XIntc *InstancePtr, Xuint8 Id)
void XIntc_Enable (XIntc *InstancePtr, Xuint8 Id)
void XIntc_Disable (XIntc *InstancePtr, Xuint8 Id)
void XIntc_Acknowledge (XIntc *InstancePtr, Xuint8 Id)

XIntc_Config * XIntc_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XIntc_Acknowledge (XIntc * InstancePtr,
Xuint8 Id

)

Acknowledges the interrupt source provided as the argument Id. When the interrupt is acknowledged, it causes
the interrupt controller to clear its interrupt condition.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

XStatus XIntc_Connect (XIntc * InstancePtr,
Xuint8 Id,
XInterruptHandler Handler,
void * CallBackRef

)

Makes the connection between the Id of the interrupt source and the associated handler that is to run when the
interrupt is recognized. The argument provided in this call as the Callbackref is used as the argument for the
handler when it is called.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority
interrupt.

Handler to the handler for that interrupt.
CallBackRef is the callback reference, usually the instance pointer of the connecting driver.

Returns:
❍ XST_SUCCESS if the handler was connected correctly.

❍ XST_INTC_CONNECT_ERROR if the handler is already in use. Must disconnect existing
handler assignment prior to calling connect again.

Note:
None.

void XIntc_Disable (XIntc * InstancePtr,
Xuint8 Id

)

Disables the interrupt source provided as the argument Id such that the interrupt controller will not cause
interrupts for the specified Id. The interrupt controller will continue to hold an interrupt condition for the Id, but
will not cause an interrupt.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

void XIntc_Disconnect (XIntc * InstancePtr,
Xuint8 Id

)

Updates the interrupt table with the Null Handler and XNULL arguments at the location pointed at by the Id.
This effectively disconnects that interrupt source from any handler. The interrupt is disabled also.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

void XIntc_Enable (XIntc * InstancePtr,
Xuint8 Id

)

Enables the interrupt source provided as the argument Id. Any pending interrupt condition for the specified Id
will occur after this function is called.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id contains the ID of the interrupt source and should be in the range of 0 to
XPAR_INTC_MAX_NUM_INTR_INPUTS - 1 with 0 being the highest priority interrupt.

Returns:
None.

Note:
None.

XStatus XIntc_Initialize (XIntc * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific interrupt controller instance/driver. The initialization entails:

● Initialize fields of the XIntc structure
● Initial vector table with stub function calls
● All interrupt sources are disabled
● Interrupt output is disabled

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

DeviceId is the unique id of the device controlled by this XIntc instance. Passing in a device id
associates the generic XIntc instance to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if device configuration information was not found for a device

with the supplied device ID.

Note:
None.

XIntc_Config* XIntc_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration info for
each device in the system.

Parameters:
DeviceId is the unique identifier for a device.

Returns:
A pointer to the XIntc configuration structure for the specified device, or XNULL if the device was not
found.

Note:
None.

XStatus XIntc_Start (XIntc * InstancePtr,
Xuint8 Mode

)

Starts the interrupt controller by enabling the output from the controller to the processor. Interrupts may be
generated by the interrupt controller after this function is called.

It is necessary for the caller to connect the interrupt handler of this component to the proper interrupt source.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Mode determines if software is allowed to simulate interrupts or real interrupts are allowed to
occur. Note that these modes are mutually exclusive. The interrupt controller hardware
resets in a mode that allows software to simulate interrupts until this mode is exited. It
cannot be reentered once it has been exited. One of the following values should be used for
the mode.

● XIN_SIMULATION_MODE enables simulation of interrupts only
● XIN_REAL_MODE enables hardware interrupts only

Returns:
❍ XST_SUCCESS if the device was started successfully
❍ XST_FAILURE if simulation mode was specified and it could not be set because real mode has

already been entered.

Note:

Must be called after XIntc initialization is completed.

void XIntc_Stop (XIntc * InstancePtr)

Stops the interrupt controller by disabling the output from the controller so that no interrupts will be caused by
the interrupt controller.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XIntc Struct Reference
#include <xintc.h>

Detailed Description

The XIntc driver instance data. The user is required to allocate a variable of this type for every intc
device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● intc/v1_00_b/src/xintc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc.h
Go to the documentation of this file.

00001 /* $Id: xintc.h,v 1.9 2002/07/26 20:36:59 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file intc/v1_00_b/src/xintc.h
00026 *
00027 * The Xilinx interrupt controller driver component. This component supports the
00028 * Xilinx interrupt controller. A more detailed description of the API for the
00029 * component can be found in the xintc.c file.
00030 *
00031 * The interrupt controller driver uses the idea of priority for the various
00032 * handlers. Priority is an integer within the range of 0 and 31 inclusive with
00033 * 0 being the highest priority interrupt source.
00034 *
00035 * The Xilinx interrupt controller supports the following features:
00036 *
00037 * - specific individual interrupt enabling/disabling
00038 * - specific individual interrupt acknowledging
00039 * - attaching specific callback function to handle interrupt source
00040 * - master enable/disable
00041 * - single callback per interrupt or all pending interrupts handled for
00042 * each interrupt of the processor

00043 *
00044 * The acknowledgement of the interrupt within the interrupt controller is
00045 * selectable, either prior to the device's handler being called or after
00046 * the handler is called. This is necessary to support interrupt signal inputs
00047 * which are either edge or level signals. Edge driven interrupt signals
00048 * require that the interrupt is acknowledged prior to the interrupt being
00049 * serviced in order to prevent the loss of interrupts which are occuring
00050 * extremely close together. A level driven interrupt input signal requires
00051 * the interrupt to acknowledged after servicing the interrupt to ensure that
00052 * the interrupt only generates a single interrupt condition.
00053 *
00054 * Details about connecting the interrupt handler of the driver are contained
00055 * in the source file specific to interrupt processing, xintc_intr.c.
00056 *
00057 * This driver is intended to be RTOS and processor independent. It works with
00058 * physical addresses only. Any needs for dynamic memory management, threads
00059 * or thread mutual exclusion, virtual memory, or cache control must be
00060 * satisfied by the layer above this driver.
00061 *
00062 * <pre>
00063 * MODIFICATION HISTORY:
00064 *
00065 * Ver Who Date Changes
00066 * ----- ---- -------- ---
00067 * 1.00a ecm 08/16/01 First release
00068 * 1.00a rpm 01/09/02 Removed the AckLocation argument from XIntc_Connect().
00069 * This information is now internal in xintc_g.c.
00070 * 1.00b jhl 02/13/02 Repartitioned the driver for smaller files
00071 * 1.00b jhl 04/24/02 Made LookupConfig function global and relocated config
00072 * data type
00073 * </pre>
00074 *
00075 **/
00076
00077 #ifndef XINTC_H /* prevent circular inclusions */
00078 #define XINTC_H /* by using protection macros */
00079
00080 /***************************** Include Files *********************************/
00081
00082 #include "xbasic_types.h"

00083 #include "xparameters.h"

00084 #include "xstatus.h"

00085 #include "xintc_l.h"

00086
00087 /************************** Constant Definitions *****************************/
00088
00089 /**
00090 * @name Configuration options
00091 * These options are used in XIntc_SetOptions() to configure the device.
00092 * @{
00093 */
00094 /**

00095 * <pre>
00096 * XIN_SVC_SGL_ISR_OPTION Service the highest priority pending interrupt
00097 * and then return.
00098 * XIN_SVC_ALL_ISRS_OPTION Service all of the pending interrupts and then
00099 * return.
00100 * </pre>
00101 */
00102 #define XIN_SVC_SGL_ISR_OPTION 1UL

00103 #define XIN_SVC_ALL_ISRS_OPTION 2UL

00104 /*@}*/
00105
00106 /**
00107 * @name Start modes
00108 * One of these values is passed to XIntc_Start() to start the device.
00109 * @{
00110 */
00111 /** Simulation only mode, no hardware interrupts recognized */
00112 #define XIN_SIMULATION_MODE 0

00113 /** Real mode, no simulation allowed, hardware interrupts recognized */
00114 #define XIN_REAL_MODE 1

00115 /*@}*/
00116
00117 /*
00118 * A constant to allow each table in the component to be sized properly
00119 * since the max interrupt id is a zero based number
00120 */
00121 #define XIN_TABLE_SIZE (XPAR_INTC_MAX_ID + 1)
00122
00123 /**************************** Type Definitions *******************************/
00124
00125 /**
00126 * This typedef contains configuration information for the device.
00127 */
00128 typedef struct

00129 {
00130 Xuint16 DeviceId; /**< Unique ID of device */

00131 Xuint32 BaseAddress; /**< Register base address */

00132 Xuint32 AckBeforeService; /**< Ack location per interrupt */

00133 } XIntc_Config;

00134
00135 /**
00136 * The XIntc driver instance data. The user is required to allocate a
00137 * variable of this type for every intc device in the system. A pointer
00138 * to a variable of this type is then passed to the driver API functions.
00139 */
00140 typedef struct

00141 {
00142 Xuint32 UnhandledInterrupts;/* Intc Statistics */

00143 Xuint32 BaseAddress; /* Base address of registers */

00144 Xuint32 IsReady; /* Device is initialized and ready */

00145 Xuint32 IsStarted; /* Device has been started */

00146 Xuint32 Options; /* Device options */

00147
00148 /* the following instance variable controls when each interrupt
00149 * is acknowledged, before servicing it (edge) or after (level)
00150 * each bit controls an interrupt id with a 1 indicating to ack
00151 * the interrupt before service and a 0 indicating ack after
00152 * the bit number correlates to the interrupt id (bit 0 = lsb)
00153 */
00154 Xuint32 AckBeforeService;

00155
00156 /* the following data is a table of handlers to be called when an
00157 * interrupt signal is active
00158 */
00159 XIntc_VectorTableEntry HandlerTable[XPAR_INTC_MAX_NUM_INTR_INPUTS];
00160
00161 } XIntc;

00162
00163 /***************** Macros (Inline Functions) Definitions *********************/
00164
00165
00166 /************************** Function Prototypes ******************************/
00167
00168 /*
00169 * Required functions in xintc.c
00170 */
00171 XStatus XIntc_Initialize(XIntc *InstancePtr, Xuint16 DeviceId);

00172
00173 XStatus XIntc_Start(XIntc *InstancePtr, Xuint8 Mode);

00174 void XIntc_Stop(XIntc *InstancePtr);

00175
00176 XStatus XIntc_Connect(XIntc *InstancePtr, Xuint8 Id,

00177 XInterruptHandler Handler, void *CallBackRef);

00178 void XIntc_Disconnect(XIntc *InstancePtr, Xuint8 Id);

00179
00180 void XIntc_Enable(XIntc *InstancePtr, Xuint8 Id);

00181 void XIntc_Disable(XIntc *InstancePtr, Xuint8 Id);

00182
00183 void XIntc_Acknowledge(XIntc *InstancePtr, Xuint8 Id);

00184
00185 XIntc_Config *XIntc_LookupConfig(Xuint16 DeviceId);

00186
00187 /*
00188 * Interrupt functions in xintr_intr.c
00189 */
00190 void XIntc_VoidInterruptHandler();

00191 void XIntc_InterruptHandler(XIntc *InstancePtr);

00192
00193 /*
00194 * Options functions in xintc_options.c
00195 */
00196 XStatus XIntc_SetOptions(XIntc *InstancePtr, Xuint32 Options);

00197 Xuint32 XIntc_GetOptions(XIntc *InstancePtr);

00198
00199 /*
00200 * Self-test functions in xintc_selftest.c
00201 */
00202 XStatus XIntc_SelfTest(XIntc *InstancePtr);

00203 XStatus XIntc_SimulateIntr(XIntc *InstancePtr, Xuint8 Id);

00204
00205 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_l.h File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. The user should refer to the hardware device specification for more details of the device
operation. High-level driver functions are defined in xintc.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xbasic_types.h"

#include "xparameters.h"

#include "xio.h"

Go to the source code of this file.

Data Structures

struct XIntc_VectorTableEntry

Defines

#define XIntc_mMasterEnable(BaseAddress)

#define XIntc_mMasterDisable(BaseAddress)
#define XIntc_mEnableIntr(BaseAddress, EnableMask)
#define XIntc_mDisableIntr(BaseAddress, DisableMask)
#define XIntc_mAckIntr(BaseAddress, AckMask)
#define XIntc_mGetIntrStatus(BaseAddress)

Functions

void XIntc_DefaultHandler (void *Input)
void XIntc_LowLevelInterruptHandler (void)

Define Documentation

#define XIntc_mAckIntr(BaseAddress,
AckMask)

Acknowledge specific interrupt(s) in the interrupt controller.

Parameters:
BaseAddress is the base address of the device
AckMask is the 32-bit value to write to the acknowledge register. Each bit of the mask

corresponds to an interrupt input signal that is connected to the interrupt
controller (INT0 = LSB). Only the bits which are set in the mask will
acknowledge interrupts.

Returns:
None.

#define XIntc_mDisableIntr(BaseAddress,
DisableMask)

Disable specific interrupt(s) in the interrupt controller.

Parameters:
BaseAddress is the base address of the device
DisableMask is the 32-bit value to write to the enable register. Each bit of the mask

corresponds to an interrupt input signal that is connected to the interrupt
controller (INT0 = LSB). Only the bits which are set in the mask will disable
interrupts.

Returns:
None.

#define XIntc_mEnableIntr(BaseAddress,
EnableMask)

Enable specific interrupt(s) in the interrupt controller.

Parameters:
BaseAddress is the base address of the device
EnableMask is the 32-bit value to write to the enable register. Each bit of the mask

corresponds to an interrupt input signal that is connected to the interrupt
controller (INT0 = LSB). Only the bits which are set in the mask will enable
interrupts.

Returns:
None.

#define XIntc_mGetIntrStatus(BaseAddress)

Get the interrupt status from the interrupt controller which indicates which interrupts are active and
enabled.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit contents of the interrupt status register. Each bit corresponds to an interrupt input
signal that is connected to the interrupt controller (INT0 = LSB). Bits which are set indicate an
active interrupt which is also enabled.

#define XIntc_mMasterDisable(BaseAddress)

Disable all interrupts in the Master Enable register of the interrupt controller.

Parameters:
BaseAddress is the base address of the device.

Returns:
None.

#define XIntc_mMasterEnable(BaseAddress)

Enable all interrupts in the Master Enable register of the interrupt controller. The interrupt controller
defaults to all interrupts disabled from reset such that this macro must be used to enable interrupts.

Parameters:
BaseAddress is the base address of the device.

Returns:
None.

Function Documentation

void XIntc_DefaultHandler (void * UnusedInput)

This function is an default interrupt handler for the low level driver of the interrupt controller. It
allows the interrupt vector table to be initialized to this function so that unexpected interrupts don't
result in a system crash.

Parameters:
UnusedInput is an unused input that is necessary for this function to have the signature of an

input handler.

Returns:
None.

Note:
None.

void XIntc_LowLevelInterruptHandler (void)

This function is an interrupt handler for the low level driver of the interrupt controller. It must be
connected to the interrupt source such that is called when an interrupt of the interrupt controller is
active. It will resolve which interrupts are active and enabled and call the appropriate interrupt
handler. It acknowledges the interrupt after it has been serviced by the interrupt handler.

This function assumes that an interrupt vector table has been previously initialized by the user. It does
not verify that entries in the table are valid before calling an interrupt handler.

Returns:
None.

Note:
The constants XPAR_INTC_SINGLE_BASEADDR & XPAR_INTC_MAX_ID must be
setup for this to compile. Interrupt IDs range from 0 - 31 and correspond to the interrupt input
signals for the interrupt controller. XPAR_INTC_MAX_ID specifies the highest numbered
interrupt input signal that is used.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_l.h
Go to the documentation of this file.

00001 /* $Id: xintc_l.h,v 1.5 2002/08/01 14:24:01 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file intc/v1_00_b/src/xintc_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xintc.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00b jhl 04/24/02 First release
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XINTC_L_H /* prevent circular inclusions */

00043 #define XINTC_L_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xparameters.h"

00049 #include "xio.h"

00050
00051 /* uncomment when the libgen functionality arrives
00052 #ifndef XPAR_XINTC_USE_DCR
00053 #error "XPAR_XINTC_USE_DCR not defined"
00054 #endif
00055 */
00056
00057 #if (XPAR_XINTC_USE_DCR != 0)
00058 #include "xio_dcr.h"

00059 #endif
00060
00061 /************************** Constant Definitions *****************************/
00062
00063 /* define the offsets from the base address for all the registers of the
00064 * interrupt controller, some registers may be optional in the hardware device
00065 */
00066 #if (XPAR_XINTC_USE_DCR != 0)
00067
00068 #define XIN_ISR_OFFSET 0 /* Interrupt Status Register */
00069 #define XIN_IPR_OFFSET 1 /* Interrupt Pending Register */
00070 #define XIN_IER_OFFSET 2 /* Interrupt Enable Register */
00071 #define XIN_IAR_OFFSET 3 /* Interrupt Acknowledge Register */
00072 #define XIN_SIE_OFFSET 4 /* Set Interrupt Enable Register */
00073 #define XIN_CIE_OFFSET 5 /* Clear Interrupt Enable Register */
00074 #define XIN_IVR_OFFSET 6 /* Interrupt Vector Register */
00075 #define XIN_MER_OFFSET 7 /* Master Enable Register */
00076
00077 #else /*(XPAR_XINTC_USE_DCR != 0)*/
00078
00079 #define XIN_ISR_OFFSET 0 /* Interrupt Status Register */
00080 #define XIN_IPR_OFFSET 4 /* Interrupt Pending Register */
00081 #define XIN_IER_OFFSET 8 /* Interrupt Enable Register */
00082 #define XIN_IAR_OFFSET 12 /* Interrupt Acknowledge Register */
00083 #define XIN_SIE_OFFSET 16 /* Set Interrupt Enable Register */
00084 #define XIN_CIE_OFFSET 20 /* Clear Interrupt Enable Register */
00085 #define XIN_IVR_OFFSET 24 /* Interrupt Vector Register */
00086 #define XIN_MER_OFFSET 28 /* Master Enable Register */
00087
00088 #endif /*(XPAR_XINTC_USE_DCR != 0)*/
00089
00090 /* Bit definitions for the bits of the MER register */
00091
00092 #define XIN_INT_MASTER_ENABLE_MASK 0x1UL
00093 #define XIN_INT_HARDWARE_ENABLE_MASK 0x2UL /* once set cannot be cleared */
00094

00095 /**************************** Type Definitions *******************************/
00096
00097 /* The following data type defines each entry in an interrupt vector table,
00098 * the callback reference is the base address of the interrupting device
00099 * for the low level driver and an instance pointer for the high level driver
00100 */
00101 typedef struct
00102 {
00103 XInterruptHandler Handler;

00104 void *CallBackRef;
00105 } XIntc_VectorTableEntry;
00106
00107 /***************** Macros (Inline Functions) Definitions *********************/
00108
00109 /*
00110 * Define the appropriate I/O access method to memory mapped I/O or DCR.
00111 */
00112 #if (XPAR_XINTC_USE_DCR != 0)
00113
00114 #define XIntc_In32 XIo_DcrIn
00115 #define XIntc_Out32 XIo_DcrOut
00116
00117 #else
00118
00119 #define XIntc_In32 XIo_In32
00120 #define XIntc_Out32 XIo_Out32
00121
00122 #endif
00123
00124 /***
00125 *
00126 * Low-level driver macros. The list below provides signatures to help the
00127 * user use the macros.
00128 *
00129 * void XIntc_mMasterEnable(BaseAddress)
00130 * void XIntc_mMasterDisable(BaseAddress)
00131 *
00132 * void XIntc_mEnableIntr(BaseAddress, EnableMask)
00133 * void XIntc_mDisableIntr(BaseAddress, DisableMask)
00134 * void XIntc_mAckIntr(BaseAddress, AckMask)
00135 * Xuint32 XIntc_mGetIntrStatus(BaseAddress)
00136 *
00137 ***/
00138
00139 /**/
00140 /**
00141 *
00142 * Enable all interrupts in the Master Enable register of the interrupt
00143 * controller. The interrupt controller defaults to all interrupts disabled
00144 * from reset such that this macro must be used to enable interrupts.
00145 *
00146 * @param BaseAddress is the base address of the device.

00147 *
00148 * @return None.
00149 *
00150 ***/
00151 #define XIntc_mMasterEnable(BaseAddress) \

00152 XIntc_Out32((BaseAddress) + XIN_MER_OFFSET, \
00153 XIN_INT_MASTER_ENABLE_MASK | XIN_INT_HARDWARE_ENABLE_MASK)
00154
00155 /**/
00156 /**
00157 *
00158 * Disable all interrupts in the Master Enable register of the interrupt
00159 * controller.
00160 *
00161 * @param BaseAddress is the base address of the device.
00162 *
00163 * @return None.
00164 *
00165 ***/
00166 #define XIntc_mMasterDisable(BaseAddress) \

00167 XIntc_Out32((BaseAddress) + XIN_MER_OFFSET, 0)
00168
00169 /**/
00170 /**
00171 *
00172 * Enable specific interrupt(s) in the interrupt controller.
00173 *
00174 * @param BaseAddress is the base address of the device
00175 * @param EnableMask is the 32-bit value to write to the enable register.
00176 * Each bit of the mask corresponds to an interrupt input signal that
00177 * is connected to the interrupt controller (INT0 = LSB). Only the
00178 * bits which are set in the mask will enable interrupts.
00179 *
00180 * @return None.
00181 *
00182 ***/
00183 #define XIntc_mEnableIntr(BaseAddress, EnableMask) \

00184 XIntc_Out32((BaseAddress) + XIN_IER_OFFSET, (EnableMask))
00185
00186 /**/
00187 /**
00188 *
00189 * Disable specific interrupt(s) in the interrupt controller.
00190 *
00191 * @param BaseAddress is the base address of the device
00192 * @param DisableMask is the 32-bit value to write to the enable register.
00193 * Each bit of the mask corresponds to an interrupt input signal that
00194 * is connected to the interrupt controller (INT0 = LSB). Only the
00195 * bits which are set in the mask will disable interrupts.
00196 *
00197 * @return None.
00198 *

00199 ***/
00200 #define XIntc_mDisableIntr(BaseAddress, DisableMask) \

00201 XIntc_Out32((BaseAddress) + XIN_IER_OFFSET, ~(DisableMask))
00202
00203 /**/
00204 /**
00205 *
00206 * Acknowledge specific interrupt(s) in the interrupt controller.
00207 *
00208 * @param BaseAddress is the base address of the device
00209 * @param AckMask is the 32-bit value to write to the acknowledge register.
00210 * Each bit of the mask corresponds to an interrupt input signal that
00211 * is connected to the interrupt controller (INT0 = LSB). Only the
00212 * bits which are set in the mask will acknowledge interrupts.
00213 *
00214 * @return None.
00215 *
00216 ***/
00217 #define XIntc_mAckIntr(BaseAddress, AckMask) \

00218 XIntc_Out32((BaseAddress) + XIN_IAR_OFFSET, (AckMask))
00219
00220 /**/
00221 /**
00222 *
00223 * Get the interrupt status from the interrupt controller which indicates
00224 * which interrupts are active and enabled.
00225 *
00226 * @param BaseAddress is the base address of the device
00227 *
00228 * @return The 32-bit contents of the interrupt status register. Each bit
00229 * corresponds to an interrupt input signal that is connected to the
00230 * interrupt controller (INT0 = LSB). Bits which are set indicate an
00231 * active interrupt which is also enabled.
00232 *
00233 ***/
00234 #define XIntc_mGetIntrStatus(BaseAddress) \

00235 (XIntc_In32((BaseAddress) + XIN_ISR_OFFSET) & \
00236 XIntc_In32((BaseAddress) + XIN_IER_OFFSET))
00237
00238 /************************** Function Prototypes ******************************/
00239
00240 void XIntc_DefaultHandler(void *Input);

00241
00242 void XIntc_LowLevelInterruptHandler(void);

00243
00244 /************************** Variable Definitions *****************************/
00245
00246 extern XIntc_VectorTableEntry XIntc_InterruptVectorTable[];
00247
00248 extern Xuint32 XIntc_AckBeforeService;

00249
00250 #endif /* end of protection macro */

00251

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu_ppc405/v1_00_a/src/xio_dcr.h File
Reference

Detailed Description

The DCR I/O access functions.

Note:
These access functions are specific to the PPC405 CPU. Changes might be necessary for other
members of the IBM PPC Family.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 10/18/01 First release

#include "xbasic_types.h"

Go to the source code of this file.

Functions

void XIo_DcrOut (Xuint32 DcrRegister, Xuint32 Data)
Xuint32 XIo_DcrIn (Xuint32 DcrRegister)

Function Documentation

Xuint32 XIo_DcrIn (Xuint32 DcrRegister)

Reads value from specified register.

Parameters:
DcrRegister is the intended source DCR register

Returns:
Contents of the specified DCR register.

Note:
None.

void XIo_DcrOut (Xuint32 DcrRegister,
Xuint32 Data

)

Outputs value provided to specified register defined in the header file.

Parameters:
DcrRegister is the intended destination DCR register
Data is the value to be placed into the specified DCR register

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu_ppc405/v1_00_a/src/xio_dcr.h
Go to the documentation of this file.

00001 /* $Id: xio_dcr.h,v 1.7 2002/07/26 20:27:56 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file cpu_ppc405/v1_00_a/src/xio_dcr.h
00026 *
00027 * The DCR I/O access functions.
00028 *
00029 * @note
00030 *
00031 * These access functions are specific to the PPC405 CPU. Changes might be
00032 * necessary for other members of the IBM PPC Family.
00033 *
00034 * <pre>
00035 * MODIFICATION HISTORY:
00036 *
00037 * Ver Who Date Changes
00038 * ----- ---- -------- ---
00039 * 1.00a ecm 10/18/01 First release
00040 * </pre>
00041 *
00042 * @internal

00043 *
00044 * The C functions which subsequently call into either the assembly code
00045 * or into the provided table of functions are required since the registers
00046 * assigned to the calling and return from functions are strictly defined
00047 * in the ABI and that definition is used in the low-level functions
00048 * directly. The use of macros is not recommended since the temporary
00049 * registers in the ABI are defined but there is no way to force
00050 * the compiler to use a specific register in a block of code.
00051 *
00052 **/
00053
00054 #ifndef XDCRIO_H /* prevent circular inclusions */
00055 #define XDCRIO_H /* by using protection macros */
00056
00057 /***************************** Include Files *********************************/
00058 #include "xbasic_types.h"

00059
00060 /************************** Constant Definitions *****************************/
00061
00062
00063 #define MAX_DCR_REGISTERS 1024
00064 #define MAX_DCR_REGISTER MAX_DCR_REGISTERS - 1
00065 #define MIN_DCR_REGISTER 0
00066
00067 /**************************** Type Definitions *******************************/
00068
00069
00070 /***************** Macros (Inline Functions) Definitions *********************/
00071
00072
00073 /************************** Function Prototypes ******************************/
00074
00075 /*
00076 * Access Functions
00077 */
00078 void XIo_DcrOut(Xuint32 DcrRegister, Xuint32 Data);

00079 Xuint32 XIo_DcrIn(Xuint32 DcrRegister);

00080
00081
00082 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

cpu_ppc405/v1_00_a/src/xio_dcr.c File
Reference

Detailed Description

The implementation of the XDcrIo interface. See xio_dcr.h for more information about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 10/18/01 First release
 ecm 01/29/03 Cleaned up the table and made it more readable.
 The DCR_REG_512 was 17 and the table used DCR_REG_32
 +15 which is actually the same as what DCR_REG_512
 should have been,16. I removed the blocks using
 DCR_REG_32+15 and added blocks using DCR_REG_512+14
 to make the table correct when DCR_REG_512 = 16.
 This is functionally exactly the same, just more
 readable hence no rev bump.

#include "xstatus.h"

#include "xbasic_types.h"

#include "xio.h"

#include "xio_dcr.h"

Data Structures

struct DcrFunctionTableEntryTag

Functions

void XIo_DcrOut (Xuint32 DcrRegister, Xuint32 Data)
Xuint32 XIo_DcrIn (Xuint32 DcrRegister)

Function Documentation

Xuint32 XIo_DcrIn (Xuint32 DcrRegister)

Reads value from specified register.

Parameters:
DcrRegister is the intended source DCR register

Returns:
Contents of the specified DCR register.

Note:
None.

void XIo_DcrOut (Xuint32 DcrRegister,
Xuint32 Data

)

Outputs value provided to specified register defined in the header file.

Parameters:
DcrRegister is the intended destination DCR register
Data is the value to be placed into the specified DCR register

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_l.c File Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer
to the hardware device specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xparameters.h"

#include "xbasic_types.h"

#include "xintc_l.h"

Functions

void XIntc_DefaultHandler (void *UnusedInput)
void XIntc_LowLevelInterruptHandler (void)

Function Documentation

void XIntc_DefaultHandler (void * UnusedInput)

This function is an default interrupt handler for the low level driver of the interrupt controller. It
allows the interrupt vector table to be initialized to this function so that unexpected interrupts don't
result in a system crash.

Parameters:
UnusedInput is an unused input that is necessary for this function to have the signature of an

input handler.

Returns:
None.

Note:
None.

void XIntc_LowLevelInterruptHandler (void)

This function is an interrupt handler for the low level driver of the interrupt controller. It must be
connected to the interrupt source such that is called when an interrupt of the interrupt controller is
active. It will resolve which interrupts are active and enabled and call the appropriate interrupt
handler. It acknowledges the interrupt after it has been serviced by the interrupt handler.

This function assumes that an interrupt vector table has been previously initialized by the user. It does
not verify that entries in the table are valid before calling an interrupt handler.

Returns:
None.

Note:
The constants XPAR_INTC_SINGLE_BASEADDR & XPAR_INTC_MAX_ID must be
setup for this to compile. Interrupt IDs range from 0 - 31 and correspond to the interrupt input
signals for the interrupt controller. XPAR_INTC_MAX_ID specifies the highest numbered
interrupt input signal that is used.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XIntc_Config Struct Reference
#include <xintc.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint32 AckBeforeService

Field Documentation

Xuint32 XIntc_Config::AckBeforeService

 Ack location per interrupt

Xuint32 XIntc_Config::BaseAddress

 Register base address

Xuint16 XIntc_Config::DeviceId

 Unique ID of device

The documentation for this struct was generated from the following file:

● intc/v1_00_b/src/xintc.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_intr.c File
Reference

Detailed Description

This file contains the interrupt processing for the XIntc component which is the driver for the Xilinx
Interrupt Controller. The interrupt processing is partitioned seperately such that users are not required to
use the provided interrupt processing. This file requires other files of the driver to be linked in also.

Two different interrupt handlers are provided for this driver such that the user must select the appropriate
handler for the application. The first interrupt handler, XIntc_VoidInterruptHandler, is provided for
systems which use only a single interrupt controller or for systems that cannot otherwise provide an
argument to the XIntc interrupt handler (e.g., the RTOS interrupt vector handler may not provide such a
facility). The second interrupt handler, XIntc_InterruptHandler, uses an input argument which is an
instance pointer to an interrupt controller driver such that multiple interrupt controllers can be supported.
This handler requires the calling function to pass it the appropriate argument, so another level of
indirection may be required.

The interrupt processing may be used by connecting one of the interrupt handlers to the interrupt system.
These handlers do not save and restore the processor context but only handle the processing of the
Interrupt Controller. The two handlers are provided as working examples. The user is encouraged to
supply their own interrupt handler when performance tuning is deemed necessary.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/13/02 First release

#include "xbasic_types.h"

#include "xintc_i.h"

#include "xintc.h"

Functions

void XIntc_VoidInterruptHandler ()
void XIntc_InterruptHandler (XIntc *InstancePtr)

Function Documentation

void XIntc_InterruptHandler (XIntc * InstancePtr)

The interrupt handler for the driver. This function determines the pending interrupts and calls the
appropriate handlers in the priority based order.

This specific function allows multiple interrupt controller instances to be handled. The user must
connect this function to the interrupt system such that it is called whenever the devices which are
connected to it cause an interrupt.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
None.

Note:
None.

void XIntc_VoidInterruptHandler ()

Interrupt handler for the driver. This function determines the pending interrupts and calls the
appropriate handlers in the priority based order.

This specific function does not support multiple interrupt controller instances to be handled. The user
must connect this function to the interrupt system such that it is called whenever the devices which
are connected to it cause an interrupt.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_i.h
Go to the documentation of this file.

00001 /* $Id: xintc_i.h,v 1.4 2002/05/02 20:35:24 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file intc/v1_00_b/src/xintc_i.h
00026 *
00027 * This file contains data which is shared between files and internal to the
00028 * XIntc component. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00b jhl 02/06/02 First release
00036 * 1.00b jhl 04/24/02 Moved register definitions to xintc_l.h
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XINTC_I_H /* prevent circular inclusions */
00042 #define XINTC_I_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xintc.h"

00048
00049 /************************** Constant Definitions *****************************/
00050
00051
00052 /**************************** Type Definitions *******************************/
00053
00054
00055 /***************** Macros (Inline Functions) Definitions *********************/
00056
00057
00058 /************************** Function Prototypes ******************************/
00059
00060
00061 /************************** Variable Definitions *****************************/
00062
00063 extern Xuint32 XIntc_BitPosMask[];

00064
00065 extern XIntc *XIntc_InstancePtr;

00066
00067 extern XIntc_Config XIntc_ConfigTable[];

00068

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_i.h File Reference

Detailed Description

This file contains data which is shared between files and internal to the XIntc component. It is intended
for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release
 1.00b jhl 04/24/02 Moved register definitions to xintc_l.h

#include "xbasic_types.h"

#include "xintc.h"

Go to the source code of this file.

Variables

XIntc_Config XIntc_ConfigTable []

Variable Documentation

XIntc_Config XIntc_ConfigTable[] ()

This table contains configuration information for each intc device in the system. The XIntc driver
must know when to acknowledge the interrupt. The entry which specifies this is a bit mask where
each bit corresponds to a specific interrupt. A bit set indicates to ack it before servicing it. Generally,
acknowledge before service is used when the interrupt signal is edge-sensitive, and after when the
signal is level-sensitive.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_options.c File
Reference

Detailed Description

Contains option functions for the XIntc driver. These functions allow the user to configure an instance of
the XIntc driver. This file requires other files of the component to be linked in also.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/21/02 First release

#include "xbasic_types.h"

#include "xintc.h"

Functions

XStatus XIntc_SetOptions (XIntc *InstancePtr, Xuint32 Options)
Xuint32 XIntc_GetOptions (XIntc *InstancePtr)

Function Documentation

Xuint32 XIntc_GetOptions (XIntc * InstancePtr)

Return the currently set options.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
The currently set options. The options are described in xintc.h.

Note:
None.

XStatus XIntc_SetOptions (XIntc * InstancePtr,
Xuint32 Options

)

Set the options for the interrupt controller driver.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Options to be set. The available options are described in xintc.h.

Returns:
❍ XST_SUCCESS if the options were set successfully
❍ XST_INVALID_PARAM if the specified option was not valid

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_selftest.c File
Reference

Detailed Description

Contains diagnostic self-test functions for the XIntc component. This file requires other files of the
component to be linked in also.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/21/02 First release

#include "xbasic_types.h"

#include "xintc.h"

#include "xintc_i.h"

Functions

XStatus XIntc_SelfTest (XIntc *InstancePtr)
XStatus XIntc_SimulateIntr (XIntc *InstancePtr, Xuint8 Id)

Function Documentation

XStatus XIntc_SelfTest (XIntc * InstancePtr)

Run a self-test on the driver/device. This is a destructive test.

This involves forcing interrupts into the controller and verifying that they are recognized and can be
acknowledged. This test will not succeed if the interrupt controller has been started in real mode such
that interrupts cannot be forced.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Returns:
❍ XST_SUCCESS if self-test is successful.
❍ XST_INTC_FAIL_SELFTEST if the Interrupt controller fails the self-test. It will fail

the self test if the device has previously been started in real mode.

Note:
None.

XStatus XIntc_SimulateIntr (XIntc * InstancePtr,
Xuint8 Id

)

Allows software to simulate an interrupt in the interrupt controller. This function will only be
successful when the interrupt controller has been started in simulation mode. Once it has been started
in real mode, interrupts cannot be simulated. A simulated interrupt allows the interrupt controller to
be tested without any device to drive an interrupt input signal into it.

Parameters:
InstancePtr is a pointer to the XIntc instance to be worked on.

Id is the interrupt ID for which to simulate an interrupt.

Returns:
XST_SUCCESS if successful, or XST_FAILURE if the interrupt could not be simulated
because the interrupt controller is or has previously been in real mode.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_g.c File Reference

Detailed Description

This file contains a configuration table that specifies the configuration of interrupt controller devices in
the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 01/09/02 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
 1.00b jhl 04/24/02 Compressed the ack table into a bit mask.

#include "xintc.h"

#include "xparameters.h"

Variables

XIntc_Config XIntc_ConfigTable [XPAR_XINTC_NUM_INSTANCES]

Variable Documentation

XIntc_Config XIntc_ConfigTable[XPAR_XINTC_NUM_INSTANCES]

This table contains configuration information for each intc device in the system. The XIntc driver
must know when to acknowledge the interrupt. The entry which specifies this is a bit mask where
each bit corresponds to a specific interrupt. A bit set indicates to ack it before servicing it. Generally,
acknowledge before service is used when the interrupt signal is edge-sensitive, and after when the
signal is level-sensitive.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb.h File
Reference

Detailed Description

This component contains the implementation of the XOpb2Plb component. It is the driver for the OPB
to PLB Bridge. The bridge converts OPB bus transactions to PLB bus transactions. The hardware acts as
a slave on the OPB side and as a master on the PLB side. This interface is necessary for the peripherals to
access PLB based memory.

This driver allows the user to access the Bridge registers to support the handling of bus errors and other
access errors and determine an appropriate solution if possible.

The bridge hardware generates interrupts in error conditions. These interrupts are not handled by the
driver directly. It is the application's responsibility to attach to the appropriate interrupt with a handler
which then calls functions provided by this driver to determine the cause of the error and take the
necessary actions to correct the situation.

The Xilinx OPB to PLB Bridge is a soft IP core designed for Xilinx FPGAs and contains the following
features:

● 64-bit PLB Master interface.
● Communicates with 32- or 64-bit PLB slaves.
● Non-burst transfers of 1-8 bytes.
● Burst transfers, including word and double-word bursts of fixed lengths, up to the depth of the

burst buffer. Buffer depth configurable via a design parameter.
● Cacheline transactions of 4, 8, and 16 words.
● Programmable address boundaries that encompass the inverse of the PLB to OPB Bridge address

space.
● Translates OPB data bursts to either cacheline or fixed length PLB burst transfers.
● Performing only CPU subset transactions (cachelines) can reduce system logic utilization and

improve timing through the simplification of PLB slave IP.

● Using PLB burst transfers yields better bus cycle efficiency but may increase logic utilization and
degrade timing in the system OPB Slave interface.

● 32-bit OPB Slave interface with byte enable transfers. Note: Does not support dynamic bus sizing
or non-byte enable transactions. PLB and OPB clocks can have an asynchronous relationship
(OPB clock frequency must be less than or equal to the PLB clock frequency).

● Bus Error Status Register (BESR) and Bus Error Address Register (BEAR) to report errors.
● DCR Slave interface provides access to BESR and BEAR.

Device Configuration

The device can be configured in various ways during the FPGA implementation process. The current
configuration data is contained in the xopb2plb_g.c. A table is defined where each entry contains
configuration information for a device. This information includes such things as the base address of the
DCR mapped device.

Register Access

The bridge registers reside on the DCR address bus which is a parameter that can be selected in the
hardware. If the DCR is not used, the registers reside in the OPB address space. A restriction of this
driver is that if more than one bridge exists in the system, all must be configured the same way. That is,
all must use DCR or all must use OPB.

Note:
This driver is not thread-safe. Thread safety must be guaranteed by the layer above this driver if
there is a need to access the device from multiple threads.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/22/02 First release
 1.00a rpm 05/14/02 Made configuration table/data public

#include "xbasic_types.h"

#include "xstatus.h"

#include "xopb2plb_l.h"

#include "xio.h"

#include "xio_dcr.h"

Go to the source code of this file.

Data Structures

struct XOpb2Plb
struct XOpb2Plb_Config

OPB-PLB bridge error status values

#define XO2P_READ_ERROR
#define XO2P_WRITE_ERROR
#define XO2P_NO_ERROR

Functions

XStatus XOpb2Plb_Initialize (XOpb2Plb *InstancePtr, Xuint16 DeviceId)
void XOpb2Plb_Reset (XOpb2Plb *InstancePtr)

XOpb2Plb_Config * XOpb2Plb_LookupConfig (Xuint16 DeviceId)
Xboolean XOpb2Plb_IsError (XOpb2Plb *InstancePtr)

void XOpb2Plb_ClearErrors (XOpb2Plb *InstancePtr)
Xuint32 XOpb2Plb_GetErrorStatus (XOpb2Plb *InstancePtr)
Xuint32 XOpb2Plb_GetErrorAddress (XOpb2Plb *InstancePtr)

void XOpb2Plb_EnableInterrupt (XOpb2Plb *InstancePtr)
void XOpb2Plb_DisableInterrupt (XOpb2Plb *InstancePtr)
void XOpb2Plb_EnableLock (XOpb2Plb *InstancePtr)
void XOpb2Plb_DisableLock (XOpb2Plb *InstancePtr)

XStatus XOpb2Plb_SelfTest (XOpb2Plb *InstancePtr, Xuint32 TestAddress)

Define Documentation

#define XO2P_NO_ERROR

 XO2P_READ_ERROR A read error occurred
 XO2P_WRITE_ERROR A write error occurred
 XO2P_NO_ERROR There is no error

#define XO2P_READ_ERROR

 XO2P_READ_ERROR A read error occurred
 XO2P_WRITE_ERROR A write error occurred
 XO2P_NO_ERROR There is no error

#define XO2P_WRITE_ERROR

 XO2P_READ_ERROR A read error occurred
 XO2P_WRITE_ERROR A write error occurred
 XO2P_NO_ERROR There is no error

Function Documentation

void XOpb2Plb_ClearErrors (XOpb2Plb * InstancePtr)

Clears the errors. If the lock bit is set, this allows subsequent errors to be recognized.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
None.

void XOpb2Plb_DisableInterrupt (XOpb2Plb * InstancePtr)

Disables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled
by the driver directly. It is the application's responsibility to attach to the appropriate interrupt
with a handler which then calls functions provided by this driver to determine the cause of the
error and take the necessary actions to correct the situation.

void XOpb2Plb_DisableLock (XOpb2Plb * InstancePtr)

Disables the locking of the status on error for the bridge. This 'unlocks' the status and address
registers allowing subsequent errors to overwrite the current values when an error occurs.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
None.

void XOpb2Plb_EnableInterrupt (XOpb2Plb * InstancePtr)

Enables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled
by the driver directly. It is the application's responsibility to attach to the appropriate interrupt
with a handler which then calls functions provided by this driver to determine the cause of the
error and take the necessary actions to correct the situation.

void XOpb2Plb_EnableLock (XOpb2Plb * InstancePtr)

Enables the locking of the status on error for the bridge. This 'locks' the status and address register
values when an error occurs, preventing subsequent errors from overwriting the values. Clearing the
error allows the status and address registers to update with the next error that occurs

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
None.

Xuint32 XOpb2Plb_GetErrorAddress (XOpb2Plb * InstancePtr)

Returns the PLB Address where the most recent error occured. If there isn't an outstanding error, the
last address in error is returned. 0x00000000 is the initial value coming out of reset.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
Address where error causing access occurred

Note:
Calling XOpb2Plb_IsError() is recommended to confirm that an error has occurred prior to
calling XOpb2Plb_GetErrorAddress() to ensure that the data in the error address register is
relevant.

Xuint32 XOpb2Plb_GetErrorStatus (XOpb2Plb * InstancePtr)

Returns the error status indicating the type of error that has occurred.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
The current error status for the OPB to PLB bridge. The possible return values are described in
xopb2plb.h.

Note:
None.

XStatus XOpb2Plb_Initialize (XOpb2Plb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XOpb2Plb instance. Looks up the configuration data for the given device ID and
then initializes instance data.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

DeviceId is the unique id of the device controlled by this XOpb2Plb component. Passing
in a device id associates the generic XOpb2Plb component to a specific device,
as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the requested device is not found

Note:
None.

Xboolean XOpb2Plb_IsError (XOpb2Plb * InstancePtr)

Returns XTRUE is there is an error outstanding

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
Boolean XTRUE if there is an error, XFALSE if there is no current error.

Note:
None.

XOpb2Plb_Config* XOpb2Plb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table OpbPlbConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device to look for.

Returns:
A pointer to the configuration data of the given device, or XNULL if no match is found.

Note:
None.

void XOpb2Plb_Reset (XOpb2Plb * InstancePtr)

Forces a software-induced reset to occur in the bridge and disables interrupts and the locking
functionality in the process.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
Disables interrupts and the locking functionality in the process.

XStatus XOpb2Plb_SelfTest (XOpb2Plb * InstancePtr,
Xuint32 TestAddress

)

Runs a self-test on the driver/device.

This tests reads the provided TestAddress which is intended to cause an error Then the
XOpb2Plb_IsError() routine is called and if there is an error, the address is checked against the
provided location and if they match XST_SUCCESS is returned and all errors are then cleared.

If the XOpb2Plb_IsError() is called and no error is indicated, XST_FAILURE is returned.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

TestAddress is a location that should cause an error on read.

Returns:
XST_SUCCESS if successful, or XST_FAILURE if the driver fails the self-test.

Note:
This test assumes that the bus error interrupts to the processor are not enabled.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XOpb2Plb Struct Reference
#include <xopb2plb.h>

Detailed Description

The XOpb2Plb driver instance data. The user is required to allocate a variable of this type for every OPB-
to-PLB bridge device in the system. A pointer to a variable of this type is then passed to the driver API
functions.

The documentation for this struct was generated from the following file:

● opb2plb/v1_00_a/src/xopb2plb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb.h
Go to the documentation of this file.

00001 /* $Id: xopb2plb.h,v 1.3 2002/07/26 20:46:38 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file opb2plb/v1_00_a/src/xopb2plb.h
00026 *
00027 * This component contains the implementation of the XOpb2Plb component. It is
00028 * the driver for the OPB to PLB Bridge. The bridge converts OPB bus
transactions
00029 * to PLB bus transactions. The hardware acts as a slave on the OPB side and as
00030 * a master on the PLB side. This interface is necessary for the peripherals to
00031 * access PLB based memory.
00032 *
00033 * This driver allows the user to access the Bridge registers to support the
00034 * handling of bus errors and other access errors and determine an appropriate
00035 * solution if possible.
00036 *
00037 * The bridge hardware generates interrupts in error conditions. These
interrupts
00038 * are not handled by the driver directly. It is the application's
responsibility
00039 * to attach to the appropriate interrupt with a handler which then calls

00040 * functions provided by this driver to determine the cause of the error and
take
00041 * the necessary actions to correct the situation.
00042 *
00043 * The Xilinx OPB to PLB Bridge is a soft IP core designed for Xilinx FPGAs
00044 * and contains the following features:
00045 * - 64-bit PLB Master interface.
00046 * - Communicates with 32- or 64-bit PLB slaves.
00047 * - Non-burst transfers of 1-8 bytes.
00048 * - Burst transfers, including word and double-word bursts of fixed lengths,
00049 * up to the depth of the burst buffer. Buffer depth configurable via a
00050 * design parameter.
00051 * - Cacheline transactions of 4, 8, and 16 words.
00052 * - Programmable address boundaries that encompass the inverse of the PLB to
00053 * OPB Bridge address space.
00054 * - Translates OPB data bursts to either cacheline or fixed length PLB burst
00055 * transfers.
00056 * - Performing only CPU subset transactions (cachelines) can reduce system
00057 * logic utilization and improve timing through the simplification of PLB
00058 * slave IP.
00059 * - Using PLB burst transfers yields better bus cycle efficiency but may
00060 * increase logic utilization and degrade timing in the system
00061 * OPB Slave interface.
00062 * - 32-bit OPB Slave interface with byte enable transfers.
00063 * <i>Note</i>: Does not support dynamic bus sizing or non-byte enable
00064 * transactions. PLB and OPB clocks can have an asynchronous relationship
00065 * (OPB clock frequency must be less than or equal to the PLB clock
frequency).
00066 * - Bus Error Status Register (BESR) and Bus Error Address Register (BEAR) to
00067 * report errors.
00068 * - DCR Slave interface provides access to BESR and BEAR.
00069 *
00070 * Device Configuration
00071 *
00072 * The device can be configured in various ways during the FPGA implementation
00073 * process. The current configuration data is contained in the xopb2plb_g.c.
00074 * A table is defined where each entry contains configuration information for a
00075 * device. This information includes such things as the base address of the DCR
00076 * mapped device.
00077 *
00078 * Register Access
00079 *
00080 * The bridge registers reside on the DCR address bus which is a parameter that
00081 * can be selected in the hardware. If the DCR is not used, the registers
00082 * reside in the OPB address space. A restriction of this driver is that if
00083 * more than one bridge exists in the system, all must be configured the same
00084 * way. That is, all must use DCR or all must use OPB.
00085 *
00086 * @note
00087 *
00088 * This driver is not thread-safe. Thread safety must be guaranteed by the layer
00089 * above this driver if there is a need to access the device from multiple
00090 * threads.

00091 *
00092 * <pre>
00093 * MODIFICATION HISTORY:
00094 *
00095 * Ver Who Date Changes
00096 * ----- ---- -------- ---
00097 * 1.00a ecm 01/22/02 First release
00098 * 1.00a rpm 05/14/02 Made configuration table/data public
00099 * </pre>
00100 *
00101 ***/
00102
00103 #ifndef XOPB2PLB_H /* prevent circular inclusions */
00104 #define XOPB2PLB_H /* by using protection macros */
00105
00106 /***************************** Include Files ********************************/
00107 #include "xbasic_types.h"

00108 #include "xstatus.h"

00109 #include "xopb2plb_l.h"

00110 #include "xio.h"

00111 #include "xio_dcr.h"

00112
00113 /************************** Constant Definitions ****************************/
00114
00115
00116 /** @name OPB-PLB bridge error status values
00117 * @{
00118 */
00119 /**
00120 * <pre>
00121 * XO2P_READ_ERROR A read error occurred
00122 * XO2P_WRITE_ERROR A write error occurred
00123 * XO2P_NO_ERROR There is no error
00124 * </pre>
00125 */
00126 #define XO2P_READ_ERROR 2

00127 #define XO2P_WRITE_ERROR 1

00128 #define XO2P_NO_ERROR 0

00129 /*@}*/
00130
00131 /**************************** Type Definitions ******************************/
00132
00133 /**
00134 * This typedef contains configuration information for the device.
00135 */
00136 typedef struct

00137 {
00138 Xuint16 DeviceId; /**< Unique ID of device */

00139 Xuint32 BaseAddress; /**< Register base address */

00140 } XOpb2Plb_Config;

00141

00142 /**
00143 * The XOpb2Plb driver instance data. The user is required to allocate a
00144 * variable of this type for every OPB-to-PLB bridge device in the system. A
00145 * pointer to a variable of this type is then passed to the driver API
00146 * functions.
00147 */
00148 typedef struct

00149 {
00150 Xuint32 BaseAddress; /* Base address of registers */

00151 Xuint32 IsReady; /* Device is initialized and ready */

00152 } XOpb2Plb;

00153
00154
00155
00156 /***************** Macros (Inline Functions) Definitions ********************/
00157
00158
00159 /************************** Function Prototypes *****************************/
00160
00161 /* required functions in xopb2plb.c */
00162
00163 /*
00164 * Initialization Functions
00165 */
00166 XStatus XOpb2Plb_Initialize(XOpb2Plb *InstancePtr, Xuint16 DeviceId);

00167 void XOpb2Plb_Reset(XOpb2Plb *InstancePtr);

00168 XOpb2Plb_Config *XOpb2Plb_LookupConfig(Xuint16 DeviceId);

00169
00170 /*
00171 * Access Functions
00172 */
00173
00174 Xboolean XOpb2Plb_IsError(XOpb2Plb *InstancePtr);

00175 void XOpb2Plb_ClearErrors(XOpb2Plb *InstancePtr);

00176
00177 Xuint32 XOpb2Plb_GetErrorStatus(XOpb2Plb *InstancePtr);

00178 Xuint32 XOpb2Plb_GetErrorAddress(XOpb2Plb *InstancePtr);

00179
00180 /*
00181 * Configuration
00182 */
00183 void XOpb2Plb_EnableInterrupt(XOpb2Plb *InstancePtr);

00184 void XOpb2Plb_DisableInterrupt(XOpb2Plb *InstancePtr);

00185 void XOpb2Plb_EnableLock(XOpb2Plb *InstancePtr);

00186 void XOpb2Plb_DisableLock(XOpb2Plb *InstancePtr);

00187
00188 /* contained in xopb2plb_selftest.c */
00189
00190 XStatus XOpb2Plb_SelfTest(XOpb2Plb *InstancePtr, Xuint32 TestAddress);

00191
00192 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb_l.h File
Reference

Detailed Description

This file contains identifiers and low-level macros that can be used to access the device directly.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 05/14/02 First release

#include "xparameters.h"

#include "xbasic_types.h"

#include "xio.h"

#include "xio_dcr.h"

Go to the source code of this file.

Defines

#define XOpb2Plb_mGetBesrReg(BaseAddress)
#define XOpb2Plb_mGetBearReg(BaseAddress)
#define XOpb2Plb_mSetControlReg(BaseAddress, Mask)
#define XOpb2Plb_mGetControlReg(BaseAddress)

Define Documentation

#define XOpb2Plb_mGetBearReg(BaseAddress)

Get the bus error address register (BEAR).

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the error address register.

Note:
None.

#define XOpb2Plb_mGetBesrReg(BaseAddress)

Get the bus error status register (BESR).

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the error status register.

Note:
None.

#define XOpb2Plb_mGetControlReg(BaseAddress)

Get the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the control register.

Note:
None.

#define XOpb2Plb_mSetControlReg(BaseAddress,
Mask)

Set the control register to the given value.

Parameters:
BaseAddress is the base address of the device
Mask is the value to write to the control register.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb_l.h
Go to the documentation of this file.

00001 /* $Id: xopb2plb_l.h,v 1.4 2002/07/26 21:07:57 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file opb2plb/v1_00_a/src/xopb2plb_l.h
00026 *
00027 * This file contains identifiers and low-level macros that can be used to
00028 * access the device directly.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rpm 05/14/02 First release
00036 * </pre>
00037 *
00038 ***/
00039
00040 #ifndef XOPB2PLB_L_H /* prevent circular inclusions */
00041 #define XOPB2PLB_L_H /* by using protection macros */
00042

00043 /***************************** Include Files ********************************/
00044 #include "xparameters.h"

00045 #include "xbasic_types.h"

00046 #include "xio.h"

00047 #include "xio_dcr.h"

00048
00049 /* generic from MPD file is C_OPB_REG_INTFC */
00050 /* uncomment when the functionality is in libgen
00051 #ifndef XPAR_XOPB2PLB_OPB_REG_INTFC
00052 #error "XPAR_XOPB2PLB_OPB_REG_INTFC not defined"
00053 #endif
00054 */
00055
00056 /************************** Constant Definitions ****************************/
00057
00058 #if (XPAR_XOPB2PLB_OPB_REG_INTFC == 0)
00059 /*
00060 * OPB-PLB Bridge Register Addresses - DCR bus
00061 */
00062 #define XO2P_BESR_OFFSET 0x00 /* error register */
00063 #define XO2P_BEAR_ADDR_OFFSET 0x01 /* address where error occurred */
00064 #define XO2P_BCR_OFFSET 0x02 /* control and status register */
00065
00066 #else
00067 /*
00068 * OPB-PLB Bridge Register Addresses - OPB bus
00069 */
00070 #define XO2P_BESR_OFFSET 0x00 /* error register */
00071 #define XO2P_BEAR_ADDR_OFFSET 0x04 /* address where error occurred */
00072 #define XO2P_BCR_OFFSET 0x08 /* control and status register */
00073
00074 #endif
00075
00076
00077 /* BESR Register masks */
00078 #define XO2P_BESR_ERROR_MASK 0x80000000 /* error has occurred */
00079 #define XO2P_BESR_READ_ERROR_MASK 0x40000000 /* read error occurred */
00080 #define XO2P_BESR_BYTE_EN_MASK 0x0000FF00 /* PLB byte enables */
00081
00082 /* BCR Register masks */
00083 #define XO2P_BCR_CLEAR_ERROR_MASK 0x80000000 /* clear the error (write only)
*/
00084 #define XO2P_BCR_ENABLE_LOCK_MASK 0x40000000 /* enable lock on error */
00085 #define XO2P_BCR_ENABLE_INTR_MASK 0x20000000 /* enable interrupts */
00086 #define XO2P_BCR_RESET_MASK 0x10000000 /* force reset */
00087
00088
00089 /**************************** Type Definitions *******************************/
00090
00091 /***************** Macros (Inline Functions) Definitions *********************/
00092
00093 /* Define the appropriate I/O access method for the bridge which may be

00094 * memory mapped or DCR
00095 */
00096 #if (XPAR_XOPB2PLB_OPB_REG_INTFC == 0)
00097
00098 #define XOpb2Plb_In32 XIo_DcrIn
00099 #define XOpb2Plb_Out32 XIo_DcrOut
00100
00101 #else
00102
00103 #define XOpb2Plb_In32 XIo_In32
00104 #define XOpb2Plb_Out32 XIo_Out32
00105
00106 #endif
00107
00108
00109 /***
00110 *
00111 * Low-level driver macros and functions. The list below provides signatures
00112 * to help the user use the macros.
00113 *
00114 * Xuint32 XOpb2Plb_mGetBesrReg(Xuint32 BaseAddress)
00115 * Xuint32 XOpb2Plb_mGetBearReg(Xuint32 BaseAddress)
00116 *
00117 * void XOpb2Plb_mSetControlReg(Xuint32 BaseAddress, Xuint32 Mask)
00118 * Xuint32 XOpb2Plb_mGetControlReg(Xuint32 BaseAddress)
00119 *
00120 **/
00121
00122 /**/
00123 /**
00124 *
00125 * Get the bus error status register (BESR).
00126 *
00127 * @param BaseAddress is the base address of the device
00128 *
00129 * @return The 32-bit value of the error status register.
00130 *
00131 * @note None.
00132 *
00133 ***/
00134 #define XOpb2Plb_mGetBesrReg(BaseAddress) \

00135 XOpb2Plb_In32((BaseAddress) + XO2P_BESR_OFFSET)
00136
00137
00138 /**/
00139 /**
00140 *
00141 * Get the bus error address register (BEAR).
00142 *
00143 * @param BaseAddress is the base address of the device
00144 *
00145 * @return The 32-bit value of the error address register.

00146 *
00147 * @note None.
00148 *
00149 ***/
00150 #define XOpb2Plb_mGetBearReg(BaseAddress) \

00151 XOpb2Plb_In32((BaseAddress) + XO2P_BEAR_ADDR_OFFSET)
00152
00153 /**/
00154 /**
00155 *
00156 * Set the control register to the given value.
00157 *
00158 * @param BaseAddress is the base address of the device
00159 * @param Mask is the value to write to the control register.
00160 *
00161 * @return None.
00162 *
00163 * @note None.
00164 *
00165 ***/
00166 #define XOpb2Plb_mSetControlReg(BaseAddress, Mask) \

00167 XOpb2Plb_Out32((BaseAddress) + XO2P_BCR_OFFSET, (Mask))
00168
00169
00170 /**/
00171 /**
00172 *
00173 * Get the contents of the control register.
00174 *
00175 * @param BaseAddress is the base address of the device
00176 *
00177 * @return The 32-bit value of the control register.
00178 *
00179 * @note None.
00180 *
00181 ***/
00182 #define XOpb2Plb_mGetControlReg(BaseAddress) \

00183 XOpb2Plb_In32((BaseAddress) + XO2P_BCR_OFFSET)
00184
00185
00186 /************************** Function Prototypes ******************************/
00187
00188 /******************************* Variables ***********************************/
00189
00190
00191 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XOpb2Plb_Config Struct Reference
#include <xopb2plb.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress

Field Documentation

Xuint32 XOpb2Plb_Config::BaseAddress

 Register base address

Xuint16 XOpb2Plb_Config::DeviceId

 Unique ID of device

The documentation for this struct was generated from the following file:

● opb2plb/v1_00_a/src/xopb2plb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb.c File
Reference

Detailed Description

Contains required functions for the XOpb2Plb component. See xopb2plb.h for more information about
the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/22/02 First release

#include "xstatus.h"

#include "xparameters.h"

#include "xopb2plb.h"

#include "xopb2plb_i.h"

Functions

XStatus XOpb2Plb_Initialize (XOpb2Plb *InstancePtr, Xuint16 DeviceId)
void XOpb2Plb_Reset (XOpb2Plb *InstancePtr)

Xboolean XOpb2Plb_IsError (XOpb2Plb *InstancePtr)
void XOpb2Plb_ClearErrors (XOpb2Plb *InstancePtr)

Xuint32 XOpb2Plb_GetErrorStatus (XOpb2Plb *InstancePtr)
Xuint32 XOpb2Plb_GetErrorAddress (XOpb2Plb *InstancePtr)

void XOpb2Plb_EnableInterrupt (XOpb2Plb *InstancePtr)
void XOpb2Plb_DisableInterrupt (XOpb2Plb *InstancePtr)
void XOpb2Plb_EnableLock (XOpb2Plb *InstancePtr)
void XOpb2Plb_DisableLock (XOpb2Plb *InstancePtr)

XOpb2Plb_Config * XOpb2Plb_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XOpb2Plb_ClearErrors (XOpb2Plb * InstancePtr)

Clears the errors. If the lock bit is set, this allows subsequent errors to be recognized.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
None.

void XOpb2Plb_DisableInterrupt (XOpb2Plb * InstancePtr)

Disables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled
by the driver directly. It is the application's responsibility to attach to the appropriate interrupt
with a handler which then calls functions provided by this driver to determine the cause of the
error and take the necessary actions to correct the situation.

void XOpb2Plb_DisableLock (XOpb2Plb * InstancePtr)

Disables the locking of the status on error for the bridge. This 'unlocks' the status and address
registers allowing subsequent errors to overwrite the current values when an error occurs.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
None.

void XOpb2Plb_EnableInterrupt (XOpb2Plb * InstancePtr)

Enables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled
by the driver directly. It is the application's responsibility to attach to the appropriate interrupt
with a handler which then calls functions provided by this driver to determine the cause of the
error and take the necessary actions to correct the situation.

void XOpb2Plb_EnableLock (XOpb2Plb * InstancePtr)

Enables the locking of the status on error for the bridge. This 'locks' the status and address register
values when an error occurs, preventing subsequent errors from overwriting the values. Clearing the
error allows the status and address registers to update with the next error that occurs

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
None.

Xuint32 XOpb2Plb_GetErrorAddress (XOpb2Plb * InstancePtr)

Returns the PLB Address where the most recent error occured. If there isn't an outstanding error, the
last address in error is returned. 0x00000000 is the initial value coming out of reset.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
Address where error causing access occurred

Note:
Calling XOpb2Plb_IsError() is recommended to confirm that an error has occurred prior to
calling XOpb2Plb_GetErrorAddress() to ensure that the data in the error address register is
relevant.

Xuint32 XOpb2Plb_GetErrorStatus (XOpb2Plb * InstancePtr)

Returns the error status indicating the type of error that has occurred.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
The current error status for the OPB to PLB bridge. The possible return values are described in
xopb2plb.h.

Note:
None.

XStatus XOpb2Plb_Initialize (XOpb2Plb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XOpb2Plb instance. Looks up the configuration data for the given device ID and
then initializes instance data.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

DeviceId is the unique id of the device controlled by this XOpb2Plb component. Passing
in a device id associates the generic XOpb2Plb component to a specific device,
as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the requested device is not found

Note:
None.

Xboolean XOpb2Plb_IsError (XOpb2Plb * InstancePtr)

Returns XTRUE is there is an error outstanding

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
Boolean XTRUE if there is an error, XFALSE if there is no current error.

Note:
None.

XOpb2Plb_Config* XOpb2Plb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table OpbPlbConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID of the device to look for.

Returns:
A pointer to the configuration data of the given device, or XNULL if no match is found.

Note:
None.

void XOpb2Plb_Reset (XOpb2Plb * InstancePtr)

Forces a software-induced reset to occur in the bridge and disables interrupts and the locking
functionality in the process.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

Returns:
None.

Note:
Disables interrupts and the locking functionality in the process.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb_i.h
Go to the documentation of this file.

00001 /* $Id: xopb2plb_i.h,v 1.1 2002/06/26 19:05:15 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file opb2plb/v1_00_a/src/xopb2plb_i.h
00026 *
00027 * This file contains data which is shared between files and internal to the
00028 * XOpb2Plb component. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ecm 02/28/02 First release
00036 * 1.00a rpm 05/14/02 Moved identifiers to xopb2plb_l.h
00037 * </pre>
00038 *
00039 ***/
00040
00041 #ifndef XOPB2PLB_I_H /* prevent circular inclusions */
00042 #define XOPB2PLB_I_H /* by using protection macros */

00043
00044 /***************************** Include Files ********************************/
00045 #include "xopb2plb_l.h"

00046
00047 /************************** Constant Definitions ****************************/
00048
00049 /**************************** Type Definitions *******************************/
00050
00051 /***************** Macros (Inline Functions) Definitions *********************/
00052
00053 /************************** Function Prototypes ******************************/
00054
00055 /******************************* Variables ***********************************/
00056
00057 extern XOpb2Plb_Config XOpb2Plb_ConfigTable[];

00058
00059
00060 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb_i.h File
Reference

Detailed Description

This file contains data which is shared between files and internal to the XOpb2Plb component. It is
intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 02/28/02 First release
 1.00a rpm 05/14/02 Moved identifiers to xopb2plb_l.h

#include "xopb2plb_l.h"

Go to the source code of this file.

Variables

XOpb2Plb_Config XOpb2Plb_ConfigTable []

Variable Documentation

XOpb2Plb_Config XOpb2Plb_ConfigTable[] ()

The OPB-to-PLB bridge configuration table, sized by the number of instances defined in
xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb_selftest.c
File Reference

Detailed Description

Contains diagnostic self-test functions for the XOpb2Plb component. See xopb2plb.h for more
information about the component.

This functionality assumes that the initialize function has been called prior to calling the self-test
function.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 11/16/01 First release

#include "xstatus.h"

#include "xopb2plb.h"

#include "xopb2plb_i.h"

Functions

XStatus XOpb2Plb_SelfTest (XOpb2Plb *InstancePtr, Xuint32 TestAddress)

Function Documentation

XStatus XOpb2Plb_SelfTest (XOpb2Plb * InstancePtr,
Xuint32 TestAddress

)

Runs a self-test on the driver/device.

This tests reads the provided TestAddress which is intended to cause an error Then the
XOpb2Plb_IsError() routine is called and if there is an error, the address is checked against the
provided location and if they match XST_SUCCESS is returned and all errors are then cleared.

If the XOpb2Plb_IsError() is called and no error is indicated, XST_FAILURE is returned.

Parameters:
InstancePtr is a pointer to the XOpb2Plb instance to be worked on.

TestAddress is a location that should cause an error on read.

Returns:
XST_SUCCESS if successful, or XST_FAILURE if the driver fails the self-test.

Note:
This test assumes that the bus error interrupts to the processor are not enabled.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opb2plb/v1_00_a/src/xopb2plb_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of OPB-to-PLB bridge devices in
the system. Each bridge device should have an entry in this table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 01/22/02 First release
 1.00a rpm 05/14/02 Made configuration table/data public

#include "xopb2plb.h"

#include "xparameters.h"

Variables

XOpb2Plb_Config XOpb2Plb_ConfigTable [XPAR_XOPB2PLB_NUM_INSTANCES]

Variable Documentation

XOpb2Plb_Config XOpb2Plb_ConfigTable[XPAR_XOPB2PLB_NUM_INSTANCES]

The OPB-to-PLB bridge configuration table, sized by the number of instances defined in
xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opbarb/v1_02_a/src/xopbarb.h File
Reference

Detailed Description

This component contains the implementation of the XOpbArb component. It is the driver for the On-
chip Peripheral Bus (OPB) Arbiter. The arbiter performs bus arbitration for devices on the OPB

Priority Arbitration

By default, the arbiter prioritizes masters on the bus based on their master IDs. A master's ID
corresponds to the signals with which it connects to the arbiter. Master 0 is the highest priority, master 1
the next highest, and so on. The device driver allows an application to modify this default behavior.

There are two modes of priority arbitration, dynamic and fixed. The device can be parameterized in
either of these modes. Fixed priority arbitration makes use of priority levels that can be configured by
software. There is one level for each master on the bus. Priority level 0 is assigned the master ID of the
highest priority master, priority level 1 is assigned the master ID of the next highest priority master, and
so on.

Dynamic priority arbitration utilizes a Least Recently Used(LRU) algorithm to determine the priorities of
masters on the bus. Once a master is granted the bus, it falls to the lowest priority master. A master that is
not granted the bus moves up in priority until it becomes the highest priority master based on the fact that
it has been the least recently used master. The arbiter uses the currently assigned priority levels as its
starting configuration for the LRU algorithm. Software can modify this starting configuration by
assigning master IDs to the priority levels.

When configuring priority levels (i.e., assigning master IDs to priority levels), the application must
suspend use of the priority levels by the device. Every master must be represented by one and only one
priority level. The device driver enforces this by making the application suspend use of the priority levels
by the device during the time it takes to correctly configure the levels. Once the levels are configured, the
application must explicitly resume use of the priority levels by the device. During the time priority levels

are suspended, the device reverts to its default behavior of assigning priorities based on master IDs.

Bus Parking

By default, bus parking is disabled. The device driver allows an application to enable bus parking, which
forces the arbiter to always assert the grant signal for a specific master when no other masters are
requesting the bus. The master chosen for parking is either the master that was last granted the bus, or the
master configured by the SetParkId function. When bus parking is enabled but no park ID has been set,
bus parking defaults to the master that was last granted the bus.

Device Configuration

The device can be configured in various ways during the FPGA implementation process. Configuration
parameters are stored in xopbarb_g.c. A table is defined where each entry contains configuration
information for a device. This information includes such things as the base address of the memory-
mapped device, the number of masters on the bus, and the priority arbitration scheme.

When the device is parameterized with only 1 master, or if the device is parameterized without a slave
interface, there are no registers accessible to software and no configuration entry is available. In these
configurations it is likely that the driver will not be loaded or used by the application. But in the off-
chance that it is, it is assumed that no configuration information for the arbiter is entered in the
xopbarb_g.c table. If config information were entered for the device, there will be nothing to prevent the
driver's use, and any use of the driver under these circumstances will result in undefined behavior.

Note:
This driver is not thread-safe. Thread safety must be guaranteed by the layer above this driver if
there is a need to access the device from multiple threads.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.02a rpm 08/13/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xopbarb_l.h"

Go to the source code of this file.

Data Structures

struct XOpbArb
struct XOpbArb_Config

Configuration options

#define XOA_DYNAMIC_PRIORITY_OPTION
#define XOA_PARK_ENABLE_OPTION
#define XOA_PARK_BY_ID_OPTION

Functions

XStatus XOpbArb_Initialize (XOpbArb *InstancePtr, Xuint16 DeviceId)
XOpbArb_Config * XOpbArb_LookupConfig (Xuint16 DeviceId)

XStatus XOpbArb_SelfTest (XOpbArb *InstancePtr)
XStatus XOpbArb_SetOptions (XOpbArb *InstancePtr, Xuint32 Options)
Xuint32 XOpbArb_GetOptions (XOpbArb *InstancePtr)
XStatus XOpbArb_SetPriorityLevel (XOpbArb *InstancePtr, Xuint8 Level, Xuint8

MasterId)
Xuint8 XOpbArb_GetPriorityLevel (XOpbArb *InstancePtr, Xuint8 Level)

void XOpbArb_SuspendPriorityLevels (XOpbArb *InstancePtr)
XStatus XOpbArb_ResumePriorityLevels (XOpbArb *InstancePtr)
XStatus XOpbArb_SetParkId (XOpbArb *InstancePtr, Xuint8 MasterId)
XStatus XOpbArb_GetParkId (XOpbArb *InstancePtr, Xuint8 *MasterIdPtr)

Define Documentation

#define XOA_DYNAMIC_PRIORITY_OPTION

The options enable or disable additional features of the OPB Arbiter. Each of the options are bit fields
such that more than one may be specified.

● XOA_DYNAMIC_PRIORITY_OPTION
The Dynamic Priority option configures the device for dynamic priority arbitration, which uses
a Least Recently Used (LRU) algorithm to determine the priorities of OPB masters. This
option is not applicable if the device is parameterized for fixed priority arbitration. When the
device is parameterized for dynamic priority arbitration, it can still use a fixed priority
arbitration by turning this option off. Fixed priority arbitration uses the priority levels as
written by software to determine the priorities of OPB masters. The default is fixed priority
arbitration.

● XOA_PARK_ENABLE_OPTION
The Park Enable option enables bus parking, which forces the arbiter to always assert the grant
signal for a specific master when no other masters are requesting the bus. The master chosen
for parking is either the master that was last granted the bus, or the master configured by the
SetParkId function.

● XOA_PARK_BY_ID_OPTION
The Park By ID option enables bus parking based on the specific master ID. The master ID
defaults to master 0, and can be changed using XOpbArb_SetParkId(). When this option is
disabled, bus parking defaults to the master that was last granted the bus. The park enable
option must be set for this option to take effect.

#define XOA_PARK_BY_ID_OPTION

The options enable or disable additional features of the OPB Arbiter. Each of the options are bit fields
such that more than one may be specified.

● XOA_DYNAMIC_PRIORITY_OPTION
The Dynamic Priority option configures the device for dynamic priority arbitration, which uses
a Least Recently Used (LRU) algorithm to determine the priorities of OPB masters. This
option is not applicable if the device is parameterized for fixed priority arbitration. When the
device is parameterized for dynamic priority arbitration, it can still use a fixed priority
arbitration by turning this option off. Fixed priority arbitration uses the priority levels as
written by software to determine the priorities of OPB masters. The default is fixed priority
arbitration.

● XOA_PARK_ENABLE_OPTION
The Park Enable option enables bus parking, which forces the arbiter to always assert the grant
signal for a specific master when no other masters are requesting the bus. The master chosen

for parking is either the master that was last granted the bus, or the master configured by the
SetParkId function.

● XOA_PARK_BY_ID_OPTION
The Park By ID option enables bus parking based on the specific master ID. The master ID
defaults to master 0, and can be changed using XOpbArb_SetParkId(). When this option is
disabled, bus parking defaults to the master that was last granted the bus. The park enable
option must be set for this option to take effect.

#define XOA_PARK_ENABLE_OPTION

The options enable or disable additional features of the OPB Arbiter. Each of the options are bit fields
such that more than one may be specified.

● XOA_DYNAMIC_PRIORITY_OPTION
The Dynamic Priority option configures the device for dynamic priority arbitration, which uses
a Least Recently Used (LRU) algorithm to determine the priorities of OPB masters. This
option is not applicable if the device is parameterized for fixed priority arbitration. When the
device is parameterized for dynamic priority arbitration, it can still use a fixed priority
arbitration by turning this option off. Fixed priority arbitration uses the priority levels as
written by software to determine the priorities of OPB masters. The default is fixed priority
arbitration.

● XOA_PARK_ENABLE_OPTION
The Park Enable option enables bus parking, which forces the arbiter to always assert the grant
signal for a specific master when no other masters are requesting the bus. The master chosen
for parking is either the master that was last granted the bus, or the master configured by the
SetParkId function.

● XOA_PARK_BY_ID_OPTION
The Park By ID option enables bus parking based on the specific master ID. The master ID
defaults to master 0, and can be changed using XOpbArb_SetParkId(). When this option is
disabled, bus parking defaults to the master that was last granted the bus. The park enable
option must be set for this option to take effect.

Function Documentation

Xuint32 XOpbArb_GetOptions (XOpbArb * InstancePtr)

Gets the options for the arbiter. The options control how the device grants the bus to requesting
masters.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
The options of the device. This is a bit mask where a 1 means the option is on, and a 0 means
the option is off. See xopbarb.h for a description of the options.

Note:
None.

XStatus XOpbArb_GetParkId (XOpbArb * InstancePtr,
Xuint8 * MasterIdPtr

)

Gets the master ID currently used for bus parking.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

MasterIdPtr is a pointer to a byte that will hold the master ID currently used for bus parking.
This is an output parameter. The ID can range from 0 to N, where N is the
number of masters minus one. The device currently supports up to 16 masters.

Returns:
XST_SUCCESS if the park ID is successfully retrieved, or XST_NO_FEATURE if bus
parking is not supported by the device.

Note:
None.

Xuint8 XOpbArb_GetPriorityLevel (XOpbArb * InstancePtr,
Xuint8 Level

)

Get the master ID at the given priority level.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Level is the priority level being retrieved. The level can range from 0 (highest) to N
(lowest), where N is the number of masters minus one. The device currently
supports up to 16 masters.

Returns:
The master ID assigned to the given priority level. The ID can range from 0 to N, where N is
the number of masters minus one.

Note:
If the arbiter is operating in dynamic priority mode, the value returned from this function may
not be predictable because the arbiter changes the values on the fly.

XStatus XOpbArb_Initialize (XOpbArb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XOpbArb instance. The driver is initialized to allow access to the device
registers. In addition, the configuration information is retrieved for the device. Currently,
configuration information is stored in xopbarb_g.c.

The state of the device after initialization is:

● Fixed or dynamic priority arbitration based on hardware parameter
● Bus parking is disabled

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

DeviceId is the unique id of the device controlled by this XOpbArb component. Passing in
a device id associates the generic XOpbArb component to a specific device, as
chosen by the caller or application developer.

Returns:
The return value is XST_SUCCESS if successful or XST_DEVICE_NOT_FOUND if no
configuration data was found for this device.

Note:
None.

XOpbArb_Config* XOpbArb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table OpbArbConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to match on.

Returns:
A pointer to the configuration information for the matching device instance, or XNULL if no
match is found.

Note:
None.

XStatus XOpbArb_ResumePriorityLevels (XOpbArb * InstancePtr)

Resumes use of the priority levels by the device. This function is typically called sometime after a call
to SuspendPriorityLevels. The application must resume use of priority levels by the device when all
modifications are done. If no call is made to this function after use of the priority levels has been
suspended, the device will remain in its default priority arbitration mode of assigning priorities based
on master IDs. A call to this function has no effect if no prior call was made to suspend the use of
priority levels.

Every master must be represented by one and only one fixed priority level before the use of priority
levels can be resumed.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
❍ XST_SUCCESS if the slave is selected successfully.
❍ XST_OPBARB_INVALID_PRIORITY if there is either a master that is not assigned a

priority level, or a master that is assigned two mor more priority levels.

Note:

None.

XStatus XOpbArb_SelfTest (XOpbArb * InstancePtr)

Runs a self-test on the driver/device. The self-test simply verifies that the arbiter's registers can be
read and written. This is an intrusive test in that the arbiter will not be using the priority registers
while the test is being performed.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
XST_SUCCESS if successful, or XST_REGISTER_ERROR if a register did not read or write
correctly

Note:
The priority level registers are restored after testing them in order to prevent problems with the
registers being the same value after the test.

If the arbiter is in dynamic priority mode, this test changes the mode to fixed to ensure that the
priority registers aren't changed by the arbiter during this test. The mode is restored to it's entry
value on exit.

XStatus XOpbArb_SetOptions (XOpbArb * InstancePtr,
Xuint32 Options

)

Sets the options for the OPB arbiter. The options control how the device grants the bus to requesting
masters.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Options contains the specified options to be set. This is a bit mask where a 1 means to
turn the option on, and a 0 means to turn the option off. See xopbarb.h for a
description of the options.

Returns:
❍ XST_SUCCESS if options are successfully set.
❍ XST_NO_FEATURE if an attempt was made to enable dynamic priority arbitration

when the device is configured only for fixed priority arbitration, or an attempt was
made to enable parking when bus parking is not supported by the device.

❍ XST_OPBARB_PARK_NOT_ENABLED if bus parking by park ID was enabled but
bus parking itself was not enabled.

Note:
None.

XStatus XOpbArb_SetParkId (XOpbArb * InstancePtr,
Xuint8 MasterId

)

Sets the master ID used for bus parking. Bus parking must be enabled and the option to use bus
parking by park ID must be set for this park ID to take effect (see the SetOptions function). If the
option to use bus parking by park ID is set but this function is not called, bus parking defaults to
master 0.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

MasterId is the ID of the master that will be parked if bus parking is enabled. This master's
grant signal remains asserted as long as no other master requests the bus. The ID
can range from 0 to N, where N is the number of masters minus one. The device
currently supports up to 16 masters.

Returns:
XST_SUCCESS if the park ID is successfully set, or XST_NO_FEATURE if bus parking is
not supported by the device.

Note:
None.

XStatus XOpbArb_SetPriorityLevel (XOpbArb * InstancePtr,
Xuint8 Level,
Xuint8 MasterId

)

Assigns a master ID to the given priority level. The use of priority levels by the device must be
suspended before calling this function. Every master ID must be assigned to one and only one priority
level. The driver enforces this before allowing use of priority levels by the device to be resumed.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Level is the priority level being set. The level can range from 0 (highest) to N (lowest),
where N is the number of masters minus one. The device currently supports up to
16 masters.

MasterId is the ID of the master being assigned to the priority level. The ID can range from
0 to N, where N is the number of masters minus one. The device currently
supports up to 16 masters.

Returns:
❍ XST_SUCCESS if the slave is selected successfully.
❍ XST_OPBARB_NOT_SUSPENDED if priority levels have not been suspended.

Before modifying the priority levels, use of priority levels by the device must be
suspended.

❍ XST_OPBARB_NOT_FIXED_PRIORITY if the arbiter is in dynamic mode. It must
be in fixed mode to modify the priority levels.

Note:
None.

void XOpbArb_SuspendPriorityLevels (XOpbArb * InstancePtr)

Suspends use of the priority levels by the device. Before modifying priority levels, the application
must first suspend use of the levels by the device. This is to prevent possible OPB problems if no
master is assigned a priority during the modification of priority levels. The application must resume
use of priority levels by the device when all modifications are done. During the time priority levels
are suspended, the device reverts to its default behavior of assigning priorities based on master IDs.

This function can be used when the device is configured for either fixed priority arbitration or
dynamic priority arbitration. When used during dynamic priority arbitration, the application can
configure the priority levels as a starting point for the LRU algorithm.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:

None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XOpbArb Struct Reference
#include <xopbarb.h>

Detailed Description

The XOpbArb driver instance data. The user is required to allocate a variable of this type for every OPB
arbiter device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● opbarb/v1_02_a/src/xopbarb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opbarb/v1_02_a/src/xopbarb.h
Go to the documentation of this file.

00001 /* $Id: xopbarb.h,v 1.1 2002/06/26 17:36:23 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file opbarb/v1_02_a/src/xopbarb.h
00026 *
00027 * This component contains the implementation of the XOpbArb component. It is
the
00028 * driver for the On-chip Peripheral Bus (OPB) Arbiter. The arbiter performs bus
00029 * arbitration for devices on the OPB
00030 *
00031 * Priority Arbitration
00032 *
00033 * By default, the arbiter prioritizes masters on the bus based on their master
00034 * IDs. A master's ID corresponds to the signals with which it connects to the
00035 * arbiter. Master 0 is the highest priority, master 1 the next highest, and so
00036 * on. The device driver allows an application to modify this default behavior.
00037 *
00038 * There are two modes of priority arbitration, dynamic and fixed. The device
00039 * can be parameterized in either of these modes. Fixed priority arbitration
00040 * makes use of priority levels that can be configured by software. There is
00041 * one level for each master on the bus. Priority level 0 is assigned the master

00042 * ID of the highest priority master, priority level 1 is assigned the master ID
00043 * of the next highest priority master, and so on.
00044 *
00045 * Dynamic priority arbitration utilizes a Least Recently Used(LRU) algorithm to
00046 * determine the priorities of masters on the bus. Once a master is granted the
00047 * bus, it falls to the lowest priority master. A master that is not granted the
00048 * bus moves up in priority until it becomes the highest priority master based
on
00049 * the fact that it has been the least recently used master. The arbiter uses
the
00050 * currently assigned priority levels as its starting configuration for the LRU
00051 * algorithm. Software can modify this starting configuration by assigning
00052 * master IDs to the priority levels.
00053 *
00054 * When configuring priority levels (i.e., assigning master IDs to priority
00055 * levels), the application must suspend use of the priority levels by the
00056 * device. Every master must be represented by one and only one priority level.
00057 * The device driver enforces this by making the application suspend use of the
00058 * priority levels by the device during the time it takes to correctly configure
00059 * the levels. Once the levels are configured, the application must explicitly
00060 * resume use of the priority levels by the device. During the time priority
00061 * levels are suspended, the device reverts to its default behavior of assigning
00062 * priorities based on master IDs.
00063 *
00064 * Bus Parking
00065 *
00066 * By default, bus parking is disabled. The device driver allows an application
00067 * to enable bus parking, which forces the arbiter to always assert the grant
00068 * signal for a specific master when no other masters are requesting the bus.
00069 * The master chosen for parking is either the master that was last granted the
00070 * bus, or the master configured by the SetParkId function. When bus parking
00071 * is enabled but no park ID has been set, bus parking defaults to the master
00072 * that was last granted the bus.
00073 *
00074 * Device Configuration
00075 *
00076 * The device can be configured in various ways during the FPGA implementation
00077 * process. Configuration parameters are stored in xopbarb_g.c. A table is
00078 * defined where each entry contains configuration information for a device.
00079 * This information includes such things as the base address of the
00080 * memory-mapped device, the number of masters on the bus, and the priority
00081 * arbitration scheme.
00082 *
00083 * When the device is parameterized with only 1 master, or if the device is
00084 * parameterized without a slave interface, there are no registers accessible to
00085 * software and no configuration entry is available. In these configurations it
00086 * is likely that the driver will not be loaded or used by the application.
00087 * But in the off-chance that it is, it is assumed that no configuration
00088 * information for the arbiter is entered in the xopbarb_g.c table. If config
00089 * information were entered for the device, there will be nothing to prevent
00090 * the driver's use, and any use of the driver under these circumstances will
00091 * result in undefined behavior.
00092 *

00093 * @note
00094 *
00095 * This driver is not thread-safe. Thread safety must be guaranteed by the layer
00096 * above this driver if there is a need to access the device from multiple
00097 * threads.
00098 *
00099 * <pre>
00100 * MODIFICATION HISTORY:
00101 *
00102 * Ver Who Date Changes
00103 * ----- ---- -------- ---
00104 * 1.02a rpm 08/13/01 First release
00105 * </pre>
00106 *
00107 **/
00108
00109 #ifndef XOPBARB_H /* prevent circular inclusions */
00110 #define XOPBARB_H /* by using protection macros */
00111
00112 /***************************** Include Files *********************************/
00113
00114 #include "xbasic_types.h"

00115 #include "xstatus.h"

00116 #include "xopbarb_l.h"

00117
00118 /************************** Constant Definitions *****************************/
00119
00120 /** @name Configuration options
00121 * @{
00122 */
00123 /**
00124 * The options enable or disable additional features of the OPB Arbiter. Each
00125 * of the options are bit fields such that more than one may be specified.
00126 *
00127 * - XOA_DYNAMIC_PRIORITY_OPTION
00128 *

00129 * The Dynamic Priority option configures the device for dynamic priority
00130 * arbitration, which uses a Least Recently Used (LRU) algorithm to determine
00131 * the priorities of OPB masters. This option is not applicable if the device
00132 * is parameterized for fixed priority arbitration. When the device is
00133 * parameterized for dynamic priority arbitration, it can still use a fixed
00134 * priority arbitration by turning this option off. Fixed priority arbitration
00135 * uses the priority levels as written by software to determine the priorities
00136 * of OPB masters. The default is fixed priority arbitration.
00137 *
00138 * - XOA_PARK_ENABLE_OPTION
00139 *

00140 * The Park Enable option enables bus parking, which forces the arbiter to
00141 * always assert the grant signal for a specific master when no other masters
00142 * are requesting the bus. The master chosen for parking is either the master
00143 * that was last granted the bus, or the master configured by the SetParkId
00144 * function.

00145 *
00146 * - XOA_PARK_BY_ID_OPTION
00147 *

00148 * The Park By ID option enables bus parking based on the specific master ID.
00149 * The master ID defaults to master 0, and can be changed using
00150 * XOpbArb_SetParkId(). When this option is disabled, bus parking defaults to
00151 * the master that was last granted the bus. The park enable option must be set
00152 * for this option to take effect.
00153 */
00154 #define XOA_DYNAMIC_PRIORITY_OPTION 0x1

00155 #define XOA_PARK_ENABLE_OPTION 0x2

00156 #define XOA_PARK_BY_ID_OPTION 0x4

00157 /*@}*/
00158
00159 /**************************** Type Definitions *******************************/
00160
00161 /**
00162 * This typedef contains configuration information for the device.
00163 */
00164 typedef struct

00165 {
00166 Xuint16 DeviceId; /**< Unique ID of device */

00167 Xuint32 BaseAddress; /**< Register base address */

00168 Xuint8 NumMasters; /**< Number of masters on the bus */

00169 } XOpbArb_Config;

00170
00171 /**
00172 * The XOpbArb driver instance data. The user is required to allocate a
00173 * variable of this type for every OPB arbiter device in the system. A pointer
00174 * to a variable of this type is then passed to the driver API functions.
00175 */
00176 typedef struct

00177 {
00178 Xuint32 BaseAddress; /* Base address of registers */

00179 Xuint32 IsReady; /* Device is initialized and ready */

00180 Xuint8 NumMasters; /* Number of masters on this bus */

00181 } XOpbArb;

00182
00183 /***************** Macros (Inline Functions) Definitions *********************/
00184
00185
00186 /************************** Function Prototypes ******************************/
00187
00188 /*
00189 * Initialization
00190 */
00191 XStatus XOpbArb_Initialize(XOpbArb *InstancePtr, Xuint16 DeviceId);

00192 XOpbArb_Config *XOpbArb_LookupConfig(Xuint16 DeviceId);

00193
00194 /*
00195 * Diagnostics

00196 */
00197 XStatus XOpbArb_SelfTest(XOpbArb *InstancePtr);

00198
00199 /*
00200 * Configuration
00201 */
00202 XStatus XOpbArb_SetOptions(XOpbArb *InstancePtr, Xuint32 Options);

00203 Xuint32 XOpbArb_GetOptions(XOpbArb *InstancePtr);

00204 XStatus XOpbArb_SetPriorityLevel(XOpbArb *InstancePtr, Xuint8 Level,

00205 Xuint8 MasterId);

00206 Xuint8 XOpbArb_GetPriorityLevel(XOpbArb *InstancePtr, Xuint8 Level);

00207
00208 void XOpbArb_SuspendPriorityLevels(XOpbArb *InstancePtr);

00209 XStatus XOpbArb_ResumePriorityLevels(XOpbArb *InstancePtr);

00210
00211 XStatus XOpbArb_SetParkId(XOpbArb *InstancePtr, Xuint8 MasterId);

00212 XStatus XOpbArb_GetParkId(XOpbArb *InstancePtr, Xuint8 *MasterIdPtr);

00213
00214
00215 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opbarb/v1_02_a/src/xopbarb_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. The user should refer to the hardware device specification for more details of the device
operation. High-level driver functions are defined in xopbarb.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XOpbArb_mSetControlReg(BaseAddress, RegisterValue)
#define XOpbArb_mGetControlReg(BaseAddress)
#define XOpbArb_mEnableDynamic(BaseAddress)
#define XOpbArb_mDisableDynamic(BaseAddress)
#define XOpbArb_mEnableParking(BaseAddress)

#define XOpbArb_mDisableParking(BaseAddress)
#define XOpbArb_mSetParkMasterNot(BaseAddress)
#define XOpbArb_mClearParkMasterNot(BaseAddress)
#define XOpbArb_mSetPriorityRegsValid(BaseAddress)
#define XOpbArb_mClearPriorityRegsValid(BaseAddress)
#define XOpbArb_mSetParkedMasterId(BaseAddress, ParkedMasterId)
#define XOpbArb_mSetPriorityReg(BaseAddress, Level, MasterId)
#define XOpbArb_mGetPriorityReg(BaseAddress, Level)

Define Documentation

#define XOpbArb_mClearParkMasterNot(BaseAddress)

Clear park on master not last (park on a specific master ID) in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mClearPriorityRegsValid(BaseAddress)

Clear the priority registers valid in the Control Register of the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mDisableDynamic(BaseAddress)

Disable dynamic priority arbitration in the Control Register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mDisableParking(BaseAddress)

Disable parking in the Control Register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mEnableDynamic(BaseAddress)

Enable dynamic priority arbitration in the Control Register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mEnableParking(BaseAddress)

Enable parking in the Control Register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mGetControlReg(BaseAddress)

Get the Control Register of the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XOpbArb_mGetPriorityReg(BaseAddress,
Level)

Get the priority register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.
Level contain the priority level of the register to get (0 - 15).

Returns:
The contents of the specified priority register, a master ID (0 - 15).

Note:
None.

#define XOpbArb_mSetControlReg(BaseAddress,
RegisterValue)

Set the Control Register of the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.
RegisterValue contains the value to be written to the register.

Returns:
None.

Note:
None.

#define XOpbArb_mSetParkedMasterId(BaseAddress,
ParkedMasterId)

Set the parked master ID in the Control Register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.
ParkedMasterId contains the ID of the master to park on (0 - 15).

Returns:
None.

Note:
None.

#define XOpbArb_mSetParkMasterNot(BaseAddress)

Set park on master not last (park on a specific master ID) in the Control Register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XOpbArb_mSetPriorityReg(BaseAddress,
Level,
MasterId)

Set the priority register in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.
Level contain the priority level of the register to set (0 - 15).
MasterId contains the value to be written to the register (0 - 15).

Returns:
None.

Note:
None.

#define XOpbArb_mSetPriorityRegsValid(BaseAddress)

Set the priority registers valid in the OPB Arbiter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opbarb/v1_02_a/src/xopbarb_l.h
Go to the documentation of this file.

00001 /* $Id: xopbarb_l.h,v 1.1 2002/06/26 17:36:23 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file opbarb/v1_02_a/src/xopbarb_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xopbarb.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00b jhl 04/24/02 First release
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XOPBARB_L_H /* prevent circular inclusions */

00043 #define XOPBARB_L_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xio.h"

00049
00050 /************************** Constant Definitions *****************************/
00051
00052 /*
00053 * Register offsets for the OPB Arbiter
00054 */
00055 #define XOA_CR_OFFSET 0x100 /* (CR) Control Register */
00056 #define XOA_LVLX_OFFSET 0x104 /* Start of priority level registers */
00057 #define XOA_LVLX_SIZE 4 /* Size of priority level registers */
00058
00059 /*
00060 * OPB Arbiter Control Register (CR) masks
00061 */
00062 #define XOA_CR_DYNAMIC_ENABLE_MASK 0x80000000 /* Dynamic priority enable */
00063 #define XOA_CR_DYNAMIC_RW_MASK 0x40000000 /* Dynamic priority enable
00064 * read/write */
00065 #define XOA_CR_PARK_ENABLE_MASK 0x20000000 /* Park enable */
00066 #define XOA_CR_PARK_RW_MASK 0x10000000 /* Park enable read/write */
00067 #define XOA_CR_PARK_ON_ID_MASK 0x08000000 /* Park on park ID */
00068 #define XOA_CR_PRIORITY_VALID_MASK 0x04000000 /* Priority registers valid */
00069 #define XOA_CR_PARK_ID_MASK 0x0000000F /* Park ID */
00070
00071
00072 /**************************** Type Definitions *******************************/
00073
00074
00075 /***************** Macros (Inline Functions) Definitions *********************/
00076
00077
00078 /***
00079 *
00080 * Low-level driver macros. The list below provides signatures to help the
00081 * user use the macros.
00082 *
00083 * void XOpbArb_mSetControlReg(Xuint32 BaseAddress, Xuint32 RegisterValue)
00084 * Xuint32 XOpbArb_mGetControlReg(Xuint32 BaseAddress)
00085 *
00086 * void XOpbArb_mEnableDynamic(Xuint32 BaseAddress)
00087 * void XOpbArb_mDisableDynamic(Xuint32 BaseAddress)
00088 *
00089 * void XOpbArb_mEnableParking(Xuint32 BaseAddress)
00090 * void XOpbArb_mDisableParking(Xuint32 BaseAddress)
00091 *
00092 * void XOpbArb_mSetParkMasterNot(Xuint32 BaseAddress)
00093 * void XOpbArb_mClearParkOnMaster(Xuint32 BaseAddress)
00094 *

00095 * void XOpbArb_mSetPriorityRegsValid(Xuint32 BaseAddress)
00096 * void XOpbArb_mClearPriorityRegsValid(Xuint32 BaseAddress)
00097 *
00098 * void XOpbArb_mSetParkedMasterId(Xuint32 BaseAddress, Xuint8 ParkedMasterId)
00099 * void XOpbArb_mSetPriorityReg(Xuint32 BaseAddress, Xuint8 Level,
00100 * Xuint32 MasterId)
00101 * Xuint32 XOpbArb_mGetPriorityReg(Xuint32 BaseAddress, Xuint8 Level)
00102 *
00103 ***/
00104
00105 /**/
00106 /**
00107 * Set the Control Register of the OPB Arbiter.
00108 *
00109 * @param BaseAddress contains the base address of the device.
00110 * @param RegisterValue contains the value to be written to the register.
00111 *
00112 * @return None.
00113 *
00114 * @note None.
00115 *
00116 **/
00117 #define XOpbArb_mSetControlReg(BaseAddress, RegisterValue) \

00118 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, (RegisterValue))
00119
00120 /***/
00121 /**
00122 * Get the Control Register of the OPB Arbiter.
00123 *
00124 * @param BaseAddress contains the base address of the device.
00125 *
00126 * @return The value read from the register.
00127 *
00128 * @note None.
00129 *
00130 **/
00131 #define XOpbArb_mGetControlReg(BaseAddress) \

00132 XIo_In32((BaseAddress) + XOA_CR_OFFSET)
00133
00134 /***/
00135 /**
00136 * Enable dynamic priority arbitration in the Control Register in the OPB
00137 * Arbiter.
00138 *
00139 * @param BaseAddress contains the base address of the device.
00140 *
00141 * @return None.
00142 *
00143 * @note None.
00144 *
00145 **/
00146 #define XOpbArb_mEnableDynamic(BaseAddress) \

00147 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00148 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) | \
00149 XOA_CR_DYNAMIC_ENABLE_MASK))
00150
00151 /*(***/
00152 /**
00153 * Disable dynamic priority arbitration in the Control Register in the OPB
00154 * Arbiter.
00155 *
00156 * @param BaseAddress contains the base address of the device.
00157 *
00158 * @return None.
00159 *
00160 * @note None.
00161 *
00162 **/
00163 #define XOpbArb_mDisableDynamic(BaseAddress) \

00164 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00165 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) & \
00166 ~XOA_CR_DYNAMIC_ENABLE_MASK))
00167
00168 /***/
00169 /**
00170 * Enable parking in the Control Register in the OPB Arbiter.
00171 *
00172 * @param BaseAddress contains the base address of the device.
00173 *
00174 * @return None.
00175 *
00176 * @note None.
00177 *
00178 **/
00179 #define XOpbArb_mEnableParking(BaseAddress) \

00180 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00181 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) | \
00182 XOA_CR_PARK_ENABLE_MASK))
00183
00184 /***/
00185 /**
00186 * Disable parking in the Control Register in the OPB Arbiter.
00187 *
00188 * @param BaseAddress contains the base address of the device.
00189 *
00190 * @return None.
00191 *
00192 * @note None.
00193 *
00194 **/
00195 #define XOpbArb_mDisableParking(BaseAddress) \

00196 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00197 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) & \
00198 ~XOA_CR_PARK_ENABLE_MASK))

00199
00200 /**/
00201 /**
00202 * Set park on master not last (park on a specific master ID) in the Control
00203 * Register in the OPB Arbiter.
00204 *
00205 * @param BaseAddress contains the base address of the device.
00206 *
00207 * @return None.
00208 *
00209 * @note None.
00210 *
00211 **/
00212 #define XOpbArb_mSetParkMasterNot(BaseAddress) \

00213 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00214 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) | \
00215 XOA_CR_PARK_ON_ID_MASK))
00216
00217 /***/
00218 /**
00219 * Clear park on master not last (park on a specific master ID) in the OPB
00220 * Arbiter.
00221 *
00222 * @param BaseAddress contains the base address of the device.
00223 *
00224 * @return None.
00225 *
00226 * @note None.
00227 *
00228 **/
00229 #define XOpbArb_mClearParkMasterNot(BaseAddress) \

00230 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00231 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) & \
00232 ~XOA_CR_PARK_ON_ID_MASK))
00233
00234 /***/
00235 /**
00236 * Set the priority registers valid in the OPB Arbiter.
00237 *
00238 * @param BaseAddress contains the base address of the device.
00239 *
00240 * @return None.
00241 *
00242 * @note None.
00243 *
00244 **/
00245 #define XOpbArb_mSetPriorityRegsValid(BaseAddress) \

00246 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00247 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) | \
00248 XOA_CR_PRIORITY_VALID_MASK))
00249
00250 /***/

00251 /**
00252 * Clear the priority registers valid in the Control Register of the OPB
00253 * Arbiter.
00254 *
00255 * @param BaseAddress contains the base address of the device.
00256 *
00257 * @return None.
00258 *
00259 * @note None.
00260 *
00261 **/
00262 #define XOpbArb_mClearPriorityRegsValid(BaseAddress) \

00263 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, \
00264 (XIo_In32((BaseAddress) + XOA_CR_OFFSET) & \
00265 ~XOA_CR_PRIORITY_VALID_MASK))
00266
00267 /***/
00268 /**
00269 * Set the parked master ID in the Control Register in the OPB Arbiter.
00270 *
00271 * @param BaseAddress contains the base address of the device.
00272 * @param ParkedMasterId contains the ID of the master to park on (0 - 15).
00273 *
00274 * @return None.
00275 *
00276 * @note None.
00277 *
00278 **/
00279 #define XOpbArb_mSetParkedMasterId(BaseAddress, ParkedMasterId) \

00280 { \
00281 Xuint32 ControlReg; \
00282 \
00283 ControlReg = XIo_In32((BaseAddress) + XOA_CR_OFFSET) & \
00284 ~XOA_CR_PARK_ID_MASK; \
00285 XIo_Out32((BaseAddress) + XOA_CR_OFFSET, ControlReg | \
00286 (Xuint8)ParkedMasterId); \
00287 }
00288
00289 /***/
00290 /**
00291 * Set the priority register in the OPB Arbiter.
00292 *
00293 * @param BaseAddress contains the base address of the device.
00294 * @param Level contain the priority level of the register to set (0 - 15).
00295 * @param MasterId contains the value to be written to the register (0 - 15).
00296 *
00297 * @return None.
00298 *
00299 * @note None.
00300 *
00301 **/
00302 #define XOpbArb_mSetPriorityReg(BaseAddress, Level, MasterId) \

00303 XIo_Out32((BaseAddress) + XOA_LVLX_OFFSET + (Level * XOA_LVLX_SIZE), \
00304 MasterId)
00305
00306 /***/
00307 /**
00308 * Get the priority register in the OPB Arbiter.
00309 *
00310 * @param BaseAddress contains the base address of the device.
00311 * @param Level contain the priority level of the register to get (0 - 15).
00312 *
00313 * @return The contents of the specified priority register, a master ID
00314 * (0 - 15).
00315 *
00316 * @note None.
00317 *
00318 **/
00319 #define XOpbArb_mGetPriorityReg(BaseAddress, Level) \

00320 XIo_In32((BaseAddress) + XOA_LVLX_OFFSET + (Level * XOA_LVLX_SIZE))
00321
00322 /************************** Function Prototypes ******************************/
00323
00324
00325 /************************** Variable Definitions *****************************/
00326
00327 #endif /* end of protection macro */
00328

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XOpbArb_Config Struct Reference
#include <xopbarb.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint8 NumMasters

Field Documentation

Xuint32 XOpbArb_Config::BaseAddress

 Register base address

Xuint16 XOpbArb_Config::DeviceId

 Unique ID of device

Xuint8 XOpbArb_Config::NumMasters

 Number of masters on the bus

The documentation for this struct was generated from the following file:

● opbarb/v1_02_a/src/xopbarb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opbarb/v1_02_a/src/xopbarb.c File
Reference

Detailed Description

This component contains the implementation of the XOpbArb driver component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.02a rpm 08/13/01 First release

#include "xparameters.h"

#include "xopbarb.h"

#include "xio.h"

Data Structures

struct OptionsMap

Functions

XStatus XOpbArb_Initialize (XOpbArb *InstancePtr, Xuint16 DeviceId)
XStatus XOpbArb_SelfTest (XOpbArb *InstancePtr)
XStatus XOpbArb_SetOptions (XOpbArb *InstancePtr, Xuint32 Options)

Xuint32 XOpbArb_GetOptions (XOpbArb *InstancePtr)
XStatus XOpbArb_SetPriorityLevel (XOpbArb *InstancePtr, Xuint8 Level, Xuint8

MasterId)
Xuint8 XOpbArb_GetPriorityLevel (XOpbArb *InstancePtr, Xuint8 Level)

void XOpbArb_SuspendPriorityLevels (XOpbArb *InstancePtr)
XStatus XOpbArb_ResumePriorityLevels (XOpbArb *InstancePtr)
XStatus XOpbArb_SetParkId (XOpbArb *InstancePtr, Xuint8 MasterId)
XStatus XOpbArb_GetParkId (XOpbArb *InstancePtr, Xuint8 *MasterIdPtr)

XOpbArb_Config * XOpbArb_LookupConfig (Xuint16 DeviceId)

Function Documentation

Xuint32 XOpbArb_GetOptions (XOpbArb * InstancePtr)

Gets the options for the arbiter. The options control how the device grants the bus to requesting
masters.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
The options of the device. This is a bit mask where a 1 means the option is on, and a 0 means
the option is off. See xopbarb.h for a description of the options.

Note:
None.

XStatus XOpbArb_GetParkId (XOpbArb * InstancePtr,
Xuint8 * MasterIdPtr

)

Gets the master ID currently used for bus parking.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

MasterIdPtr is a pointer to a byte that will hold the master ID currently used for bus parking.
This is an output parameter. The ID can range from 0 to N, where N is the
number of masters minus one. The device currently supports up to 16 masters.

Returns:
XST_SUCCESS if the park ID is successfully retrieved, or XST_NO_FEATURE if bus
parking is not supported by the device.

Note:
None.

Xuint8 XOpbArb_GetPriorityLevel (XOpbArb * InstancePtr,
Xuint8 Level

)

Get the master ID at the given priority level.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Level is the priority level being retrieved. The level can range from 0 (highest) to N
(lowest), where N is the number of masters minus one. The device currently
supports up to 16 masters.

Returns:
The master ID assigned to the given priority level. The ID can range from 0 to N, where N is
the number of masters minus one.

Note:
If the arbiter is operating in dynamic priority mode, the value returned from this function may
not be predictable because the arbiter changes the values on the fly.

XStatus XOpbArb_Initialize (XOpbArb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XOpbArb instance. The driver is initialized to allow access to the device
registers. In addition, the configuration information is retrieved for the device. Currently,
configuration information is stored in xopbarb_g.c.

The state of the device after initialization is:

● Fixed or dynamic priority arbitration based on hardware parameter
● Bus parking is disabled

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

DeviceId is the unique id of the device controlled by this XOpbArb component. Passing in
a device id associates the generic XOpbArb component to a specific device, as
chosen by the caller or application developer.

Returns:
The return value is XST_SUCCESS if successful or XST_DEVICE_NOT_FOUND if no
configuration data was found for this device.

Note:
None.

XOpbArb_Config* XOpbArb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table OpbArbConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to match on.

Returns:
A pointer to the configuration information for the matching device instance, or XNULL if no
match is found.

Note:
None.

XStatus XOpbArb_ResumePriorityLevels (XOpbArb * InstancePtr)

Resumes use of the priority levels by the device. This function is typically called sometime after a call
to SuspendPriorityLevels. The application must resume use of priority levels by the device when all
modifications are done. If no call is made to this function after use of the priority levels has been
suspended, the device will remain in its default priority arbitration mode of assigning priorities based
on master IDs. A call to this function has no effect if no prior call was made to suspend the use of
priority levels.

Every master must be represented by one and only one fixed priority level before the use of priority
levels can be resumed.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
❍ XST_SUCCESS if the slave is selected successfully.
❍ XST_OPBARB_INVALID_PRIORITY if there is either a master that is not assigned a

priority level, or a master that is assigned two mor more priority levels.

Note:
None.

XStatus XOpbArb_SelfTest (XOpbArb * InstancePtr)

Runs a self-test on the driver/device. The self-test simply verifies that the arbiter's registers can be
read and written. This is an intrusive test in that the arbiter will not be using the priority registers
while the test is being performed.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
XST_SUCCESS if successful, or XST_REGISTER_ERROR if a register did not read or write
correctly

Note:
The priority level registers are restored after testing them in order to prevent problems with the
registers being the same value after the test.

If the arbiter is in dynamic priority mode, this test changes the mode to fixed to ensure that the

priority registers aren't changed by the arbiter during this test. The mode is restored to it's entry
value on exit.

XStatus XOpbArb_SetOptions (XOpbArb * InstancePtr,
Xuint32 Options

)

Sets the options for the OPB arbiter. The options control how the device grants the bus to requesting
masters.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Options contains the specified options to be set. This is a bit mask where a 1 means to
turn the option on, and a 0 means to turn the option off. See xopbarb.h for a
description of the options.

Returns:
❍ XST_SUCCESS if options are successfully set.
❍ XST_NO_FEATURE if an attempt was made to enable dynamic priority arbitration

when the device is configured only for fixed priority arbitration, or an attempt was
made to enable parking when bus parking is not supported by the device.

❍ XST_OPBARB_PARK_NOT_ENABLED if bus parking by park ID was enabled but
bus parking itself was not enabled.

Note:
None.

XStatus XOpbArb_SetParkId (XOpbArb * InstancePtr,
Xuint8 MasterId

)

Sets the master ID used for bus parking. Bus parking must be enabled and the option to use bus
parking by park ID must be set for this park ID to take effect (see the SetOptions function). If the
option to use bus parking by park ID is set but this function is not called, bus parking defaults to
master 0.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

MasterId is the ID of the master that will be parked if bus parking is enabled. This master's
grant signal remains asserted as long as no other master requests the bus. The ID
can range from 0 to N, where N is the number of masters minus one. The device
currently supports up to 16 masters.

Returns:
XST_SUCCESS if the park ID is successfully set, or XST_NO_FEATURE if bus parking is
not supported by the device.

Note:
None.

XStatus XOpbArb_SetPriorityLevel (XOpbArb * InstancePtr,
Xuint8 Level,
Xuint8 MasterId

)

Assigns a master ID to the given priority level. The use of priority levels by the device must be
suspended before calling this function. Every master ID must be assigned to one and only one priority
level. The driver enforces this before allowing use of priority levels by the device to be resumed.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Level is the priority level being set. The level can range from 0 (highest) to N (lowest),
where N is the number of masters minus one. The device currently supports up to
16 masters.

MasterId is the ID of the master being assigned to the priority level. The ID can range from
0 to N, where N is the number of masters minus one. The device currently
supports up to 16 masters.

Returns:
❍ XST_SUCCESS if the slave is selected successfully.
❍ XST_OPBARB_NOT_SUSPENDED if priority levels have not been suspended.

Before modifying the priority levels, use of priority levels by the device must be
suspended.

❍ XST_OPBARB_NOT_FIXED_PRIORITY if the arbiter is in dynamic mode. It must
be in fixed mode to modify the priority levels.

Note:
None.

void XOpbArb_SuspendPriorityLevels (XOpbArb * InstancePtr)

Suspends use of the priority levels by the device. Before modifying priority levels, the application
must first suspend use of the levels by the device. This is to prevent possible OPB problems if no
master is assigned a priority during the modification of priority levels. The application must resume
use of priority levels by the device when all modifications are done. During the time priority levels
are suspended, the device reverts to its default behavior of assigning priorities based on master IDs.

This function can be used when the device is configured for either fixed priority arbitration or
dynamic priority arbitration. When used during dynamic priority arbitration, the application can
configure the priority levels as a starting point for the LRU algorithm.

Parameters:
InstancePtr is a pointer to the XOpbArb instance to be worked on.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

opbarb/v1_02_a/src/xopbarb_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of OPB arbiter devices in the
system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.02a rpm 08/13/01 First release

#include "xopbarb.h"

#include "xparameters.h"

Variables

XOpbArb_Config XOpbArb_ConfigTable [XPAR_XOPBARB_NUM_INSTANCES]

Variable Documentation

XOpbArb_Config XOpbArb_ConfigTable[XPAR_XOPBARB_NUM_INSTANCES]

 The OPB arbiter configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb.h File
Reference

Detailed Description

This component contains the implementation of the XPlb2Opb component. It is the driver for the PLB to OPB
Bridge. The bridge converts PLB bus transactions to OPB bus transactions. The hardware acts as a slave on the PLB
side and as a master on the OPB side. This interface is necessary for the processor to access OPB based peripherals.

This driver allows the user to access the Bridge registers to support the handling of bus errors and other access errors
and determine an appropriate solution if possible.

The bridge hardware generates interrupts in error conditions. These interrupts are not handled by the driver directly.
It is the application's responsibility to attach to the appropriate interrupt with a handler which then calls functions
provided by this driver to determine the cause of the error and take the necessary actions to correct the situation.

The Xilinx PLB to OPB Bridge is a soft IP core designed for Xilinx FPGAs and contains the following features:

● PLB Slave interface
● 32-bit or 64-bit PLB Slave (configurable via a design parameter)
● Communicates with 32- or 64-bit PLB masters
● Non-burst transfers of 1-8 bytes
● Burst transfers, including word and double-word bursts of fixed or variable lengths, up to depth of burst

buffer. Buffer depth configurable via a design parameter
● Limited support for byte, half-word, quad-word and octal-word bursts to maintain PLB compliance
● Cacheline transactions of 4, 8, and 16 words
● Support for transactions not utilized by the PPC405 Core can be eliminated via a design parameter
● PPC405 Core only utilizes single beat, 4, 8, or 16 word line transfers support for burst transactions can be

eliminated via a design parameter
● Supports up to 8 PLB masters (number of PLB masters configurable via a design parameter)
● Programmable lower and upper address boundaries
● OPB Master interface with byte enable transfers Note: Does not support dynamic bus sizing without

additional glue logic
● Data width configurable via a design parameter
● PLB and OPB clocks can have a 1:1, 1:2, 1:4 synchronous relationship
● Bus Error Address Registers (BEAR) and Bus Error Status Registers (BESR) to report errors
● DCR Slave interface provides access to BEAR/BESR

● BEAR, BESR, and DCR interface can be removed from the design via a design parameter
● Posted write buffer. Buffer depth configurable via a design parameter

Device Configuration

The device can be configured in various ways during the FPGA implementation process. The current configuration
data contained in xplb2opb_g.c. A table is defined where each entry contains configuration information for device.
This information includes such things as the base address of the DCR mapped device, and the number of masters on
the bus.

Note:
This driver is not thread-safe. Thread safety must be guaranteed by the layer above this driver if there is a
need to access the device from multiple threads.

The Bridge registers reside on the DCR address bus.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 12/7/01 First release
 1.00a rpm 05/14/02 Made configuration typedef/lookup public

#include "xbasic_types.h"

#include "xstatus.h"

#include "xplb2opb_l.h"

Go to the source code of this file.

Data Structures

struct XPlb2Opb
struct XPlb2Opb_Config

PLB-OPB bridge error status masks

#define XP2O_DRIVING_BEAR_MASK
#define XP2O_ERROR_READ_MASK
#define XP2O_ERROR_TYPE_MASK
#define XP2O_LOCK_ERR_MASK

Functions

XStatus XPlb2Opb_Initialize (XPlb2Opb *InstancePtr, Xuint16 DeviceId)
void XPlb2Opb_Reset (XPlb2Opb *InstancePtr)

XPlb2Opb_Config * XPlb2Opb_LookupConfig (Xuint16 DeviceId)
Xboolean XPlb2Opb_IsError (XPlb2Opb *InstancePtr)

void XPlb2Opb_ClearErrors (XPlb2Opb *InstancePtr, Xuint8 Master)
Xuint32 XPlb2Opb_GetErrorStatus (XPlb2Opb *InstancePtr, Xuint8 Master)
Xuint32 XPlb2Opb_GetErrorAddress (XPlb2Opb *InstancePtr)
Xuint32 XPlb2Opb_GetErrorByteEnables (XPlb2Opb *InstancePtr)
Xuint8 XPlb2Opb_GetMasterDrivingError (XPlb2Opb *InstancePtr)
Xuint8 XPlb2Opb_GetNumMasters (XPlb2Opb *InstancePtr)

void XPlb2Opb_EnableInterrupt (XPlb2Opb *InstancePtr)
void XPlb2Opb_DisableInterrupt (XPlb2Opb *InstancePtr)

XStatus XPlb2Opb_SelfTest (XPlb2Opb *InstancePtr, Xuint32 TestAddress)

Define Documentation

#define XP2O_DRIVING_BEAR_MASK

 XP2O_DRIVING_BEAR_MASK Indicates this master is driving the
 outstanding error
 XP2O_ERROR_READ_MASK Indicates the error is a read error. It is
 a write error otherwise.
 XP2O_ERROR_TYPE_MASK If set, the error was a timeout. Otherwise
 the error was an error acknowledge
 XP2O_LOCK_ERR_MASK Indicates the error is locked and cannot
 be overwritten.

#define XP2O_ERROR_READ_MASK

 XP2O_DRIVING_BEAR_MASK Indicates this master is driving the
 outstanding error
 XP2O_ERROR_READ_MASK Indicates the error is a read error. It is
 a write error otherwise.
 XP2O_ERROR_TYPE_MASK If set, the error was a timeout. Otherwise
 the error was an error acknowledge
 XP2O_LOCK_ERR_MASK Indicates the error is locked and cannot
 be overwritten.

#define XP2O_ERROR_TYPE_MASK

 XP2O_DRIVING_BEAR_MASK Indicates this master is driving the
 outstanding error
 XP2O_ERROR_READ_MASK Indicates the error is a read error. It is
 a write error otherwise.
 XP2O_ERROR_TYPE_MASK If set, the error was a timeout. Otherwise
 the error was an error acknowledge
 XP2O_LOCK_ERR_MASK Indicates the error is locked and cannot
 be overwritten.

#define XP2O_LOCK_ERR_MASK

 XP2O_DRIVING_BEAR_MASK Indicates this master is driving the
 outstanding error
 XP2O_ERROR_READ_MASK Indicates the error is a read error. It is
 a write error otherwise.
 XP2O_ERROR_TYPE_MASK If set, the error was a timeout. Otherwise
 the error was an error acknowledge
 XP2O_LOCK_ERR_MASK Indicates the error is locked and cannot
 be overwritten.

Function Documentation

void XPlb2Opb_ClearErrors (XPlb2Opb * InstancePtr,
Xuint8 Master

)

Clears any outstanding errors for the given master.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of masters on the
bus

Returns:
None.

Note:
None.

void XPlb2Opb_DisableInterrupt (XPlb2Opb * InstancePtr)

Disables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled by the
driver directly. It is the application's responsibility to attach to the appropriate interrupt with a handler
which then calls functions provided by this driver to determine the cause of the error and take the
necessary actions to correct the situation.

void XPlb2Opb_EnableInterrupt (XPlb2Opb * InstancePtr)

Enables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled by the
driver directly. It is the application's responsibility to attach to the appropriate interrupt with a handler
which then calls functions provided by this driver to determine the cause of the error and take the

necessary actions to correct the situation.

Xuint32 XPlb2Opb_GetErrorAddress (XPlb2Opb * InstancePtr)

Returns the OPB Address where the most recent error occurred If there isn't an outstanding error, the last address
in error is returned. 0x00000000 is the initial value coming out of reset.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
Address where error causing access occurred

Note:
Calling XPlb2Opb_IsError() is recommended to confirm that an error has occurred prior to calling
XPlb2Opb_GetErrorAddress() to ensure that the data in the error address register is relevant.

Xuint32 XPlb2Opb_GetErrorByteEnables (XPlb2Opb * InstancePtr)

Returns the byte-enables asserted during the access causing the error. The enables are parameters in the hardware
making the return value dynamic. An example of a 32-bit bus with all 4 byte enables available,
XPlb2Opb_GetErrorByteEnables will have the value 0xF0000000 returned from a 32-bit access error.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
The byte-enables asserted during the error causing access.

Note:
None.

Xuint32 XPlb2Opb_GetErrorStatus (XPlb2Opb * InstancePtr,
Xuint8 Master

)

Returns the error status for the specified master.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of masters on the
bus

Returns:
The current error status for the requested master on the PLB. The status is a bit-mask and the values are
described in xplb2opb.h.

Note:
None.

Xuint8 XPlb2Opb_GetMasterDrivingError (XPlb2Opb * InstancePtr)

Returns the ID of the master which is driving the error condition

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
The ID of the master that is driving the error

Note:
None.

Xuint8 XPlb2Opb_GetNumMasters (XPlb2Opb * InstancePtr)

Returns the number of masters associated with the provided instance

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
The number of masters. This is a number from 1 to the maximum of 32.

Note:
The value returned from this call needs to be adjusted if it is to be used as the argument for other calls
since the masters are numbered from 0 and this function returns values starting at 1.

XStatus XPlb2Opb_Initialize (XPlb2Opb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XPlb2Opb instance. Looks for configuration data for the specified device, then initializes
instance data.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

DeviceId is the unique id of the device controlled by this XPlb2Opb component. Passing in a device
id associates the generic XPlb2Opb component to a specific device, as chosen by the caller
or application developer.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the requested device is not found

Note:
None.

Xboolean XPlb2Opb_IsError (XPlb2Opb * InstancePtr)

Returns XTRUE is there is an error outstanding

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
Boolean XTRUE if there is an error, XFALSE if there is no current error.

Note:
None.

XPlb2Opb_Config* XPlb2Opb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table PlbOpbConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to look for

Returns:
A pointer to the configuration data for the given device, or XNULL if no match is found.

Note:
None.

void XPlb2Opb_Reset (XPlb2Opb * InstancePtr)

Forces a software-induced reset to occur in the bridge. Disables interrupts in the process.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
None.

Note:
Disables interrupts in the process.

XStatus XPlb2Opb_SelfTest (XPlb2Opb * InstancePtr,
Xuint32 TestAddress

)

Runs a self-test on the driver/device.

This tests reads the BCR to verify that the proper value is there.

XST_SUCCESS is returned if expected value is there, XST_PLB2OPB_FAIL_SELFTEST is returned otherwise.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

TestAddress is a location that could cause an error on read, not used - user definable for hw specific
implementations.

Returns:
XST_SUCCESS if successful, or XST_PLB2OPB_FAIL_SELFTEST if the driver fails self-test.

Note:
This test assumes that the bus error interrupts are not enabled.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XPlb2Opb Struct Reference
#include <xplb2opb.h>

Detailed Description

The XPlb2Opb driver instance data. The user is required to allocate a variable of this type for every PLB-
to_OPB bridge device in the system. A pointer to a variable of this type is then passed to the driver API
functions.

The documentation for this struct was generated from the following file:

● plb2opb/v1_00_a/src/xplb2opb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb.h
Go to the documentation of this file.

00001 /* $Id: xplb2opb.h,v 1.2 2002/07/26 20:19:19 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file plb2opb/v1_00_a/src/xplb2opb.h
00026 *
00027 * This component contains the implementation of the XPlb2Opb component. It is
00028 * the driver for the PLB to OPB Bridge. The bridge converts PLB bus
transactions
00029 * to OPB bus transactions. The hardware acts as a slave on the PLB side and as
00030 * a master on the OPB side. This interface is necessary for the processor to
00031 * access OPB based peripherals.
00032 *
00033 * This driver allows the user to access the Bridge registers to support
00034 * the handling of bus errors and other access errors and determine an
00035 * appropriate solution if possible.
00036 *
00037 * The bridge hardware generates interrupts in error conditions. These
interrupts
00038 * are not handled by the driver directly. It is the application's
responsibility
00039 * to attach to the appropriate interrupt with a handler which then calls

00040 * functions provided by this driver to determine the cause of the error and
take
00041 * the necessary actions to correct the situation.
00042 *
00043 * The Xilinx PLB to OPB Bridge is a soft IP core designed for Xilinx FPGAs and
00044 * contains the following features:
00045 * - PLB Slave interface
00046 * - 32-bit or 64-bit PLB Slave (configurable via a design parameter)
00047 * - Communicates with 32- or 64-bit PLB masters
00048 * - Non-burst transfers of 1-8 bytes
00049 * - Burst transfers, including word and double-word bursts of fixed or
variable
00050 * lengths, up to depth of burst buffer. Buffer depth configurable via a
00051 * design parameter
00052 * - Limited support for byte, half-word, quad-word and octal-word bursts to
00053 * maintain PLB compliance
00054 * - Cacheline transactions of 4, 8, and 16 words
00055 * - Support for transactions not utilized by the PPC405 Core can be
eliminated
00056 * via a design parameter
00057 * - PPC405 Core only utilizes single beat, 4, 8, or 16 word line transfers
00058 * support for burst transactions can be eliminated via a design parameter
00059 * - Supports up to 8 PLB masters (number of PLB masters configurable via a
00060 * design parameter)
00061 * - Programmable lower and upper address boundaries
00062 * - OPB Master interface with byte enable transfers
00063 * <i>Note</i>: Does not support dynamic bus sizing without additional
glue logic
00064 * - Data width configurable via a design parameter
00065 * - PLB and OPB clocks can have a 1:1, 1:2, 1:4 synchronous relationship
00066 * - Bus Error Address Registers (BEAR) and Bus Error Status Registers (BESR)
00067 * to report errors
00068 * - DCR Slave interface provides access to BEAR/BESR
00069 * - BEAR, BESR, and DCR interface can be removed from the design via a design
00070 * parameter
00071 * - Posted write buffer. Buffer depth configurable via a design parameter
00072 *
00073 * Device Configuration
00074 *
00075 * The device can be configured in various ways during the FPGA implementation
00076 * process. The current configuration data contained in xplb2opb_g.c. A
00077 * table is defined where each entry contains configuration information for
00078 * device. This information includes such things as the base address of the DCR
00079 * mapped device, and the number of masters on the bus.
00080 *
00081 * @note
00082 *
00083 * This driver is not thread-safe. Thread safety must be guaranteed by the layer
00084 * above this driver if there is a need to access the device from multiple
00085 * threads.
00086 *

00087 * The Bridge registers reside on the DCR address bus.
00088 *

00089 * <pre>
00090 * MODIFICATION HISTORY:
00091 *
00092 * Ver Who Date Changes
00093 * ----- ---- -------- ---
00094 * 1.00a ecm 12/7/01 First release
00095 * 1.00a rpm 05/14/02 Made configuration typedef/lookup public
00096 * </pre>
00097 *
00098 ***/
00099
00100 #ifndef XPLB2OPB_H /* prevent circular inclusions */
00101 #define XPLB2OPB_H /* by using protection macros */
00102
00103 /***************************** Include Files ********************************/
00104 #include "xbasic_types.h"

00105 #include "xstatus.h"

00106 #include "xplb2opb_l.h"

00107
00108 /************************** Constant Definitions ****************************/
00109
00110
00111 /** @name PLB-OPB bridge error status masks
00112 * @{
00113 */
00114 /**
00115 * <pre>
00116 * XP2O_DRIVING_BEAR_MASK Indicates this master is driving the
00117 * outstanding error
00118 * XP2O_ERROR_READ_MASK Indicates the error is a read error. It is
00119 * a write error otherwise.
00120 * XP2O_ERROR_TYPE_MASK If set, the error was a timeout. Otherwise
00121 * the error was an error acknowledge
00122 * XP2O_LOCK_ERR_MASK Indicates the error is locked and cannot
00123 * be overwritten.
00124 * </pre>
00125 */
00126 #define XP2O_DRIVING_BEAR_MASK 0x80000000UL

00127 #define XP2O_ERROR_READ_MASK 0x40000000UL

00128 #define XP2O_ERROR_TYPE_MASK 0x20000000UL

00129 #define XP2O_LOCK_ERR_MASK 0x10000000UL

00130 /*@}*/
00131
00132 /**************************** Type Definitions ******************************/
00133
00134 /**
00135 * This typedef contains configuration information for the device.
00136 */
00137 typedef struct

00138 {
00139 Xuint16 DeviceId; /**< Unique ID of device */

00140 Xuint32 BaseAddress; /**< Base address of device */

00141 Xuint8 NumMasters; /**< Number of masters on the bus */

00142 } XPlb2Opb_Config;

00143
00144
00145 /**
00146 * The XPlb2Opb driver instance data. The user is required to allocate a
00147 * variable of this type for every PLB-to_OPB bridge device in the system.
00148 * A pointer to a variable of this type is then passed to the driver API
00149 * functions.
00150 */
00151 typedef struct

00152 {
00153 Xuint32 BaseAddress; /* Base address of device */

00154 Xuint32 IsReady; /* Device is initialized and ready */

00155 Xuint8 NumMasters; /* number of masters for this bridge */

00156
00157 } XPlb2Opb;

00158
00159
00160
00161 /***************** Macros (Inline Functions) Definitions ********************/
00162
00163
00164 /************************** Function Prototypes *****************************/
00165
00166
00167 /*
00168 * Required functions in xplb2opb.c
00169 */
00170
00171 /*
00172 * Initialization Functions
00173 */
00174 XStatus XPlb2Opb_Initialize(XPlb2Opb *InstancePtr, Xuint16 DeviceId);

00175 void XPlb2Opb_Reset(XPlb2Opb *InstancePtr);

00176 XPlb2Opb_Config *XPlb2Opb_LookupConfig(Xuint16 DeviceId);

00177
00178 /*
00179 * Access Functions
00180 */
00181
00182 Xboolean XPlb2Opb_IsError(XPlb2Opb *InstancePtr);

00183 void XPlb2Opb_ClearErrors(XPlb2Opb *InstancePtr, Xuint8 Master);

00184
00185 Xuint32 XPlb2Opb_GetErrorStatus(XPlb2Opb *InstancePtr, Xuint8 Master);

00186 Xuint32 XPlb2Opb_GetErrorAddress(XPlb2Opb *InstancePtr);

00187 Xuint32 XPlb2Opb_GetErrorByteEnables(XPlb2Opb *InstancePtr);

00188 Xuint8 XPlb2Opb_GetMasterDrivingError(XPlb2Opb *InstancePtr);

00189

00190 /*
00191 * Configuration
00192 */
00193 Xuint8 XPlb2Opb_GetNumMasters(XPlb2Opb *InstancePtr);

00194 void XPlb2Opb_EnableInterrupt(XPlb2Opb *InstancePtr);

00195 void XPlb2Opb_DisableInterrupt(XPlb2Opb *InstancePtr);

00196
00197
00198 /*
00199 * Self-test functions in xplb2opb_selftest.c
00200 */
00201 XStatus XPlb2Opb_SelfTest(XPlb2Opb *InstancePtr, Xuint32 TestAddress);

00202
00203 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb_l.h File
Reference

Detailed Description

This file contains identifiers and low-level macros that can be used to access the device directly. See
xplb2opb.h for the high-level driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 05/10/02 First release

#include "xbasic_types.h"

#include "xio.h"

#include "xio_dcr.h"

Go to the source code of this file.

Defines

#define XPlb2Opb_mGetErrorDetectReg(BaseAddress)
#define XPlb2Opb_mSetErrorDetectReg(BaseAddress, Mask)
#define XPlb2Opb_mGetMasterDrivingReg(BaseAddress)
#define XPlb2Opb_mGetReadWriteReg(BaseAddress)
#define XPlb2Opb_mGetErrorTypeReg(BaseAddress)

#define XPlb2Opb_mGetLockBitReg(BaseAddress)
#define XPlb2Opb_mGetErrorAddressReg(BaseAddress)
#define XPlb2Opb_mGetByteEnableReg(BaseAddress)
#define XPlb2Opb_mSetControlReg(BaseAddress, Mask)
#define XPlb2Opb_mGetControlReg(BaseAddress)

Define Documentation

#define XPlb2Opb_mGetByteEnableReg(BaseAddress)

Get the erorr address byte enable register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit error address byte enable register contents.

Note:
None.

#define XPlb2Opb_mGetControlReg(BaseAddress)

Get the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the control register.

Note:
None.

#define XPlb2Opb_mGetErrorAddressReg(BaseAddress)

Get the erorr address (or BEAR), which is the address that just caused the error.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit error address.

Note:
None.

#define XPlb2Opb_mGetErrorDetectReg(BaseAddress)

Get the error detect register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the error detect register.

Note:
None.

#define XPlb2Opb_mGetErrorTypeReg(BaseAddress)

Get the value of the error type register, which indicates whether the error is a timeout or a bus error.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the BESR Lock error register.

Note:
None.

#define XPlb2Opb_mGetLockBitReg(BaseAddress)

Get the value of the lock bit register, which indicates whether the master has locked the error
registers.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the BESR Lock error register.

Note:
None.

#define XPlb2Opb_mGetMasterDrivingReg(BaseAddress)

Get the master driving the error, if any.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the BESR Master driving error register.

Note:
None.

#define XPlb2Opb_mGetReadWriteReg(BaseAddress)

Get the value of the Read-Not-Write register, which indicates whether the error is a read error or write
error.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the BESR RNW error register.

Note:
None.

#define XPlb2Opb_mSetControlReg(BaseAddress,
Mask)

Set the control register to the given value.

Parameters:
BaseAddress is the base address of the device
Mask is the value to write to the control register.

Returns:
None.

Note:
None.

#define XPlb2Opb_mSetErrorDetectReg(BaseAddress,
Mask)

Set the error detect register.

Parameters:
BaseAddress is the base address of the device
Mask is the 32-bit value to write to the error detect register.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb_l.h
Go to the documentation of this file.

00001 /* $Id: xplb2opb_l.h,v 1.2 2002/07/26 20:19:19 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file plb2opb/v1_00_a/src/xplb2opb_l.h
00026 *
00027 * This file contains identifiers and low-level macros that can be used to
00028 * access the device directly. See xplb2opb.h for the high-level driver.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rpm 05/10/02 First release
00036 * </pre>
00037 *
00038 **/
00039
00040 #ifndef XPLB2OPB_L_H /* prevent circular inclusions */
00041 #define XPLB2OPB_L_H /* by using protection macros */
00042

00043 /***************************** Include Files *********************************/
00044 #include "xbasic_types.h"

00045 #include "xio.h"

00046 #include "xio_dcr.h" /* DCR is only interface */

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 #define XP2O_M0_ERROR_MASK 0x80000000UL
00051
00052 /* PLB-OPB Bridge Register offsets - DCR bus */
00053 #define XP2O_BESR_MERR_OFFSET 0x00 /* error register */
00054
00055 #define XP2O_BESR_MDRIVE_OFFSET 0x01 /* master driving the error */
00056 #define XP2O_BESR_READ_OFFSET 0x02 /* error was a read operation */
00057 #define XP2O_BESR_ERR_TYPE_OFFSET 0x03 /* error was a timeout */
00058 #define XP2O_BESR_LCK_ERR_OFFSET 0x04 /* master has locked the registers */
00059 #define XP2O_BEAR_ADDR_OFFSET 0x05 /* address where error occurred */
00060 #define XP2O_BEAR_BYTE_EN_OFFSET 0x06 /* byte lane(s) where error occurred
*/
00061 #define XP2O_BCR_OFFSET 0x07 /* control and status register */
00062
00063 /* BCR Register masks */
00064 #define XP2O_BCR_ENABLE_INTR_MASK 0x80000000 /* set to enable interrupts */
00065 #define XP2O_BCR_SOFTWARE_RESET_MASK 0x40000000 /* set to force reset,
00066 * clear otherwise */
00067
00068 /**************************** Type Definitions *******************************/
00069
00070 /***************** Macros (Inline Functions) Definitions *********************/
00071
00072 /* Define the appropriate I/O access method for the bridge currently only
00073 * DCR
00074 */
00075 #define XPlb2Opb_In32 XIo_DcrIn
00076 #define XPlb2Opb_Out32 XIo_DcrOut
00077
00078 /***
00079 *
00080 * Low-level driver macros and functions. The list below provides signatures
00081 * to help the user use the macros.
00082 *
00083 * Xuint32 XPlb2Opb_mGetErrorDetectReg(Xuint32 BaseAddress)
00084 * void XPlb2Opb_mSetErrorDetectReg(Xuint32 BaseAddress, Xuint32 Mask)
00085 *
00086 * Xuint32 XPlb2Opb_mGetMasterDrivingReg(Xuint32 BaseAddress)
00087 * Xuint32 XPlb2Opb_mGetReadWriteReg(Xuint32 BaseAddress)
00088 * Xuint32 XPlb2Opb_mGetErrorTypeReg(Xuint32 BaseAddress)
00089 * Xuint32 XPlb2Opb_mGetLockBitReg(Xuint32 BaseAddress)
00090 * Xuint32 XPlb2Opb_mGetErrorAddressReg(Xuint32 BaseAddress)
00091 * Xuint32 XPlb2Opb_mGetByteEnableReg(Xuint32 BaseAddress)
00092 *
00093 * void XPlb2Opb_mSetControlReg(Xuint32 BaseAddress, Xuint32 Mask)

00094 * Xuint32 XPlb2Opb_mGetControlReg(Xuint32 BaseAddress)
00095 *
00096 **/
00097
00098 /**/
00099 /**
00100 *
00101 * Get the error detect register.
00102 *
00103 * @param BaseAddress is the base address of the device
00104 *
00105 * @return The 32-bit value of the error detect register.
00106 *
00107 * @note None.
00108 *
00109 ***/
00110 #define XPlb2Opb_mGetErrorDetectReg(BaseAddress) \

00111 XPlb2Opb_In32((BaseAddress) + XP2O_BESR_MERR_OFFSET)
00112
00113
00114 /**/
00115 /**
00116 *
00117 * Set the error detect register.
00118 *
00119 * @param BaseAddress is the base address of the device
00120 * @param Mask is the 32-bit value to write to the error detect register.
00121 *
00122 * @note None.
00123 *
00124 ***/
00125 #define XPlb2Opb_mSetErrorDetectReg(BaseAddress, Mask) \

00126 XPlb2Opb_Out32((BaseAddress) + XP2O_BESR_MERR_OFFSET,
(Mask))
00127
00128
00129 /**/
00130 /**
00131 *
00132 * Get the master driving the error, if any.
00133 *
00134 * @param BaseAddress is the base address of the device
00135 *
00136 * @return The 32-bit value of the BESR Master driving error register.
00137 *
00138 * @note None.
00139 *
00140 ***/
00141 #define XPlb2Opb_mGetMasterDrivingReg(BaseAddress) \

00142 XPlb2Opb_In32((BaseAddress) + XP2O_BESR_MDRIVE_OFFSET)
00143
00144

00145 /**/
00146 /**
00147 *
00148 * Get the value of the Read-Not-Write register, which indicates whether the
00149 * error is a read error or write error.
00150 *
00151 * @param BaseAddress is the base address of the device
00152 *
00153 * @return The 32-bit value of the BESR RNW error register.
00154 *
00155 * @note None.
00156 *
00157 ***/
00158 #define XPlb2Opb_mGetReadWriteReg(BaseAddress) \

00159 XPlb2Opb_In32((BaseAddress) + XP2O_BESR_READ_OFFSET)
00160
00161
00162 /**/
00163 /**
00164 *
00165 * Get the value of the error type register, which indicates whether the error
00166 * is a timeout or a bus error.
00167 *
00168 * @param BaseAddress is the base address of the device
00169 *
00170 * @return The 32-bit value of the BESR Lock error register.
00171 *
00172 * @note None.
00173 *
00174 ***/
00175 #define XPlb2Opb_mGetErrorTypeReg(BaseAddress) \

00176 XPlb2Opb_In32((BaseAddress) + XP2O_BESR_ERR_TYPE_OFFSET)
00177
00178
00179 /**/
00180 /**
00181 *
00182 * Get the value of the lock bit register, which indicates whether the master
00183 * has locked the error registers.
00184 *
00185 * @param BaseAddress is the base address of the device
00186 *
00187 * @return The 32-bit value of the BESR Lock error register.
00188 *
00189 * @note None.
00190 *
00191 ***/
00192 #define XPlb2Opb_mGetLockBitReg(BaseAddress) \

00193 XPlb2Opb_In32((BaseAddress) + XP2O_BESR_LCK_ERR_OFFSET)
00194
00195
00196 /**/

00197 /**
00198 *
00199 * Get the erorr address (or BEAR), which is the address that just caused the
00200 * error.
00201 *
00202 * @param BaseAddress is the base address of the device
00203 *
00204 * @return The 32-bit error address.
00205 *
00206 * @note None.
00207 *
00208 ***/
00209 #define XPlb2Opb_mGetErrorAddressReg(BaseAddress) \

00210 XPlb2Opb_In32((BaseAddress) + XP2O_BEAR_ADDR_OFFSET)
00211
00212
00213 /**/
00214 /**
00215 *
00216 * Get the erorr address byte enable register.
00217 *
00218 * @param BaseAddress is the base address of the device
00219 *
00220 * @return The 32-bit error address byte enable register contents.
00221 *
00222 * @note None.
00223 *
00224 ***/
00225 #define XPlb2Opb_mGetByteEnableReg(BaseAddress) \

00226 XPlb2Opb_In32((BaseAddress) + XP2O_BEAR_BYTE_EN_OFFSET)
00227
00228
00229 /**/
00230 /**
00231 *
00232 * Set the control register to the given value.
00233 *
00234 * @param BaseAddress is the base address of the device
00235 * @param Mask is the value to write to the control register.
00236 *
00237 * @return None.
00238 *
00239 * @note None.
00240 *
00241 ***/
00242 #define XPlb2Opb_mSetControlReg(BaseAddress, Mask) \

00243 XPlb2Opb_Out32((BaseAddress) + XP2O_BCR_OFFSET, (Mask))
00244
00245
00246 /**/
00247 /**
00248 *

00249 * Get the contents of the control register.
00250 *
00251 * @param BaseAddress is the base address of the device
00252 *
00253 * @return The 32-bit value of the control register.
00254 *
00255 * @note None.
00256 *
00257 ***/
00258 #define XPlb2Opb_mGetControlReg(BaseAddress) \

00259 XPlb2Opb_In32((BaseAddress) + XP2O_BCR_OFFSET)
00260
00261
00262 /************************** Function Prototypes ******************************/
00263
00264 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XPlb2Opb_Config Struct Reference
#include <xplb2opb.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint8 NumMasters

Field Documentation

Xuint32 XPlb2Opb_Config::BaseAddress

 Base address of device

Xuint16 XPlb2Opb_Config::DeviceId

 Unique ID of device

Xuint8 XPlb2Opb_Config::NumMasters

 Number of masters on the bus

The documentation for this struct was generated from the following file:

● plb2opb/v1_00_a/src/xplb2opb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb.c File
Reference

Detailed Description

Contains required functions for the XPlb2Opb component. See xplb2opb.h for more information about
the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 12/7/01 First release
 1.00a rpm 05/14/02 Made configuration typedef/lookup public

#include "xstatus.h"

#include "xparameters.h"

#include "xplb2opb.h"

#include "xplb2opb_i.h"

#include "xio.h"

#include "xio_dcr.h"

Functions

XStatus XPlb2Opb_Initialize (XPlb2Opb *InstancePtr, Xuint16 DeviceId)
Xboolean XPlb2Opb_IsError (XPlb2Opb *InstancePtr)

void XPlb2Opb_ClearErrors (XPlb2Opb *InstancePtr, Xuint8 Master)

Xuint32 XPlb2Opb_GetErrorStatus (XPlb2Opb *InstancePtr, Xuint8 Master)
Xuint32 XPlb2Opb_GetErrorAddress (XPlb2Opb *InstancePtr)
Xuint32 XPlb2Opb_GetErrorByteEnables (XPlb2Opb *InstancePtr)
Xuint8 XPlb2Opb_GetMasterDrivingError (XPlb2Opb *InstancePtr)
Xuint8 XPlb2Opb_GetNumMasters (XPlb2Opb *InstancePtr)

void XPlb2Opb_EnableInterrupt (XPlb2Opb *InstancePtr)
void XPlb2Opb_DisableInterrupt (XPlb2Opb *InstancePtr)
void XPlb2Opb_Reset (XPlb2Opb *InstancePtr)

XPlb2Opb_Config * XPlb2Opb_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XPlb2Opb_ClearErrors (XPlb2Opb * InstancePtr,
Xuint8 Master

)

Clears any outstanding errors for the given master.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of
masters on the bus

Returns:
None.

Note:
None.

void XPlb2Opb_DisableInterrupt (XPlb2Opb * InstancePtr)

Disables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled
by the driver directly. It is the application's responsibility to attach to the appropriate interrupt
with a handler which then calls functions provided by this driver to determine the cause of the
error and take the necessary actions to correct the situation.

void XPlb2Opb_EnableInterrupt (XPlb2Opb * InstancePtr)

Enables the interrupt output from the bridge

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
None.

Note:
The bridge hardware generates interrupts in error conditions. These interrupts are not handled
by the driver directly. It is the application's responsibility to attach to the appropriate interrupt
with a handler which then calls functions provided by this driver to determine the cause of the
error and take the necessary actions to correct the situation.

Xuint32 XPlb2Opb_GetErrorAddress (XPlb2Opb * InstancePtr)

Returns the OPB Address where the most recent error occurred If there isn't an outstanding error, the
last address in error is returned. 0x00000000 is the initial value coming out of reset.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
Address where error causing access occurred

Note:
Calling XPlb2Opb_IsError() is recommended to confirm that an error has occurred prior to
calling XPlb2Opb_GetErrorAddress() to ensure that the data in the error address register is
relevant.

Xuint32 XPlb2Opb_GetErrorByteEnables (XPlb2Opb * InstancePtr)

Returns the byte-enables asserted during the access causing the error. The enables are parameters in
the hardware making the return value dynamic. An example of a 32-bit bus with all 4 byte enables
available, XPlb2Opb_GetErrorByteEnables will have the value 0xF0000000 returned from a 32-bit
access error.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
The byte-enables asserted during the error causing access.

Note:
None.

Xuint32 XPlb2Opb_GetErrorStatus (XPlb2Opb * InstancePtr,
Xuint8 Master

)

Returns the error status for the specified master.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of
masters on the bus

Returns:
The current error status for the requested master on the PLB. The status is a bit-mask and the
values are described in xplb2opb.h.

Note:
None.

Xuint8 XPlb2Opb_GetMasterDrivingError (XPlb2Opb * InstancePtr)

Returns the ID of the master which is driving the error condition

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
The ID of the master that is driving the error

Note:
None.

Xuint8 XPlb2Opb_GetNumMasters (XPlb2Opb * InstancePtr)

Returns the number of masters associated with the provided instance

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
The number of masters. This is a number from 1 to the maximum of 32.

Note:
The value returned from this call needs to be adjusted if it is to be used as the argument for
other calls since the masters are numbered from 0 and this function returns values starting at 1.

XStatus XPlb2Opb_Initialize (XPlb2Opb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XPlb2Opb instance. Looks for configuration data for the specified device, then
initializes instance data.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

DeviceId is the unique id of the device controlled by this XPlb2Opb component. Passing
in a device id associates the generic XPlb2Opb component to a specific device,
as chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the requested device is not found

Note:
None.

Xboolean XPlb2Opb_IsError (XPlb2Opb * InstancePtr)

Returns XTRUE is there is an error outstanding

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
Boolean XTRUE if there is an error, XFALSE if there is no current error.

Note:
None.

XPlb2Opb_Config* XPlb2Opb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table PlbOpbConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to look for

Returns:
A pointer to the configuration data for the given device, or XNULL if no match is found.

Note:
None.

void XPlb2Opb_Reset (XPlb2Opb * InstancePtr)

Forces a software-induced reset to occur in the bridge. Disables interrupts in the process.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

Returns:
None.

Note:
Disables interrupts in the process.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb_i.h
Go to the documentation of this file.

00001 /* $Id: xplb2opb_i.h,v 1.1 2002/06/26 15:36:52 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file plb2opb/v1_00_a/src/xplb2opb_i.h
00026 *
00027 * This file contains data which is shared between files and internal to the
00028 * XPlb2Opb component. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ecm 02/28/02 First release
00036 * 1.00a rpm 05/14/02 Moved identifiers to xplb2opb_l.h
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XPLB2OPB_I_H /* prevent circular inclusions */
00042 #define XPLB2OPB_I_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045 #include "xplb2opb_l.h"

00046
00047 /************************** Constant Definitions *****************************/
00048
00049 /**************************** Type Definitions *******************************/
00050
00051 /***************** Macros (Inline Functions) Definitions *********************/
00052
00053 /************************** Function Prototypes ******************************/
00054
00055 /******************************* Variables ***********************************/
00056
00057 extern XPlb2Opb_Config XPlb2Opb_ConfigTable[];

00058
00059 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb_i.h File
Reference

Detailed Description

This file contains data which is shared between files and internal to the XPlb2Opb component. It is
intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 02/28/02 First release
 1.00a rpm 05/14/02 Moved identifiers to xplb2opb_l.h

#include "xplb2opb_l.h"

Go to the source code of this file.

Variables

XPlb2Opb_Config XPlb2Opb_ConfigTable []

Variable Documentation

XPlb2Opb_Config XPlb2Opb_ConfigTable[] ()

The PLB-to-OPB bridge configuration table, sized by the number of instances defined in
xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb_selftest.c
File Reference

Detailed Description

Contains diagnostic self-test functions for the XPlb2Opb component. See xplb2opb.h for more
information about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 12/7/01 First release

#include "xstatus.h"

#include "xplb2opb.h"

#include "xplb2opb_i.h"

#include "xio.h"

#include "xio_dcr.h"

Functions

XStatus XPlb2Opb_SelfTest (XPlb2Opb *InstancePtr, Xuint32 TestAddress)

Function Documentation

XStatus XPlb2Opb_SelfTest (XPlb2Opb * InstancePtr,
Xuint32 TestAddress

)

Runs a self-test on the driver/device.

This tests reads the BCR to verify that the proper value is there.

XST_SUCCESS is returned if expected value is there, XST_PLB2OPB_FAIL_SELFTEST is
returned otherwise.

Parameters:
InstancePtr is a pointer to the XPlb2Opb instance to be worked on.

TestAddress is a location that could cause an error on read, not used - user definable for hw
specific implementations.

Returns:
XST_SUCCESS if successful, or XST_PLB2OPB_FAIL_SELFTEST if the driver fails self-
test.

Note:
This test assumes that the bus error interrupts are not enabled.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plb2opb/v1_00_a/src/xplb2opb_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of PLB-to-OPB bridge devices in
the system. Each bridge device should have an entry in this table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 11/16/01 First release
 1.00a rpm 05/14/02 Made configuration typedef/lookup public

#include "xplb2opb.h"

#include "xparameters.h"

Variables

XPlb2Opb_Config XPlb2Opb_ConfigTable [XPAR_XPLB2OPB_NUM_INSTANCES]

Variable Documentation

XPlb2Opb_Config XPlb2Opb_ConfigTable[XPAR_XPLB2OPB_NUM_INSTANCES]

The PLB-to-OPB bridge configuration table, sized by the number of instances defined in
xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_intr.c File
Reference

Detailed Description

Implements PCI interrupt processing functions for the XPci component. See xpci.h for more information
about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/25/02 Original code

#include "xpci.h"

Functions

void XPci_InterruptGlobalEnable (XPci *InstancePtr)
void XPci_InterruptGlobalDisable (XPci *InstancePtr)
void XPci_InterruptEnable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptDisable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptClear (XPci *InstancePtr, Xuint32 Mask)

Xuint32 XPci_InterruptGetEnabled (XPci *InstancePtr)
Xuint32 XPci_InterruptGetStatus (XPci *InstancePtr)
Xuint32 XPci_InterruptGetPending (XPci *InstancePtr)
Xuint32 XPci_InterruptGetHighestPending (XPci *InstancePtr)

void XPci_InterruptPciEnable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptPciDisable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptPciClear (XPci *InstancePtr, Xuint32 Mask)

Xuint32 XPci_InterruptPciGetEnabled (XPci *InstancePtr)
Xuint32 XPci_InterruptPciGetStatus (XPci *InstancePtr)

void XPci_AckSend (XPci *InstancePtr, Xuint32 Vector)
Xuint32 XPci_AckRead (XPci *InstancePtr)

void XPci_SpecialCycle (XPci *InstancePtr, Xuint32 Data)

Function Documentation

Xuint32 XPci_AckRead (XPci * InstancePtr)

Read the contents of the PCI interrupt acknowledge vector register.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
System dependent interrupt vector.

Note:
None

void XPci_AckSend (XPci * InstancePtr,
Xuint32 Vector

)

Generate a PCI interrupt acknowledge bus cycle with the given vector.

Parameters:
InstancePtr is the PCI component to operate on.
Vector is a system dependent interrupt vector to place on the bus.

Note:
None

void XPci_InterruptClear (XPci * InstancePtr,
Xuint32 Mask

)

Clear device level pending interrupts with the provided mask.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to clear pending interrupts for. Bit positions of 1 are cleared. This

mask is formed by OR'ing bits from XPCI_IPIF_INT_MASK

Note:
None

void XPci_InterruptDisable (XPci * InstancePtr,
Xuint32 Mask

)

Disable device interrupts. Any component interrupts enabled through XPci_InterruptPciEnable()
and/or the DMA driver will no longer have any effect. The component interrupt settings will be
retained however.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to disable. Bits set to 1 are disabled. The mask is formed by OR'ing

bits from XPCI_IPIF_INT_MASK

Note:
None

void XPci_InterruptEnable (XPci * InstancePtr,
Xuint32 Mask

)

Enable device interrupts. Device interrupts must be enabled by this function before component
interrupts enabled by XPci_InterruptPciEnable() and/or the DMA driver have any effect.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to enable. Bit positions of 1 are enabled. The mask is formed by

OR'ing bits from XPCI_IPIF_INT_MASK.

Note:
None

Xuint32 XPci_InterruptGetEnabled (XPci * InstancePtr)

Returns the device level interrupt enable mask as set by XPci_InterruptEnable().

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of bits made from XPCI_IPIF_INT_MASK.

Note:
None

Xuint32 XPci_InterruptGetHighestPending (XPci * InstancePtr)

Returns the highest priority pending device interrupt that has been enabled by
XPci_InterruptEnable().

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask is one set bit made from XPCI_IPIF_INT_MASK or zero if no interrupts are pending.

Note:
None

Xuint32 XPci_InterruptGetPending (XPci * InstancePtr)

Returns the pending status of device level interrupt signals that have been enabled by
XPci_InterruptEnable(). Any bit in the mask set to 1 indicates that an interrupt is pending from the
given component

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of bits made from XPCI_IPIF_INT_MASK or zero if no interrupts are pending.

Note:
None

Xuint32 XPci_InterruptGetStatus (XPci * InstancePtr)

Returns the status of device level interrupt signals. Any bit in the mask set to 1 indicates that the
given component has asserted an interrupt condition.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of bits made from XPCI_IPIF_INT_MASK.

Note:
The interrupt status indicates the status of the device irregardless if the interrupts from the
devices have been enabled or not through XPci_InterruptEnable().

void XPci_InterruptGlobalDisable (XPci * InstancePtr)

Disable the core's interrupt output signal. Interrupts enabled through XPci_InterruptEnable() and
XPci_InterruptPciEnable() will no longer be passed through until the IPIF global enable bit is set
by XPci_InterruptGlobalEnable().

Parameters:
InstancePtr is the PCI component to operate on.

Note:
None

void XPci_InterruptGlobalEnable (XPci * InstancePtr)

Enable the core's interrupt output signal. Interrupts enabled through XPci_InterruptEnable() and
XPci_InterruptPciEnable() will not be passed through until the IPIF global enable bit is set by this
function.

Parameters:
InstancePtr is the PCI component to operate on.

Note:
None

void XPci_InterruptPciClear (XPci * InstancePtr,
Xuint32 Mask

)

Clear PCI bridge specific interrupt status bits with the provided mask.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to clear pending interrupts for. Bit positions of 1 are cleared. This

mask is formed by OR'ing bits from XPCI_IR_MASK

Note:
None

void XPci_InterruptPciDisable (XPci * InstancePtr,
Xuint32 Mask

)

Disable PCI bridge specific interrupts.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to disable. Bits set to 1 are disabled. The mask is formed by OR'ing

bits from XPCI_IR_MASK

Note:
None

void XPci_InterruptPciEnable (XPci * InstancePtr,
Xuint32 Mask

)

Enable PCI bridge specific interrupts. Before this function has any effect in generating interrupts, the
function XPci_InterruptEnable() must be invoked with the XPCI_IPIF_INT_PCI bit set.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to enable. Bit positions of 1 are enabled. The mask is formed by

OR'ing bits from XPCI_IR_MASK.

Note:
None

Xuint32 XPci_InterruptPciGetEnabled (XPci * InstancePtr)

Get the PCI bridge specific interrupts enabled through XPci_InterruptPciEnable(). Bits set to 1
mean that interrupt source is enabled.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of enabled bits made from XPCI_IR_MASK.

Note:
None

Xuint32 XPci_InterruptPciGetStatus (XPci * InstancePtr)

Get the status of PCI bridge specific interrupts that have been asserted Bits set to 1 are in an asserted
state. Bits may be set to 1 irregardless of whether they have been enabled or not though
XPci_InterruptPciEnable(). To get the pending interrupts, AND the results of this function with
XPci_InterruptPciGetEnabled().

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of enabled bits made from XPCI_IR_MASK.

Note:
None

void XPci_SpecialCycle (XPci * InstancePtr,
Xuint32 Data

)

Broadcasts a message to all listening PCI targets.

Parameters:
InstancePtr is the PCI component to operate on.
Data is the data to broadcast.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XPci Struct Reference
#include <xpci.h>

Detailed Description

The XPci driver instance data. The user is required to allocate a variable of this type for every PCI device
in the system that will be using this API. A pointer to a variable of this type is passed to the driver API
functions defined here.

Data Fields

Xuint32 RegBaseAddr
Xuint32 DmaRegBaseAddr
Xuint32 IsReady
Xuint8 DmaType

Field Documentation

Xuint32 XPci::DmaRegBaseAddr

 Base address of DMA (if included)

Xuint8 XPci::DmaType

 Type of DMA (if enabled), see XPCI_DMA_TYPE constants in xpci_l.h

Xuint32 XPci::IsReady

 Device is initialized and ready

Xuint32 XPci::RegBaseAddr

 Base address of registers

The documentation for this struct was generated from the following file:

● pci/v1_00_a/src/xpci.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci.h
Go to the documentation of this file.

00001 /* $Id: xpci.h,v 1.3 2003/05/07 22:15:57 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file pci/v1_00_a/src/xpci.h
00026 *
00027 * This file contains the software API definition of the Xilinx PCI bridge
00028 * (XPci) component. This component bridges between local bus IPIF and the
00029 * Xilinx LogiCORE PCI64 Interface v3.0 core. It provides full bridge
00030 * functionality between the local bus a 32 bit V2.2 compliant PCI
00031 * bus.
00032 *
00033 * Features
00034 *
00035 * This driver allows the user to access the device's registers to perform PCI
00036 * configuration read and write access, error detection and processing, and
00037 * interrupt management.
00038 *
00039 * The Xilinx PCI bridge controller is a soft IP core designed for
00040 * Xilinx FPGAs and contains the following features:
00041 * - Supports 32 bit OPB local bus
00042 * - PCI V2.2 Complient

00043 * - Robust error reporting and diagnostics
00044 * - DMA capable
00045 *
00046 * Interrupt Management
00047 *
00048 * The XPci component driver provides interrupt management functions.
00049 * Implementation of callback handlers is left to the user. Refer to the
provided
00050 * PCI code fragments in the examples directory.
00051 *
00052 * The PCI bridge IP core uses the IPIF to manage interrupts from devices within
00053 * it. Devices in this core include the PCI bridge itself and an optional DMA
00054 * engine. To manage interrupts from these devices, a three layer approach is
00055 * utilized and is modeled on the IPIF.
00056 *
00057 * Device specific interrupt control is at the lowest layer. This is where
00058 * individual sources are managed. For example, PCI Master Abort or DMA complete
00059 * interrupts are enabled/disabled/cleared here. The XPci function API that
00060 * manages this layer is identified as XPci_InterruptPci<operation>(). DMA
00061 * interrupts at this layer are managed by the XDma_Channel software component.
00062 *
00063 * The middle layer is utilized to manage interrupts at a device level. For
00064 * example, enabling PCI interrupts at this layer allows any PCI device specific
00065 * interrupt enabled at the lowest layer to be passed up to the highest layer.
00066 * The XPCI function API that manages this layer is identified as
00067 * XPci_Interrupt<operation>().
00068 *
00069 * The middle layer serves little purpose when there is no DMA engine and can
00070 * largely be ignored. During initialization, use XPci_InterruptEnable(...,
00071 * XPCI_IPIF_INT_PCI) to allow all PCI interrupts enabled at the lowest layer
00072 * to pass through. After this operation, the middle layer can be forgotten.
00073 *
00074 * The highest layer is simply a global interrupt enable/disable switch that
00075 * allows all or none of the enabled interrupts to be passed on to an interrupt
00076 * controller. The XPci function API that manages this level is identified as
00077 * XPci_InterruptGlobal<operation>().
00078 *
00079 * DMA
00080 *
00081 * The PCI bridge can include a DMA engine in HW. The XPci software driver can
00082 * be used to query which type of DMA engine has been implemented and manage
00083 * interrupts. The application is required to initialize an XDma_Channel
00084 * component driver and provide an interrupt service routine to service DMA
00085 * exceptions. Example DMA management code is provided in the examples
directory.
00086 *
00087 * @note
00088 * This driver is intended to be used to bridge across multiple types of
00089 * buses (PLB or OPB). While the register set will remain the same for all
buses,
00090 * their bit definitions may change slightly from bus to bus. The differences
00091 * that arise out of this are clearly documented in this file.
00092 *

00093 * <pre>
00094 * MODIFICATION HISTORY:
00095 *
00096 * Ver Who Date Changes
00097 * ----- ---- -------- ---
00098 * 1.00a rmm 04/15/03 First release
00099 * </pre>
00100 *
00101 ***/
00102 #ifndef XPCI_H /* prevent circular inclusions */
00103 #define XPCI_H /* by using protection macros */
00104
00105 /***************************** Include Files ********************************/
00106 #include "xbasic_types.h"

00107 #include "xstatus.h"

00108 #include "xpci_l.h"

00109
00110 /************************** Constant Definitions ****************************/
00111
00112
00113 /*
00114 * XPCI_CLEAR_ALL_ERRORS is for use with XPci_ErrorClear()
00115 */
00116 #define XPCI_CLEAR_ALL_ERRORS ((XPciError*)3)
00117
00118
00119 /**************************** Type Definitions ******************************/
00120
00121 /*
00122 * This typedef contains configuration information for the device.
00123 */
00124 typedef struct
00125 {
00126 Xuint16 DeviceId; /**< Unique ID of device */

00127 Xuint32 RegBaseAddr; /**< Register base address */

00128 Xuint32 DmaBaseAddr; /**< DMA register base address */

00129 Xuint32 CfgBar0; /**< PCI BAR 0 */

00130 Xuint32 CfgBar1; /**< PCI BAR 1 */

00131 Xuint32 CfgBar2; /**< PCI BAR 2 */

00132 Xuint8 CfgPrefetch0; /**< prefetchable setting for PCI BAR 0 */

00133 Xuint8 CfgPrefetch1; /**< prefetchable setting for PCI BAR 1 */

00134 Xuint8 CfgPrefetch2; /**< prefetchable setting for PCI BAR 2 */

00135 Xuint8 CfgSpace0; /**< IO or memory space for PCI BAR 0 */

00136 Xuint8 CfgSpace1; /**< IO or memory space for PCI BAR 1 */

00137 Xuint8 CfgSpace2; /**< IO or memory space for PCI BAR 2 */

00138 Xuint8 DmaType; /**< DMA type */

00139 } XPci_Config;
00140
00141 /**
00142 * The XPci driver instance data. The user is required to allocate a

00143 * variable of this type for every PCI device in the system that will be
00144 * using this API. A pointer to a variable of this type is passed to the driver
00145 * API functions defined here.
00146 */
00147 typedef struct

00148 {
00149 Xuint32 RegBaseAddr; /**< Base address of registers */

00150 Xuint32 DmaRegBaseAddr;/**< Base address of DMA (if included) */

00151 Xuint32 IsReady; /**< Device is initialized and ready */

00152 Xuint8 DmaType; /**< Type of DMA (if enabled), see XPCI_DMA_TYPE

00153 constants in xpci_l.h */
00154 } XPci;

00155
00156 /**
00157 * XPciError is used to retrieve a snapshot of the bridge's error state.
00158 * Most of the attributes of this structure are copies of various bridge
00159 * registers. See XPci_ErrorGet() and XPci_ErrorClear().
00160 */
00161 typedef struct

00162 {
00163 Xboolean IsError; /**< Global error indicator */

00164 Xuint32 LocalBusReason; /**< Local bus master address definition */

00165 Xuint32 PciReason; /**< PCI address definition */

00166 Xuint32 PciSerrReason; /**< PCI System error definiton */

00167 Xuint32 LocalBusReadAddr; /**< Local bus master read error address */

00168 Xuint32 LocalBusWriteAddr; /**< Local bus master write error address */

00169 Xuint32 PciReadAddr; /**< PCI read error address */

00170 Xuint32 PciWriteAddr; /**< PCI write error address */

00171 Xuint32 PciSerrReadAddr; /**< PCI initiater read SERR address */

00172 Xuint32 PciSerrWriteAddr; /**< PCI initiater write SERR address */

00173 } XPciError;

00174
00175 /***************** Macros (Inline Functions) Definitions ********************/
00176
00177
00178 /************************** Function Prototypes *****************************/
00179
00180 /*
00181 * Initialization & raw PCI configuration functions.
00182 * This API is implemented in xpci.c
00183 */
00184 XStatus XPci_Initialize(XPci *InstancePtr, Xuint16 DeviceId, int BusNo,

00185 int SubBusNo);
00186 void XPci_Reset(XPci *InstancePtr);

00187 Xuint32 XPci_ConfigPack(unsigned Bus, unsigned Device, unsigned Function);

00188 Xuint32 XPci_ConfigIn(XPci *InstancePtr, Xuint32 ConfigAddress, Xuint8 Offset);

00189 void XPci_ConfigOut(XPci *InstancePtr, Xuint32 ConfigAddress, Xuint8 Offset,

00190 Xuint32 ConfigData);

00191 void XPci_ErrorGet(XPci *InstancePtr, XPciError *ErrorDataPtr);

00192 void XPci_ErrorClear(XPci *InstancePtr, XPciError *ErrorDataPtr);

00193 void XPci_InhibitAfterError(XPci *InstancePtr, Xuint32 Mask);

00194 void XPci_SetBusNumber(XPci *InstancePtr, int BusNo, int SubBusNo);

00195 void XPci_GetBusNumber(XPci *InstancePtr, int *BusNoPtr, int *SubBusNoPtr);

00196 void XPci_GetDmaImplementation(XPci *InstancePtr, Xuint32 *BaseAddr,

00197 Xuint8 *DmaType);

00198 XPci_Config *XPci_LookupConfig(Xuint16 DeviceId);

00199
00200 /*
00201 * PCI bus configuration functions.
00202 * This API is implemented in xpci_config.c
00203 */
00204 XStatus XPci_ConfigIn8(XPci *InstancePtr, unsigned Bus, unsigned Device,

00205 unsigned Func, unsigned Offset, Xuint8 *Data);

00206 XStatus XPci_ConfigIn16(XPci *InstancePtr, unsigned Bus, unsigned Device,

00207 unsigned Func, unsigned Offset, Xuint16 *Data);

00208 XStatus XPci_ConfigIn32(XPci *InstancePtr, unsigned Bus, unsigned Device,

00209 unsigned Func, unsigned Offset, Xuint32 *Data);

00210
00211 XStatus XPci_ConfigOut8(XPci *InstancePtr, unsigned Bus, unsigned Device,

00212 unsigned Func, unsigned Offset, Xuint8 Data);

00213 XStatus XPci_ConfigOut16(XPci *InstancePtr, unsigned Bus, unsigned Device,

00214 unsigned Func, unsigned Offset, Xuint16 Data);

00215 XStatus XPci_ConfigOut32(XPci *InstancePtr, unsigned Bus, unsigned Device,

00216 unsigned Func, unsigned Offset, Xuint32 Data);

00217
00218 /*
00219 * Interrupt processing and special cycle functions
00220 * This API is implemented in xpci_intr.c
00221 */
00222 void XPci_InterruptGlobalEnable(XPci *InstancePtr);

00223 void XPci_InterruptGlobalDisable(XPci *InstancePtr);

00224
00225 void XPci_InterruptEnable(XPci *InstancePtr, Xuint32 Mask);

00226 void XPci_InterruptDisable(XPci *InstancePtr, Xuint32 Mask);

00227 void XPci_InterruptClear(XPci *InstancePtr, Xuint32 Mask);

00228 Xuint32 XPci_InterruptGetEnabled(XPci *InstancePtr);

00229 Xuint32 XPci_InterruptGetStatus(XPci *InstancePtr);

00230 Xuint32 XPci_InterruptGetPending(XPci *InstancePtr);

00231 Xuint32 XPci_InterruptGetHighestPending(XPci *InstancePtr);

00232
00233 void XPci_InterruptPciEnable(XPci *InstancePtr, Xuint32 Mask);

00234 void XPci_InterruptPciDisable(XPci *InstancePtr, Xuint32 Mask);

00235 void XPci_InterruptPciClear(XPci *InstancePtr, Xuint32 Mask);

00236 Xuint32 XPci_InterruptPciGetEnabled(XPci *InstancePtr);

00237 Xuint32 XPci_InterruptPciGetStatus(XPci *InstancePtr);

00238
00239 void XPci_AckSend(XPci *InstancePtr, Xuint32 Vector);

00240 Xuint32 XPci_AckRead(XPci *InstancePtr);

00241 void XPci_SpecialCycle(XPci *InstancePtr, Xuint32 Data);

00242
00243 /*
00244 * V3 core access functions
00245 * This API implementedin xpci_v3.c
00246 */
00247 Xuint32 XPci_V3StatusCommandGet(XPci *InstancePtr);

00248 Xuint32 XPci_V3TransactionStatusGet(XPci *InstancePtr);

00249 void XPci_V3TransactionStatusClear(XPci *InstancePtr, Xuint32 Data);

00250
00251 /*
00252 * Selftest
00253 * This API is implemented in xpci_selftest.c
00254 */
00255 XStatus XPci_SelfTest(XPci *InstancePtr);

00256
00257 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci.h File Reference

Detailed Description

This file contains the software API definition of the Xilinx PCI bridge (XPci) component. This component
bridges between local bus IPIF and the Xilinx LogiCORE PCI64 Interface v3.0 core. It provides full bridge
functionality between the local bus a 32 bit V2.2 compliant PCI bus.

Features

This driver allows the user to access the device's registers to perform PCI configuration read and write access,
error detection and processing, and interrupt management.

The Xilinx PCI bridge controller is a soft IP core designed for Xilinx FPGAs and contains the following
features:

● Supports 32 bit OPB local bus
● PCI V2.2 Complient
● Robust error reporting and diagnostics
● DMA capable

Interrupt Management

The XPci component driver provides interrupt management functions. Implementation of callback handlers is
left to the user. Refer to the provided PCI code fragments in the examples directory.

The PCI bridge IP core uses the IPIF to manage interrupts from devices within it. Devices in this core include
the PCI bridge itself and an optional DMA engine. To manage interrupts from these devices, a three layer
approach is utilized and is modeled on the IPIF.

Device specific interrupt control is at the lowest layer. This is where individual sources are managed. For
example, PCI Master Abort or DMA complete interrupts are enabled/disabled/cleared here. The XPci function
API that manages this layer is identified as XPci_InterruptPci<operation>(). DMA interrupts at this layer are
managed by the XDma_Channel software component.

The middle layer is utilized to manage interrupts at a device level. For example, enabling PCI interrupts at this
layer allows any PCI device specific interrupt enabled at the lowest layer to be passed up to the highest layer.
The XPCI function API that manages this layer is identified as XPci_Interrupt<operation>().

The middle layer serves little purpose when there is no DMA engine and can largely be ignored. During
initialization, use XPci_InterruptEnable(..., XPCI_IPIF_INT_PCI) to allow all PCI interrupts enabled at the
lowest layer to pass through. After this operation, the middle layer can be forgotten.

The highest layer is simply a global interrupt enable/disable switch that allows all or none of the enabled
interrupts to be passed on to an interrupt controller. The XPci function API that manages this level is identified
as XPci_InterruptGlobal<operation>().

DMA

The PCI bridge can include a DMA engine in HW. The XPci software driver can be used to query which type of
DMA engine has been implemented and manage interrupts. The application is required to initialize an
XDma_Channel component driver and provide an interrupt service routine to service DMA exceptions.
Example DMA management code is provided in the examples directory.

Note:
This driver is intended to be used to bridge across multiple types of buses (PLB or OPB). While the
register set will remain the same for all buses, their bit definitions may change slightly from bus to bus.
The differences that arise out of this are clearly documented in this file.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 04/15/03 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xpci_l.h"

Go to the source code of this file.

Data Structures

struct XPci
struct XPci_Config

struct XPciError

Functions

XStatus XPci_Initialize (XPci *InstancePtr, Xuint16 DeviceId, int BusNo, int SubBusNo)
void XPci_Reset (XPci *InstancePtr)

Xuint32 XPci_ConfigPack (unsigned Bus, unsigned Device, unsigned Function)
Xuint32 XPci_ConfigIn (XPci *InstancePtr, Xuint32 ConfigAddress, Xuint8 Offset)

void XPci_ConfigOut (XPci *InstancePtr, Xuint32 ConfigAddress, Xuint8 Offset, Xuint32
ConfigData)

void XPci_ErrorGet (XPci *InstancePtr, XPciError *ErrorDataPtr)
void XPci_ErrorClear (XPci *InstancePtr, XPciError *ErrorDataPtr)
void XPci_InhibitAfterError (XPci *InstancePtr, Xuint32 Mask)
void XPci_SetBusNumber (XPci *InstancePtr, int BusNo, int SubBusNo)
void XPci_GetBusNumber (XPci *InstancePtr, int *BusNoPtr, int *SubBusNoPtr)
void XPci_GetDmaImplementation (XPci *InstancePtr, Xuint32 *BaseAddr, Xuint8 *DmaType)

XPci_Config * XPci_LookupConfig (Xuint16 DeviceId)
XStatus XPci_ConfigIn8 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func, unsigned

Offset, Xuint8 *Data)
XStatus XPci_ConfigIn16 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,

unsigned Offset, Xuint16 *Data)
XStatus XPci_ConfigIn32 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,

unsigned Offset, Xuint32 *Data)
XStatus XPci_ConfigOut8 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,

unsigned Offset, Xuint8 Data)
XStatus XPci_ConfigOut16 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,

unsigned Offset, Xuint16 Data)
XStatus XPci_ConfigOut32 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,

unsigned Offset, Xuint32 Data)
void XPci_InterruptGlobalEnable (XPci *InstancePtr)
void XPci_InterruptGlobalDisable (XPci *InstancePtr)
void XPci_InterruptEnable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptDisable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptClear (XPci *InstancePtr, Xuint32 Mask)

Xuint32 XPci_InterruptGetEnabled (XPci *InstancePtr)
Xuint32 XPci_InterruptGetStatus (XPci *InstancePtr)
Xuint32 XPci_InterruptGetPending (XPci *InstancePtr)
Xuint32 XPci_InterruptGetHighestPending (XPci *InstancePtr)

void XPci_InterruptPciEnable (XPci *InstancePtr, Xuint32 Mask)
void XPci_InterruptPciDisable (XPci *InstancePtr, Xuint32 Mask)

void XPci_InterruptPciClear (XPci *InstancePtr, Xuint32 Mask)
Xuint32 XPci_InterruptPciGetEnabled (XPci *InstancePtr)
Xuint32 XPci_InterruptPciGetStatus (XPci *InstancePtr)

void XPci_AckSend (XPci *InstancePtr, Xuint32 Vector)
Xuint32 XPci_AckRead (XPci *InstancePtr)

void XPci_SpecialCycle (XPci *InstancePtr, Xuint32 Data)
Xuint32 XPci_V3StatusCommandGet (XPci *InstancePtr)
Xuint32 XPci_V3TransactionStatusGet (XPci *InstancePtr)

void XPci_V3TransactionStatusClear (XPci *InstancePtr, Xuint32 Data)
XStatus XPci_SelfTest (XPci *InstancePtr)

Function Documentation

Xuint32 XPci_AckRead (XPci * InstancePtr)

Read the contents of the PCI interrupt acknowledge vector register.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
System dependent interrupt vector.

Note:
None

void XPci_AckSend (XPci * InstancePtr,
Xuint32 Vector

)

Generate a PCI interrupt acknowledge bus cycle with the given vector.

Parameters:
InstancePtr is the PCI component to operate on.
Vector is a system dependent interrupt vector to place on the bus.

Note:
None

Xuint32 XPci_ConfigIn (XPci * InstancePtr,
Xuint32 ConfigAddress,
Xuint8 Offset

)

Perform a 32 bit configuration read transaction.

Parameters:
InstancePtr is the PCI component to operate on.
ConfigAddress contains the address of the PCI device to access. It should be properly formatted for

writing to the PCI configuration access port. (see XPci_ConfigPack())

Offset is the register offset within the PCI device being accessed.

Returns:
32 bit data word from addressed device

Note:
This function performs the same type of operation that XPci_ConfigIn32, does except the user must
format the ConfigAddress

XStatus XPci_ConfigIn16 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint16 * Data

)

Perform a 16 bit read transaction in PCI configuration space. Together, the Bus, Device, Func, & Offset form
the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.
Data is the data read from the target.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid address.

Note:
None

XStatus XPci_ConfigIn32 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint32 * Data

)

Perform a 32 bit read transaction in PCI configuration space. Together, the Bus, Device, Func, & Offset form
the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.
Data is the data read from the target.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid address.

Note:
None

XStatus XPci_ConfigIn8 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint8 * Data

)

Perform a 8 bit read transaction in PCI configuration space. Together, the Bus, Device, Func, & Offset form
the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.
Data is the data read from the target.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XST_PCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid

address.

Note:
None

void XPci_ConfigOut (XPci * InstancePtr,
Xuint32 ConfigAddress,
Xuint8 Offset,
Xuint32 ConfigData

)

Perform a 32 bit configuration write transaction.

Parameters:
InstancePtr is the PCI component to operate on.
ConfigAddress contains the address of the PCI device to access. It should be properly formatted for

writing to the PCI configuration access port. (see XPci_ConfigPack())

Offset is the register offset within the PCI device being accessed.
ConfigData is the data to write to the addressed device.

Note:
This function performs the same type of operation that XPci_ConfigOutWord, does except the user
must format the Car.

XStatus XPci_ConfigOut16 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint16 Data

)

Perform a 16 bit write transaction in PCI configuration space. Together, the Bus, Device, Func, & Offset
form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid address.

Note:
None

XStatus XPci_ConfigOut32 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint32 Data

)

Perform a 32 bit write transaction in PCI configuration space. Together, the Bus, Device, Func, & Offset
form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid address.

Note:
None

XStatus XPci_ConfigOut8 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint8 Data

)

Perform a 8 bit write transaction in PCI configuration space. Together, the Bus, Device, Func, & Offset form
the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid address.

Note:
None

Xuint32 XPci_ConfigPack (unsigned Bus,
unsigned Device,
unsigned Function

)

Pack configuration address data.

Parameters:
Bus is the PCI bus number. Valid range 0..255.
Device is the PCI device number. Valid range 0..31.
Function is the PCI function number. Valid range 0..7.

Returns:
Encoded Bus, Device & Function formatted to be written to PCI configuration address register.

Note:
None

void XPci_ErrorClear (XPci * InstancePtr,
XPciError * ErrorDataPtr

)

Clear errors associated with the PCI bridge. Which errors are cleared depend on the Reason attributes of the
ErrorData parameter. For every bit set, that corresponding error is cleared.

XPci_ErrorGet() and XPci_ErrorClear() are designed to be used in tandem. Use ErrorGet to retrieve the
errors, then ErrorClear to clear the error state.

XPci_ErrorGet(ThisInstance, &Errors) if (Errors->IsError) { // Handle error XPci_ErrorClear(ThisInstance,
&Errors); }

If it is desired to clear some but not all errors, or a specific set of errors, then prepare ErrorData Bitmap
attributes appropriately. If it is desired to clear all errors indiscriminately, then use
XPCI_CLEAR_ALL_ERRORS. This has the advantage of not requiring the caller to explicitly setup an
XPciError structure.

Parameters:
InstancePtr is the PCI component to operate on.
ErrorDataPtr is used to determine which error conditions to clear. Only the Bitmap attributes are

used. Addr attributes of this structure are ignored. If this parameter is set to
XPCI_CLEAR_ALL_ERRORS then all errors are cleared.

Note:
If PciSerrReason attribute is set or XPCI_CLEAR_ALL_ERRORS is passed, then the IPIF interrupt
status register bits associated with SERR are cleared. This has the same effect as acknowledging an
interrupt. If you don't intend on doing this, then clear PciSerrReason before calling XPci_ErrorClear.

void XPci_ErrorGet (XPci * InstancePtr,
XPciError * ErrorDataPtr

)

Get a snapshot of the PCI bridge's error state, summarize and place results in an XPciError structure.
Several bridge registers are read and their contents placed into the structure as follows. Register definitions
and their bitmaps are located in xpci_l.h:

 Attribute Source Register
 ------------------- -----------------
 LocalBusReason XPCI_LMADDR_OFFSET
 PciReason XPCI_PIADDR_OFFSET
 PciSerrReason IPIF IISR
 LocalBusReadAddr XPCI_LMA_R_OFFSET
 LocalBusWriteAddr XPCI_LMA_W_OFFSET
 PciSerrReadAddr XPCI_SERR_R_OFFSET
 PciSerrWriteAddr XPCI_SERR_W_OFFSET
 PciReadAddr XPCI_PIA_R_OFFSET
 PciWriteAddr XPCI_PIA_W_OFFSET

LocalBusReadAddr, LocalBusWriteAddr, PciSerrReadAddr, PciSerrWriteAddr, PCIReadAddr, and
PciWriteAddr are all error addresses whose contents are latched at the time of the error.

LocalBusReason and PciReason are present to allow the caller to precicely determine the source of the error.
The summary below indicates which bits cause the associated error address to become valid and which
interrupt bits from interrupt status register are the cause if the error was reported via an interrupt.

 LocalBusReason:
 Bit Error addr is valid Associated Interrupt bit
 ----------------------- ------------------- ------------------------
 XPCI_LMADDR_SERR_R LocalBusReadAddr XPCI_IR_LM_SERR_R
 XPCI_LMADDR_PERR_R LocalBusReadAddr XPCI_IR_LM_PERR_R
 XPCI_LMADDR_TA_R LocalBusReadAddr XPCI_IR_LM_TA_R
 XPCI_LMADDR_SERR_W LocalBusWriteAddr XPCI_IR_LM_SERR_W
 XPCI_LMADDR_PERR_W LocalBusWriteAddr XPCI_IR_LM_PERR_W
 XPCI_LMADDR_TA_W LocalBusWriteAddr XPCI_IR_LM_TA_W
 XPCI_LMADDR_MA_W LocalBusWriteAddr XPCI_IR_LM_MA_W
 XPCI_LMADDR_BR_W LocalBusWriteAddr XPCI_IR_LM_BR_W

 XPCI_LMADDR_BRD_W LocalBusWriteAddr XPCI_IR_LM_BRD_W
 XPCI_LMADDR_BRT_W LocalBusWriteAddr XPCI_IR_LM_BRT_W
 XPCI_LMADDR_BRANGE_W LocalBusWriteAddr XPCI_IR_LM_BRANGE_W

 PciReason:
 Bit Error addr is valid Associated Interrupt bit
 ----------------------- ------------------- ------------------------
 XPCI_PIADDR_ERRACK_R PciReadAddr N/A
 XPCI_PIADDR_ERRACK_W PciWriteAddr N/A
 XPCI_PIADDR_RETRY_W PciWriteAddr N/A
 XPCI_PIADDR_TIMEOUT_W PciWriteAddr N/A
 XPCI_PIADDR_RANGE_W PciWriteAddr N/A

 PciReasonSerr:
 Bit Error addr is valid Associated Interrupt bit
 ----------------------- ------------------- ------------------------
 XPCI_IR_PI_SERR_R PciSerrReadAddr XPCI_IR_PI_SERR_R
 XPCI_IR_PI_SERR_W PciSerrWriteAddr XPCI_IR_PI_SERR_W

If any of the above mentioned error reason bits are set, then attribute IsError is set to XTRUE. If no errors
are detected, then it is set to XFALSE.

Parameters:
InstancePtr is the PCI component to operate on.
ErrorData is the error snapshot data returned from the PCI bridge.

Note:
None

void XPci_GetBusNumber (XPci * InstancePtr,
int * BusNoPtr,
int * SubBusNoPtr

)

Get the bus number and subordinate bus number of the pci bridge.

Parameters:
InstancePtr is the PCI component to operate on
BusNoPtr is storage to place the bus number
SubBusNoPtr is storage to place the subordinate bus number

Note:
None

void XPci_GetDmaImplementation (XPci * InstancePtr,
Xuint32 * BaseAddr,
Xuint8 * DmaType

)

Get the DMA engine implementation information for this instance.

Parameters:
InstancePtr is the PCI component to operate on.
BaseAddr is a return value indicating the base address of the DMA registers.
DmaType is a return value indicating the type of DMA implemented. The possible types are

XPCI_DMA_TYPE_NONE for no DMA, XPCI_DMA_TYPE_SIMPLE for simple
DMA, and XPCI_DMA_TYPE_SG for scatter-gather DMA.

Note:
None

void XPci_InhibitAfterError (XPci * InstancePtr,
Xuint32 Mask

)

Change how the bridge handles subsequent PCI transactions after errors occur. Transactions can be
prohibited once an error occurs then allowed again once the error is cleared. Or transactions are be allowed
to continue despite an error condition.

Parameters:
InstancePtr is the PCI component to operate on.
Mask defines the type of transactions affected. OR together bits from XPCI_INHIBIT_* to

form the mask. Bits set to 1 will cause transactions to be inhibited when an error exists.
Bits set to 0 will allow transactions to proceed.

Note:
None

XStatus XPci_Initialize (XPci * InstancePtr,
Xuint16 DeviceId,
int BusNo,
int SubBusNo

)

Initialize the XPci instance provided by the caller based on the given DeviceID.

Initialization includes setting up the bar registers in the bridge's PCI header to match the IPIF settings. Not
performing this step will cause the the IPIF to not respond to PCI bus hits.

Parameters:
InstancePtr is a pointer to an XPci instance. The memory the pointer references must be pre-

allocated by the caller. Further calls to manipulate the component through the XPci API
must be made with this pointer.

DeviceId is the unique id of the device controlled by this XPci component. Passing in a device id
associates the generic XPci instance to a specific device, as chosen by the caller or
application developer.

BusNo is the initial PCI bus number to assign to the host bridge. This value can be changed
later with a call to XPci_SetBusNumber()

SubBusNo is the initial PCI sub-bus number to assign to the host bridge This value can be changed
later with a call to XPci_SetBusNumber()

Returns:
❍ XST_SUCCESS Initialization was successfull.
❍ XST_DEVICE_NOT_FOUND Device configuration data was not found for a device with the

supplied device ID.

Note:

None

void XPci_InterruptClear (XPci * InstancePtr,
Xuint32 Mask

)

Clear device level pending interrupts with the provided mask.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to clear pending interrupts for. Bit positions of 1 are cleared. This mask is

formed by OR'ing bits from XPCI_IPIF_INT_MASK

Note:
None

void XPci_InterruptDisable (XPci * InstancePtr,
Xuint32 Mask

)

Disable device interrupts. Any component interrupts enabled through XPci_InterruptPciEnable() and/or
the DMA driver will no longer have any effect. The component interrupt settings will be retained however.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to disable. Bits set to 1 are disabled. The mask is formed by OR'ing bits

from XPCI_IPIF_INT_MASK

Note:
None

void XPci_InterruptEnable (XPci * InstancePtr,
Xuint32 Mask

)

Enable device interrupts. Device interrupts must be enabled by this function before component interrupts
enabled by XPci_InterruptPciEnable() and/or the DMA driver have any effect.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to enable. Bit positions of 1 are enabled. The mask is formed by OR'ing bits

from XPCI_IPIF_INT_MASK.

Note:
None

Xuint32 XPci_InterruptGetEnabled (XPci * InstancePtr)

Returns the device level interrupt enable mask as set by XPci_InterruptEnable().

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of bits made from XPCI_IPIF_INT_MASK.

Note:
None

Xuint32 XPci_InterruptGetHighestPending (XPci * InstancePtr)

Returns the highest priority pending device interrupt that has been enabled by XPci_InterruptEnable().

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask is one set bit made from XPCI_IPIF_INT_MASK or zero if no interrupts are pending.

Note:
None

Xuint32 XPci_InterruptGetPending (XPci * InstancePtr)

Returns the pending status of device level interrupt signals that have been enabled by
XPci_InterruptEnable(). Any bit in the mask set to 1 indicates that an interrupt is pending from the given
component

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of bits made from XPCI_IPIF_INT_MASK or zero if no interrupts are pending.

Note:
None

Xuint32 XPci_InterruptGetStatus (XPci * InstancePtr)

Returns the status of device level interrupt signals. Any bit in the mask set to 1 indicates that the given
component has asserted an interrupt condition.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of bits made from XPCI_IPIF_INT_MASK.

Note:
The interrupt status indicates the status of the device irregardless if the interrupts from the devices
have been enabled or not through XPci_InterruptEnable().

void XPci_InterruptGlobalDisable (XPci * InstancePtr)

Disable the core's interrupt output signal. Interrupts enabled through XPci_InterruptEnable() and
XPci_InterruptPciEnable() will no longer be passed through until the IPIF global enable bit is set by
XPci_InterruptGlobalEnable().

Parameters:
InstancePtr is the PCI component to operate on.

Note:
None

void XPci_InterruptGlobalEnable (XPci * InstancePtr)

Enable the core's interrupt output signal. Interrupts enabled through XPci_InterruptEnable() and
XPci_InterruptPciEnable() will not be passed through until the IPIF global enable bit is set by this
function.

Parameters:
InstancePtr is the PCI component to operate on.

Note:
None

void XPci_InterruptPciClear (XPci * InstancePtr,
Xuint32 Mask

)

Clear PCI bridge specific interrupt status bits with the provided mask.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to clear pending interrupts for. Bit positions of 1 are cleared. This mask is

formed by OR'ing bits from XPCI_IR_MASK

Note:
None

void XPci_InterruptPciDisable (XPci * InstancePtr,
Xuint32 Mask

)

Disable PCI bridge specific interrupts.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to disable. Bits set to 1 are disabled. The mask is formed by OR'ing bits

from XPCI_IR_MASK

Note:
None

void XPci_InterruptPciEnable (XPci * InstancePtr,
Xuint32 Mask

)

Enable PCI bridge specific interrupts. Before this function has any effect in generating interrupts, the
function XPci_InterruptEnable() must be invoked with the XPCI_IPIF_INT_PCI bit set.

Parameters:
InstancePtr is the PCI component to operate on.
Mask is the mask to enable. Bit positions of 1 are enabled. The mask is formed by OR'ing bits

from XPCI_IR_MASK.

Note:
None

Xuint32 XPci_InterruptPciGetEnabled (XPci * InstancePtr)

Get the PCI bridge specific interrupts enabled through XPci_InterruptPciEnable(). Bits set to 1 mean that
interrupt source is enabled.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of enabled bits made from XPCI_IR_MASK.

Note:
None

Xuint32 XPci_InterruptPciGetStatus (XPci * InstancePtr)

Get the status of PCI bridge specific interrupts that have been asserted Bits set to 1 are in an asserted state.
Bits may be set to 1 irregardless of whether they have been enabled or not though
XPci_InterruptPciEnable(). To get the pending interrupts, AND the results of this function with
XPci_InterruptPciGetEnabled().

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Mask of enabled bits made from XPCI_IR_MASK.

Note:
None

XPci_Config* XPci_LookupConfig (Xuint16 DeviceId)

Lookup the device configuration based on the unique device ID. The table ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceID is the device identifier to lookup.

Returns:
❍ XEmc configuration structure pointer if DeviceID is found.
❍ XNULL if DeviceID is not found.

void XPci_Reset (XPci * InstancePtr)

Reset the PCI IP core. This is a destructive operation that could cause loss of data, local bus errors, or PCI
bus errors if reset occurs while a transaction is pending.

Parameters:
InstancePtr is the PCI component to operate on.

Note:
None

XStatus XPci_SelfTest (XPci * InstancePtr)

Run a self-test on the driver/device. This includes the following tests:

● Configuration read of the bridge device and vendor ID.

Parameters:
InstancePtr is a pointer to the XPci instance to be worked on. This parameter must have been

previously initialized with XPci_Initialize().

Returns:
❍ XST_SUCCESS If test passed
❍ XST_FAILURE If test failed

Note:
None

void XPci_SetBusNumber (XPci * InstancePtr,
int BusNo,
int SubBusNo

)

Set the bus number and subordinate bus number of the pci bridge. This function has effect only if the PCI
bridge is configured as a PCI host bridge.

Parameters:
InstancePtr is the PCI component to operate on.
BusNo is the bus number to set
SubBusNo is the subordinate bus number to set

Note:
None

void XPci_SpecialCycle (XPci * InstancePtr,
Xuint32 Data

)

Broadcasts a message to all listening PCI targets.

Parameters:
InstancePtr is the PCI component to operate on.
Data is the data to broadcast.

Note:
None

Xuint32 XPci_V3StatusCommandGet (XPci * InstancePtr)

Read the contents of the V3 bridge's status & command register. This same register can be retrieved by a PCI
configuration access. The register can be written only with a PCI configuration access.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Contents of the V3 bridge's status and command register

Note:
None

void XPci_V3TransactionStatusClear (XPci * InstancePtr,
Xuint32 Data

)

Clear status bits in the V3 bridge's transaction status register. The contents of this register can be decoded
using XPCI_STATV3_* constants defined in xpci_l.h.

Parameters:
InstancePtr is the PCI component to operate on.
Data is the contents to write to the register. Or XPCI_STATV3_* constants for those bits to

be cleared. Bits in the register that are read-only are not affected.

Note:
None

Xuint32 XPci_V3TransactionStatusGet (XPci * InstancePtr)

Read the contents of the V3 bridge's transaction status register. The contents of this register can be decoded
using XPCI_STATV3_* constants defined in xpci_l.h.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Contents of the V3 bridge's transaction status register.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_l.h
Go to the documentation of this file.

00001 /* $Id: xpci_l.h,v 1.6 2003/05/13 13:36:22 robertm Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file pci/v1_00_a/src/xpci_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined and more PCI documentation is in xpci.h.
00030 *
00031 * PCI configuration read/write macro functions can be changed so that data is
00032 * swapped before being written to the configuration addess/data registers.
00033 * As delivered in this file, these macros do not swap. Change the definitions
00034 * of XIo_InPci() and XIo_OutPci() in this file to suit system needs.
00035 *
00036 * <pre>
00037 * MODIFICATION HISTORY:
00038 *
00039 * Ver Who Date Changes
00040 * ----- ---- -------- ---
00041 * 1.00a rmm 05/19/02 First release
00042 * </pre>

00043 *
00044 **/
00045
00046 #ifndef XPCI_L_H /* prevent circular inclusions */
00047 #define XPCI_L_H /* by using protection macros */
00048
00049 /***************************** Include Files *********************************/
00050
00051 #include "xbasic_types.h"

00052 #include "xio.h"

00053 #include "xipif_v1_23_b.h"
00054
00055 /************************** Constant Definitions *****************************/
00056
00057 /** @name Registers
00058 *
00059 * Register offsets for this device. Note that the following IPIF registers
00060 * are implemented. Macros are defined to specifically access these registers
00061 * without knowing which version of IPIF being used.
00062 * @{
00063 */
00064 #define XPCI_PREOVRD_OFFSET 0x00000100 /**< Prefetch override */

00065 #define XPCI_IAR_OFFSET 0x00000104 /**< PCI interrupt ack */

00066 #define XPCI_SC_DATA_OFFSET 0x00000108 /**< Special cycle data */

00067 #define XPCI_CAR_OFFSET 0x0000010C /**< Config addr reg (port) */

00068 #define XPCI_CDR_OFFSET 0x00000110 /**< Config command data */

00069 #define XPCI_BUSNO_OFFSET 0x00000114 /**< bus/subordinate bus numbers */

00070 #define XPCI_STATCMD_OFFSET 0x00000118 /**< PCI config status/command */

00071 #define XPCI_STATV3_OFFSET 0x0000011C /**< V3 core transaction status */

00072 #define XPCI_INHIBIT_OFFSET 0x00000120 /**< Inhibit transfers on errors */

00073 #define XPCI_LMADDR_OFFSET 0x00000124 /**< Local bus master address definition

*/
00074 #define XPCI_LMA_R_OFFSET 0x00000128 /**< Local bus master read error address

*/
00075 #define XPCI_LMA_W_OFFSET 0x0000012C /**< Local bus master write error

address */
00076 #define XPCI_SERR_R_OFFSET 0x00000130 /**< PCI initiater read SERR address */

00077 #define XPCI_SERR_W_OFFSET 0x00000134 /**< PCI initiater write SERR address */

00078 #define XPCI_PIADDR_OFFSET 0x00000138 /**< PCI address definition */

00079 #define XPCI_PIA_R_OFFSET 0x0000013C /**< PCI read error address */

00080 #define XPCI_PIA_W_OFFSET 0x00000140 /**< PCI write error address */

00081 /*@}*/
00082
00083 /**
00084 * <pre>
00085 * The following IPIF registers are implemented. Macros are defined to
00086 * specifically access these registers without knowing which version of IPIF
00087 * is being used
00088 *
00089 * XIIF_Version_DISR_OFFSET Device interrupt status

00090 * XIIF_Version_DIPR_OFFSET Device interrupt pending
00091 * XIIF_Version_DIER_OFFSET Device interrupt enable
00092 * XIIF_Version_DIIR_OFFSET Device interrupt ID
00093 * XIIF_Version_DGIER_OFFSET Device global interrupt enable
00094 * XIIF_Version_IISR_OFFSET Bridge Interrupt status
00095 * XIIF_Version_IIER_OFFSET Bridge Interrupt enable
00096 * XIIF_Version_RESETR_OFFSET Reset (1)
00097 *
00098 * (1) This version of the PCI core places the RESETR at a nonstandard location
00099 * of 0x80 instead of 0x40. The XPci_mReset() macro has been adjusted.
00100 * </pre>
00101 */
00102
00103 /** @name Interrupt Status and Enable Register bitmaps and masks
00104 *
00105 * Bit definitions for the interrupt status register and interrupt enable
00106 * registers.
00107 * @{
00108 */
00109 #define XPCI_IR_MASK 0x00001FFF /**< Mask of all bits */

00110 #define XPCI_IR_LM_SERR_R 0x00000001 /**< Local bus master read SERR */

00111 #define XPCI_IR_LM_PERR_R 0x00000002 /**< Local bus master read PERR */

00112 #define XPCI_IR_LM_TA_R 0x00000004 /**< Local bus master read target abort

*/
00113 #define XPCI_IR_LM_SERR_W 0x00000008 /**< Local bus master write SERR */

00114 #define XPCI_IR_LM_PERR_W 0x00000010 /**< Local bus master write PERR */

00115 #define XPCI_IR_LM_TA_W 0x00000020 /**< Local bus master write target abort

*/
00116 #define XPCI_IR_LM_MA_W 0x00000040 /**< Local bus master abort write */

00117 #define XPCI_IR_LM_BR_W 0x00000080 /**< Local bus master burst write retry

*/
00118 #define XPCI_IR_LM_BRD_W 0x00000100 /**< Local bus master burst write retry

00119 disconnect */
00120 #define XPCI_IR_LM_BRT_W 0x00000200 /**< Local bus master burst write retry

00121 timeout */
00122 #define XPCI_IR_LM_BRANGE_W 0x00000400 /**< Local bus master burst write range

*/
00123 #define XPCI_IR_PI_SERR_R 0x00000800 /**< PCI initiator read SERR */

00124 #define XPCI_IR_PI_SERR_W 0x00001000 /**< PCI initiator write SERR */

00125 /*@}*/
00126
00127 /** @name Inhibit transfers on errors register bitmaps and masks.
00128 *
00129 * These bits contol whether subsequent PCI transactions are allowed after
00130 * an error occurs. Bits set to 1 inhibit further transactions, while bits
00131 * set to 0 allow further transactions after an error.
00132 * @{
00133 */
00134 #define XPCI_INHIBIT_MASK 0x0000000F /**< Mask for all bits defined

below */
00135 #define XPCI_INHIBIT_LOCAL_BUS_R 0x00000001 /**< Local bus master reads */

00136 #define XPCI_INHIBIT_LOCAL_BUS_W 0x00000002 /**< Local bus mater writes */

00137 #define XPCI_INHIBIT_PCI_R 0x00000004 /**< PCI initiator reads */

00138 #define XPCI_INHIBIT_PCI_W 0x00000008 /**< PCI initiator writes */

00139 /*@}*/
00140
00141 /** @name PCI configuration status & command register bitmaps and masks.
00142 *
00143 * Bit definitions for the PCI configuration status & command register. The
00144 * definition of this register is standard for PCI devices.
00145 * @{
00146 */
00147 #define XPCI_STATCMD_IO_EN 0x00000001 /**< I/O access enable */

00148 #define XPCI_STATCMD_MEM_EN 0x00000002 /**< Memory access enable */

00149 #define XPCI_STATCMD_BUSM_EN 0x00000004 /**< Bus master enable */

00150 #define XPCI_STATCMD_SPECIALCYC 0x00000008 /**< Special cycles */

00151 #define XPCI_STATCMD_MEMWR_INV_EN 0x00000010 /**< Memory write & invalidate */

00152 #define XPCI_STATCMD_VGA_SNOOP_EN 0x00000020 /**< VGA palette snoop enable */

00153 #define XPCI_STATCMD_PARITY 0x00000040 /**< Report parity errors */

00154 #define XPCI_STATCMD_STEPPING 0x00000080 /**< Stepping control */

00155 #define XPCI_STATCMD_SERR_EN 0x00000100 /**< SERR report enable */

00156 #define XPCI_STATCMD_BACK_EN 0x00000200 /**< Fast back-to-back enable */

00157 #define XPCI_STATCMD_INT_DISABLE 0x00000400 /**< Interrupt disable (PCI v2.3)

*/
00158 #define XPCI_STATCMD_INT_STATUS 0x00100000 /**< Interrupt status (PCI v2.3)

*/
00159 #define XPCI_STATCMD_66MHZ_CAP 0x00200000 /**< 66MHz capable */

00160 #define XPCI_STATCMD_MPERR 0x01000000 /**< Master data PERR detected */

00161 #define XPCI_STATCMD_DEVSEL_MSK 0x06000000 /**< Device select timing mask */

00162 #define XPCI_STATCMD_DEVSEL_FAST 0x04000000 /**< Device select timing fast */

00163 #define XPCI_STATCMD_DEVSEL_MED 0x02000000 /**< Device select timing medium

*/
00164 #define XPCI_STATCMD_TGTABRT_SIG 0x08000000 /**< Signaled target abort */

00165 #define XPCI_STATCMD_TGTABRT_RCV 0x10000000 /**< Received target abort */

00166 #define XPCI_STATCMD_MSTABRT_RCV 0x20000000 /**< Received master abort */

00167 #define XPCI_STATCMD_SERR_SIG 0x40000000 /**< Signaled SERR */

00168 #define XPCI_STATCMD_PERR_DET 0x80000000 /**< Detected PERR */

00169 #define XPCI_STATCMD_ERR_MASK (XPCI_STATCMD_PERR_DET | \

00170 XPCI_STATCMD_SERR_SIG | \
00171 XPCI_STATCMD_MSTABRT_RCV | \
00172 XPCI_STATCMD_TGTABRT_RCV | \
00173 XPCI_STATCMD_TGTABRT_SIG | \
00174 XPCI_STATCMD_MPERR) /**< Error bits or'd
together */
00175 /*@}*/
00176
00177 /** @name V3 core transaction status register bitmaps and masks.
00178 *
00179 * Bit definitions for the V3 core transaction status register. This register
00180 * consists of status information on V3 core transactions.

00181 * @{
00182 */
00183 #define XPCI_STATV3_MASK 0x000007FF /**< Mask of all bits */

00184 #define XPCI_STATV3_DATA_XFER 0x00000001 /**< Data transfer. Read only */

00185 #define XPCI_STATV3_TRANS_END 0x00000002 /**< Transaction end. Read only */

00186 #define XPCI_STATV3_NORM_TERM 0x00000004 /**< Normal termination. Read only

*/
00187 #define XPCI_STATV3_TGT_TERM 0x00000008 /**< Target termination. Read only

*/
00188 #define XPCI_STATV3_DISC_WODATA 0x00000010 /**< Disconnect without data. Read

only */
00189 #define XPCI_STATV3_DISC_WDATA 0x00000020 /**< Disconnect with data. Read

only */
00190 #define XPCI_STATV3_TGT_ABRT 0x00000040 /**< Target abort. Read only */

00191 #define XPCI_STATV3_MASTER_ABRT 0x00000080 /**< Master abort. Read only */

00192 #define XPCI_STATV3_PCI_RETRY_R 0x00000100 /**< PCI retry on read. Read/write

*/
00193 #define XPCI_STATV3_PCI_RETRY_W 0x00000200 /**< PCI retry on write. Read/write

*/
00194 #define XPCI_STATV3_WRITE_BUSY 0x00000400 /**< Write busy. Read only */

00195 /*@}*/
00196
00197
00198 /** @name Bus number and subordinate bus number register bitmaps and masks
00199 *
00200 * @{
00201 */
00202 #define XPCI_BUSNO_BUS_MASK 0x00FF0000 /**< Mask for bus number */

00203 #define XPCI_BUSNO_SUBBUS_MASK 0x000000FF /**< Mask for subordinate bus no */

00204 /*@}*/
00205
00206
00207 /** @name Local bus master address register bitmaps and masks
00208 *
00209 * Bit definitions for the local bus master address definition register.
00210 * This register defines the meaning of the address stored in the local bus
00211 * master read (XPCI_LMA_R_OFFSET) and master write error (XPCI_LMA_W_OFFSET)
00212 * registers.
00213 * @{
00214 */
00215 #define XPCI_LMADDR_MASK 0x000007FF /**< Mask of all bits */

00216 #define XPCI_LMADDR_SERR_R 0x00000001 /**< Master read SERR */

00217 #define XPCI_LMADDR_PERR_R 0x00000002 /**< Master read PERR */

00218 #define XPCI_LMADDR_TA_R 0x00000004 /**< Master read target abort */

00219 #define XPCI_LMADDR_SERR_W 0x00000008 /**< Master write SERR */

00220 #define XPCI_LMADDR_PERR_W 0x00000010 /**< Master write PERR */

00221 #define XPCI_LMADDR_TA_W 0x00000020 /**< Master write target abort */

00222 #define XPCI_LMADDR_MA_W 0x00000040 /**< Master abort write */

00223 #define XPCI_LMADDR_BR_W 0x00000080 /**< Master burst write retry */

00224 #define XPCI_LMADDR_BRD_W 0x00000100 /**< Master burst write retry

disconnect */
00225 #define XPCI_LMADDR_BRT_W 0x00000200 /**< Master burst write retry

timeout */
00226 #define XPCI_LMADDR_BRANGE_W 0x00000400 /**< Master burst write range */

00227 /*@}*/
00228
00229 /** @name PCI error address definition bitmaps and masks
00230 *
00231 * Bit definitions for the PCI address definition register. This register
00232 * defines the meaning of the address stored in the PCI read error address
00233 * (XPCI_PIA_R_OFFSET) and PCI write error address (XPCI_PIA_W_OFFSET)
registers.
00234 * @{
00235 */
00236 #define XPCI_PIADDR_MASK 0x0000001F /**< Mask of all bits */

00237 #define XPCI_PIADDR_ERRACK_R 0x00000001 /**< PCI initiator read ErrAck */

00238 #define XPCI_PIADDR_ERRACK_W 0x00000002 /**< PCI initiator write ErrAck */

00239 #define XPCI_PIADDR_RETRY_W 0x00000004 /**< PCI initiator write retries */

00240 #define XPCI_PIADDR_TIMEOUT_W 0x00000008 /**< PCI initiator write timeout */

00241 #define XPCI_PIADDR_RANGE_W 0x00000010 /**< PCI initiator write range */

00242 /*@}*/
00243
00244
00245 /** @name PCI configuration header offsets
00246 *
00247 * Defines the offsets in the standard PCI configuration header
00248 * @{
00249 */
00250 #define XPCI_HDR_VENDOR 0x00 /**< Vendor ID */

00251 #define XPCI_HDR_DEVICE 0x02 /**< Device ID */

00252 #define XPCI_HDR_COMMAND 0x04 /**< Command register */

00253 #define XPCI_HDR_STATUS 0x06 /**< Status register */

00254 #define XPCI_HDR_REVID 0x08 /**< Revision ID */

00255 #define XPCI_HDR_CLASSCODE 0x09 /**< Class code */

00256 #define XPCI_HDR_CACHE_LINE_SZ 0x0C /**< Cache line size */

00257 #define XPCI_HDR_LATENCY 0x0D /**< Latency timer */

00258 #define XPCI_HDR_TYPE 0x0E /**< Header type */

00259 #define XPCI_HDR_BIST 0x0F /**< Built in self test */

00260 #define XPCI_HDR_BAR0 0x10 /**< Base address 0 */

00261 #define XPCI_HDR_BAR1 0x14 /**< Base address 1 */

00262 #define XPCI_HDR_BAR2 0x18 /**< Base address 2 */

00263 #define XPCI_HDR_BAR3 0x1C /**< Base address 3 */

00264 #define XPCI_HDR_BAR4 0x20 /**< Base address 4 */

00265 #define XPCI_HDR_BAR5 0x24 /**< Base address 5 */

00266 #define XPCI_HDR_CARDBUS_PTR 0x28 /**< Cardbus CIS pointer */

00267 #define XPCI_HDR_SUB_VENDOR 0x2C /**< Subsystem Vendor ID */

00268 #define XPCI_HDR_SUB_DEVICE 0x2E /**< Subsystem ID */

00269 #define XPCI_HDR_ROM_BASE 0x30 /**< Expansion ROM base address */

00270 #define XPCI_HDR_CAP_PTR 0x34 /**< Capabilities pointer */

00271 #define XPCI_HDR_INT_LINE 0x3C /**< Interrupt line */

00272 #define XPCI_HDR_INT_PIN 0x3D /**< Interrupt pin */

00273 #define XPCI_HDR_MIN_GNT 0x3E /**< Timeslice request */

00274 #define XPCI_HDR_MAX_LAT 0x3F /**< Priority level request */

00275 /*@}*/
00276
00277
00278 /** @name PCI BAR register definitions
00279 *
00280 * Defines the masks and bits for the PCI XPAR_HDR_BARn registers
00281 * The bridge supports the first three BARs in the PCI configuration header
00282 * @{
00283 */
00284 #define XPCI_HDR_NUM_BAR 6 /**< Number of BARs in the PCI

header */
00285 #define XPCI_HDR_BAR_ADDR_MASK 0xFFFFFFF0 /**< Base address mask */

00286 #define XPCI_HDR_BAR_PREFETCH_YES 0x00000008 /**< Range is prefetchable */

00287 #define XPCI_HDR_BAR_PREFETCH_NO 0x00000000 /**< Range is not prefetchable

*/
00288 #define XPCI_HDR_BAR_TYPE_MASK 0x00000006 /**< Memory type mask */

00289 #define XPCI_HDR_BAR_TYPE_BELOW_4GB 0x00000000 /**< Locate anywhere below 4GB

*/
00290 #define XPCI_HDR_BAR_TYPE_BELOW_1MB 0x00000002 /**< Reserved in PCI 2.2 */

00291 #define XPCI_HDR_BAR_TYPE_ABOVE_4GB 0x00000004 /**< Locate anywhere above 4GB

*/
00292 #define XPCI_HDR_BAR_TYPE_RESERVED 0x00000006 /**< Reserved */

00293 #define XPCI_HDR_BAR_SPACE_IO 0x00000001 /**< IO space indicator */

00294 #define XPCI_HDR_BAR_SPACE_MEMORY 0x00000000 /**< Memory space indicator */

00295 /*@}*/
00296
00297
00298 /** @name DMA type constants
00299 *
00300 * Defines the types of DMA engines
00301 * @{
00302 */
00303 #define XPCI_DMA_TYPE_NONE 9 /**< No DMA */

00304 #define XPCI_DMA_TYPE_SIMPLE 0 /**< Simple DMA */

00305 #define XPCI_DMA_TYPE_SG 1 /**< Scatter-gather DMA */

00306 /*@}*/
00307
00308 /*
00309 * Default IPIF Device interrupt enable (XIIF_Version_IIER_OFFSET),
00310 * status registers (XIIF_Version_IISR_OFFSET), and pending register
00311 * (XIIF_Version_IIPR_OFFSET)
00312 */
00313 #define XPCI_IPIF_INT_PCI 0x00000004 /* PCI core interrupt */
00314 #define XPCI_IPIF_INT_DMA 0x00000008 /* DMA interrupt */
00315
00316 /* Define IPIF interrupt mask */

00317 #define XPCI_IPIF_INT_MASK (XPCI_IPIF_INT_PCI | XPCI_IPIF_INT_DMA)
00318
00319 /* Define value of IPIF DIIR register when no interrupt is pending */
00320 #define XPCI_IPIF_INT_NONE_PENDING XIIF_V123B_NO_INTERRUPT_ID
00321
00322 /*
00323 * These macros define how IO access to the CAR/CDR are made
00324 * Use XIo_In/Out32 normally or XIo_InSwap/OutSwap32 if these registers
00325 * present data in an endianess opposite processor's.
00326 */
00327 #define XIo_InPci(InAddress) XIo_In32(InAddress)
00328 #define XIo_OutPci(OutAddress, Data) XIo_Out32(OutAddress, Data)
00329
00330
00331 /***
00332 *
00333 * Low-level driver macros and functions. The list below provides signatures
00334 * to help the user use the macros.
00335 *
00336 * void XPci_mReset(Xuint32 BaseAddress)
00337 * void XPci_mIntrGlobalEnable(Xuint32 BaseAddress)
00338 * void XPci_mIntrGlobalDisable(Xuint32 BaseAddress)
00339 * void XPci_mIntrEnable(Xuint32 BaseAddress, Mask)
00340 * void XPci_mIntrDisable(Xuint32 BaseAddress, Mask)
00341 * void XPci_mIntrClear(Xuint32 BaseAddress, Xuint32 Mask)
00342 * Xuint32 XPci_mIntrReadIER(Xuint32 BaseAddress)
00343 * Xuint32 XPci_mIntrReadISR(Xuint32 BaseAddress)
00344 * void XPci_mIntrWriteISR(Xuint32 BaseAddress, Xuint32 Mask)
00345 * Xuint32 XPci_mIntrReadIPR(Xuint32 BaseAddress)
00346 * Xuint32 XPci_mIntrReadID(Xuint32 BaseAddress)
00347 * void XPci_mIntrPciEnable(Xuint32 BaseAddress, Xuint32 Mask)
00348 * void XPci_mIntrPciDisable(Xuint32 BaseAddress, Xuint32 Mask)
00349 * void XPci_mIntrPciClear(Xuint32 BaseAddress, Xuint32 Mask)
00350 * Xuint32 XPci_mIntrPciReadIER(Xuint32 BaseAddress)
00351 * Xuint32 XPci_mIntrPciReadISR(Xuint32 BaseAddress)
00352 * void XPci_mIntrPciWriteISR(Xuint32 BaseAddress, Xuint32 Mask)
00353 * Xuint32 XPci_mReadReg(Xuint32 BaseAddress, Xuint32 RegOffset)
00354 * void XPci_mWriteReg(Xuint32 BaseAddress, Xuint32 RegOffset, Xuint32 Data)
00355 * void XPci_mConfigIn(Xuint32 BaseAddress, Xuint32 ConfigAddress,
00356 * Xuint32 ConfigData)
00357 * void XPci_mConfigOut(Xuint32 BaseAddress, Xuint32 ConfigAddress,
00358 * Xuint32 ConfigData)
00359 * void XPci_mAckSend(Xuint32 BaseAddress, Xuint32 Vector)
00360 * Xuint32 XPci_mAckRead(Xuint32 BaseAddress)
00361 * Xuint32 XPci_mSpecialCycle(Xuint32 BaseAddress, Xuint32 Data)
00362 * Xuint32 XPci_mLocal2Pci(Xuint32 LocalAddress, Xuint32 TranslationOffset)
00363 * Xuint32 XPci_mPci2Local(Xuint32 PciAddress, Xuint32 TranslationOffset)
00364 *
00365 ***/
00366
00367
/**/
00368 /**

00369 * IPIF Low level PCI reset function. Reset the V3 core.
00370 *
00371 * C-style signature:
00372 * void XPci_mReset(Xuint32 BaseAddress)
00373 *
00374 * @param BaseAddress is the base address of the PCI component.
00375 *
00376 * @return None
00377 *
00378 * @note The IPIF RESETR register is located at (base + 0x80) instead of
00379 * (base + 0x40) where the IPIF component driver expects it. This macro adjusts
00380 * for this difference.
00381
***/
00382 #define XPci_mReset(BaseAddress) \

00383 XIIF_V123B_RESET((BaseAddress + 0x40))
00384
00385
00386
/**/
00387 /**
00388 * Global interrupt enable. Must be called before any interupts enabled by
00389 * XPci_mIntrEnable() or XPci_mIntrPciEnable() have any effect.
00390 *
00391 * C-style signature:
00392 * void XPci_mIntrGlobalEnable(Xuint32 BaseAddress)
00393 *
00394 * @param BaseAddress is the base address of the PCI component.
00395 *
00396 * @return None
00397 *
00398 * @note None
00399
***/
00400 #define XPci_mIntrGlobalEnable(BaseAddress) \

00401 XIIF_V123B_GINTR_ENABLE((BaseAddress))
00402
00403
00404
/**/
00405 /**
00406 * Global interrupt disable. Disable all interrupts from this core. Any
00407 * interrupts enabled by XPci_mIntrEnable() or XPci_mIntrPciEnable()
00408 * are disabled, however their settings remain unchanged.
00409 *
00410 * C-style signature:
00411 * void XPci_mIntrGlobalDisable(Xuint32 BaseAddress)
00412 *
00413 * @param BaseAddress is the base address of the PCI component.
00414 *
00415 * @return None
00416 *

00417 * @note None
00418
***/
00419 #define XPci_mIntrGlobalDisable(BaseAddress) \

00420 XIIF_V123B_GINTR_DISABLE((BaseAddress))
00421
00422
00423
/**/
00424 /**
00425 * Enable interrupts in the device interrupt enable register (DIER)
00426 *
00427 * C-style signature:
00428 * void XPci_mIntrEnable(Xuint32 BaseAddress, Mask)
00429 *
00430 * @param BaseAddress is the base address of the PCI component.
00431 * @param Mask is the group of interrupts to enable. Use a logical OR of
00432 * constants in XPCI_IPIF_INT_MASK. Bits set to 1 are enabled,
00433 * bits set to 0 are not affected.
00434 *
00435 * @return None
00436 *
00437 * @note None
00438
***/
00439 #define XPci_mIntrEnable(BaseAddress, Mask) \

00440 { \
00441 Xuint32 Temp; \
00442 Temp = XIIF_V123B_READ_DIER((BaseAddress)); \
00443 Temp |= (Mask); \
00444 XIIF_V123B_WRITE_DIER((BaseAddress), (Temp)); \
00445 }
00446
00447
00448
/**/
00449 /**
00450 * Disable interrupts in the device interrupt enable register (DIER)
00451 *
00452 * C-style signature:
00453 * void XPci_mIntrDisable(Xuint32 BaseAddress, Mask)
00454 *
00455 * @param BaseAddress is the base address of the PCI component.
00456 * @param Mask is the group of interrupts to disable. Use a logical OR of
00457 * constants in XPCI_IPIF_INT_MASK. Bits set to 1 are disabled,
00458 * bits set to 0 are not affected.
00459 *
00460 * @return None
00461 *
00462 * @note None
00463
***/

00464 #define XPci_mIntrDisable(BaseAddress, Mask) \

00465 { \
00466 Xuint32 Temp; \
00467 Temp = XIIF_V123B_READ_DIER((BaseAddress)); \
00468 Temp &= ~(Mask); \
00469 XIIF_V123B_WRITE_DIER((BaseAddress), (Temp)); \
00470 }
00471
00472
00473
/**/
00474 /**
00475 * Clear pending interrupts in the device interrupt status register (DISR)
00476 * This is a toggle on write register.
00477 *
00478 * C-style signature:
00479 * void XPci_mIntrClear(Xuint32 BaseAddress, Xuint32 Mask)
00480 *
00481 * @param BaseAddress is the base address of the PCI component.
00482 * @param Mask is the group of interrupts to clear. Use a logical OR of
00483 * constants in XPCI_IPIF_INT_MASK. Bits set to 1 are cleared,
00484 * bits set to 0 are not affected.
00485 *
00486 * @return None
00487 *
00488 * @note None
00489
***/
00490 #define XPci_mIntrClear(BaseAddress, Mask) \

00491 XIIF_V123B_WRITE_DISR((BaseAddress), \
00492 XIIF_V123B_READ_DISR((BaseAddress)) & (Mask))
00493
00494
00495
/**/
00496 /**
00497 * Read the contents of the device interrupt enable register (DIER)
00498 *
00499 * C-style signature:
00500 * Xuint32 XPci_mIntrReadIER(Xuint32 BaseAddress)
00501 *
00502 * @param BaseAddress is the base address of the PCI component.
00503 *
00504 * @return Value of the register.
00505 *
00506 * @note None
00507
***/
00508 #define XPci_mIntrReadIER(BaseAddress) \

00509 XIIF_V123B_READ_DIER((BaseAddress))
00510
00511

00512
/**/
00513 /**
00514 * Read the contents of the device interrupt status register (DISR)
00515 *
00516 * C-style signature:
00517 * Xuint32 XPci_mIntrReadISR(Xuint32 BaseAddress)
00518 *
00519 * @param BaseAddress is the base address of the PCI component.
00520 *
00521 * @return Value of the register.
00522 *
00523 * @note None
00524
***/
00525 #define XPci_mIntrReadISR(BaseAddress) \

00526 XIIF_V123B_READ_DISR((BaseAddress))
00527
00528
00529
/**/
00530 /**
00531 * Write to the device interrupt status register (DISR)
00532 *
00533 * C-style signature:
00534 * void XPci_mIntrWriteISR(Xuint32 BaseAddress, Xuint32 Mask)
00535 *
00536 * @param BaseAddress is the base address of the PCI component.
00537 * @param Mask is the value to write to the register and is assumed to be
00538 * bits or'd together from the XPCI_IPIF_INT_MASK.
00539 *
00540 * @return None
00541 *
00542 * @note None
00543
***/
00544 #define XPci_mIntrWriteISR(BaseAddress, Mask) \

00545 XIIF_V123B_WRITE_DISR((BaseAddress), (Mask))
00546
00547
00548
/**/
00549 /**
00550 * Read the contents of the device interrupt pending register (DIPR).
00551 *
00552 * C-style signature:
00553 * Xuint32 XPci_mIntrReadIPR(Xuint32 BaseAddress)
00554 *
00555 * @param BaseAddress is the base address of the PCI component.
00556 *
00557 * @return Value of the register.
00558 *

00559 * @note None
00560
***/
00561 #define XPci_mIntrReadIPR(BaseAddress) \

00562 XIIF_V123B_READ_DIPR((BaseAddress))
00563
00564
00565
/**/
00566 /**
00567 * Read the contents of the device interrupt ID register (DIIR).
00568 *
00569 * C-style signature:
00570 * Xuint32 XPci_mIntrReadID(Xuint32 BaseAddress)
00571 *
00572 * @param BaseAddress is the base address of the PCI component.
00573 *
00574 * @return Value of the register.
00575 *
00576 * @note None
00577
***/
00578 #define XPci_mIntrReadID(BaseAddress) \

00579 XIIF_V123B_READ_DIIR((BaseAddress))
00580
00581
00582
/**/
00583 /**
00584 * Enable PCI specific interrupt sources in the PCI interrupt enable register
00585 * (IIER)
00586 *
00587 * C-style signature:
00588 * void XPci_mIntrPciEnable(Xuint32 BaseAddress, Xuint32 Mask)
00589 *
00590 * @param BaseAddress is the base address of the PCI component.
00591 * @param Mask is the group of interrupts to enable. Bits set to 1 are enabled,
00592 * bits set to 0 are not affected. The mask is made up by OR'ing bits
00593 * from XPCI_IR_MASK.
00594 *
00595 * @return None
00596 *
00597 * @note None
00598
***/
00599 #define XPci_mIntrPciEnable(BaseAddress, Mask) \

00600 { \
00601 Xuint32 Temp; \
00602 Temp = XIIF_V123B_READ_IIER((BaseAddress)); \
00603 Temp |= (Mask); \
00604 XIIF_V123B_WRITE_IIER((BaseAddress), (Temp)); \
00605 }

00606
00607
00608
/**/
00609 /**
00610 * Disable PCI specific interrupt sources in the PCI interrupt enable register
00611 * (IIER)
00612 *
00613 * C-style signature:
00614 * void XPci_mIntrPciDisable(Xuint32 BaseAddress, Xuint32 Mask)
00615 *
00616 * @param BaseAddress is the base address of the PCI component.
00617 * @param Mask is the group of interrupts to disable. Bits set to 1 are
disabled,
00618 * bits set to 0 are not affected. The mask is made up by OR'ing bits
00619 * from XPCI_IR_MASK.
00620 *
00621 * @return None
00622 *
00623 * @note None
00624
***/
00625 #define XPci_mIntrPciDisable(BaseAddress, Mask) \

00626 { \
00627 Xuint32 Temp; \
00628 Temp = XIIF_V123B_READ_IIER((BaseAddress)); \
00629 Temp &= ~(Mask); \
00630 XIIF_V123B_WRITE_IIER((BaseAddress), (Temp)); \
00631 }
00632
00633
00634
/**/
00635 /**
00636 * Clear PCI specific interrupts in the interrupt status register (IISR).
00637 * This is a toggle on write register.
00638 *
00639 * C-style signature:
00640 * void XPci_mIntrPciClear(Xuint32 BaseAddress, Xuint32 Mask)
00641 *
00642 * @param BaseAddress is the base address of the PCI component.
00643 * @param Mask is the group of interrupts to clear. Use a logical OR of
00644 * constants in XPCI_IR_MASK. Bits set to 1 are cleared,
00645 * bits set to 0 are not affected.
00646 *
00647 * @return None
00648 *
00649 * @note None
00650
***/
00651 #define XPci_mIntrPciClear(BaseAddress, Mask) \

00652 XIIF_V123B_WRITE_IISR((BaseAddress), \

00653 XIIF_V123B_READ_IISR((BaseAddress)) & (Mask))
00654
00655
00656
/**/
00657 /**
00658 * Read the contents of the PCI specific interrupt enable register (IIER)
00659 *
00660 * C-style signature:
00661 * Xuint32 XPci_mIntrPciReadIER(Xuint32 BaseAddress)
00662 *
00663 * @param BaseAddress is the base address of the PCI component.
00664 *
00665 * @return Contents of the pending interrupt register. The mask is made up of
00666 * bits defined in XPCI_IR_MASK.
00667 *
00668 * @note None
00669
***/
00670 #define XPci_mIntrPciReadIER(BaseAddress) \

00671 XIIF_V123B_READ_IIER((BaseAddress))
00672
00673
00674
/**/
00675 /**
00676 * Read the contents of the PCI specific interrupt status register (IISR)
00677 *
00678 * C-style signature:
00679 * Xuint32 XPci_mIntrPciReadISR(Xuint32 BaseAddress)
00680 *
00681 * @param BaseAddress is the base address of the PCI component.
00682 *
00683 * @return
00684 * Contents of the pending interrupt register. The mask is made up of
00685 * bits defined in XPCI_IR_MASK.
00686 *
00687 * @note None
00688
***/
00689 #define XPci_mIntrPciReadISR(BaseAddress) \

00690 XIIF_V123B_READ_IISR((BaseAddress))
00691
00692
00693
/**/
00694 /**
00695 * Write to the PCI interrupt status register (IISR)
00696 *
00697 * C-style signature:
00698 * void XPci_mIntrPciWriteISR(Xuint32 BaseAddress, Xuint32 Mask)
00699 *

00700 * @param BaseAddress is the base address of the PCI component.
00701 * @param Mask is the value to write to the register and is assumed to be
00702 * bits or'd together from the XPCI_IR_MASK.
00703 *
00704 * @return None
00705 *
00706 * @note None
00707
***/
00708 #define XPci_mIntrPciWriteISR(BaseAddress, Mask) \

00709 XIIF_V123B_WRITE_IISR((BaseAddress), (Mask))
00710
00711
00712
/**/
00713 /**
00714 * Low level register read function.
00715 *
00716 * C-style signature:
00717 * Xuint32 XPci_mReadReg(Xuint32 BaseAddress, Xuint32 RegOffset)
00718 *
00719 * @param BaseAddress is the base address of the PCI component.
00720 * @param RegOffset is the register offset.
00721 *
00722 * @return Value of the register.
00723 *
00724 * @note None
00725
***/
00726 #define XPci_mReadReg(BaseAddress, RegOffset) \

00727 XIo_In32((BaseAddress) + (RegOffset))
00728
00729
00730
/**/
00731 /**
00732 * Low level register write function.
00733 *
00734 * C-style signature:
00735 * void XPci_mWriteReg(Xuint32 BaseAddress, Xuint32 RegOffset, Xuint32 Data)
00736 *
00737 * @param BaseAddress is the base address of the PCI component.
00738 * @param RegOffset is the register offset.
00739 * @param Data is the data to write.
00740 *
00741 * @return None
00742 *
00743 * @note None
00744
***/
00745 #define XPci_mWriteReg(BaseAddress, RegOffset, Data) \

00746 XIo_Out32((BaseAddress) + (RegOffset), (Data))

00747
00748
00749
/**/
00750 /**
00751 * Low level PCI configuration read
00752 *
00753 * C-style signature:
00754 * void XPci_mConfigIn(Xuint32 BaseAddress, Xuint32 ConfigAddress,
00755 * Xuint32 ConfigData)
00756 *
00757 * @param BaseAddress is the base address of the PCI component.
00758 * @param ConfigAddress is the PCI configuration space address in a packed
00759 * format.
00760 * @param ConfigData is the data read from the ConfigAddress
00761 *
00762 * @return Data from configuration address
00763 *
00764 * @note None
00765
***/
00766 #define XPci_mConfigIn(BaseAddress, ConfigAddress, ConfigData) \

00767 XIo_OutPci((BaseAddress) + XPCI_CAR_OFFSET, (ConfigAddress)); \
00768 (ConfigData) = XIo_InPci((BaseAddress) + XPCI_CDR_OFFSET)
00769
00770
00771
/**/
00772 /**
00773 * Low level PCI configuration write
00774 *
00775 * C-style signature:
00776 * void XPci_mConfigOut(Xuint32 BaseAddress, Xuint32 ConfigAddress,
00777 * Xuint32 ConfigData)
00778 *
00779 * @param BaseAddress is the base address of the PCI component.
00780 * @param ConfigAddress is the PCI configuration space address in a packed
00781 * format.
00782 * @param ConfigData is the data to write at the ConfigAddress
00783 *
00784 * @return None
00785 *
00786 * @note None
00787
***/
00788 #define XPci_mConfigOut(BaseAddress, ConfigAddress, ConfigData) \

00789 XIo_OutPci((BaseAddress) + XPCI_CAR_OFFSET, (ConfigAddress)); \
00790 XIo_OutPci((BaseAddress) + XPCI_CDR_OFFSET, (ConfigData))
00791
00792
00793
/**/

00794 /**
00795 * Generate a PCI interrupt ackowledge bus cycle with the given vector.
00796 *
00797 * C-style signature:
00798 * void XPci_mAckSend(Xuint32 BaseAddress, Xuint32 Vector)
00799 *
00800 * @param BaseAddress is the base address of the PCI component.
00801 * @param Mask is the interrupt vector to place on the PCI bus.
00802 *
00803 * @return None
00804 *
00805 * @note None
00806
***/
00807 #define XPci_mAckSend(BaseAddress, Vector) \

00808 XPci_mWriteReg((BaseAddress), XPCI_IAR_OFFSET, (Vector))
00809
00810
00811
/**/
00812 /**
00813 * Read the contents of the PCI interrupt acknowledge vector register.
00814 *
00815 * C-style signature:
00816 * Xuint32 XPci_mAckRead(Xuint32 BaseAddress)
00817 *
00818 * @param BaseAddress is the base address of the PCI component.
00819 *
00820 * @return System dependent interrupt vector.
00821 *
00822 * @note None
00823
***/
00824 #define XPci_mAckRead(BaseAddress) \

00825 XPci_mReadReg((BaseAddress), XPCI_IAR_OFFSET)
00826
00827
00828
/**/
00829 /**
00830 * Broadcasts a message to all listening PCI targets.
00831 *
00832 * C-style signature:
00833 * Xuint32 XPci_mSpecialCycle(Xuint32 BaseAddress, Xuint32 Data)
00834 *
00835 * @param BaseAddress is the base address of the PCI component.
00836 * @param Data is the data to broadcast.
00837 *
00838 * @return None
00839 *
00840 * @note None
00841

***/
00842 #define XPci_mSpecialCycle(BaseAddress, Data) \

00843 XPci_mWriteReg((BaseAddress), XPCI_SC_DATA_OFFSET, (Data))
00844
00845
00846
/**/
00847 /**
00848 * Convert local bus address to a PCI address
00849 *
00850 * C-style signature:
00851 * Xuint32 XPci_mLocal2Pci(Xuint32 LocalAddress, Xuint32 TranslationOffset)
00852 *
00853 * @param LocalAddress is the local address to find the equivalent PCI address
00854 * for.
00855 * @param TO is the translation offset to apply
00856 *
00857 * @return Address in PCI space
00858 *
00859 * @note IPIFBAR_n, IPIFHIGHADDR_n, and IPIFBAR2PCI_n, defined in xparameters.h,
00860 * are defined for each BAR. To make a proper conversion, LocalAddress must
00861 * fall within range of a IPIFBAR_n and IPIFHIGHADDR_n pair and TO specified
00862 * must be the matching IPIFBAR2PCI_n. Example: pciAddr = XPci_mLocal2Pci(
00863 * XPAR_PCI_IPIFBAR_0, XPAR_PCI_IPIFBAR2PCI_0) finds the PCI equivalent address
00864 * for the local address named by XPAR_PCI_IPIFBAR_0.
00865
***/
00866 #define XPci_mLocal2Pci(LocalAddr, TO) ((Xuint32)(LocalAddr) + (Xuint32)(TO))

00867
00868
00869
/**/
00870 /**
00871 * Convert PCI address to a local bus address
00872 *
00873 * C-style signature:
00874 * Xuint32 XPci_mPci2Local(Xuint32 PciAddress, Xuint32 TranslationOffset)
00875 *
00876 * @param PciAddress is the PCI address to find the equivalent local address
00877 * for.
00878 * @param TO is the translation offset to apply
00879 *
00880 * @return Address in local space
00881 *
00882 * @note PCIBAR_n, PCIBAR_LEN_n, and PCIBAR2IPIF_n, defined in xparameters.h,
00883 * are defined for each BAR. To make a proper conversion, PciAddress must
00884 * fall within range of a PCIBAR_n and PCIBAR_LEN_n pair and TO specified
00885 * must be the matching PCIBAR2IPIF_n. Example: localAddr = XPci_mPci2Local(
00886 * XPAR_PCI_PCIBAR_0, XPAR_PCI_PCIBAR2IPIF_0) finds the local address that
00887 * corresponds to XPAR_PCI_PCIBAR_0 on the PCI bus. Note that PCIBAR_LEN is
00888 * expressed as a power of 2.
00889

***/
00890 #define XPci_mPci2Local(PciAddr, TO) ((Xuint32)(PciAddr) + (Xuint32)(TO))

00891
00892 #endif /* XPCI_L_H */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_l.h File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined and more PCI documentation is in xpci.h.

PCI configuration read/write macro functions can be changed so that data is swapped before being
written to the configuration addess/data registers. As delivered in this file, these macros do not swap.
Change the definitions of XIo_InPci() and XIo_OutPci() in this file to suit system needs.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 05/19/02 First release

#include "xbasic_types.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Go to the source code of this file.

Registers

Register offsets for this device. Note that the following IPIF registers are implemented. Macros are
defined to specifically access these registers without knowing which version of IPIF being used.

#define XPCI_PREOVRD_OFFSET

#define XPCI_IAR_OFFSET
#define XPCI_SC_DATA_OFFSET
#define XPCI_CAR_OFFSET
#define XPCI_CDR_OFFSET
#define XPCI_BUSNO_OFFSET
#define XPCI_STATCMD_OFFSET
#define XPCI_STATV3_OFFSET
#define XPCI_INHIBIT_OFFSET
#define XPCI_LMADDR_OFFSET
#define XPCI_LMA_R_OFFSET
#define XPCI_LMA_W_OFFSET
#define XPCI_SERR_R_OFFSET
#define XPCI_SERR_W_OFFSET
#define XPCI_PIADDR_OFFSET
#define XPCI_PIA_R_OFFSET
#define XPCI_PIA_W_OFFSET

Interrupt Status and Enable Register bitmaps and
masks

Bit definitions for the interrupt status register and interrupt enable registers.

#define XPCI_IR_MASK
#define XPCI_IR_LM_SERR_R
#define XPCI_IR_LM_PERR_R
#define XPCI_IR_LM_TA_R
#define XPCI_IR_LM_SERR_W
#define XPCI_IR_LM_PERR_W
#define XPCI_IR_LM_TA_W
#define XPCI_IR_LM_MA_W
#define XPCI_IR_LM_BR_W
#define XPCI_IR_LM_BRD_W
#define XPCI_IR_LM_BRT_W
#define XPCI_IR_LM_BRANGE_W
#define XPCI_IR_PI_SERR_R
#define XPCI_IR_PI_SERR_W

Inhibit transfers on errors register bitmaps and
masks.

These bits contol whether subsequent PCI transactions are allowed after an error occurs. Bits set to 1
inhibit further transactions, while bits set to 0 allow further transactions after an error.

#define XPCI_INHIBIT_MASK
#define XPCI_INHIBIT_LOCAL_BUS_R
#define XPCI_INHIBIT_LOCAL_BUS_W
#define XPCI_INHIBIT_PCI_R
#define XPCI_INHIBIT_PCI_W

PCI configuration status & command register
bitmaps and masks.

Bit definitions for the PCI configuration status & command register. The definition of this register is
standard for PCI devices.

#define XPCI_STATCMD_IO_EN
#define XPCI_STATCMD_MEM_EN
#define XPCI_STATCMD_BUSM_EN
#define XPCI_STATCMD_SPECIALCYC
#define XPCI_STATCMD_MEMWR_INV_EN
#define XPCI_STATCMD_VGA_SNOOP_EN
#define XPCI_STATCMD_PARITY
#define XPCI_STATCMD_STEPPING
#define XPCI_STATCMD_SERR_EN
#define XPCI_STATCMD_BACK_EN
#define XPCI_STATCMD_INT_DISABLE
#define XPCI_STATCMD_INT_STATUS
#define XPCI_STATCMD_66MHZ_CAP
#define XPCI_STATCMD_MPERR
#define XPCI_STATCMD_DEVSEL_MSK
#define XPCI_STATCMD_DEVSEL_FAST
#define XPCI_STATCMD_DEVSEL_MED

#define XPCI_STATCMD_TGTABRT_SIG
#define XPCI_STATCMD_TGTABRT_RCV
#define XPCI_STATCMD_MSTABRT_RCV
#define XPCI_STATCMD_SERR_SIG
#define XPCI_STATCMD_PERR_DET
#define XPCI_STATCMD_ERR_MASK

V3 core transaction status register bitmaps and
masks.

Bit definitions for the V3 core transaction status register. This register consists of status information on
V3 core transactions.

#define XPCI_STATV3_MASK
#define XPCI_STATV3_DATA_XFER
#define XPCI_STATV3_TRANS_END
#define XPCI_STATV3_NORM_TERM
#define XPCI_STATV3_TGT_TERM
#define XPCI_STATV3_DISC_WODATA
#define XPCI_STATV3_DISC_WDATA
#define XPCI_STATV3_TGT_ABRT
#define XPCI_STATV3_MASTER_ABRT
#define XPCI_STATV3_PCI_RETRY_R
#define XPCI_STATV3_PCI_RETRY_W
#define XPCI_STATV3_WRITE_BUSY

Bus number and subordinate bus number register
bitmaps and masks

#define XPCI_BUSNO_BUS_MASK
#define XPCI_BUSNO_SUBBUS_MASK

Local bus master address register bitmaps and
masks

Bit definitions for the local bus master address definition register. This register defines the meaning of
the address stored in the local bus master read (XPCI_LMA_R_OFFSET) and master write error
(XPCI_LMA_W_OFFSET) registers.

#define XPCI_LMADDR_MASK
#define XPCI_LMADDR_SERR_R
#define XPCI_LMADDR_PERR_R
#define XPCI_LMADDR_TA_R
#define XPCI_LMADDR_SERR_W
#define XPCI_LMADDR_PERR_W
#define XPCI_LMADDR_TA_W
#define XPCI_LMADDR_MA_W
#define XPCI_LMADDR_BR_W
#define XPCI_LMADDR_BRD_W
#define XPCI_LMADDR_BRT_W
#define XPCI_LMADDR_BRANGE_W

PCI error address definition bitmaps and masks

Bit definitions for the PCI address definition register. This register defines the meaning of the address
stored in the PCI read error address (XPCI_PIA_R_OFFSET) and PCI write error address
(XPCI_PIA_W_OFFSET) registers.

#define XPCI_PIADDR_MASK
#define XPCI_PIADDR_ERRACK_R
#define XPCI_PIADDR_ERRACK_W
#define XPCI_PIADDR_RETRY_W
#define XPCI_PIADDR_TIMEOUT_W
#define XPCI_PIADDR_RANGE_W

PCI configuration header offsets

Defines the offsets in the standard PCI configuration header

#define XPCI_HDR_VENDOR
#define XPCI_HDR_DEVICE
#define XPCI_HDR_COMMAND
#define XPCI_HDR_STATUS
#define XPCI_HDR_REVID
#define XPCI_HDR_CLASSCODE
#define XPCI_HDR_CACHE_LINE_SZ
#define XPCI_HDR_LATENCY
#define XPCI_HDR_TYPE
#define XPCI_HDR_BIST
#define XPCI_HDR_BAR0
#define XPCI_HDR_BAR1
#define XPCI_HDR_BAR2
#define XPCI_HDR_BAR3
#define XPCI_HDR_BAR4
#define XPCI_HDR_BAR5
#define XPCI_HDR_CARDBUS_PTR
#define XPCI_HDR_SUB_VENDOR
#define XPCI_HDR_SUB_DEVICE
#define XPCI_HDR_ROM_BASE
#define XPCI_HDR_CAP_PTR
#define XPCI_HDR_INT_LINE
#define XPCI_HDR_INT_PIN
#define XPCI_HDR_MIN_GNT
#define XPCI_HDR_MAX_LAT

PCI BAR register definitions

Defines the masks and bits for the PCI XPAR_HDR_BARn registers The bridge supports the first three
BARs in the PCI configuration header

#define XPCI_HDR_NUM_BAR

#define XPCI_HDR_BAR_ADDR_MASK
#define XPCI_HDR_BAR_PREFETCH_YES
#define XPCI_HDR_BAR_PREFETCH_NO
#define XPCI_HDR_BAR_TYPE_MASK
#define XPCI_HDR_BAR_TYPE_BELOW_4GB
#define XPCI_HDR_BAR_TYPE_BELOW_1MB
#define XPCI_HDR_BAR_TYPE_ABOVE_4GB
#define XPCI_HDR_BAR_TYPE_RESERVED
#define XPCI_HDR_BAR_SPACE_IO
#define XPCI_HDR_BAR_SPACE_MEMORY

DMA type constants

Defines the types of DMA engines

#define XPCI_DMA_TYPE_NONE
#define XPCI_DMA_TYPE_SIMPLE
#define XPCI_DMA_TYPE_SG

Defines

#define XPci_mReset(BaseAddress)
#define XPci_mIntrGlobalEnable(BaseAddress)
#define XPci_mIntrGlobalDisable(BaseAddress)
#define XPci_mIntrEnable(BaseAddress, Mask)
#define XPci_mIntrDisable(BaseAddress, Mask)
#define XPci_mIntrClear(BaseAddress, Mask)
#define XPci_mIntrReadIER(BaseAddress)
#define XPci_mIntrReadISR(BaseAddress)
#define XPci_mIntrWriteISR(BaseAddress, Mask)
#define XPci_mIntrReadIPR(BaseAddress)
#define XPci_mIntrReadID(BaseAddress)
#define XPci_mIntrPciEnable(BaseAddress, Mask)
#define XPci_mIntrPciDisable(BaseAddress, Mask)
#define XPci_mIntrPciClear(BaseAddress, Mask)
#define XPci_mIntrPciReadIER(BaseAddress)

#define XPci_mIntrPciReadISR(BaseAddress)
#define XPci_mIntrPciWriteISR(BaseAddress, Mask)
#define XPci_mReadReg(BaseAddress, RegOffset)
#define XPci_mWriteReg(BaseAddress, RegOffset, Data)
#define XPci_mConfigIn(BaseAddress, ConfigAddress, ConfigData)
#define XPci_mConfigOut(BaseAddress, ConfigAddress, ConfigData)
#define XPci_mAckSend(BaseAddress, Vector)
#define XPci_mAckRead(BaseAddress)
#define XPci_mSpecialCycle(BaseAddress, Data)
#define XPci_mLocal2Pci(LocalAddr, TO)
#define XPci_mPci2Local(PciAddr, TO)

Define Documentation

#define XPCI_BUSNO_BUS_MASK

 Mask for bus number

#define XPCI_BUSNO_OFFSET

 bus/subordinate bus numbers

#define XPCI_BUSNO_SUBBUS_MASK

 Mask for subordinate bus no

#define XPCI_CAR_OFFSET

 Config addr reg (port)

#define XPCI_CDR_OFFSET

 Config command data

#define XPCI_DMA_TYPE_NONE

 No DMA

#define XPCI_DMA_TYPE_SG

 Scatter-gather DMA

#define XPCI_DMA_TYPE_SIMPLE

 Simple DMA

#define XPCI_HDR_BAR0

 Base address 0

#define XPCI_HDR_BAR1

 Base address 1

#define XPCI_HDR_BAR2

 Base address 2

#define XPCI_HDR_BAR3

 Base address 3

#define XPCI_HDR_BAR4

 Base address 4

#define XPCI_HDR_BAR5

 Base address 5

#define XPCI_HDR_BAR_ADDR_MASK

 Base address mask

#define XPCI_HDR_BAR_PREFETCH_NO

 Range is not prefetchable

#define XPCI_HDR_BAR_PREFETCH_YES

 Range is prefetchable

#define XPCI_HDR_BAR_SPACE_IO

 IO space indicator

#define XPCI_HDR_BAR_SPACE_MEMORY

 Memory space indicator

#define XPCI_HDR_BAR_TYPE_ABOVE_4GB

 Locate anywhere above 4GB

#define XPCI_HDR_BAR_TYPE_BELOW_1MB

 Reserved in PCI 2.2

#define XPCI_HDR_BAR_TYPE_BELOW_4GB

 Locate anywhere below 4GB

#define XPCI_HDR_BAR_TYPE_MASK

 Memory type mask

#define XPCI_HDR_BAR_TYPE_RESERVED

 Reserved

#define XPCI_HDR_BIST

 Built in self test

#define XPCI_HDR_CACHE_LINE_SZ

 Cache line size

#define XPCI_HDR_CAP_PTR

 Capabilities pointer

#define XPCI_HDR_CARDBUS_PTR

 Cardbus CIS pointer

#define XPCI_HDR_CLASSCODE

 Class code

#define XPCI_HDR_COMMAND

 Command register

#define XPCI_HDR_DEVICE

 Device ID

#define XPCI_HDR_INT_LINE

 Interrupt line

#define XPCI_HDR_INT_PIN

 Interrupt pin

#define XPCI_HDR_LATENCY

 Latency timer

#define XPCI_HDR_MAX_LAT

 Priority level request

#define XPCI_HDR_MIN_GNT

 Timeslice request

#define XPCI_HDR_NUM_BAR

 Number of BARs in the PCI header

#define XPCI_HDR_REVID

 Revision ID

#define XPCI_HDR_ROM_BASE

 Expansion ROM base address

#define XPCI_HDR_STATUS

 Status register

#define XPCI_HDR_SUB_DEVICE

 Subsystem ID

#define XPCI_HDR_SUB_VENDOR

 Subsystem Vendor ID

#define XPCI_HDR_TYPE

 Header type

#define XPCI_HDR_VENDOR

 Vendor ID

#define XPCI_IAR_OFFSET

 PCI interrupt ack

#define XPCI_INHIBIT_LOCAL_BUS_R

 Local bus master reads

#define XPCI_INHIBIT_LOCAL_BUS_W

 Local bus mater writes

#define XPCI_INHIBIT_MASK

 Mask for all bits defined below

#define XPCI_INHIBIT_OFFSET

 Inhibit transfers on errors

#define XPCI_INHIBIT_PCI_R

 PCI initiator reads

#define XPCI_INHIBIT_PCI_W

 PCI initiator writes

#define XPCI_IR_LM_BR_W

 Local bus master burst write retry

#define XPCI_IR_LM_BRANGE_W

 Local bus master burst write range

#define XPCI_IR_LM_BRD_W

 Local bus master burst write retry disconnect

#define XPCI_IR_LM_BRT_W

 Local bus master burst write retry timeout

#define XPCI_IR_LM_MA_W

 Local bus master abort write

#define XPCI_IR_LM_PERR_R

 Local bus master read PERR

#define XPCI_IR_LM_PERR_W

 Local bus master write PERR

#define XPCI_IR_LM_SERR_R

 Local bus master read SERR

#define XPCI_IR_LM_SERR_W

 Local bus master write SERR

#define XPCI_IR_LM_TA_R

 Local bus master read target abort

#define XPCI_IR_LM_TA_W

 Local bus master write target abort

#define XPCI_IR_MASK

 Mask of all bits

#define XPCI_IR_PI_SERR_R

 PCI initiator read SERR

#define XPCI_IR_PI_SERR_W

 PCI initiator write SERR

#define XPCI_LMA_R_OFFSET

 Local bus master read error address

#define XPCI_LMA_W_OFFSET

 Local bus master write error address

#define XPCI_LMADDR_BR_W

 Master burst write retry

#define XPCI_LMADDR_BRANGE_W

 Master burst write range

#define XPCI_LMADDR_BRD_W

 Master burst write retry disconnect

#define XPCI_LMADDR_BRT_W

 Master burst write retry timeout

#define XPCI_LMADDR_MA_W

 Master abort write

#define XPCI_LMADDR_MASK

 Mask of all bits

#define XPCI_LMADDR_OFFSET

 Local bus master address definition

#define XPCI_LMADDR_PERR_R

 Master read PERR

#define XPCI_LMADDR_PERR_W

 Master write PERR

#define XPCI_LMADDR_SERR_R

 Master read SERR

#define XPCI_LMADDR_SERR_W

 Master write SERR

#define XPCI_LMADDR_TA_R

 Master read target abort

#define XPCI_LMADDR_TA_W

 Master write target abort

#define XPci_mAckRead(BaseAddress)

Read the contents of the PCI interrupt acknowledge vector register.

C-style signature: Xuint32 XPci_mAckRead(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
System dependent interrupt vector.

Note:
None

#define XPci_mAckSend(BaseAddress,
Vector)

Generate a PCI interrupt ackowledge bus cycle with the given vector.

C-style signature: void XPci_mAckSend(Xuint32 BaseAddress, Xuint32 Vector)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the interrupt vector to place on the PCI bus.

Returns:
None

Note:
None

#define XPci_mConfigIn(BaseAddress,
ConfigAddress,
ConfigData)

Low level PCI configuration read

C-style signature: void XPci_mConfigIn(Xuint32 BaseAddress, Xuint32 ConfigAddress, Xuint32
ConfigData)

Parameters:
BaseAddress is the base address of the PCI component.
ConfigAddress is the PCI configuration space address in a packed format.
ConfigData is the data read from the ConfigAddress

Returns:
Data from configuration address

Note:
None

#define XPci_mConfigOut(BaseAddress,
ConfigAddress,
ConfigData)

Low level PCI configuration write

C-style signature: void XPci_mConfigOut(Xuint32 BaseAddress, Xuint32 ConfigAddress, Xuint32
ConfigData)

Parameters:
BaseAddress is the base address of the PCI component.
ConfigAddress is the PCI configuration space address in a packed format.
ConfigData is the data to write at the ConfigAddress

Returns:
None

Note:
None

#define XPci_mIntrClear(BaseAddress,
Mask)

Clear pending interrupts in the device interrupt status register (DISR) This is a toggle on write
register.

C-style signature: void XPci_mIntrClear(Xuint32 BaseAddress, Xuint32 Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the group of interrupts to clear. Use a logical OR of constants in

XPCI_IPIF_INT_MASK. Bits set to 1 are cleared, bits set to 0 are not affected.

Returns:
None

Note:
None

#define XPci_mIntrDisable(BaseAddress,
Mask)

Disable interrupts in the device interrupt enable register (DIER)

C-style signature: void XPci_mIntrDisable(Xuint32 BaseAddress, Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the group of interrupts to disable. Use a logical OR of constants in

XPCI_IPIF_INT_MASK. Bits set to 1 are disabled, bits set to 0 are not affected.

Returns:
None

Note:
None

#define XPci_mIntrEnable(BaseAddress,
Mask)

Enable interrupts in the device interrupt enable register (DIER)

C-style signature: void XPci_mIntrEnable(Xuint32 BaseAddress, Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the group of interrupts to enable. Use a logical OR of constants in

XPCI_IPIF_INT_MASK. Bits set to 1 are enabled, bits set to 0 are not affected.

Returns:
None

Note:
None

#define XPci_mIntrGlobalDisable(BaseAddress)

Global interrupt disable. Disable all interrupts from this core. Any interrupts enabled by
XPci_mIntrEnable() or XPci_mIntrPciEnable() are disabled, however their settings remain
unchanged.

C-style signature: void XPci_mIntrGlobalDisable(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
None

Note:
None

#define XPci_mIntrGlobalEnable(BaseAddress)

Global interrupt enable. Must be called before any interupts enabled by XPci_mIntrEnable() or
XPci_mIntrPciEnable() have any effect.

C-style signature: void XPci_mIntrGlobalEnable(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
None

Note:
None

#define XPci_mIntrPciClear(BaseAddress,
Mask)

Clear PCI specific interrupts in the interrupt status register (IISR). This is a toggle on write register.

C-style signature: void XPci_mIntrPciClear(Xuint32 BaseAddress, Xuint32 Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the group of interrupts to clear. Use a logical OR of constants in

XPCI_IR_MASK. Bits set to 1 are cleared, bits set to 0 are not affected.

Returns:
None

Note:
None

#define XPci_mIntrPciDisable(BaseAddress,
Mask)

Disable PCI specific interrupt sources in the PCI interrupt enable register (IIER)

C-style signature: void XPci_mIntrPciDisable(Xuint32 BaseAddress, Xuint32 Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the group of interrupts to disable. Bits set to 1 are disabled, bits set to 0 are

not affected. The mask is made up by OR'ing bits from XPCI_IR_MASK.

Returns:
None

Note:
None

#define XPci_mIntrPciEnable(BaseAddress,
Mask)

Enable PCI specific interrupt sources in the PCI interrupt enable register (IIER)

C-style signature: void XPci_mIntrPciEnable(Xuint32 BaseAddress, Xuint32 Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the group of interrupts to enable. Bits set to 1 are enabled, bits set to 0 are not

affected. The mask is made up by OR'ing bits from XPCI_IR_MASK.

Returns:
None

Note:
None

#define XPci_mIntrPciReadIER(BaseAddress)

Read the contents of the PCI specific interrupt enable register (IIER)

C-style signature: Xuint32 XPci_mIntrPciReadIER(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
Contents of the pending interrupt register. The mask is made up of bits defined in
XPCI_IR_MASK.

Note:
None

#define XPci_mIntrPciReadISR(BaseAddress)

Read the contents of the PCI specific interrupt status register (IISR)

C-style signature: Xuint32 XPci_mIntrPciReadISR(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
Contents of the pending interrupt register. The mask is made up of bits defined in
XPCI_IR_MASK.

Note:
None

#define XPci_mIntrPciWriteISR(BaseAddress,
Mask)

Write to the PCI interrupt status register (IISR)

C-style signature: void XPci_mIntrPciWriteISR(Xuint32 BaseAddress, Xuint32 Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the value to write to the register and is assumed to be bits or'd together from

the XPCI_IR_MASK.

Returns:
None

Note:
None

#define XPci_mIntrReadID(BaseAddress)

Read the contents of the device interrupt ID register (DIIR).

C-style signature: Xuint32 XPci_mIntrReadID(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
Value of the register.

Note:
None

#define XPci_mIntrReadIER(BaseAddress)

Read the contents of the device interrupt enable register (DIER)

C-style signature: Xuint32 XPci_mIntrReadIER(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
Value of the register.

Note:
None

#define XPci_mIntrReadIPR(BaseAddress)

Read the contents of the device interrupt pending register (DIPR).

C-style signature: Xuint32 XPci_mIntrReadIPR(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
Value of the register.

Note:
None

#define XPci_mIntrReadISR(BaseAddress)

Read the contents of the device interrupt status register (DISR)

C-style signature: Xuint32 XPci_mIntrReadISR(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
Value of the register.

Note:
None

#define XPci_mIntrWriteISR(BaseAddress,
Mask)

Write to the device interrupt status register (DISR)

C-style signature: void XPci_mIntrWriteISR(Xuint32 BaseAddress, Xuint32 Mask)

Parameters:
BaseAddress is the base address of the PCI component.
Mask is the value to write to the register and is assumed to be bits or'd together from

the XPCI_IPIF_INT_MASK.

Returns:
None

Note:
None

#define XPci_mLocal2Pci(LocalAddr,
TO)

Convert local bus address to a PCI address

C-style signature: Xuint32 XPci_mLocal2Pci(Xuint32 LocalAddress, Xuint32 TranslationOffset)

Parameters:
LocalAddress is the local address to find the equivalent PCI address for.
TO is the translation offset to apply

Returns:
Address in PCI space

Note:
IPIFBAR_n, IPIFHIGHADDR_n, and IPIFBAR2PCI_n, defined in xparameters.h, are
defined for each BAR. To make a proper conversion, LocalAddress must fall within range of a
IPIFBAR_n and IPIFHIGHADDR_n pair and TO specified must be the matching
IPIFBAR2PCI_n. Example: pciAddr = XPci_mLocal2Pci(XPAR_PCI_IPIFBAR_0,
XPAR_PCI_IPIFBAR2PCI_0) finds the PCI equivalent address for the local address named
by XPAR_PCI_IPIFBAR_0.

#define XPci_mPci2Local(PciAddr,
TO)

Convert PCI address to a local bus address

C-style signature: Xuint32 XPci_mPci2Local(Xuint32 PciAddress, Xuint32 TranslationOffset)

Parameters:
PciAddress is the PCI address to find the equivalent local address for.
TO is the translation offset to apply

Returns:
Address in local space

Note:
PCIBAR_n, PCIBAR_LEN_n, and PCIBAR2IPIF_n, defined in xparameters.h, are defined
for each BAR. To make a proper conversion, PciAddress must fall within range of a
PCIBAR_n and PCIBAR_LEN_n pair and TO specified must be the matching
PCIBAR2IPIF_n. Example: localAddr = XPci_mPci2Local(XPAR_PCI_PCIBAR_0,
XPAR_PCI_PCIBAR2IPIF_0) finds the local address that corresponds to

XPAR_PCI_PCIBAR_0 on the PCI bus. Note that PCIBAR_LEN is expressed as a power of
2.

#define XPci_mReadReg(BaseAddress,
RegOffset)

Low level register read function.

C-style signature: Xuint32 XPci_mReadReg(Xuint32 BaseAddress, Xuint32 RegOffset)

Parameters:
BaseAddress is the base address of the PCI component.
RegOffset is the register offset.

Returns:
Value of the register.

Note:
None

#define XPci_mReset(BaseAddress)

IPIF Low level PCI reset function. Reset the V3 core.

C-style signature: void XPci_mReset(Xuint32 BaseAddress)

Parameters:
BaseAddress is the base address of the PCI component.

Returns:
None

Note:
The IPIF RESETR register is located at (base + 0x80) instead of (base + 0x40) where the IPIF
component driver expects it. This macro adjusts for this difference.

#define XPci_mSpecialCycle(BaseAddress,
Data)

Broadcasts a message to all listening PCI targets.

C-style signature: Xuint32 XPci_mSpecialCycle(Xuint32 BaseAddress, Xuint32 Data)

Parameters:
BaseAddress is the base address of the PCI component.
Data is the data to broadcast.

Returns:
None

Note:
None

#define XPci_mWriteReg(BaseAddress,
RegOffset,
Data)

Low level register write function.

C-style signature: void XPci_mWriteReg(Xuint32 BaseAddress, Xuint32 RegOffset, Xuint32 Data)

Parameters:
BaseAddress is the base address of the PCI component.
RegOffset is the register offset.
Data is the data to write.

Returns:
None

Note:
None

#define XPCI_PIA_R_OFFSET

 PCI read error address

#define XPCI_PIA_W_OFFSET

 PCI write error address

#define XPCI_PIADDR_ERRACK_R

 PCI initiator read ErrAck

#define XPCI_PIADDR_ERRACK_W

 PCI initiator write ErrAck

#define XPCI_PIADDR_MASK

 Mask of all bits

#define XPCI_PIADDR_OFFSET

 PCI address definition

#define XPCI_PIADDR_RANGE_W

 PCI initiator write range

#define XPCI_PIADDR_RETRY_W

 PCI initiator write retries

#define XPCI_PIADDR_TIMEOUT_W

 PCI initiator write timeout

#define XPCI_PREOVRD_OFFSET

 Prefetch override

#define XPCI_SC_DATA_OFFSET

 Special cycle data

#define XPCI_SERR_R_OFFSET

 PCI initiater read SERR address

#define XPCI_SERR_W_OFFSET

 PCI initiater write SERR address

#define XPCI_STATCMD_66MHZ_CAP

 66MHz capable

#define XPCI_STATCMD_BACK_EN

 Fast back-to-back enable

#define XPCI_STATCMD_BUSM_EN

 Bus master enable

#define XPCI_STATCMD_DEVSEL_FAST

 Device select timing fast

#define XPCI_STATCMD_DEVSEL_MED

 Device select timing medium

#define XPCI_STATCMD_DEVSEL_MSK

 Device select timing mask

#define XPCI_STATCMD_ERR_MASK

 Error bits or'd together

#define XPCI_STATCMD_INT_DISABLE

 Interrupt disable (PCI v2.3)

#define XPCI_STATCMD_INT_STATUS

 Interrupt status (PCI v2.3)

#define XPCI_STATCMD_IO_EN

 I/O access enable

#define XPCI_STATCMD_MEM_EN

 Memory access enable

#define XPCI_STATCMD_MEMWR_INV_EN

 Memory write & invalidate

#define XPCI_STATCMD_MPERR

 Master data PERR detected

#define XPCI_STATCMD_MSTABRT_RCV

 Received master abort

#define XPCI_STATCMD_OFFSET

 PCI config status/command

#define XPCI_STATCMD_PARITY

 Report parity errors

#define XPCI_STATCMD_PERR_DET

 Detected PERR

#define XPCI_STATCMD_SERR_EN

 SERR report enable

#define XPCI_STATCMD_SERR_SIG

 Signaled SERR

#define XPCI_STATCMD_SPECIALCYC

 Special cycles

#define XPCI_STATCMD_STEPPING

 Stepping control

#define XPCI_STATCMD_TGTABRT_RCV

 Received target abort

#define XPCI_STATCMD_TGTABRT_SIG

 Signaled target abort

#define XPCI_STATCMD_VGA_SNOOP_EN

 VGA palette snoop enable

#define XPCI_STATV3_DATA_XFER

 Data transfer. Read only

#define XPCI_STATV3_DISC_WDATA

 Disconnect with data. Read only

#define XPCI_STATV3_DISC_WODATA

 Disconnect without data. Read only

#define XPCI_STATV3_MASK

 Mask of all bits

#define XPCI_STATV3_MASTER_ABRT

 Master abort. Read only

#define XPCI_STATV3_NORM_TERM

 Normal termination. Read only

#define XPCI_STATV3_OFFSET

 V3 core transaction status

#define XPCI_STATV3_PCI_RETRY_R

 PCI retry on read. Read/write

#define XPCI_STATV3_PCI_RETRY_W

 PCI retry on write. Read/write

#define XPCI_STATV3_TGT_ABRT

 Target abort. Read only

#define XPCI_STATV3_TGT_TERM

 Target termination. Read only

#define XPCI_STATV3_TRANS_END

 Transaction end. Read only

#define XPCI_STATV3_WRITE_BUSY

 Write busy. Read only

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XPciError Struct Reference
#include <xpci.h>

Detailed Description

XPciError is used to retrieve a snapshot of the bridge's error state. Most of the attributes of this structure
are copies of various bridge registers. See XPci_ErrorGet() and XPci_ErrorClear().

Data Fields

Xboolean IsError
Xuint32 LocalBusReason
Xuint32 PciReason
Xuint32 PciSerrReason
Xuint32 LocalBusReadAddr
Xuint32 LocalBusWriteAddr
Xuint32 PciReadAddr
Xuint32 PciWriteAddr
Xuint32 PciSerrReadAddr
Xuint32 PciSerrWriteAddr

Field Documentation

Xboolean XPciError::IsError

 Global error indicator

Xuint32 XPciError::LocalBusReadAddr

 Local bus master read error address

Xuint32 XPciError::LocalBusReason

 Local bus master address definition

Xuint32 XPciError::LocalBusWriteAddr

 Local bus master write error address

Xuint32 XPciError::PciReadAddr

 PCI read error address

Xuint32 XPciError::PciReason

 PCI address definition

Xuint32 XPciError::PciSerrReadAddr

 PCI initiater read SERR address

Xuint32 XPciError::PciSerrReason

 PCI System error definiton

Xuint32 XPciError::PciSerrWriteAddr

 PCI initiater write SERR address

Xuint32 XPciError::PciWriteAddr

 PCI write error address

The documentation for this struct was generated from the following file:

● pci/v1_00_a/src/xpci.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_config.c File
Reference

Detailed Description

Implements advanced PCI configuration functions for the XPci component. See xpci.h for more
information about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/25/02 Original code

#include "xpci.h"

Functions

XStatus XPci_ConfigIn8 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func, unsigned
Offset, Xuint8 *Data)

XStatus XPci_ConfigIn16 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,
unsigned Offset, Xuint16 *Data)

XStatus XPci_ConfigIn32 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,
unsigned Offset, Xuint32 *Data)

XStatus XPci_ConfigOut8 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,
unsigned Offset, Xuint8 Data)

XStatus XPci_ConfigOut16 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,
unsigned Offset, Xuint16 Data)

XStatus XPci_ConfigOut32 (XPci *InstancePtr, unsigned Bus, unsigned Device, unsigned Func,
unsigned Offset, Xuint32 Data)

Function Documentation

XStatus XPci_ConfigIn16 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint16 * Data

)

Perform a 16 bit read transaction in PCI configuration space. Together, the Bus, Device, Func, &
Offset form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.
Data is the data read from the target.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid

address.

Note:
None

XStatus XPci_ConfigIn32 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint32 * Data

)

Perform a 32 bit read transaction in PCI configuration space. Together, the Bus, Device, Func, &
Offset form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.
Data is the data read from the target.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid

address.

Note:
None

XStatus XPci_ConfigIn8 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint8 * Data

)

Perform a 8 bit read transaction in PCI configuration space. Together, the Bus, Device, Func, &
Offset form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.
Data is the data read from the target.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XST_PCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid

address.

Note:
None

XStatus XPci_ConfigOut16 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint16 Data

)

Perform a 16 bit write transaction in PCI configuration space. Together, the Bus, Device, Func, &
Offset form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.

Returns:
❍ XST_SUCCESS Operation was successfull.

❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid
address.

Note:
None

XStatus XPci_ConfigOut32 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint32 Data

)

Perform a 32 bit write transaction in PCI configuration space. Together, the Bus, Device, Func, &
Offset form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid

address.

Note:
None

XStatus XPci_ConfigOut8 (XPci * InstancePtr,
unsigned Bus,
unsigned Device,
unsigned Func,
unsigned Offset,
Xuint8 Data

)

Perform a 8 bit write transaction in PCI configuration space. Together, the Bus, Device, Func, &
Offset form the address of the PCI target to access.

Parameters:
InstancePtr is the PCI component to operate on.
Bus is the target PCI Bus #.
Device is the target device number.
Func is the target device's function number.
Offset is the target device's configuration space I/O offset to address.

Returns:
❍ XST_SUCCESS Operation was successfull.
❍ XPCI_INVALID_ADDRESS One of Bus, Device, Func, or Offset form an invalid

address.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_v3.c File Reference

Detailed Description

Implements V3 core processing functions for the XPci component. See xpci.h for more information
about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/25/02 Original code

#include "xpci.h"

Functions

Xuint32 XPci_V3StatusCommandGet (XPci *InstancePtr)
Xuint32 XPci_V3TransactionStatusGet (XPci *InstancePtr)

void XPci_V3TransactionStatusClear (XPci *InstancePtr, Xuint32 Data)

Function Documentation

Xuint32 XPci_V3StatusCommandGet (XPci * InstancePtr)

Read the contents of the V3 bridge's status & command register. This same register can be retrieved
by a PCI configuration access. The register can be written only with a PCI configuration access.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Contents of the V3 bridge's status and command register

Note:
None

void XPci_V3TransactionStatusClear (XPci * InstancePtr,
Xuint32 Data

)

Clear status bits in the V3 bridge's transaction status register. The contents of this register can be
decoded using XPCI_STATV3_* constants defined in xpci_l.h.

Parameters:
InstancePtr is the PCI component to operate on.
Data is the contents to write to the register. Or XPCI_STATV3_* constants for those

bits to be cleared. Bits in the register that are read-only are not affected.

Note:
None

Xuint32 XPci_V3TransactionStatusGet (XPci * InstancePtr)

Read the contents of the V3 bridge's transaction status register. The contents of this register can be
decoded using XPCI_STATV3_* constants defined in xpci_l.h.

Parameters:
InstancePtr is the PCI component to operate on.

Returns:
Contents of the V3 bridge's transaction status register.

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_selftest.c File
Reference

Detailed Description

Implements self test for the XPci component. See xpci.h for more information about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 03/25/02 Original code

#include "xpci.h"

Functions

XStatus XPci_SelfTest (XPci *InstancePtr)

Function Documentation

XStatus XPci_SelfTest (XPci * InstancePtr)

Run a self-test on the driver/device. This includes the following tests:

● Configuration read of the bridge device and vendor ID.

Parameters:
InstancePtr is a pointer to the XPci instance to be worked on. This parameter must have been

previously initialized with XPci_Initialize().

Returns:
❍ XST_SUCCESS If test passed
❍ XST_FAILURE If test failed

Note:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb.h File Reference

Detailed Description

This component contains the implementation of the XPlbArb component. It is the driver for the PLB (Processor Local
Bus) Arbiter. The arbiter performs bus arbitration on the PLB transactions.

This driver allows the user to access the PLB Arbiter registers to support the handling of bus errors and other access errors
and determine an appropriate solution if possible.

The Arbiter Hardware generates an interrupt in error conditions which is not handled by the driver directly. It is the
application's responsibility to attach to the appropriate interrupt with a handler which then calls functions provided by this
driver to determine the cause of the error and take the necessary actions to correct the situation.

Hardware Features

The Xilinx PLB Arbiter is a soft IP core designed for Xilinx FPGAs and contains the following features:

● PLB address and data steering support for up to eight masters. Number of PLB masters is configurable via a design
parameter

● 64-bit and/or 32-bit support for masters and slaves
● PLB address pipelining
● PLB arbitration support for up to eight masters. Number of PLB masters is configurable via a design parameter
● Three cycle arbitration
● Four levels of dynamic master request priority
● PLB watchdog timer
● PLB architecture compliant

Device Configuration

The device can be configured in various ways during the FPGA implementation process. The configuration data for each
device is contained in xplbarb_g.c. A table is defined where each entry contains configuration information for a device.
This information includes such things as the base address of the DCR mapped device, and the number of masters on the
bus.

Note:
This driver is not thread-safe. Thread safety must be guaranteed by the layer above this driver if there is a need to
access the device from multiple threads.

The Arbiter registers reside on the DCR address bus.

Any and all outstanding errors are cleared in the initialization function.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- --
 1.00a ecm 12/7/01 First release
 1.01a rpm 05/13/02 Updated to match hw version, publicized LookupConfig

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XPlbArb
struct XPlbArb_Config

Functions

XStatus XPlbArb_Initialize (XPlbArb *InstancePtr, Xuint16 DeviceId)
void XPlbArb_Reset (XPlbArb *InstancePtr)

XPlbArb_Config * XPlbArb_LookupConfig (Xuint16 DeviceId)
Xboolean XPlbArb_IsError (XPlbArb *InstancePtr)

void XPlbArb_ClearErrors (XPlbArb *InstancePtr, Xuint8 Master)
Xuint32 XPlbArb_GetErrorStatus (XPlbArb *InstancePtr, Xuint8 Master)
Xuint32 XPlbArb_GetErrorAddress (XPlbArb *InstancePtr)
Xuint8 XPlbArb_GetNumMasters (XPlbArb *InstancePtr)

void XPlbArb_EnableInterrupt (XPlbArb *InstancePtr)
void XPlbArb_DisableInterrupt (XPlbArb *InstancePtr)

XStatus XPlbArb_SelfTest (XPlbArb *InstancePtr, Xuint32 TestAddress)

Function Documentation

void XPlbArb_ClearErrors (XPlbArb * InstancePtr,
Xuint8 Master

)

Clears the Errors for the specified master

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of masters - 1 on the bus

Returns:
None.

Note:
None.

void XPlbArb_DisableInterrupt (XPlbArb * InstancePtr)

Disables the interrupt output from the arbiter

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
None

Note:
The Arbiter hardware generates interrupts in error conditions. These interrupts are not handled by the driver
directly. It is the application's responsibility to attach to the appropriate interrupt source with a handler which
then calls functions provided by this driver to determine the cause of the error and take the necessary actions to
correct the situation.

void XPlbArb_EnableInterrupt (XPlbArb * InstancePtr)

Enables the interrupt output from the arbiter

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
None.

Note:
The Arbiter hardware generates interrupts in error conditions. These interrupts are not handled by the driver
directly. It is the application's responsibility to attach to the appropriate interrupt source with a handler which
then calls functions provided by this driver to determine the cause of the error and take the necessary actions to
correct the situation.

Xuint32 XPlbArb_GetErrorAddress (XPlbArb * InstancePtr)

Returns the PLB Address where the most recent error occured. If there isn't an outstanding error, the last address in
error is returned. 0x00000000 is the initial value coming out of reset.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
Address where error causing access occurred

Note:
Calling XPlbArb_IsError() is recommended to confirm that an error has occurred prior to calling this function
to ensure that the data in the error address register is relevant.

Xuint32 XPlbArb_GetErrorStatus (XPlbArb * InstancePtr,
Xuint8 Master

)

Returns the Error status for the specified master. These are bit masks.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of masters on the bus

Returns:
The current error status for the requested master on the PLB. The status is a bit-mask that can contain the
following bit values:

 XPA_DRIVING_BEAR_MASK Indicates that an error has occurred and
 this master is driving the error address
 XPA_ERROR_READ_MASK Indicates the error was a read error (it
 is a write error otherwise).
 XPA_ERROR_STATUS_LOCK_MASK Indicates the error status and address
 are locked and cannot be overwritten.
 XPA_PEAR_SIZE_MASK Size of access that caused error
 XPA_PEAR_TYPE_MASK Type of access that caused error

Note:
None.

Xuint8 XPlbArb_GetNumMasters (XPlbArb * InstancePtr)

Returns the number of masters associated with the arbiter.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
The number of masters. This is a number from 1 to the maximum of 32.

Note:
The value returned from this call needs to be adjusted if it is to be used as the argument for other calls since the
masters are numbered from 0 and this function returns values starting at 1.

XStatus XPlbArb_Initialize (XPlbArb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XPlbArb instance. Looks up the configuration for the given device instance and initialize the
instance structure.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

DeviceId is the unique id of the device controlled by this XPlbArb component.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the requested device is not found

Note:
None.

Xboolean XPlbArb_IsError (XPlbArb * InstancePtr)

Returns XTRUE is there is an error outstanding

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
Boolean XTRUE if there is an error, XFALSE if there is no current error.

Note:
None.

XPlbArb_Config* XPlbArb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table XPlbArb_ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to look for.

Returns:
A pointer to the configuration data for the device, or XNULL if no match is found.

Note:
None.

void XPlbArb_Reset (XPlbArb * InstancePtr)

Forces a software reset to occur in the arbiter. Disables interrupts in the process.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
None.

Note:
Disables interrupts in the process.

XStatus XPlbArb_SelfTest (XPlbArb * InstancePtr,
Xuint32 TestAddress

)

Runs a self-test on the driver/device.

This tests reads the PACR to verify that the proper value is there.

XST_SUCCESS is returned if expected value is there, XST_PLBARB_FAIL_SELFTEST is returned otherwise.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

TestAddress is a location that could cause an error on read, not used - user definable for hw specific
implementations.

Returns:
XST_SUCCESS if successful, or XST_PLBARB_FAIL_SELFTEST if the driver fails the self test.

Note:

None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XPlbArb Struct Reference
#include <xplbarb.h>

Detailed Description

The XPlbArb driver instance data. The user is required to allocate a variable of this type for every PLB
arbiter device in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● plbarb/v1_01_a/src/xplbarb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb.h
Go to the documentation of this file.

00001 /* $Id: xplbarb.h,v 1.2 2002/06/26 22:58:36 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file plbarb/v1_01_a/src/xplbarb.h
00026 *
00027 * This component contains the implementation of the XPlbArb component. It is
the
00028 * driver for the PLB (Processor Local Bus) Arbiter. The arbiter performs bus
00029 * arbitration on the PLB transactions.
00030 *
00031 * This driver allows the user to access the PLB Arbiter registers to support
00032 * the handling of bus errors and other access errors and determine an
00033 * appropriate solution if possible.
00034 *
00035 * The Arbiter Hardware generates an interrupt in error conditions which is not
00036 * handled by the driver directly. It is the application's responsibility to
00037 * attach to the appropriate interrupt with a handler which then calls functions
00038 * provided by this driver to determine the cause of the error and take the
00039 * necessary actions to correct the situation.
00040 *
00041 * Hardware Features

00042 *
00043 * The Xilinx PLB Arbiter is a soft IP core designed for Xilinx FPGAs and
contains
00044 * the following features:
00045 * - PLB address and data steering support for up to eight masters. Number of
00046 * PLB masters is configurable via a design parameter
00047 * - 64-bit and/or 32-bit support for masters and slaves
00048 * - PLB address pipelining
00049 * - PLB arbitration support for up to eight masters. Number of PLB masters is
00050 * configurable via a design parameter
00051 * - Three cycle arbitration
00052 * - Four levels of dynamic master request priority
00053 * - PLB watchdog timer
00054 * - PLB architecture compliant
00055 *
00056 * Device Configuration
00057 *
00058 * The device can be configured in various ways during the FPGA implementation
00059 * process. The configuration data for each device is contained in xplbarb_g.c.
00060 * A table is defined where each entry contains configuration information for a
00061 * device. This information includes such things as the base address of the DCR
00062 * mapped device, and the number of masters on the bus.
00063 *
00064 * @note
00065 *
00066 * This driver is not thread-safe. Thread safety must be guaranteed by the layer
00067 * above this driver if there is a need to access the device from multiple
00068 * threads.
00069 *

00070 * The Arbiter registers reside on the DCR address bus.
00071 *

00072 * Any and all outstanding errors are cleared in the initialization function.
00073 *
00074 * <pre>
00075 * MODIFICATION HISTORY:
00076 *
00077 * Ver Who Date Changes
00078 * ----- ---- -------- --
00079 * 1.00a ecm 12/7/01 First release
00080 * 1.01a rpm 05/13/02 Updated to match hw version, publicized LookupConfig
00081 * </pre>
00082 *
00083 ***/
00084
00085 #ifndef XPLBARB_H /* prevent circular inclusions */
00086 #define XPLBARB_H /* by using protection macros */
00087
00088 /***************************** Include Files ********************************/
00089 #include "xbasic_types.h"

00090 #include "xstatus.h"

00091
00092 /************************** Constant Definitions ****************************/

00093
00094 /**************************** Type Definitions ******************************/
00095
00096 /**
00097 * This typedef contains configuration information for the device. This
00098 * information would typically be extracted from Configuration ROM (CROM).
00099 */
00100 typedef struct

00101 {
00102 Xuint16 DeviceId; /**< Unique ID of device */

00103 Xuint32 BaseAddress; /**< Register base address */

00104 Xuint8 NumMasters; /**< Number of masters on the bus */

00105 } XPlbArb_Config;

00106
00107 /**
00108 * The XPlbArb driver instance data. The user is required to allocate a
00109 * variable of this type for every PLB arbiter device in the system. A pointer
00110 * to a variable of this type is then passed to the driver API functions.
00111 */
00112 typedef struct

00113 {
00114 Xuint32 BaseAddress; /* Base address of registers */

00115 Xuint32 IsReady; /* Device is initialized and ready */

00116 Xuint8 NumMasters; /* number of masters for this arbiter */

00117 } XPlbArb;

00118
00119
00120
00121 /***************** Macros (Inline Functions) Definitions ********************/
00122
00123
00124 /************************** Function Prototypes *****************************/
00125
00126
00127 /*
00128 * Required functions in xplbarb.c
00129 */
00130
00131 /*
00132 * Initialization Functions
00133 */
00134 XStatus XPlbArb_Initialize(XPlbArb *InstancePtr, Xuint16 DeviceId);

00135 void XPlbArb_Reset(XPlbArb *InstancePtr);

00136 XPlbArb_Config *XPlbArb_LookupConfig(Xuint16 DeviceId);

00137
00138 /*
00139 * Access Functions
00140 */
00141 Xboolean XPlbArb_IsError(XPlbArb *InstancePtr);

00142 void XPlbArb_ClearErrors(XPlbArb *InstancePtr, Xuint8 Master);

00143

00144 Xuint32 XPlbArb_GetErrorStatus(XPlbArb *InstancePtr, Xuint8 Master);

00145 Xuint32 XPlbArb_GetErrorAddress(XPlbArb *InstancePtr);

00146
00147 /*
00148 * Configuration
00149 */
00150 Xuint8 XPlbArb_GetNumMasters(XPlbArb *InstancePtr);

00151 void XPlbArb_EnableInterrupt(XPlbArb *InstancePtr);

00152 void XPlbArb_DisableInterrupt(XPlbArb *InstancePtr);

00153
00154 /*
00155 * Self-test functions in xplbarb_selftest.c
00156 */
00157 XStatus XPlbArb_SelfTest(XPlbArb *InstancePtr, Xuint32 TestAddress);

00158
00159 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XPlbArb_Config Struct Reference
#include <xplbarb.h>

Detailed Description

This typedef contains configuration information for the device. This information would typically be
extracted from Configuration ROM (CROM).

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint8 NumMasters

Field Documentation

Xuint32 XPlbArb_Config::BaseAddress

 Register base address

Xuint16 XPlbArb_Config::DeviceId

 Unique ID of device

Xuint8 XPlbArb_Config::NumMasters

 Number of masters on the bus

The documentation for this struct was generated from the following file:

● plbarb/v1_01_a/src/xplbarb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb.c File Reference

Detailed Description

Contains required functions for the XPlbArb component. See xplbarb.h for more information.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- --
 1.00a ecm 12/7/01 First release
 1.01a rpm 05/13/02 Updated to match hw version, publicized LookupConfig

#include "xstatus.h"

#include "xparameters.h"

#include "xplbarb.h"

#include "xplbarb_i.h"

#include "xio.h"

#include "xio_dcr.h"

Functions

XStatus XPlbArb_Initialize (XPlbArb *InstancePtr, Xuint16 DeviceId)
Xboolean XPlbArb_IsError (XPlbArb *InstancePtr)

void XPlbArb_ClearErrors (XPlbArb *InstancePtr, Xuint8 Master)
Xuint32 XPlbArb_GetErrorStatus (XPlbArb *InstancePtr, Xuint8 Master)
Xuint32 XPlbArb_GetErrorAddress (XPlbArb *InstancePtr)
Xuint8 XPlbArb_GetNumMasters (XPlbArb *InstancePtr)

void XPlbArb_EnableInterrupt (XPlbArb *InstancePtr)
void XPlbArb_DisableInterrupt (XPlbArb *InstancePtr)
void XPlbArb_Reset (XPlbArb *InstancePtr)

XPlbArb_Config * XPlbArb_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XPlbArb_ClearErrors (XPlbArb * InstancePtr,
Xuint8 Master

)

Clears the Errors for the specified master

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of masters - 1 on the bus

Returns:
None.

Note:
None.

void XPlbArb_DisableInterrupt (XPlbArb * InstancePtr)

Disables the interrupt output from the arbiter

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
None

Note:
The Arbiter hardware generates interrupts in error conditions. These interrupts are not handled by the driver
directly. It is the application's responsibility to attach to the appropriate interrupt source with a handler which
then calls functions provided by this driver to determine the cause of the error and take the necessary actions to
correct the situation.

void XPlbArb_EnableInterrupt (XPlbArb * InstancePtr)

Enables the interrupt output from the arbiter

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
None.

Note:
The Arbiter hardware generates interrupts in error conditions. These interrupts are not handled by the driver
directly. It is the application's responsibility to attach to the appropriate interrupt source with a handler which
then calls functions provided by this driver to determine the cause of the error and take the necessary actions to
correct the situation.

Xuint32 XPlbArb_GetErrorAddress (XPlbArb * InstancePtr)

Returns the PLB Address where the most recent error occured. If there isn't an outstanding error, the last address in
error is returned. 0x00000000 is the initial value coming out of reset.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
Address where error causing access occurred

Note:
Calling XPlbArb_IsError() is recommended to confirm that an error has occurred prior to calling this function
to ensure that the data in the error address register is relevant.

Xuint32 XPlbArb_GetErrorStatus (XPlbArb * InstancePtr,
Xuint8 Master

)

Returns the Error status for the specified master. These are bit masks.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Master of which the indicated error is to be cleared, valid range is 0 - the number of masters on the bus

Returns:
The current error status for the requested master on the PLB. The status is a bit-mask that can contain the
following bit values:

 XPA_DRIVING_BEAR_MASK Indicates that an error has occurred and
 this master is driving the error address

 XPA_ERROR_READ_MASK Indicates the error was a read error (it
 is a write error otherwise).
 XPA_ERROR_STATUS_LOCK_MASK Indicates the error status and address
 are locked and cannot be overwritten.
 XPA_PEAR_SIZE_MASK Size of access that caused error
 XPA_PEAR_TYPE_MASK Type of access that caused error

Note:
None.

Xuint8 XPlbArb_GetNumMasters (XPlbArb * InstancePtr)

Returns the number of masters associated with the arbiter.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
The number of masters. This is a number from 1 to the maximum of 32.

Note:
The value returned from this call needs to be adjusted if it is to be used as the argument for other calls since the
masters are numbered from 0 and this function returns values starting at 1.

XStatus XPlbArb_Initialize (XPlbArb * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XPlbArb instance. Looks up the configuration for the given device instance and initialize the
instance structure.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

DeviceId is the unique id of the device controlled by this XPlbArb component.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the requested device is not found

Note:
None.

Xboolean XPlbArb_IsError (XPlbArb * InstancePtr)

Returns XTRUE is there is an error outstanding

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
Boolean XTRUE if there is an error, XFALSE if there is no current error.

Note:
None.

XPlbArb_Config* XPlbArb_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table XPlbArb_ConfigTable contains the
configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to look for.

Returns:
A pointer to the configuration data for the device, or XNULL if no match is found.

Note:
None.

void XPlbArb_Reset (XPlbArb * InstancePtr)

Forces a software reset to occur in the arbiter. Disables interrupts in the process.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

Returns:
None.

Note:
Disables interrupts in the process.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb_i.h
Go to the documentation of this file.

00001 /* $Id: xplbarb_i.h,v 1.2 2002/06/26 22:58:36 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file plbarb/v1_01_a/src/xplbarb_i.h
00026 *
00027 * This file contains data which is shared between files and internal to the
00028 * XPlbArb component. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ecm 02/28/02 First release
00036 * 1.01a rpm 05/13/02 Updated to match hw version, moved identifiers
00037 * to xplbarb_l.h
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XPLBARB_I_H /* prevent circular inclusions */

00043 #define XPLBARB_I_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046 #include "xplbarb_l.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 /**************************** Type Definitions *******************************/
00051
00052 /***************** Macros (Inline Functions) Definitions *********************/
00053
00054 /************************** Function Prototypes ******************************/
00055
00056 /******************************* Variables ***********************************/
00057
00058 extern XPlbArb_Config XPlbArb_ConfigTable[];

00059
00060
00061 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb_i.h File
Reference

Detailed Description

This file contains data which is shared between files and internal to the XPlbArb component. It is
intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 02/28/02 First release
 1.01a rpm 05/13/02 Updated to match hw version, moved identifiers
 to xplbarb_l.h

#include "xplbarb_l.h"

Go to the source code of this file.

Variables

XPlbArb_Config XPlbArb_ConfigTable []

Variable Documentation

XPlbArb_Config XPlbArb_ConfigTable[] ()

 The PLB Arbiter configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb_l.h File
Reference

Detailed Description

This file contains internal identifiers and low-level macros that can be used to access the device directly.
See xplbarb.h for a description of the high-level driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.01a rpm 05/10/02 First release

#include "xbasic_types.h"

#include "xio.h"

#include "xio_dcr.h"

Go to the source code of this file.

Defines

#define XPlbArb_mGetPesrMerrReg(BaseAddress)
#define XPlbArb_mSetPesrMerrReg(BaseAddress, Mask)
#define XPlbArb_mGetPesrMDriveReg(BaseAddress)
#define XPlbArb_mGetPesrRnwReg(BaseAddress)
#define XPlbArb_mGetPesrLockReg(BaseAddress)

#define XPlbArb_mGetPearAddrReg(BaseAddress)
#define XPlbArb_mGetPearByteEnReg(BaseAddress)
#define XPlbArb_mGetControlReg(BaseAddress)
#define XPlbArb_mEnableInterrupt(BaseAddress)
#define XPlbArb_mDisableInterrupt(BaseAddress)
#define XPlbArb_mReset(BaseAddress)

Define Documentation

#define XPlbArb_mDisableInterrupt(BaseAddress)

Disable interrupts in the bridge. Preserve the contents of the ctrl register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XPlbArb_mEnableInterrupt(BaseAddress)

Enable interrupts in the bridge. Preserve the contents of the ctrl register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XPlbArb_mGetControlReg(BaseAddress)

Get the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit control register contents.

Note:
None.

#define XPlbArb_mGetPearAddrReg(BaseAddress)

Get the erorr address (or PEAR), which is the address that just caused the error.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit error address.

Note:
None.

#define XPlbArb_mGetPearByteEnReg(BaseAddress)

Get the erorr address byte enable register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit error address byte enable register contents.

Note:
None.

#define XPlbArb_mGetPesrLockReg(BaseAddress)

Get the value of the lock bit register, which indicates whether the master has locked the error
registers.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the PESR Lock error register.

Note:
None.

#define XPlbArb_mGetPesrMDriveReg(BaseAddress)

Get the master driving the error, if any.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the PESR Master driving error register.

Note:
None.

#define XPlbArb_mGetPesrMerrReg(BaseAddress)

Get the error status register.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the error status register.

Note:
None.

#define XPlbArb_mGetPesrRnwReg(BaseAddress)

Get the value of the Read-Not-Write register, which indicates whether the error is a read error or write
error.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value of the PESR RNW error register.

Note:
None.

#define XPlbArb_mReset(BaseAddress)

Reset the bridge. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XPlbArb_mSetPesrMerrReg(BaseAddress,
Mask)

Set the error status register.

Parameters:
BaseAddress is the base address of the device
Mask is the 32-bit value to write to the error status register.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb_l.h
Go to the documentation of this file.

00001 /* $Id: xplbarb_l.h,v 1.3 2002/07/26 20:25:30 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file plbarb/v1_01_a/src/xplbarb_l.h
00026 *
00027 * This file contains internal identifiers and low-level macros that can be
00028 * used to access the device directly. See xplbarb.h for a description of
00029 * the high-level driver.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.01a rpm 05/10/02 First release
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XPLBARB_L_H /* prevent circular inclusions */
00042 #define XPLBARB_L_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048 #include "xio_dcr.h" /* DCR only, no choice */

00049
00050 /************************** Constant Definitions *****************************/
00051
00052 /* PLB Arbiter Register offsets - DCR bus */
00053
00054 #define XPA_PESR_MERR_OFFSET 0x00 /* Master error register */
00055
00056 #define XPA_PESR_MDRIVE_OFFSET 0x01 /* Master driving error status */
00057 #define XPA_PESR_READ_OFFSET 0x02 /* set if read error,
00058 * clear if write error */
00059 #define XPA_PESR_LCK_ERR_OFFSET 0x03 /* error status locked if set */
00060 #define XPA_PEAR_ADDR_OFFSET 0x04 /* addesss of error */
00061 #define XPA_PEAR_BYTE_EN_OFFSET 0x05 /* byte lane(s) where error occurred
*/
00062 #define XPA_PEAR_SIZE_TYPE_OFFSET 0x06 /* size/type of error that occurred
*/
00063 #define XPA_PACR_OFFSET 0x07 /* control register */
00064
00065 /* PACR Register masks */
00066
00067 #define XPA_PACR_ENABLE_INTR_MASK 0x80000000 /* set to enable interrupts */
00068 #define XPA_PACR_SOFTWARE_RESET_MASK 0x40000000 /* set to force reset, */
00069 #define XPA_PACR_TEST_ENABLE_MASK 0x20000000 /* set to allow testing,
00070 * clear otherwise */
00071
00072 /* PEAR Size Register masks */
00073
00074 #define XPA_PEAR_SIZE_MASK 0x000000F0 /* size of access that
00075 * caused error */
00076 #define XPA_PEAR_TYPE_MASK 0x0000000E /* type of access that
00077 * caused error */
00078
00079 /* PLB Arbiter Register Masks */
00080
00081 #define XPA_DRIVING_BEAR_MASK 0x80000000 /* timeout error occurred */
00082 #define XPA_ERROR_READ_MASK 0x40000000 /* set if read error,
00083 * clear if write error */
00084 #define XPA_ERROR_STATUS_LOCK_MASK 0x20000000 /* status is locked in register
*/
00085
00086 /**************************** Type Definitions *******************************/
00087
00088 /***************** Macros (Inline Functions) Definitions *********************/
00089
00090 /* Define the appropriate I/O access method for the arbiter currently only
00091 * DCR

00092 */
00093 #define XPlbArb_In32 XIo_DcrIn
00094 #define XPlbArb_Out32 XIo_DcrOut
00095
00096 /***
00097 *
00098 * Low-level driver macros and functions. The list below provides signatures
00099 * to help the user use the macros.
00100 *
00101 * Xuint32 XPlbArb_mGetPesrMerrReg(Xuint32 BaseAddress)
00102 * void XPlbArb_mSetPesrMerrReg(Xuint32 BaseAddress, Mask)
00103 *
00104 * Xuint32 XPlbArb_mGetPesrMDriveReg(Xuint32 BaseAddress)
00105 * Xuint32 XPlbArb_mGetPesrRnwReg(Xuint32 BaseAddress)
00106 * Xuint32 XPlbArb_mGetPesrLockReg(Xuint32 BaseAddress)
00107 *
00108 * Xuint32 XPlbArb_mGetPearAddrReg(Xuint32 BaseAddress)
00109 * Xuint32 XPlbArb_mGetPearByteEnReg(Xuint32 BaseAddress)
00110 * Xuint32 XPlbArb_mGetControlReg(Xuint32 BaseAddress)
00111 *
00112 * void XPlbArb_mEnableInterrupt(Xuint32 BaseAddress)
00113 * void XPlbArb_mDisableInterrupt(Xuint32 BaseAddress)
00114 * void XPlbArb_mReset(Xuint32 BaseAddress)
00115 *
00116 ***/
00117
00118 /**/
00119 /**
00120 *
00121 * Get the error status register.
00122 *
00123 * @param BaseAddress is the base address of the device
00124 *
00125 * @return The 32-bit value of the error status register.
00126 *
00127 * @note None.
00128 *
00129 ***/
00130 #define XPlbArb_mGetPesrMerrReg(BaseAddress) \

00131 XPlbArb_In32((BaseAddress) + XPA_PESR_MERR_OFFSET)
00132
00133
00134 /**/
00135 /**
00136 *
00137 * Set the error status register.
00138 *
00139 * @param BaseAddress is the base address of the device
00140 * @param Mask is the 32-bit value to write to the error status register.
00141 *
00142 * @note None.
00143 *

00144 ***/
00145 #define XPlbArb_mSetPesrMerrReg(BaseAddress, Mask) \

00146 XPlbArb_Out32((BaseAddress) + XPA_PESR_MERR_OFFSET, (Mask))
00147
00148
00149 /**/
00150 /**
00151 *
00152 * Get the master driving the error, if any.
00153 *
00154 * @param BaseAddress is the base address of the device
00155 *
00156 * @return The 32-bit value of the PESR Master driving error register.
00157 *
00158 * @note None.
00159 *
00160 ***/
00161 #define XPlbArb_mGetPesrMDriveReg(BaseAddress) \

00162 XPlbArb_In32((BaseAddress) + XPA_PESR_MDRIVE_OFFSET)
00163
00164
00165 /**/
00166 /**
00167 *
00168 * Get the value of the Read-Not-Write register, which indicates whether the
00169 * error is a read error or write error.
00170 *
00171 * @param BaseAddress is the base address of the device
00172 *
00173 * @return The 32-bit value of the PESR RNW error register.
00174 *
00175 * @note None.
00176 *
00177 ***/
00178 #define XPlbArb_mGetPesrRnwReg(BaseAddress) \

00179 XPlbArb_In32((BaseAddress) + XPA_PESR_READ_OFFSET)
00180
00181
00182 /**/
00183 /**
00184 *
00185 * Get the value of the lock bit register, which indicates whether the master
00186 * has locked the error registers.
00187 *
00188 * @param BaseAddress is the base address of the device
00189 *
00190 * @return The 32-bit value of the PESR Lock error register.
00191 *
00192 * @note None.
00193 *
00194 ***/
00195 #define XPlbArb_mGetPesrLockReg(BaseAddress) \

00196 XPlbArb_In32((BaseAddress) + XPA_PESR_LCK_ERR_OFFSET)
00197
00198
00199 /**/
00200 /**
00201 *
00202 * Get the erorr address (or PEAR), which is the address that just caused the
00203 * error.
00204 *
00205 * @param BaseAddress is the base address of the device
00206 *
00207 * @return The 32-bit error address.
00208 *
00209 * @note None.
00210 *
00211 ***/
00212 #define XPlbArb_mGetPearAddrReg(BaseAddress) \

00213 XPlbArb_In32((BaseAddress) + XPA_PEAR_ADDR_OFFSET)
00214
00215
00216 /**/
00217 /**
00218 *
00219 * Get the erorr address byte enable register.
00220 *
00221 * @param BaseAddress is the base address of the device
00222 *
00223 * @return The 32-bit error address byte enable register contents.
00224 *
00225 * @note None.
00226 *
00227 ***/
00228 #define XPlbArb_mGetPearByteEnReg(BaseAddress) \

00229 XPlbArb_In32((BaseAddress) + XPA_PEAR_BYTE_EN_OFFSET)
00230
00231
00232 /**/
00233 /**
00234 *
00235 * Get the contents of the control register.
00236 *
00237 * @param BaseAddress is the base address of the device
00238 *
00239 * @return The 32-bit control register contents.
00240 *
00241 * @note None.
00242 *
00243 ***/
00244 #define XPlbArb_mGetControlReg(BaseAddress) \

00245 XPlbArb_In32((BaseAddress) + XPA_PACR_OFFSET)
00246
00247 /**/

00248 /**
00249 *
00250 * Enable interrupts in the bridge. Preserve the contents of the ctrl register.
00251 *
00252 * @param BaseAddress is the base address of the device
00253 *
00254 * @return None.
00255 *
00256 * @note None.
00257 *
00258 ***/
00259 #define XPlbArb_mEnableInterrupt(BaseAddress) \

00260 XPlbArb_Out32((BaseAddress) + XPA_PACR_OFFSET, \
00261 XPlbArb_In32((BaseAddress) + XPA_PACR_OFFSET) | \
00262 XPA_PACR_ENABLE_INTR_MASK)
00263
00264
00265 /**/
00266 /**
00267 *
00268 * Disable interrupts in the bridge. Preserve the contents of the ctrl register.
00269 *
00270 * @param BaseAddress is the base address of the device
00271 *
00272 * @return None.
00273 *
00274 * @note None.
00275 *
00276 ***/
00277 #define XPlbArb_mDisableInterrupt(BaseAddress) \

00278 XPlbArb_Out32((BaseAddress) + XPA_PACR_OFFSET, \
00279 XPlbArb_In32((BaseAddress) + XPA_PACR_OFFSET) & \
00280 ~XPA_PACR_ENABLE_INTR_MASK)
00281
00282
00283 /**/
00284 /**
00285 *
00286 * Reset the bridge. Preserve the contents of the control register.
00287 *
00288 * @param BaseAddress is the base address of the device
00289 *
00290 * @return None.
00291 *
00292 * @note None.
00293 *
00294 ***/
00295 #define XPlbArb_mReset(BaseAddress) \

00296 XPlbArb_Out32((BaseAddress) + XPA_PACR_OFFSET, \
00297 XPlbArb_In32((BaseAddress) + XPA_PACR_OFFSET) | \
00298 XPA_PACR_SOFTWARE_RESET_MASK)
00299

00300
00301 /************************** Function Prototypes ******************************/
00302
00303
00304 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb_selftest.c
File Reference

Detailed Description

Contains diagnostic self-test functions for the XPlbArb component. See xplbarb.h for more information
about the component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 11/16/01 First release
 1.01a rpm 05/13/02 Updated to match hw version, removed _g.h

#include "xstatus.h"

#include "xplbarb.h"

#include "xplbarb_i.h"

#include "xio_dcr.h"

Functions

XStatus XPlbArb_SelfTest (XPlbArb *InstancePtr, Xuint32 TestAddress)

Function Documentation

XStatus XPlbArb_SelfTest (XPlbArb * InstancePtr,
Xuint32 TestAddress

)

Runs a self-test on the driver/device.

This tests reads the PACR to verify that the proper value is there.

XST_SUCCESS is returned if expected value is there, XST_PLBARB_FAIL_SELFTEST is returned
otherwise.

Parameters:
InstancePtr is a pointer to the XPlbArb instance to be worked on.

TestAddress is a location that could cause an error on read, not used - user definable for hw
specific implementations.

Returns:
XST_SUCCESS if successful, or XST_PLBARB_FAIL_SELFTEST if the driver fails the self
test.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

plbarb/v1_01_a/src/xplbarb_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of PLB Arbiter devices in the
system. Each arbiter device should have an entry in this table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 11/16/01 First release
 1.01a rpm 05/13/02 Updated to match hw version, removed _g.h

#include "xparameters.h"

#include "xplbarb.h"

Variables

XPlbArb_Config XPlbArb_ConfigTable [XPAR_XPLBARB_NUM_INSTANCES]

Variable Documentation

XPlbArb_Config XPlbArb_ConfigTable[XPAR_XPLBARB_NUM_INSTANCES]

 The PLB Arbiter configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_stats.c File
Reference

Detailed Description

This file contains the statistics functions for the PS/2 driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/24/02 First release

#include "xps2.h"

#include "xps2_i.h"

Functions

void XPs2_GetStats (XPs2 *InstancePtr, XPs2Stats *StatsPtr)
void XPs2_ClearStats (XPs2 *InstancePtr)

Function Documentation

void XPs2_ClearStats (XPs2 * InstancePtr)

This function zeros the statistics for the given instance.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
None.

Note:
None.

void XPs2_GetStats (XPs2 * InstancePtr,
XPs2Stats * StatsPtr

)

This functions returns a snapshot of the current statistics in the area provided.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
StatsPtr is a pointer to a XPs2Stats structure to where the statistics are to be copied to.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2.h
Go to the documentation of this file.

00001 /* $Id: xps2.h,v 1.5 2002/06/26 20:49:18 carsten Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /***/
00023 /**
00024 *
00025 * @file ps2_ref/v1_00_a/src/xps2.h
00026 *
00027 * This driver supports the following features:
00028 *
00029 * - Polled mode
00030 * - Interrupt driven mode
00031 *
00032 * Interrupts
00033 *
00034 * The device does not have any way to disable the receiver such that the
00035 * receiver may contain unwanted data. The IP is reset driver is initialized,
00036 *
00037 * The driver defaults to no interrupts at initialization such that interrupts
00038 * must be enabled if desired. An interrupt is generated for any of the
following
00039 * conditions.
00040 *
00041 * - Data in the receiver

00042 * - Any receive status error detected
00043 * - Data byte transmitted
00044 * - Any transmit status error detected
00045 *
00046 * The application can control which interrupts are enabled using the SetOptions
00047 * function.
00048 *
00049 * In order to use interrupts, it is necessary for the user to connect the
00050 * driver interrupt handler, XPs2_InterruptHandler(), to the interrupt system of
00051 * the application. This function does not save and restore the processor
00052 * context such that the user must provide it. A handler must be set for the
00053 * driver such that the handler is called when interrupt events occur. The
00054 * handler is called from interrupt context and is designed to allow application
00055 * specific processing to be performed.
00056 *
00057 * The functions, XPs2_Send() and Ps2_Recv(), are provided in the driver to
00058 * allow data to be sent and received. They are designed to be used in polled
00059 * or interrupt modes.
00060 *
00061 * @note
00062 *
00063 * None.
00064 *
00065 * <pre>
00066 * MODIFICATION HISTORY:
00067 *
00068 * Ver Who Date Changes
00069 * ----- ---- -------- ---
00070 * 1.00a ch 06/18/02 First release
00071 * </pre>
00072 *
00073 **/
00074
00075 #ifndef XPS2_H /* prevent circular inclusions */
00076 #define XPS2_H /* by using protection macros */
00077
00078 /***************************** Include Files ********************************/
00079
00080 #include "xbasic_types.h"

00081 #include "xstatus.h"

00082 #include "xps2_l.h"

00083
00084 /************************** Constant Definitions ****************************/
00085
00086 /*
00087 * These constants specify the handler events that are passed to
00088 * a handler from the driver. These constants are not bit masks suuch that
00089 * only one will be passed at a time to the handler
00090 */
00091 #define XPS2_EVENT_RECV_DATA 1
00092 #define XPS2_EVENT_RECV_ERROR 2
00093 #define XPS2_EVENT_RECV_OVF 3

00094 #define XPS2_EVENT_SENT_DATA 4
00095 #define XPS2_EVENT_SENT_NOACK 5
00096 #define XPS2_EVENT_TIMEOUT 6
00097
00098 /*
00099 * These constants specify the errors that may be retrieved from the driver
00100 * using the XPs2_GetLastErrors function. All of them are bit masks, except
00101 * no error, such that multiple errors may be specified.
00102 */
00103 #define XPS2_ERROR_NONE 0x00
00104 #define XPS2_ERROR_WDT_TOUT_MASK 0x01
00105 #define XPS2_ERROR_TX_NOACK_MASK 0x02
00106 #define XPS2_ERROR_RX_OVF_MASK 0x08
00107 #define XPS2_ERROR_RX_ERR_MASK 0x10
00108
00109 /**************************** Type Definitions ******************************/
00110
00111 /*
00112 * This typedef contains configuration information for the device
00113 */
00114 typedef struct
00115 {
00116 Xuint16 DeviceId; /* Unique ID of device */

00117 Xuint32 BaseAddress; /* Base address of device */

00118 } XPs2_Config;
00119
00120 /*
00121 * The following data type is used to manage the buffers that are handled
00122 * when sending and receiving data in the interrupt mode
00123 */
00124 typedef struct
00125 {
00126 Xuint8 *NextBytePtr;

00127 unsigned int RequestedBytes;
00128 unsigned int RemainingBytes;
00129 } XPs2Buffer;
00130
00131 /*
00132 * This data type defines a handler which the application must define
00133 * when using interrupt mode. The handler will be called from the driver in an
00134 * interrupt context to handle application specific processing.
00135 *
00136 * @param CallBackRef is a callback reference passed in by the upper layer
00137 * when setting the handler, and is passed back to the upper layer when
00138 * the handler is called.
00139 * @param Event contains one of the event constants indicating why the handler
00140 * is being called.
00141 * @param EventData contains the number of bytes sent or received at the time
00142 * of the call.
00143 */
00144 typedef void (*XPs2_Handler)(void *CallBackRef, Xuint32 Event,

00145 unsigned int EventData);

00146 /*
00147 * PS/2 statistics
00148 */
00149 typedef struct
00150 {
00151 Xuint16 TransmitInterrupts;

00152 Xuint16 ReceiveInterrupts;

00153 Xuint16 CharactersTransmitted;

00154 Xuint16 CharactersReceived;

00155 Xuint16 ReceiveErrors;

00156 Xuint16 ReceiveOverflowErrors;

00157 Xuint16 TransmitErrors;

00158 } XPs2Stats;
00159
00160 /*
00161 * The PS/2 driver instance data. The user is required to allocate a
00162 * variable of this type for every PS/2 device in the system.
00163 * If the last byte of a message was received then call the application
00164 * handler, this code should not use an else from the previous check of
00165 * the number of bytes to receive because the call to receive the buffer
00166 * updates the bytes to receive
00167 * A pointer to a variable of this type is then passed to the driver API
00168 * functions
00169 */
00170 typedef struct
00171 {
00172 XPs2Stats Stats; /* Component Statistics */
00173 Xuint32 BaseAddress; /* Base address of device (IPIF) */

00174 Xuint32 IsReady; /* Device is initialized and ready */

00175 Xuint8 LastErrors; /* the accumulated errors */

00176
00177 XPs2Buffer SendBuffer;
00178 XPs2Buffer ReceiveBuffer;
00179
00180 XPs2_Handler Handler;
00181 void *CallBackRef; /* Callback reference for control handler */
00182 } XPs2;
00183
00184 /***************** Macros (Inline Functions) Definitions ********************/
00185
00186 /************************** Function Prototypes *****************************/
00187
00188 /*
00189 * required functions is xps2.c
00190 */
00191 XStatus XPs2_Initialize(XPs2 *InstancePtr, Xuint16 DeviceId);

00192
00193 unsigned int XPs2_Send(XPs2 *InstancePtr, Xuint8 *BufferPtr,

00194 unsigned int NumBytes);
00195 unsigned int XPs2_Recv(XPs2 *InstancePtr, Xuint8 *BufferPtr,

00196 unsigned int NumBytes);

00197 XPs2_Config *XPs2_LookupConfig(Xuint16 DeviceId);

00198
00199 /*
00200 * options functions in xps2_options.c
00201 */
00202 Xuint8 XPs2_GetLastErrors(XPs2 *InstancePtr);

00203 Xboolean XPs2_IsSending(XPs2 *InstancePtr);

00204
00205 /*
00206 * interrupt functions in xps2_intr.c
00207 */
00208 void XPs2_SetHandler(XPs2 *InstancePtr, XPs2_Handler FuncPtr,

00209 void *CallBackRef);
00210 void XPs2_InterruptHandler(XPs2 *InstancePtr);

00211 void XPs2_EnableInterrupt(XPs2 *InstancePtr);

00212 void XPs2_DisableInterrupt(XPs2 *InstancePtr);

00213
00214 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2.h File
Reference

Detailed Description

This driver supports the following features:

● Polled mode
● Interrupt driven mode

Interrupts

The device does not have any way to disable the receiver such that the receiver may contain unwanted
data. The IP is reset driver is initialized,

The driver defaults to no interrupts at initialization such that interrupts must be enabled if desired. An
interrupt is generated for any of the following conditions.

● Data in the receiver
● Any receive status error detected
● Data byte transmitted
● Any transmit status error detected

The application can control which interrupts are enabled using the SetOptions function.

In order to use interrupts, it is necessary for the user to connect the driver interrupt handler,
XPs2_InterruptHandler(), to the interrupt system of the application. This function does not save and
restore the processor context such that the user must provide it. A handler must be set for the driver such
that the handler is called when interrupt events occur. The handler is called from interrupt context and is
designed to allow application specific processing to be performed.

The functions, XPs2_Send() and Ps2_Recv(), are provided in the driver to allow data to be sent and
received. They are designed to be used in polled or interrupt modes.

Note:
None.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xps2_l.h"

Go to the source code of this file.

Data Structures

struct XPs2
struct XPs2_Config
struct XPs2Buffer
struct XPs2Stats

Functions

XStatus XPs2_Initialize (XPs2 *InstancePtr, Xuint16 DeviceId)
unsigned int XPs2_Send (XPs2 *InstancePtr, Xuint8 *BufferPtr, unsigned int NumBytes)
unsigned int XPs2_Recv (XPs2 *InstancePtr, Xuint8 *BufferPtr, unsigned int NumBytes)

XPs2_Config * XPs2_LookupConfig (Xuint16 DeviceId)
Xuint8 XPs2_GetLastErrors (XPs2 *InstancePtr)

Xboolean XPs2_IsSending (XPs2 *InstancePtr)
void XPs2_SetHandler (XPs2 *InstancePtr, XPs2_Handler FuncPtr, void *CallBackRef)
void XPs2_InterruptHandler (XPs2 *InstancePtr)

void XPs2_EnableInterrupt (XPs2 *InstancePtr)
void XPs2_DisableInterrupt (XPs2 *InstancePtr)

Function Documentation

void XPs2_DisableInterrupt (XPs2 * InstancePtr)

void XPs2_DisableInterrupt

This function disables the PS/2 interrupts.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
None.

Note:
None.

void XPs2_EnableInterrupt (XPs2 * InstancePtr)

This function enables the PS/2 interrupts.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
None.

Note:
None.

Xuint8 XPs2_GetLastErrors (XPs2 * InstancePtr)

This function returns the last errors that have occurred in the specified PS/2 port. It also clears the
errors such that they cannot be retrieved again. The errors include parity error, receive overrun error,
framing error, and break detection.

The last errors is an accumulation of the errors each time an error is discovered in the driver. A status
is checked for each received byte and this status is accumulated in the last errors.

If this function is called after receiving a buffer of data, it will indicate any errors that occurred for the
bytes of the buffer. It does not indicate which bytes contained errors.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
The last errors that occurred. The errors are bit masks that are contained in the file xps2.h and
named XPS2_ERROR_*.

Note:
None.

XStatus XPs2_Initialize (XPs2 * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific PS/2 instance such that it is ready to be used. The default operating mode of the
driver is polled mode.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
DeviceId is the unique id of the device controlled by this XPs2 instance. Passing in a

device id associates the generic XPs2 instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_NOT_FOUND if the device ID could not be found in the configuration

table

Note:
None.

void XPs2_InterruptHandler (XPs2 * InstancePtr)

This function is the interrupt handler for the PS/2 driver. It must be connected to an interrupt system
by the user such that it is called when an interrupt for any PS/2 port occurs. This function does not
save or restore the processor context such that the user must ensure this occurs.

Parameters:
InstancePtr contains a pointer to the instance of the PS/2 port that the interrupt is for.

Returns:
None.

Note:
None.

Xboolean XPs2_IsSending (XPs2 * InstancePtr)

This function determines if the specified PS/2 port is sending data. If the transmitter register is not
empty, it is sending data.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
A value of XTRUE if the transmitter is sending data, otherwise XFALSE.

Note:
None.

XPs2_Config* XPs2_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration
info for each device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found.

Note:
None.

unsigned int XPs2_Recv (XPs2 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This function will attempt to receive a specified number of bytes of data from PS/2 and store it into
the specified buffer. This function is designed for either polled or interrupt driven modes. It is non-
blocking such that it will return if no data has already received by the PS/2 port.

In a polled mode, this function will only receive 1 byte which is as much data as the receiver can
buffer. The application may need to call it repeatedly to receive a buffer. Polled mode is the default
mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue receiving data until the buffer has been received. A callback function, as specified by the
application, will be called to indicate the completion of receiving the buffer or when any receive
errors or timeouts occur. Interrupt mode must be enabled.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
BufferPtr is pointer to buffer for data to be received into
NumBytes is the number of bytes to be received. A value of zero will stop a previous receive

operation that is in progress in interrupt mode.

Returns:
The number of bytes received.

Note:

The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

unsigned int XPs2_Send (XPs2 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This functions sends the specified buffer of data to the PS/2 port in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent thorugh
PS/2. If the port is busy sending data, it will return and indicate zero bytes were sent.

In a polled mode, this function will only send 1 byte which is as much data as the transmitter can
buffer. The application may need to call it repeatedly to send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue sending data until the buffer has been sent. A callback function, as specified
by the application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
BufferPtr is pointer to a buffer of data to be sent.
NumBytes contains the number of bytes to be sent. A value of zero will stop a previous send

operation that is in progress in interrupt mode. Any data that was already put into
the transmit FIFO will be sent.

Returns:
The number of bytes actually sent.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

This function modifies shared data such that there may be a need for mutual exclusion in a
multithreaded environment

void XPs2_SetHandler (XPs2 * InstancePtr,
XPs2_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2.c File
Reference

Detailed Description

This file contains the required functions for the PS/2 driver. Refer to the header file xps2.h for more
detailed information.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release
 1.00a rmm 05/14/03 Fixed diab compiler warnings relating to asserts.

#include "xstatus.h"

#include "xparameters.h"

#include "xps2.h"

#include "xps2_i.h"

#include "xps2_l.h"

#include "xio.h"

Functions

XStatus XPs2_Initialize (XPs2 *InstancePtr, Xuint16 DeviceId)
unsigned int XPs2_Send (XPs2 *InstancePtr, Xuint8 *BufferPtr, unsigned int NumBytes)
unsigned int XPs2_Recv (XPs2 *InstancePtr, Xuint8 *BufferPtr, unsigned int NumBytes)

unsigned int XPs2_SendBuffer (XPs2 *InstancePtr)
unsigned int XPs2_ReceiveBuffer (XPs2 *InstancePtr)

XPs2_Config * XPs2_LookupConfig (Xuint16 DeviceId)

Function Documentation

XStatus XPs2_Initialize (XPs2 * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific PS/2 instance such that it is ready to be used. The default operating mode of the
driver is polled mode.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
DeviceId is the unique id of the device controlled by this XPs2 instance. Passing in a

device id associates the generic XPs2 instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_NOT_FOUND if the device ID could not be found in the configuration

table

Note:
None.

XPs2_Config* XPs2_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration
info for each device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found.

Note:
None.

unsigned int XPs2_ReceiveBuffer (XPs2 * InstancePtr)

This function receives a buffer that has been previously specified by setting up the instance variables
of the instance. This function is designed to be an internal function for the XPs2 component such that
it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function will attempt to receive a specified number of bytes of data from PS/2 and store it into
the specified buffer. This function is designed for either polled or interrupt driven modes. It is non-
blocking such that it will return if there is no data has already received.

In a polled mode, this function will only receive 1 byte which is as much data as the receiver can
buffer. The application may need to call it repeatedly to receive a buffer. Polled mode is the default
mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue until the buffer has been received. A callback function, as specified by the application, will
be called to indicate the completion of receiving the buffer or when any receive errors or timeouts
occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
The number of bytes received.

Note:
None.

unsigned int XPs2_Recv (XPs2 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This function will attempt to receive a specified number of bytes of data from PS/2 and store it into
the specified buffer. This function is designed for either polled or interrupt driven modes. It is non-
blocking such that it will return if no data has already received by the PS/2 port.

In a polled mode, this function will only receive 1 byte which is as much data as the receiver can
buffer. The application may need to call it repeatedly to receive a buffer. Polled mode is the default
mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue receiving data until the buffer has been received. A callback function, as specified by the
application, will be called to indicate the completion of receiving the buffer or when any receive
errors or timeouts occur. Interrupt mode must be enabled.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
BufferPtr is pointer to buffer for data to be received into
NumBytes is the number of bytes to be received. A value of zero will stop a previous receive

operation that is in progress in interrupt mode.

Returns:
The number of bytes received.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

unsigned int XPs2_Send (XPs2 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This functions sends the specified buffer of data to the PS/2 port in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent thorugh
PS/2. If the port is busy sending data, it will return and indicate zero bytes were sent.

In a polled mode, this function will only send 1 byte which is as much data as the transmitter can
buffer. The application may need to call it repeatedly to send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue sending data until the buffer has been sent. A callback function, as specified
by the application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
BufferPtr is pointer to a buffer of data to be sent.
NumBytes contains the number of bytes to be sent. A value of zero will stop a previous send

operation that is in progress in interrupt mode. Any data that was already put into
the transmit FIFO will be sent.

Returns:
The number of bytes actually sent.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

This function modifies shared data such that there may be a need for mutual exclusion in a
multithreaded environment

unsigned int XPs2_SendBuffer (XPs2 * InstancePtr)

This function sends a buffer that has been previously specified by setting up the instance variables of
the instance. This function is designed to be an internal function for the XPs2 component such that it
may be called from a shell function that sets up the buffer or from an interrupt handler.

This function sends the specified buffer of data to the PS/2 port in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent.

In a polled mode, this function will only send 1 byte which is as much data transmitter can buffer.
The application may need to call it repeatedly to send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue until the buffer has been sent. A callback function, as specified by the
application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
NumBytes is the number of bytes actually sent

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. The user should refer to the hardware device specification for more details of the device
operation. High-level driver functions are defined in xps2.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XPs2_mReset(BaseAddress)
#define XPs2_mGetStatus(BaseAddress)
#define XPs2_mGetIntrStatus(BaseAddress)
#define XPs2_mClearIntr(BaseAddress, ClearMask)
#define XPs2_mIsIntrEnabled(BaseAddress, EnabledMask)

#define XPs2_mEnableIntr(BaseAddress, EnableMask)
#define XPs2_mDisableIntr(BaseAddress, DisableMask)
#define XPs2_mIsReceiveEmpty(BaseAddress)
#define XPs2_mIsTransmitFull(BaseAddress)

Functions

void XPs2_SendByte (Xuint32 BaseAddress, Xuint8 Data)
Xuint8 XPs2_RecvByte (Xuint32 BaseAddress)

Define Documentation

#define XPs2_mClearIntr(BaseAddress,
ClearMask)

Clear pending interrupts.

Parameters:
BaseAddress contains the base address of the device. Bitmask for interrupts to be cleared. A

"1" clears the interrupt.

Returns:
None.

Note:
None.

#define XPs2_mDisableIntr(BaseAddress,
DisableMask)

Disable Interrupts.

Parameters:
BaseAddress contains the base address of the device. Bitmask for interrupts to be disabled.

Returns:
None.

Note:
None.

#define XPs2_mEnableIntr(BaseAddress,
EnableMask)

Enable Interrupts.

Parameters:
BaseAddress contains the base address of the device. Bitmask for interrupts to be enabled.

Returns:
None.

Note:
None.

#define XPs2_mGetIntrStatus(BaseAddress)

Read the interrupt status register.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XPs2_mGetStatus(BaseAddress)

Read the PS/2 status register.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XPs2_mIsIntrEnabled(BaseAddress,
EnabledMask)

Check for enabled interrupts.

Parameters:
BaseAddress contains the base address of the device. Bitmask for interrupts to be checked.

Returns:
XTRUE if the interrupt is enabled, XFALSE otherwise.

Note:
None.

#define XPs2_mIsReceiveEmpty(BaseAddress)

Determine if there is receive data in the receiver.

Parameters:
BaseAddress contains the base address of the device.

Returns:
XTRUE if there is receive data, XFALSE otherwise.

Note:
None.

#define XPs2_mIsTransmitFull(BaseAddress)

Determine if a byte of data can be sent with the transmitter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
XTRUE if a byte can be sent, XFALSE otherwise.

Note:
None.

#define XPs2_mReset(BaseAddress)

Reset the PS/2 port.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

Function Documentation

Xuint8 XPs2_RecvByte (Xuint32 BaseAddress)

This function receives a byte from PS/2. It operates in the polling mode and blocks until a byte of data
is received.

Parameters:
BaseAddress contains the base address of the PS/2 port.

Returns:
The data byte received by PS/2.

Note:
None.

void XPs2_SendByte (Xuint32 BaseAddress,
Xuint8 Data

)

This function sends a data byte to PS/2. This function operates in the polling mode and blocks until
the data has been put into the transmit holding register.

Parameters:
BaseAddress contains the base address of the PS/2 port.
Data contains the data byte to be sent.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_l.h
Go to the documentation of this file.

00001 /* $Id: xps2_l.h,v 1.7 2003/01/07 15:27:07 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file ps2_ref/v1_00_a/src/xps2_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xps2.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00a ch 06/18/02 First release
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XPS2_L_H /* prevent circular inclusions */

00043 #define XPS2_L_H /* by using protection macros */
00044
00045 /***************************** Include Files ********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xio.h"

00049
00050 /************************** Constant Definitions ****************************/
00051
00052 /* PS/2 register offsets */
00053 #define XPS2_RESET_OFFSET 0 /* reset register, write only */
00054 #define XPS2_STATUS_OFFSET 4 /* status register, read only */
00055 #define XPS2_RX_REG_OFFSET 8 /* receive register, read only */
00056 #define XPS2_TX_REG_OFFSET 12 /* transmit register, write only */
00057 #define XPS2_INTSTA_REG_OFFSET 16 /* int status register, read only */
00058 #define XPS2_INTCLR_REG_OFFSET 20 /* int clear register, write only */
00059 #define XPS2_INTMSET_REG_OFFSET 24 /* mask set register, read/write */
00060 #define XPS2_INTMCLR_REG_OFFSET 28 /* mask clear register, write only */
00061
00062 /* reset register bit positions */
00063 #define XPS2_CLEAR_RESET 0x00
00064 #define XPS2_RESET 0x01
00065
00066 /* status register bit positions */
00067 #define XPS2_ST_RX_FULL 0x01
00068 #define XPS2_ST_TX_FULL 0x02
00069
00070 /* interrupt register bit positions */
00071 /* used for the INTSTA, INTCLR, INTMSET, INTMCLR register */
00072 #define XPS2_INT_WDT_TOUT 0x01
00073 #define XPS2_INT_TX_NOACK 0x02
00074 #define XPS2_INT_TX_ACK 0x04
00075 #define XPS2_INT_TX_ALL 0x06
00076 #define XPS2_INT_RX_OVF 0x08
00077 #define XPS2_INT_RX_ERR 0x10
00078 #define XPS2_INT_RX_FULL 0x20
00079 #define XPS2_INT_RX_ALL 0x38
00080 #define XPS2_INT_ALL 0x3f
00081
00082 /**************************** Type Definitions ******************************/
00083
00084 /***************** Macros (Inline Functions) Definitions ********************/
00085
00086 /***
00087 *
00088 * Low-level driver macros. The list below provides signatures to help the
00089 * user use the macros.
00090 *
00091 * void XPs2_mReset(Xuint32 BaseAddress)
00092 * Xuint8 XPs2_mGetStatus(Xuint32 BaseAddress)
00093 *
00094 * Xuint8 XPs2_mGetIntrStatus(Xuint32 BaseAddress)

00095 * void XPs2_mClearIntr(Xuint32 BaseAddress, Xuint8 ClearMask)
00096 * Xboolean XPs2_mIsIntrEnabled(Xuint32 BaseAddress, Xuint8 EnabledMask)
00097 * void XPs2_mEnableIntr(Xuint32 BaseAddress, Xuint8 EnableMask)
00098 * void XPs2_mDisableIntr(Xuint32 BaseAddress, Xuint8 DisableMask)
00099 *
00100 * Xboolean XPs2_mIsReceiveEmpty(Xuint32 BaseAddress)
00101 * Xboolean XPs2_mIsTransmitFull(Xuint32 BaseAddress)
00102 *
00103 ***/
00104
00105 /**/
00106 /**
00107 * Reset the PS/2 port.
00108 *
00109 * @param BaseAddress contains the base address of the device.
00110 *
00111 * @return None.
00112 *
00113 * @note None.
00114 *
00115 **/
00116 #define XPs2_mReset(BaseAddress) \

00117 XIo_Out8(((BaseAddress) + XPS2_RESET_OFFSET), XPS2_RESET); \
00118 XIo_Out8(((BaseAddress) + XPS2_RESET_OFFSET), XPS2_CLEAR_RESET)
00119
00120 /**/
00121 /**
00122 * Read the PS/2 status register.
00123 *
00124 * @param BaseAddress contains the base address of the device.
00125 *
00126 * @return The value read from the register.
00127 *
00128 * @note None.
00129 *
00130 **/
00131 #define XPs2_mGetStatus(BaseAddress) \

00132 (XIo_In8((BaseAddress) + XPS2_STATUS_OFFSET))
00133
00134 /**/
00135 /**
00136 * Read the interrupt status register.
00137 *
00138 * @param BaseAddress contains the base address of the device.
00139 *
00140 * @return The value read from the register.
00141 *
00142 * @note None.
00143 *
00144 **/
00145 #define XPs2_mGetIntrStatus(BaseAddress) \

00146 (XIo_In8((BaseAddress) + XPS2_INTSTA_REG_OFFSET))

00147
00148 /**/
00149 /**
00150 * Clear pending interrupts.
00151 *
00152 * @param BaseAddress contains the base address of the device.
00153 * Bitmask for interrupts to be cleared. A "1" clears the interrupt.
00154 *
00155 * @return None.
00156 *
00157 * @note None.
00158 *
00159 **/
00160 #define XPs2_mClearIntr(BaseAddress, ClearMask) \

00161 XIo_Out8((BaseAddress) + XPS2_INTCLR_REG_OFFSET, (ClearMask))
00162
00163 /**/
00164 /**
00165 * Check for enabled interrupts.
00166 *
00167 * @param BaseAddress contains the base address of the device.
00168 * Bitmask for interrupts to be checked.
00169 *
00170 * @return XTRUE if the interrupt is enabled, XFALSE otherwise.
00171 *
00172 * @note None.
00173 *
00174 **/
00175 #define XPs2_mIsIntrEnabled(BaseAddress, EnabledMask) \

00176 (XIo_In8((BaseAddress) + XPS2_INTMSET_REG_OFFSET) & (EnabledMask))
00177
00178 /**/
00179 /**
00180 * Enable Interrupts.
00181 *
00182 * @param BaseAddress contains the base address of the device.
00183 * Bitmask for interrupts to be enabled.
00184 *
00185 * @return None.
00186 *
00187 * @note None.
00188 *
00189 **/
00190 #define XPs2_mEnableIntr(BaseAddress, EnableMask) \

00191 XIo_Out8((BaseAddress) + XPS2_INTMSET_REG_OFFSET, (EnableMask))
00192
00193 /**/
00194 /**
00195 * Disable Interrupts.
00196 *
00197 * @param BaseAddress contains the base address of the device.
00198 * Bitmask for interrupts to be disabled.

00199 *
00200 * @return None.
00201 *
00202 * @note None.
00203 *
00204 **/
00205 #define XPs2_mDisableIntr(BaseAddress, DisableMask) \

00206 XIo_Out8((BaseAddress) + XPS2_INTMCLR_REG_OFFSET, (DisableMask))
00207
00208 /**/
00209 /**
00210 * Determine if there is receive data in the receiver.
00211 *
00212 * @param BaseAddress contains the base address of the device.
00213 *
00214 * @return XTRUE if there is receive data, XFALSE otherwise.
00215 *
00216 * @note None.
00217 *
00218 **/
00219 #define XPs2_mIsReceiveEmpty(BaseAddress) \

00220 (!(XPs2_mGetStatus(BaseAddress) & XPS2_ST_RX_FULL))
00221
00222 /**/
00223 /**
00224 * Determine if a byte of data can be sent with the transmitter.
00225 *
00226 * @param BaseAddress contains the base address of the device.
00227 *
00228 * @return XTRUE if a byte can be sent, XFALSE otherwise.
00229 *
00230 * @note None.
00231 *
00232 **/
00233 #define XPs2_mIsTransmitFull(BaseAddress) \

00234 (XPs2_mGetStatus(BaseAddress) & XPS2_ST_TX_FULL)
00235
00236 /************************** Variable Definitions ****************************/
00237
00238 /************************** Function Prototypes *****************************/
00239
00240 void XPs2_SendByte(Xuint32 BaseAddress, Xuint8 Data);

00241 Xuint8 XPs2_RecvByte(Xuint32 BaseAddress);

00242
00243 /**/
00244
00245 #endif

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_l.c File
Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer
to the hardware device specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release

#include "xps2_l.h"

Functions

void XPs2_SendByte (Xuint32 BaseAddress, Xuint8 Data)
Xuint8 XPs2_RecvByte (Xuint32 BaseAddress)

Function Documentation

Xuint8 XPs2_RecvByte (Xuint32 BaseAddress)

This function receives a byte from PS/2. It operates in the polling mode and blocks until a byte of data
is received.

Parameters:
BaseAddress contains the base address of the PS/2 port.

Returns:
The data byte received by PS/2.

Note:
None.

void XPs2_SendByte (Xuint32 BaseAddress,
Xuint8 Data

)

This function sends a data byte to PS/2. This function operates in the polling mode and blocks until
the data has been put into the transmit holding register.

Parameters:
BaseAddress contains the base address of the PS/2 port.
Data contains the data byte to be sent.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_i.h
Go to the documentation of this file.

00001 /* $Id: xps2_i.h,v 1.2 2002/06/24 23:31:39 carsten Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file ps2_ref/v1_00_a/src/xps2_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between the files of the driver. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ch 06/18/02 First release
00036 * </pre>
00037 *
00038 **/
00039 #ifndef XPS2_I_H /* prevent circular inclusions */
00040 #define XPS2_I_H /* by using protection macros */
00041
00042 /***************************** Include Files ********************************/

00043
00044 #include "xps2.h"

00045
00046 /************************** Constant Definitions ****************************/
00047
00048 /**************************** Type Definitions ******************************/
00049
00050 /***************** Macros (Inline Functions) Definitions ********************/
00051
00052 /**
00053 *
00054 * This macro clears the statistics of the component instance. The purpose of
00055 * this macro is to allow common processing between the modules of the
00056 * component with less overhead than a function in the required module.
00057 *
00058 * @param InstancePtr is a pointer to the XPs2 instance to be worked on.
00059 *
00060 * @return
00061 *
00062 * None.
00063 *
00064 * @note
00065 *
00066 * Signature: void XPs2_mClearStats(XPs2 *InstancePtr)
00067 *
00068 ***/
00069 #define XPs2_mClearStats(InstancePtr) \
00070 { \
00071 InstancePtr->Stats.TransmitInterrupts = 0UL; \
00072 InstancePtr->Stats.ReceiveInterrupts = 0UL; \
00073 InstancePtr->Stats.CharactersTransmitted = 0UL; \
00074 InstancePtr->Stats.CharactersReceived = 0UL; \
00075 InstancePtr->Stats.ReceiveErrors = 0UL; \
00076 InstancePtr->Stats.ReceiveOverflowErrors = 0UL; \
00077 InstancePtr->Stats.TransmitErrors = 0UL; \
00078 }
00079
00080 /************************** Variable Definitions ****************************/
00081
00082 extern XPs2_Config XPs2_ConfigTable[];
00083
00084 /************************** Function Prototypes *****************************/
00085
00086 unsigned int XPs2_SendBuffer(XPs2 *InstancePtr);

00087 unsigned int XPs2_ReceiveBuffer(XPs2 *InstancePtr);

00088
00089 #endif

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_i.h File
Reference

Detailed Description

This header file contains internal identifiers, which are those shared between the files of the driver. It is
intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release

#include "xps2.h"

Go to the source code of this file.

Functions

unsigned int XPs2_SendBuffer (XPs2 *InstancePtr)
unsigned int XPs2_ReceiveBuffer (XPs2 *InstancePtr)

Function Documentation

unsigned int XPs2_ReceiveBuffer (XPs2 * InstancePtr)

This function receives a buffer that has been previously specified by setting up the instance variables
of the instance. This function is designed to be an internal function for the XPs2 component such that
it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function will attempt to receive a specified number of bytes of data from PS/2 and store it into
the specified buffer. This function is designed for either polled or interrupt driven modes. It is non-
blocking such that it will return if there is no data has already received.

In a polled mode, this function will only receive 1 byte which is as much data as the receiver can
buffer. The application may need to call it repeatedly to receive a buffer. Polled mode is the default
mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue until the buffer has been received. A callback function, as specified by the application, will
be called to indicate the completion of receiving the buffer or when any receive errors or timeouts
occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
The number of bytes received.

Note:
None.

unsigned int XPs2_SendBuffer (XPs2 * InstancePtr)

This function sends a buffer that has been previously specified by setting up the instance variables of
the instance. This function is designed to be an internal function for the XPs2 component such that it
may be called from a shell function that sets up the buffer or from an interrupt handler.

This function sends the specified buffer of data to the PS/2 port in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent.

In a polled mode, this function will only send 1 byte which is as much data transmitter can buffer.
The application may need to call it repeatedly to send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue until the buffer has been sent. A callback function, as specified by the

application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
NumBytes is the number of bytes actually sent

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_options.c File
Reference

Detailed Description

The implementation of the options functions for the PS/2 driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/24/02 First release.

#include "xps2.h"

#include "xio.h"

Functions

Xuint8 XPs2_GetLastErrors (XPs2 *InstancePtr)
Xboolean XPs2_IsSending (XPs2 *InstancePtr)

Function Documentation

Xuint8 XPs2_GetLastErrors (XPs2 * InstancePtr)

This function returns the last errors that have occurred in the specified PS/2 port. It also clears the
errors such that they cannot be retrieved again. The errors include parity error, receive overrun error,
framing error, and break detection.

The last errors is an accumulation of the errors each time an error is discovered in the driver. A status
is checked for each received byte and this status is accumulated in the last errors.

If this function is called after receiving a buffer of data, it will indicate any errors that occurred for the
bytes of the buffer. It does not indicate which bytes contained errors.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
The last errors that occurred. The errors are bit masks that are contained in the file xps2.h and
named XPS2_ERROR_*.

Note:
None.

Xboolean XPs2_IsSending (XPs2 * InstancePtr)

This function determines if the specified PS/2 port is sending data. If the transmitter register is not
empty, it is sending data.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
A value of XTRUE if the transmitter is sending data, otherwise XFALSE.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_intr.c File
Reference

Detailed Description

This file contains the functions that are related to interrupt processing for the PS/2 driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release

#include "xps2.h"

#include "xps2_i.h"

#include "xio.h"

Functions

void XPs2_SetHandler (XPs2 *InstancePtr, XPs2_Handler FuncPtr, void *CallBackRef)
void XPs2_InterruptHandler (XPs2 *InstancePtr)
void XPs2_EnableInterrupt (XPs2 *InstancePtr)
void XPs2_DisableInterrupt (XPs2 *InstancePtr)

Function Documentation

void XPs2_DisableInterrupt (XPs2 * InstancePtr)

void XPs2_DisableInterrupt

This function disables the PS/2 interrupts.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
None.

Note:
None.

void XPs2_EnableInterrupt (XPs2 * InstancePtr)

This function enables the PS/2 interrupts.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.

Returns:
None.

Note:
None.

void XPs2_InterruptHandler (XPs2 * InstancePtr)

This function is the interrupt handler for the PS/2 driver. It must be connected to an interrupt system
by the user such that it is called when an interrupt for any PS/2 port occurs. This function does not
save or restore the processor context such that the user must ensure this occurs.

Parameters:
InstancePtr contains a pointer to the instance of the PS/2 port that the interrupt is for.

Returns:
None.

Note:
None.

void XPs2_SetHandler (XPs2 * InstancePtr,
XPs2_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XPs2 instance to be worked on.
FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

rapidio/v1_00_a/src/xrapidio_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 12/13/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XRapidIo_mReadReg(BaseAddress, RegOffset)
#define XRapidIo_mWriteReg(BaseAddress, RegOffset, Data)
#define XRapidIo_mReset(BaseAddress)
#define XRapidIo_mGetLinkStatus(BaseAddress)

Functions

unsigned XRapidIo_SendPkt (Xuint32 BaseAddress, Xuint8 *PktPtr, unsigned ByteCount)
unsigned XRapidIo_RecvPkt (Xuint32 BaseAddress, Xuint8 *PktPtr)

Define Documentation

#define XRapidIo_mGetLinkStatus(BaseAddress)

Get the status of the PHY link.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XRapidIo_mReadReg(BaseAddress,
RegOffset)

Read a 32-bit value from a register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the offset of the register to read

Returns:
The 32-bit register value

Note:
None.

#define XRapidIo_mReset(BaseAddress)

Reset the device using the IPIF reset register. Also reset the static bin counters.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XRapidIo_mWriteReg(BaseAddress,
RegOffset,
Data)

Write a 32-bit value to a register.

Parameters:
BaseAddress is the base address of the device
RegOffset is the offset of the register to write
Data is the value to write

Returns:
None.

Note:
None.

Function Documentation

unsigned XRapidIo_RecvPkt (Xuint32 BaseAddress,
Xuint8 * PktPtr

)

Receive a packet. Wait for a packet to arrive.

Parameters:
BaseAddress is the base address of the device
PktPtr is a pointer to a 64-bit word-aligned buffer where the packet will be stored.

Returns:
The size, in bytes, of the packet received, or 0 if the incoming buffer is not 64-bit address
aligned.

Note:
TODO: enforce 64-bit address alignment?

unsigned XRapidIo_SendPkt (Xuint32 BaseAddress,
Xuint8 * PktPtr,
unsigned ByteCount

)

Send a RapidIO packet. The byte count is the total packet size, including header. This function blocks
waiting for the packet to be transmitted.

Parameters:
BaseAddress is the base address of the device
PktPtr is a pointer to 64-bit word-aligned packet
ByteCount is the number of bytes in the packet

Returns:
The number of bytes sent. If an error occurs, such as the data is not 64-bit word aligned, a
value of 0 is returned.

Note:
The data is written to the packet buffer in 32-bit chunks.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

rapidio/v1_00_a/src/xrapidio_l.h
Go to the documentation of this file.

00001 /* $Id: xrapidio_l.h,v 1.1 2002/12/19 17:28:46 moleres Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file rapidio/v1_00_a/src/xrapidio_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rpm 12/13/02 First release
00036 * </pre>
00037 *
00038 ***/
00039
00040 #ifndef XRAPIDIO_L_H /* prevent circular inclusions */
00041 #define XRAPIDIO_L_H /* by using protection macros */
00042

00043 /***************************** Include Files ********************************/
00044
00045 #include "xbasic_types.h"

00046 #include "xio.h"

00047
00048 /************************** Constant Definitions ****************************/
00049
00050 /*
00051 * RapidIO Register offsets
00052 */
00053 #define XRI_DGER_OFFSET 0x1C /* Device global interrupt enable */
00054 #define XRI_IISR_OFFSET 0x20 /* IP interrupt status */
00055 #define XRI_IIER_OFFSET 0x28 /* IP interrupt enable */
00056 #define XRI_DRST_OFFSET 0x40 /* Device reset */
00057
00058 #define XRI_LINK_OFFSET 0x50 /* link status */
00059 #define XRI_TXL_OFFSET 0x100 /* transmit length */
00060 #define XRI_TXS_OFFSET 0x120 /* transmit status */
00061 #define XRI_RXL_OFFSET 0x200 /* receive length */
00062 #define XRI_RXS_OFFSET 0x220 /* receive status */
00063
00064 #define XRI_PHY_MTCE_BLK_OFFSET 0x1000 /* PHY Port mtce block */
00065 #define XRI_PHY_LINK_TMOUT_OFFSET 0x1020 /* PHY Port link timeout CSR */
00066 #define XRI_PHY_RESP_TMOUT_OFFSET 0x1024 /* PHY Port response timeout CSR */
00067 #define XRI_PHY_GENERAL_OFFSET 0x103C /* PHY Port general CSR */
00068 #define XRI_PHY_PORT0_OFFSET 0x1040 /* PHY Port 0 */
00069 #define XRI_PHY_PORT0_ERR_OFFSET 0x1058 /* PHY Port 0 error and status CSR
*/
00070 #define XRI_PHY_PORT0_CTL_OFFSET 0x105C /* PHY Port 0 control CSR */
00071
00072 #define XRI_TX_OFFSET 0x2000 /* transmit packet buffer */
00073 #define XRI_RX_OFFSET 0x3000 /* receive packet buffer */
00074
00075 /*
00076 * Define the size (and therefore offset) of each transmit or receive bin.
00077 * There are technically 64 double words in each bin, but the device reserves
00078 * the last one for its own internal use.
00079 */
00080 #define XRI_BIN_SIZE_WORDS 64 /* Number of 64-bit words */
00081 #define XRI_BIN_SIZE_BYTES 512 /* Number of bytes */
00082 #define XRI_BIN_NUMBER_OF 8 /* Number of bins */
00083
00084 /*
00085 * Link status (LINK) bit masks (8-bit register)
00086 */
00087 #define XRI_LINK_TX_READY_MASK 0x80 /* PHY Tx link ready */
00088 #define XRI_LINK_RX_READY_MASK 0x40 /* PHY Rx link ready */
00089 #define XRI_LINK_RX_RESET_MASK 0x20 /* PHY Rx detecting a bus reset request
*/
00090 #define XRI_LINK_TX_NEXT_MASK 0x07 /* Next tx packet bin used by PHY */
00091
00092 /*

00093 * Transmit Length (TXL) bit masks (32-bit register)
00094 */
00095 #define XRI_TXL_COMPLETE_MASK 0x80000000 /* Packet is complete (not partial)
*/
00096 #define XRI_TXL_UNUSED1_MASK 0x7F000000 /* Unused */
00097 #define XRI_TXL_BIN_MASK 0x00FC0000 /* Packet bin number */
00098 #define XRI_TXL_BIN_SHIFT 18 /* Packet bin number shift */
00099 #define XRI_TXL_UNUSED2_MASK 0x0003FE00 /* Unused */
00100 #define XRI_TXL_LENGTH_MASK 0x000001FF /* Packet length */
00101
00102 /*
00103 * Transmit Status (TXS) bit masks (32-bit register)
00104 */
00105 #define XRI_TXS_VALID_MASK 0x80000000 /* Packet valid (not empty) */
00106 #define XRI_TXS_BIN_MASK 0x0000003F /* Packet bin number */
00107
00108 /*
00109 * Receive Length (RXL) bit masks (32-bit register)
00110 */
00111 #define XRI_RXL_COMPLETE_MASK 0x80000000 /* Packet is complete (not partial)
*/
00112 #define XRI_RXL_UNUSED1_MASK 0x7F000000 /* Unused */
00113 #define XRI_RXL_BIN_MASK 0x00FC0000 /* Packet bin number */
00114 #define XRI_RXL_BIN_SHIFT 18 /* Packet bin number shift */
00115 #define XRI_RXL_UNUSED2_MASK 0x0003FE00 /* Unused */
00116 #define XRI_RXL_LENGTH_MASK 0x000001FF /* Packet length */
00117
00118 /*
00119 * Receive Status (RXS) bit masks (32-bit register)
00120 */
00121 #define XRI_RXS_VALID_MASK 0x00000001 /* Packet valid (not empty) */
00122
00123 /*
00124 * IPIF IP Interrupt Enable/Status Register bit masks.
00125 */
00126 #define XRI_IIXR_RX_RESET_MASK 0x00000001 /* Rx link reset request from PHY
*/
00127 #define XRI_IIXR_RX_PACKET_MASK 0x00000002 /* Rx packet available (Rx Length
00128 * FIFO is non-empty) */
00129 #define XRI_IIXR_TX_ACK_MASK 0x00000004 /* Tx ack available (Tx Status
00130 * FIFO is non-empty) */
00131 #define XRI_IIXR_PHY_MGMT_MASK 0x00000008 /* PHY management interrupt */
00132 #define XRI_IIXR_RXL_OVER_MASK 0x00000010 /* Rx length FIFO overrun */
00133 #define XRI_IIXR_TXS_UNDER_MASK 0x00000020 /* Tx status FIFO underrun */
00134 #define XRI_IIXR_TXL_OVER_MASK 0x00000040 /* Tx length FIFO overrun */
00135
00136 /**************************** Type Definitions ******************************/
00137
00138
00139 /***************** Macros (Inline Functions) Definitions ********************/
00140
00141 /***
00142 *

00143 * Low-level driver macros. The list below provides signatures
00144 * to help the user use the macros.
00145 *
00146 * Xuint32 XRapidIo_mReadReg(Xuint32 BaseAddress, int RegOffset)
00147 * void XRapidIo_mWriteReg(Xuint32 BaseAddress, int RegOffset, Xuint32 Data)
00148 *
00149 * void XRapidIo_mReset(Xuint32 BaseAddress)
00150 * Xuint8 XRapidIo_mGetLinkStatus(Xuint32 BaseAddress)
00151 *
00152 * unsigned XRapidIo_SendPkt(Xuint32 BaseAddress, Xuint8 *PktPtr,
00153 * unsigned ByteCount)
00154 * unsigned XRapidIo_RecvPkt(Xuint32 BaseAddress, Xuint8 *PktPtr)
00155 *
00156 ***/
00157
00158 /**/
00159 /**
00160 *
00161 * Read a 32-bit value from a register.
00162 *
00163 * @param BaseAddress is the base address of the device
00164 * @param RegOffset is the offset of the register to read
00165 *
00166 * @return The 32-bit register value
00167 *
00168 * @note None.
00169 *
00170 ***/
00171 #define XRapidIo_mReadReg(BaseAddress, RegOffset) \

00172 XIo_In32((BaseAddress) + (RegOffset))
00173
00174
00175 /**/
00176 /**
00177 *
00178 * Write a 32-bit value to a register.
00179 *
00180 * @param BaseAddress is the base address of the device
00181 * @param RegOffset is the offset of the register to write
00182 * @param Data is the value to write
00183 *
00184 * @return None.
00185 *
00186 * @note None.
00187 *
00188 ***/
00189 #define XRapidIo_mWriteReg(BaseAddress, RegOffset, Data) \

00190 XIo_Out32((BaseAddress) + (RegOffset), (Data))
00191
00192
00193 /**/
00194 /**

00195 *
00196 * Reset the device using the IPIF reset register. Also reset the static bin
00197 * counters.
00198 *
00199 * @param BaseAddress is the base address of the device
00200 *
00201 * @return None.
00202 *
00203 * @note None.
00204 *
00205 ***/
00206 #define XRapidIo_mReset(BaseAddress) \

00207 { \
00208 extern int XRapidIo_TxBin; \
00209 XIo_Out32((BaseAddress) + XRI_DRST_OFFSET, 0x0000000A); \
00210 XRapidIo_TxBin = 0; \
00211 }
00212
00213 /**/
00214 /**
00215 *
00216 * Get the status of the PHY link.
00217 *
00218 * @param BaseAddress is the base address of the device
00219 *
00220 * @return None.
00221 *
00222 * @note None.
00223 *
00224 ***/
00225 #define XRapidIo_mGetLinkStatus(BaseAddress) \

00226 XIo_In8((BaseAddress) + XRI_LINK_OFFSET)
00227
00228
00229 /************************** Variable Definitions *****************************/
00230
00231
00232 /************************** Function Prototypes ******************************/
00233
00234 unsigned XRapidIo_SendPkt(Xuint32 BaseAddress, Xuint8 *PktPtr,

00235 unsigned ByteCount);
00236 unsigned XRapidIo_RecvPkt(Xuint32 BaseAddress, Xuint8 *PktPtr);

00237
00238
00239 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

rapidio/v1_00_a/src/xrapidio_l.c File
Reference

Detailed Description

This file contains low-level polled functions to send and receive RapidIO frames.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 12/13/02 First release

#include "xrapidio_l.h"

#include "xio.h"

Functions

unsigned XRapidIo_SendPkt (Xuint32 BaseAddress, Xuint8 *PktPtr, unsigned ByteCount)
unsigned XRapidIo_RecvPkt (Xuint32 BaseAddress, Xuint8 *PktPtr)

Function Documentation

unsigned XRapidIo_RecvPkt (Xuint32 BaseAddress,
Xuint8 * PktPtr

)

Receive a packet. Wait for a packet to arrive.

Parameters:
BaseAddress is the base address of the device
PktPtr is a pointer to a 64-bit word-aligned buffer where the packet will be stored.

Returns:
The size, in bytes, of the packet received, or 0 if the incoming buffer is not 64-bit address
aligned.

Note:
TODO: enforce 64-bit address alignment?

unsigned XRapidIo_SendPkt (Xuint32 BaseAddress,
Xuint8 * PktPtr,
unsigned ByteCount

)

Send a RapidIO packet. The byte count is the total packet size, including header. This function blocks
waiting for the packet to be transmitted.

Parameters:
BaseAddress is the base address of the device
PktPtr is a pointer to 64-bit word-aligned packet
ByteCount is the number of bytes in the packet

Returns:
The number of bytes sent. If an error occurs, such as the data is not 64-bit word aligned, a
value of 0 is returned.

Note:
The data is written to the packet buffer in 32-bit chunks.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_l.h File
Reference

Detailed Description

Defines identifiers and low-level macros/functions for the XSysAce driver. These identifiers include
register offsets and bit masks. A high-level driver interface is defined in xsysace.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/14/02 work in progress

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Register Offsets

System ACE register offsets

#define XSA_BMR_OFFSET
#define XSA_SR_OFFSET
#define XSA_ER_OFFSET
#define XSA_CLR_OFFSET

#define XSA_MLR_OFFSET
#define XSA_SCCR_OFFSET
#define XSA_VR_OFFSET
#define XSA_CR_OFFSET
#define XSA_FSR_OFFSET
#define XSA_DBR_OFFSET

Status Values

Status Register masks

#define XSA_SR_CFGLOCK_MASK
#define XSA_SR_MPULOCK_MASK
#define XSA_SR_CFGERROR_MASK
#define XSA_SR_CFCERROR_MASK
#define XSA_SR_CFDETECT_MASK
#define XSA_SR_DATABUFRDY_MASK
#define XSA_SR_DATABUFMODE_MASK
#define XSA_SR_CFGDONE_MASK
#define XSA_SR_RDYFORCMD_MASK
#define XSA_SR_CFGMODE_MASK
#define XSA_SR_CFGADDR_MASK
#define XSA_SR_CFBSY_MASK
#define XSA_SR_CFRDY_MASK
#define XSA_SR_CFDWF_MASK
#define XSA_SR_CFDSC_MASK
#define XSA_SR_CFDRQ_MASK
#define XSA_SR_CFCORR_MASK
#define XSA_SR_CFERR_MASK

Error Values

Error Register masks.

#define XSA_ER_CARD_RESET
#define XSA_ER_CARD_READY

#define XSA_ER_CARD_READ
#define XSA_ER_CARD_WRITE
#define XSA_ER_SECTOR_READY
#define XSA_ER_CFG_ADDR
#define XSA_ER_CFG_FAIL
#define XSA_ER_CFG_READ
#define XSA_ER_CFG_INSTR
#define XSA_ER_CFG_INIT
#define XSA_ER_RESERVED
#define XSA_ER_BAD_BLOCK
#define XSA_ER_UNCORRECTABLE
#define XSA_ER_SECTOR_ID
#define XSA_ER_ABORT
#define XSA_ER_GENERAL

Sector Cound/Command Values

Sector Count Command Register masks

#define XSA_SCCR_COUNT_MASK
#define XSA_SCCR_RESET_MASK
#define XSA_SCCR_IDENTIFY_MASK
#define XSA_SCCR_READDATA_MASK
#define XSA_SCCR_WRITEDATA_MASK
#define XSA_SCCR_ABORT_MASK
#define XSA_SCCR_CMD_MASK

Control Values

Control Register masks

#define XSA_CR_FORCELOCK_MASK
#define XSA_CR_LOCKREQ_MASK
#define XSA_CR_FORCECFGADDR_MASK
#define XSA_CR_FORCECFGMODE_MASK
#define XSA_CR_CFGMODE_MASK

#define XSA_CR_CFGSTART_MASK
#define XSA_CR_CFGSEL_MASK
#define XSA_CR_CFGRESET_MASK
#define XSA_CR_DATARDYIRQ_MASK
#define XSA_CR_ERRORIRQ_MASK
#define XSA_CR_CFGDONEIRQ_MASK
#define XSA_CR_RESETIRQ_MASK
#define XSA_CR_CFGPROG_MASK
#define XSA_CR_CFGADDR_MASK
#define XSA_CR_CFGADDR_SHIFT

FAT Status

FAT filesystem status masks. The first valid partition of the CF is a FAT partition.

#define XSA_FAT_VALID_BOOT_REC
#define XSA_FAT_VALID_PART_REC
#define XSA_FAT_12_BOOT_REC
#define XSA_FAT_12_PART_REC
#define XSA_FAT_16_BOOT_REC
#define XSA_FAT_16_PART_REC
#define XSA_FAT_12_CALC
#define XSA_FAT_16_CALC

Defines

#define XSA_BMR_16BIT_MASK
#define XSA_CLR_LBA_MASK
#define XSA_MLR_LBA_MASK
#define XSA_DATA_BUFFER_SIZE
#define XSA_CF_SECTOR_SIZE
#define XSysAce_mGetControlReg(BaseAddress)
#define XSysAce_mSetControlReg(BaseAddress, Data)
#define XSysAce_mOrControlReg(BaseAddress, Data)
#define XSysAce_mAndControlReg(BaseAddress, Data)
#define XSysAce_mGetErrorReg(BaseAddress)

#define XSysAce_mGetStatusReg(BaseAddress)
#define XSysAce_mSetCfgAddr(BaseAddress, Address)
#define XSysAce_mWaitForLock(BaseAddress)
#define XSysAce_mEnableIntr(BaseAddress, Mask)
#define XSysAce_mDisableIntr(BaseAddress, Mask)
#define XSysAce_mIsReadyForCmd(BaseAddress)
#define XSysAce_mIsMpuLocked(BaseAddress)
#define XSysAce_mIsCfgDone(BaseAddress)
#define XSysAce_mIsIntrEnabled(BaseAddress)

Functions

int XSysAce_ReadSector (Xuint32 BaseAddress, Xuint32 SectorId, Xuint8 *BufferPtr)
int XSysAce_WriteSector (Xuint32 BaseAddress, Xuint32 SectorId, Xuint8 *BufferPtr)

Xuint32 XSysAce_RegRead32 (Xuint32 Address)
Xuint16 XSysAce_RegRead16 (Xuint32 Address)

void XSysAce_RegWrite32 (Xuint32 Address, Xuint32 Data)
void XSysAce_RegWrite16 (Xuint32 Address, Xuint16 Data)

int XSysAce_ReadDataBuffer (Xuint32 BaseAddress, Xuint8 *BufferPtr, int NumBytes)
int XSysAce_WriteDataBuffer (Xuint32 BaseAddress, Xuint8 *BufferPtr, int NumBytes)

Define Documentation

#define XSA_BMR_16BIT_MASK

 16-bit access to ACE controller

#define XSA_BMR_OFFSET

 Bus mode (BUSMODEREG)

#define XSA_CF_SECTOR_SIZE

 Number of bytes in a CF sector

#define XSA_CLR_LBA_MASK

 Config LBA Register - address mask

#define XSA_CLR_OFFSET

 Config LBA (CFGLBAREG)

#define XSA_CR_CFGADDR_MASK

 Config address mask

#define XSA_CR_CFGADDR_SHIFT

 Config address shift

#define XSA_CR_CFGDONEIRQ_MASK

 Enable CFG done IRQ

#define XSA_CR_CFGMODE_MASK

 CFG mode

#define XSA_CR_CFGPROG_MASK

 Inverted CFGPROG pin

#define XSA_CR_CFGRESET_MASK

 CFG reset

#define XSA_CR_CFGSEL_MASK

 CFG select

#define XSA_CR_CFGSTART_MASK

 CFG start

#define XSA_CR_DATARDYIRQ_MASK

 Enable data ready IRQ

#define XSA_CR_ERRORIRQ_MASK

 Enable error IRQ

#define XSA_CR_FORCECFGADDR_MASK

 Force CFG address

#define XSA_CR_FORCECFGMODE_MASK

 Force CFG mode

#define XSA_CR_FORCELOCK_MASK

 Force lock request

#define XSA_CR_LOCKREQ_MASK

 MPU lock request

#define XSA_CR_OFFSET

 Control (CONTROLREG)

#define XSA_CR_RESETIRQ_MASK

 Reset IRQ line

#define XSA_DATA_BUFFER_SIZE

 Size of System ACE data buffer

#define XSA_DBR_OFFSET

 Data buffer (DATABUFREG)

#define XSA_ER_ABORT

 CF command aborted

#define XSA_ER_BAD_BLOCK

 CF bad block detected

#define XSA_ER_CARD_READ

 CF read command failed

#define XSA_ER_CARD_READY

 CF card failed to ready

#define XSA_ER_CARD_RESET

 CF card failed to reset

#define XSA_ER_CARD_WRITE

 CF write command failed

#define XSA_ER_CFG_ADDR

 Cfg address is invalid

#define XSA_ER_CFG_FAIL

 Failed to configure a device

#define XSA_ER_CFG_INIT

 CFGINIT pin error - did not go high within 500ms of start

#define XSA_ER_CFG_INSTR

 Invalid instruction during cfg

#define XSA_ER_CFG_READ

 Cfg read of CF failed

#define XSA_ER_GENERAL

 CF general error

#define XSA_ER_OFFSET

 Error (ERRORREG)

#define XSA_ER_RESERVED

 reserved

#define XSA_ER_SECTOR_ID

 CF sector ID not found

#define XSA_ER_SECTOR_READY

 CF sector failed to ready

#define XSA_ER_UNCORRECTABLE

 CF uncorrectable error

#define XSA_FAT_12_BOOT_REC

 FAT12 in master boot rec

#define XSA_FAT_12_CALC

 Calculated FAT12 from clusters

#define XSA_FAT_12_PART_REC

 FAT12 in parition boot rec

#define XSA_FAT_16_BOOT_REC

 FAT16 in master boot rec

#define XSA_FAT_16_CALC

 Calculated FAT16 from clusters

#define XSA_FAT_16_PART_REC

 FAT16 in partition boot rec

#define XSA_FAT_VALID_BOOT_REC

 Valid master boot record

#define XSA_FAT_VALID_PART_REC

 Valid partition boot record

#define XSA_FSR_OFFSET

 FAT status (FATSTATREG)

#define XSA_MLR_LBA_MASK

 MPU LBA Register - address mask

#define XSA_MLR_OFFSET

 MPU LBA (MPULBAREG)

#define XSA_SCCR_ABORT_MASK

 Abort CF command

#define XSA_SCCR_CMD_MASK

 Command mask

#define XSA_SCCR_COUNT_MASK

 Sector count mask

#define XSA_SCCR_IDENTIFY_MASK

 Identify CF card command

#define XSA_SCCR_OFFSET

 Sector cnt (SECCNTCMDREG)

#define XSA_SCCR_READDATA_MASK

 Read CF card command

#define XSA_SCCR_RESET_MASK

 Reset CF card command

#define XSA_SCCR_WRITEDATA_MASK

 Write CF card command

#define XSA_SR_CFBSY_MASK

 CF busy (BSY bit)

#define XSA_SR_CFCERROR_MASK

 CF error status

#define XSA_SR_CFCORR_MASK

 CF correctable error (CORR bit)

#define XSA_SR_CFDETECT_MASK

 CF detect flag

#define XSA_SR_CFDRQ_MASK

 CF data request (DRQ)

#define XSA_SR_CFDSC_MASK

 CF ready (DSC bit)

#define XSA_SR_CFDWF_MASK

 CF data write fault (DWF bit)

#define XSA_SR_CFERR_MASK

 CF error (ERR bit)

#define XSA_SR_CFGADDR_MASK

 Configuration address

#define XSA_SR_CFGDONE_MASK

 Configuration done status

#define XSA_SR_CFGERROR_MASK

 Config port error status

#define XSA_SR_CFGLOCK_MASK

 Config port lock status

#define XSA_SR_CFGMODE_MASK

 Configuration mode status

#define XSA_SR_CFRDY_MASK

 CF ready (RDY bit)

#define XSA_SR_DATABUFMODE_MASK

 Data buffer mode status

#define XSA_SR_DATABUFRDY_MASK

 Data buffer ready status

#define XSA_SR_MPULOCK_MASK

 MPU port lock status

#define XSA_SR_OFFSET

 Status (STATUSREG)

#define XSA_SR_RDYFORCMD_MASK

 Ready for CF command

#define XSA_VR_OFFSET

 Version (VERSIONREG)

#define XSysAce_mAndControlReg(BaseAddress,
Data)

Set the contents of the control register to the value specified AND'ed with its current contents.

Parameters:
BaseAddress is the base address of the device.
Data is the 32-bit value to AND with the register.

Returns:
None.

Note:
None.

#define XSysAce_mDisableIntr(BaseAddress,
Mask)

Disable ACE controller interrupts.

Parameters:
BaseAddress is the base address of the device.

Returns:
None.

Note:
None.

#define XSysAce_mEnableIntr(BaseAddress,
Mask)

Enable ACE controller interrupts.

Parameters:
BaseAddress is the base address of the device.

Returns:
None.

Note:
None.

#define XSysAce_mGetControlReg(BaseAddress)

Get the contents of the control register.

Parameters:
BaseAddress is the base address of the device.

Returns:
The 32-bit value of the control register.

Note:
None.

#define XSysAce_mGetErrorReg(BaseAddress)

Get the contents of the error register.

Parameters:
BaseAddress is the base address of the device.

Returns:
The 32-bit value of the register.

Note:
None.

#define XSysAce_mGetStatusReg(BaseAddress)

Get the contents of the status register.

Parameters:
BaseAddress is the base address of the device.

Returns:
The 32-bit value of the register.

Note:
None.

#define XSysAce_mIsCfgDone(BaseAddress)

Is the CompactFlash configuration of the target FPGA chain complete?

Parameters:
BaseAddress is the base address of the device.

Returns:
XTRUE if it is ready, XFALSE otherwise.

Note:
None.

#define XSysAce_mIsIntrEnabled(BaseAddress)

Have interrupts been enabled by the user? We look for the interrupt reset bit to be clear (meaning
interrupts are armed, even though none may be individually enabled).

Parameters:
BaseAddress is the base address of the device.

Returns:
XTRUE if it is enabled, XFALSE otherwise.

Note:
None.

#define XSysAce_mIsMpuLocked(BaseAddress)

Is the ACE controller locked for MPU access?

Parameters:
BaseAddress is the base address of the device.

Returns:
XTRUE if it is locked, XFALSE otherwise.

Note:
None.

#define XSysAce_mIsReadyForCmd(BaseAddress)

Is the CompactFlash ready for a command?

Parameters:
BaseAddress is the base address of the device.

Returns:
XTRUE if it is ready, XFALSE otherwise.

Note:
None.

#define XSysAce_mOrControlReg(BaseAddress,
Data)

Set the contents of the control register to the value specified OR'ed with its current contents.

Parameters:
BaseAddress is the base address of the device.
Data is the 32-bit value to OR with the register.

Returns:
None.

Note:
None.

#define XSysAce_mSetCfgAddr(BaseAddress,
Address)

Set the configuration address, or file, of the CompactFlash. This address indicates which .ace
bitstream to use to configure the target FPGA chain.

Parameters:
BaseAddress is the base address of the device.
Address ranges from 0 to 7 and represents the eight possible .ace bitstreams that can

reside on the CompactFlash.

Returns:
None.

Note:
Used cryptic var names to avoid conflict with caller's var names.

#define XSysAce_mSetControlReg(BaseAddress,
Data)

Set the contents of the control register.

Parameters:
BaseAddress is the base address of the device.
Data is the 32-bit value to write to the register.

Returns:
None.

Note:
None.

#define XSysAce_mWaitForLock(BaseAddress)

Request then wait for the MPU lock. This is not a forced lock, so we must contend with the
configuration controller.

Parameters:
BaseAddress is the base address of the device.

Returns:
None.

Note:
None.

Function Documentation

int XSysAce_ReadDataBuffer (Xuint32 BaseAddress,
Xuint8 * BufferPtr,
int Size

)

Read the specified number of bytes from the data buffer of the ACE controller. The data buffer, which
is 32 bytes, can only be read two bytes at a time. Once the data buffer is read, we wait for it to be
filled again before reading the next buffer's worth of data.

Parameters:
BaseAddress is the base address of the device
BufferPtr is a pointer to a buffer in which to store data.
Size is the number of bytes to read

Returns:
The total number of bytes read, or 0 if an error occurred.

Note:
If Size is not aligned with the size of the data buffer (32 bytes), this function will read the
entire data buffer, dropping the extra bytes on the floor since the user did not request them.
This is necessary to get the data buffer to be ready again.

int XSysAce_ReadSector (Xuint32 BaseAddress,
Xuint32 SectorId,
Xuint8 * BufferPtr

)

Read a CompactFlash sector. This is a blocking, low-level function which does not return until the
specified sector is read.

Parameters:
BaseAddress is the base address of the device
SectorId is the id of the sector to read
BufferPtr is a pointer to a buffer where the data will be stored.

Returns:
The number of bytes read. If this number is not equal to the sector size, 512 bytes, then an
error occurred.

Note:
None.

Xuint16 XSysAce_RegRead16 (Xuint32 Address)

Read a 16-bit value from the given address. Based on a compile-time constant, do the read in one 16-
bit read or two 8-bit reads.

Parameters:
Address is the address to read from.

Returns:
The 16-bit value of the address.

Note:
No need for endian conversion in 8-bit mode since this function gets the bytes into their proper
lanes in the 16-bit word.

Xuint32 XSysAce_RegRead32 (Xuint32 Address)

Read a 32-bit value from the given address. Based on a compile-time constant, do the read in two 16-
bit reads or four 8-bit reads.

Parameters:
Address is the address to read from.

Returns:
The 32-bit value of the address.

Note:
No need for endian conversion in 8-bit mode since this function gets the bytes into their proper
lanes in the 32-bit word.

void XSysAce_RegWrite16 (Xuint32 Address,
Xuint16 Data

)

Write a 16-bit value to the given address. Based on a compile-time constant, do the write in one 16-bit
write or two 8-bit writes.

Parameters:
Address is the address to write to.
Data is the value to write

Returns:
None.

Note:
No need for endian conversion in 8-bit mode since this function writes the bytes into their
proper lanes based on address.

void XSysAce_RegWrite32 (Xuint32 Address,
Xuint32 Data

)

Write a 32-bit value to the given address. Based on a compile-time constant, do the write in two 16-
bit writes or four 8-bit writes.

Parameters:
Address is the address to write to.
Data is the value to write

Returns:
None.

Note:
No need for endian conversion in 8-bit mode since this function writes the bytes into their
proper lanes based on address.

int XSysAce_WriteDataBuffer (Xuint32 BaseAddress,
Xuint8 * BufferPtr,
int Size

)

Write the specified number of bytes to the data buffer of the ACE controller. The data buffer, which is
32 bytes, can only be written two bytes at a time. Once the data buffer is written, we wait for it to be
empty again before writing the next buffer's worth of data. If the size of the incoming buffer is not
aligned with the System ACE data buffer size (32 bytes), then this routine pads out the data buffer
with zeros so the entire data buffer is written. This is necessary for the ACE controller to process the
data buffer.

Parameters:
BaseAddress is the base address of the device
BufferPtr is a pointer to a buffer used to write to the controller.
Size is the number of bytes to write

Returns:
The total number of bytes written (not including pad bytes), or 0 if an error occurs.

Note:
None.

int XSysAce_WriteSector (Xuint32 BaseAddress,
Xuint32 SectorId,
Xuint8 * BufferPtr

)

Write a CompactFlash sector. This is a blocking, low-level function which does not return until the
specified sector is written in its entirety.

Parameters:
BaseAddress is the base address of the device
SectorId is the id of the sector to write
BufferPtr is a pointer to a buffer used to write the sector.

Returns:
The number of bytes written. If this number is not equal to the sector size, 512 bytes, then an
error occurred.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XSysAce Struct Reference
#include <xsysace.h>

Detailed Description

The XSysAce driver instance data. The user is required to allocate a variable of this type for every
System ACE device in the system. A pointer to a variable of this type is then passed to the driver API
functions.

The documentation for this struct was generated from the following file:

● sysace/v1_00_a/src/xsysace.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace.h
Go to the documentation of this file.

00001 /* $Id: xsysace.h,v 1.8 2002/11/04 23:44:21 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file sysace/v1_00_a/src/xsysace.h
00026 *
00027 * The Xilinx System ACE driver. This driver supports the Xilinx System Advanced
00028 * Configuration Environment (ACE) controller. It currently supports only the
00029 * CompactFlash solution. The driver makes use of the Microprocessor (MPU)
00030 * interface to communicate with the device.
00031 *
00032 * The driver provides a user the ability to access the CompactFlash through
00033 * the System ACE device. The user can read and write CompactFlash sectors,
00034 * identify the flash device, and reset the flash device. Also, the driver
00035 * provides a user the ability to configure FPGA devices by selecting a
00036 * configuration file (.ace file) resident on the CompactFlash, or directly
00037 * configuring the FPGA devices via the MPU port and the configuration JTAG
00038 * port of the controller.
00039 *
00040 * Bus Mode
00041 *
00042 * The System ACE device supports both 8-bit and 16-bit access to its registers.

00043 * The driver defaults to 8-bit access, but can be changed to use 16-bit access
00044 * at compile-time. The compile-time constant XPAR_XSYSACE_MEM_WIDTH must be
00045 * defined equal to 16 to make the driver use 16-bit access. This constant is
00046 * typically defined in xparameters.h.
00047 *
00048 * Endianness
00049 *
00050 * The System ACE device is little-endian. If being accessed by a big-endian
00051 * processor, the endian conversion will be done by the device driver. The
00052 * endian conversion is encapsulated inside the XSysAce_RegRead/Write functions
00053 * so that it can be removed if the endian conversion is moved to hardware.
00054 *
00055 * Hardware Access
00056 *
00057 * The device driver expects the System ACE controller to be a memory-mapped
00058 * device. Access to the System ACE controller is typically achieved through
00059 * the External Memory Controller (EMC) IP core. The EMC is simply a pass-
through
00060 * device that allows access to the off-chip System ACE device. There is no
00061 * software-based setup or configuration necessary for the EMC.
00062 *
00063 * The System ACE registers are expected to be byte-addressable. If for some
00064 * reason this is not possible, the register offsets defined in xsysace_l.h must
00065 * be changed accordingly.
00066 *
00067 * Reading or Writing CompactFlash
00068 *
00069 * The smallest unit that can be read from or written to CompactFlash is one
00070 * sector. A sector is 512 bytes. The functions provided by this driver allow
00071 * the user to specify a starting sector ID and the number of sectors to be read
00072 * or written. At most 256 sectors can be read or written in one operation. The
00073 * user must ensure that the buffer passed to the functions is big enough to
00074 * hold (512 * NumSectors), where NumSectors is the number of sectors specified.
00075 *
00076 * Interrupt Mode
00077 *
00078 * By default, the device and driver are in polled mode. The user is required to
00079 * enable interrupts using XSysAce_EnableInterrupt(). In order to use
interrupts,
00080 * it is necessary for the user to connect the driver's interrupt handler,
00081 * XSysAce_InterruptHandler(), to the interrupt system of the application. This
00082 * function does not save and restore the processor context. An event handler
00083 * must also be set by the user, using XSysAce_SetEventHandler(), for the driver
00084 * such that the handler is called when interrupt events occur. The handler is
00085 * called from interrupt context and allows application-specific processing to
00086 * be performed.
00087 *
00088 * In interrupt mode, the only available interrupt is data buffer ready, so
00089 * the size of a data transfer between interrupts is 32 bytes (the size of the
00090 * data buffer).
00091 *
00092 * Polled Mode
00093 *

00094 * The sector read and write functions are blocking when in polled mode. This
00095 * choice was made over non-blocking since sector transfer rates are high
00096 * (>20Mbps) and the user can limit the number of sectors transferred in a
single
00097 * operation to 1 when in polled mode, plus the API for non-blocking polled
00098 * functions was a bit awkward. Below is some more information on the sector
00099 * transfer rates given the current state of technology (year 2002). Although
00100 * the seek times for CompactFlash cards is high, this average hit needs to be
00101 * taken every time a new read/write operation is invoked by the user. So the
00102 * additional few microseconds to transfer an entire sector along with seeking
00103 * is miniscule.
00104 *
00105 * - Microdrives are slower than CompactFlash cards by a significant factor,
00106 * especially if the MD is asleep.
00107 * - Microdrive:
00108 * - Power-up/wake-up time is approx. 150 to 1000 ms.
00109 * - Average seek time is approx. 15 to 20 ms.
00110 * - CompactFlash:
00111 * - Power-up/reset time is approx. 50 to 400 ms and wake-up time is
00112 * approx. 3 ms.
00113 * - "Seek time" here means how long it takes the internal controller
00114 * to process the command until the sector data is ready for
transfer
00115 * by the ACE controller. This time is approx. 2 ms per sector.
00116 *
00117 * - Once the sector data is ready in the CF device buffer (i.e., "seek time"
is
00118 * over) the ACE controller can read 2 bytes from the MD/CF device every 11
00119 * clock cycles, assuming no wait cycles happen. For instance, if the clock
00120 * is 33 MHz, then then the max. rate that the ACE controller can transfer is
00121 * 6 MB/sec. However, due to other overhead (e.g., time for data buffer
00122 * transfers over MPU port, etc.), a better estimate is 3-5 MB/sec.
00123 *
00124 * Mutual Exclusion
00125 *
00126 * This driver is not thread-safe. The System ACE device has a single data
00127 * buffer and therefore only one operation can be active at a time. The device
00128 * driver does not prevent the user from starting an operation while a previous
00129 * operation is still in progress. It is up to the user to provide this mutual
00130 * exclusion.
00131 *
00132 * Errors
00133 *
00134 * Error causes are defined in xsysace_l.h using the prefix XSA_ER_*. The
00135 * user can use XSysAce_GetErrors() to retrieve all outstanding errors.
00136 *
00137 * <pre>
00138 * MODIFICATION HISTORY:
00139 *
00140 * Ver Who Date Changes
00141 * ----- ---- -------- ---
00142 * 1.00a rpm 06/17/02 work in progress

00143 * </pre>
00144 *
00145 **/
00146
00147 #ifndef XSYSACE_H /* prevent circular inclusions */
00148 #define XSYSACE_H /* by using protection macros */
00149
00150 /***************************** Include Files *********************************/
00151
00152 #include "xbasic_types.h"

00153 #include "xstatus.h"

00154 #include "xsysace_l.h"

00155
00156 /************************** Constant Definitions *****************************/
00157
00158 /** @name Asynchronous Events
00159 *
00160 * Asynchronous events passed to the event handler when in interrupt mode.
00161 *
00162 * Note that when an error event occurs, the only way to clear this condition
00163 * is to reset the CompactFlash or the System ACE configuration controller,
00164 * depending on where the error occurred. The driver does not reset either
00165 * and leaves this task to the user.
00166 * @{
00167 */
00168 #define XSA_EVENT_CFG_DONE 1 /**< Configuration of JTAG chain is done */

00169 #define XSA_EVENT_DATA_DONE 2 /**< Data transfer to/from CompactFlash is done

*/
00170 #define XSA_EVENT_ERROR 3 /**< An error occurred. Use XSysAce_GetErrors()

00171 * to determine the cause of the error(s).
00172 */
00173 /*@}*/
00174
00175
00176 /**************************** Type Definitions *******************************/
00177
00178 /**
00179 * Typedef for CompactFlash identify drive parameters. Use XSysAce_IdentifyCF()
00180 * to retrieve this information from the CompactFlash storage device.
00181 */
00182 typedef struct

00183 {
00184 Xuint16 Signature; /**< CompactFlash signature is 0x848a */

00185 Xuint16 NumCylinders; /**< Default number of cylinders */

00186 Xuint16 Reserved;

00187 Xuint16 NumHeads; /**< Default number of heads */

00188 Xuint16 NumBytesPerTrack; /**< Number of unformatted bytes per track */

00189 Xuint16 NumBytesPerSector; /**< Number of unformatted bytes per sector */

00190 Xuint16 NumSectorsPerTrack; /**< Default number of sectors per track */

00191 Xuint32 NumSectorsPerCard; /**< Default number of sectors per card */

00192 Xuint16 VendorUnique; /**< Vendor unique */

00193 Xuint8 SerialNo[20]; /**< ASCII serial number */

00194 Xuint16 BufferType; /**< Buffer type */

00195 Xuint16 BufferSize; /**< Buffer size in 512-byte increments */

00196 Xuint16 NumEccBytes; /**< Number of ECC bytes on R/W Long cmds */

00197 Xuint8 FwVersion[8]; /**< ASCII firmware version */

00198 Xuint8 ModelNo[40]; /**< ASCII model number */

00199 Xuint16 MaxSectors; /**< Max sectors on R/W Multiple cmds */

00200 Xuint16 DblWord; /**< Double Word not supported */

00201 Xuint16 Capabilities; /**< Device capabilities */

00202 Xuint16 Reserved2;

00203 Xuint16 PioMode; /**< PIO data transfer cycle timing mode */

00204 Xuint16 DmaMode; /**< DMA data transfer cycle timing mode */

00205 Xuint16 TranslationValid; /**< Translation parameters are valid */

00206 Xuint16 CurNumCylinders; /**< Current number of cylinders */

00207 Xuint16 CurNumHeads; /**< Current number of heads */

00208 Xuint16 CurSectorsPerTrack; /**< Current number of sectors per track */

00209 Xuint32 CurSectorsPerCard; /**< Current capacity in sectors */

00210 Xuint16 MultipleSectors; /**< Multiple sector setting */

00211 Xuint32 LbaSectors; /**< Number of addressable sectors in LBA mode

*/
00212 Xuint8 Reserved3[132];

00213 Xuint16 SecurityStatus; /**< Security status */

00214 Xuint8 VendorUniqueBytes[62]; /**< Vendor unique bytes */

00215 Xuint16 PowerDesc; /**< Power requirement description */

00216 Xuint8 Reserved4[190];

00217
00218 } XSysAce_CFParameters;

00219
00220
00221 /**
00222 * Callback when an asynchronous event occurs during interrupt mode.
00223 *
00224 * @param CallBackRef is a callback reference passed in by the upper layer
00225 * when setting the callback functions, and passed back to the upper
00226 * layer when the callback is invoked.
00227 * @param Event is the event that occurred. See xsysace.h and the event
00228 * identifiers prefixed with XSA_EVENT_* for a description of possible
00229 * events.
00230 */
00231 typedef void (*XSysAce_EventHandler)(void *CallBackRef, int Event);

00232
00233 /**
00234 * This typedef contains configuration information for the device.
00235 */
00236 typedef struct

00237 {
00238 Xuint16 DeviceId; /**< Unique ID of device */

00239 Xuint32 BaseAddress; /**< Register base address */

00240

00241 } XSysAce_Config;

00242
00243 /**
00244 * The XSysAce driver instance data. The user is required to allocate a
00245 * variable of this type for every System ACE device in the system. A
00246 * pointer to a variable of this type is then passed to the driver API
00247 * functions.
00248 */
00249 typedef struct

00250 {
00251 Xuint32 BaseAddress; /* Base address of ACE device */

00252 Xuint32 IsReady; /* Device is initialized and ready */

00253
00254 /* interrupt-related data */
00255 int NumRequested; /* Number of bytes to read/write */
00256 int NumRemaining; /* Number of bytes left to read/write
*/
00257 Xuint8 *BufferPtr; /* Buffer being read/written */

00258 XSysAce_EventHandler EventHandler; /* Callback for asynchronous events */

00259 void *EventRef; /* Callback reference */
00260
00261 } XSysAce;

00262
00263
00264 /***************** Macros (Inline Functions) Definitions *********************/
00265
00266
00267 /************************** Function Prototypes ******************************/
00268
00269 /*
00270 * Required functions in xsysace.c
00271 */
00272 XStatus XSysAce_Initialize(XSysAce *InstancePtr, Xuint16 DeviceId);

00273 XStatus XSysAce_Lock(XSysAce *InstancePtr, Xboolean Force);

00274 void XSysAce_Unlock(XSysAce *InstancePtr);

00275 Xuint32 XSysAce_GetErrors(XSysAce *InstancePtr);

00276 XSysAce_Config *XSysAce_LookupConfig(Xuint16 DeviceId);

00277
00278 /*
00279 * CompactFlash access functions in xsysace_compactflash.c
00280 */
00281 XStatus XSysAce_ResetCF(XSysAce *InstancePtr);

00282 XStatus XSysAce_AbortCF(XSysAce *InstancePtr);

00283 XStatus XSysAce_IdentifyCF(XSysAce *InstancePtr,

00284 XSysAce_CFParameters *ParamPtr);

00285 Xboolean XSysAce_IsCFReady(XSysAce *InstancePtr);

00286 XStatus XSysAce_SectorRead(XSysAce *InstancePtr, Xuint32 StartSector,

00287 int NumSectors, Xuint8 *BufferPtr);

00288 XStatus XSysAce_SectorWrite(XSysAce *InstancePtr, Xuint32 StartSector,

00289 int NumSectors, Xuint8 *BufferPtr);

00290 Xuint16 XSysAce_GetFatStatus(XSysAce *InstancePtr);

00291
00292 /*
00293 * JTAG configuration interface functions in xsysace_jtagcfg.c
00294 */
00295 void XSysAce_ResetCfg(XSysAce *InstancePtr);

00296 void XSysAce_SetCfgAddr(XSysAce *InstancePtr, unsigned int Address);

00297 void XSysAce_SetStartMode(XSysAce *InstancePtr, Xboolean ImmedOnReset,

00298 Xboolean SetStart);

00299 Xboolean XSysAce_IsCfgDone(XSysAce *InstancePtr);

00300 Xuint32 XSysAce_GetCfgSector(XSysAce *InstancePtr);

00301 XStatus XSysAce_ProgramChain(XSysAce *InstancePtr, Xuint8 *BufferPtr, int

NumBytes);
00302
00303 /*
00304 * General interrupt-related functions in xsysace_intr.c
00305 */
00306 void XSysAce_EnableInterrupt(XSysAce *InstancePtr);

00307 void XSysAce_DisableInterrupt(XSysAce *InstancePtr);

00308 void XSysAce_SetEventHandler(XSysAce *InstancePtr, XSysAce_EventHandler

FuncPtr,
00309 void *CallBackRef);
00310 void XSysAce_InterruptHandler(void *InstancePtr); /* interrupt handler */

00311
00312 /*
00313 * Diagnostic functions in xsysace_selftest.c
00314 */
00315 XStatus XSysAce_SelfTest(XSysAce *InstancePtr);

00316 Xuint16 XSysAce_GetVersion(XSysAce *InstancePtr);

00317
00318
00319 #endif /* end of protection macro */
00320

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace.h File
Reference

Detailed Description

The Xilinx System ACE driver. This driver supports the Xilinx System Advanced Configuration
Environment (ACE) controller. It currently supports only the CompactFlash solution. The driver makes
use of the Microprocessor (MPU) interface to communicate with the device.

The driver provides a user the ability to access the CompactFlash through the System ACE device. The
user can read and write CompactFlash sectors, identify the flash device, and reset the flash device. Also,
the driver provides a user the ability to configure FPGA devices by selecting a configuration file (.ace
file) resident on the CompactFlash, or directly configuring the FPGA devices via the MPU port and the
configuration JTAG port of the controller.

Bus Mode

The System ACE device supports both 8-bit and 16-bit access to its registers. The driver defaults to 8-bit
access, but can be changed to use 16-bit access at compile-time. The compile-time constant
XPAR_XSYSACE_MEM_WIDTH must be defined equal to 16 to make the driver use 16-bit access.
This constant is typically defined in xparameters.h.

Endianness

The System ACE device is little-endian. If being accessed by a big-endian processor, the endian
conversion will be done by the device driver. The endian conversion is encapsulated inside the
XSysAce_RegRead/Write functions so that it can be removed if the endian conversion is moved to
hardware.

Hardware Access

The device driver expects the System ACE controller to be a memory-mapped device. Access to the
System ACE controller is typically achieved through the External Memory Controller (EMC) IP core.
The EMC is simply a pass-through device that allows access to the off-chip System ACE device. There is
no software-based setup or configuration necessary for the EMC.

The System ACE registers are expected to be byte-addressable. If for some reason this is not possible,
the register offsets defined in xsysace_l.h must be changed accordingly.

Reading or Writing CompactFlash

The smallest unit that can be read from or written to CompactFlash is one sector. A sector is 512 bytes.
The functions provided by this driver allow the user to specify a starting sector ID and the number of
sectors to be read or written. At most 256 sectors can be read or written in one operation. The user must
ensure that the buffer passed to the functions is big enough to hold (512 * NumSectors), where
NumSectors is the number of sectors specified.

Interrupt Mode

By default, the device and driver are in polled mode. The user is required to enable interrupts using
XSysAce_EnableInterrupt(). In order to use interrupts, it is necessary for the user to connect the
driver's interrupt handler, XSysAce_InterruptHandler(), to the interrupt system of the application. This
function does not save and restore the processor context. An event handler must also be set by the user,
using XSysAce_SetEventHandler(), for the driver such that the handler is called when interrupt events
occur. The handler is called from interrupt context and allows application-specific processing to be
performed.

In interrupt mode, the only available interrupt is data buffer ready, so the size of a data transfer between
interrupts is 32 bytes (the size of the data buffer).

Polled Mode

The sector read and write functions are blocking when in polled mode. This choice was made over non-
blocking since sector transfer rates are high (>20Mbps) and the user can limit the number of sectors
transferred in a single operation to 1 when in polled mode, plus the API for non-blocking polled
functions was a bit awkward. Below is some more information on the sector transfer rates given the
current state of technology (year 2002). Although the seek times for CompactFlash cards is high, this
average hit needs to be taken every time a new read/write operation is invoked by the user. So the
additional few microseconds to transfer an entire sector along with seeking is miniscule.

● Microdrives are slower than CompactFlash cards by a significant factor, especially if the MD is
asleep.

❍ Microdrive:
■ Power-up/wake-up time is approx. 150 to 1000 ms.
■ Average seek time is approx. 15 to 20 ms.

❍ CompactFlash:
■ Power-up/reset time is approx. 50 to 400 ms and wake-up time is approx. 3 ms.
■ "Seek time" here means how long it takes the internal controller to process the

command until the sector data is ready for transfer by the ACE controller. This time
is approx. 2 ms per sector.

● Once the sector data is ready in the CF device buffer (i.e., "seek time" is over) the ACE controller
can read 2 bytes from the MD/CF device every 11 clock cycles, assuming no wait cycles happen.
For instance, if the clock is 33 MHz, then then the max. rate that the ACE controller can transfer
is 6 MB/sec. However, due to other overhead (e.g., time for data buffer transfers over MPU port,
etc.), a better estimate is 3-5 MB/sec.

Mutual Exclusion

This driver is not thread-safe. The System ACE device has a single data buffer and therefore only one
operation can be active at a time. The device driver does not prevent the user from starting an operation
while a previous operation is still in progress. It is up to the user to provide this mutual exclusion.

Errors

Error causes are defined in xsysace_l.h using the prefix XSA_ER_*. The user can use
XSysAce_GetErrors() to retrieve all outstanding errors.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress

#include "xbasic_types.h"

#include "xstatus.h"

#include "xsysace_l.h"

Go to the source code of this file.

Data Structures

struct XSysAce
struct XSysAce_CFParameters
struct XSysAce_Config

Asynchronous Events

Asynchronous events passed to the event handler when in interrupt mode.

Note that when an error event occurs, the only way to clear this condition is to reset the CompactFlash or
the System ACE configuration controller, depending on where the error occurred. The driver does not
reset either and leaves this task to the user.

#define XSA_EVENT_CFG_DONE
#define XSA_EVENT_DATA_DONE
#define XSA_EVENT_ERROR

Typedefs

typedef void(* XSysAce_EventHandler)(void *CallBackRef, int Event)

Functions

XStatus XSysAce_Initialize (XSysAce *InstancePtr, Xuint16 DeviceId)
XStatus XSysAce_Lock (XSysAce *InstancePtr, Xboolean Force)

void XSysAce_Unlock (XSysAce *InstancePtr)
Xuint32 XSysAce_GetErrors (XSysAce *InstancePtr)

XSysAce_Config * XSysAce_LookupConfig (Xuint16 DeviceId)
XStatus XSysAce_ResetCF (XSysAce *InstancePtr)
XStatus XSysAce_AbortCF (XSysAce *InstancePtr)
XStatus XSysAce_IdentifyCF (XSysAce *InstancePtr, XSysAce_CFParameters

*ParamPtr)

Xboolean XSysAce_IsCFReady (XSysAce *InstancePtr)
XStatus XSysAce_SectorRead (XSysAce *InstancePtr, Xuint32 StartSector, int

NumSectors, Xuint8 *BufferPtr)
XStatus XSysAce_SectorWrite (XSysAce *InstancePtr, Xuint32 StartSector, int

NumSectors, Xuint8 *BufferPtr)
Xuint16 XSysAce_GetFatStatus (XSysAce *InstancePtr)

void XSysAce_ResetCfg (XSysAce *InstancePtr)
void XSysAce_SetCfgAddr (XSysAce *InstancePtr, unsigned int Address)
void XSysAce_SetStartMode (XSysAce *InstancePtr, Xboolean ImmedOnReset,

Xboolean SetStart)
Xboolean XSysAce_IsCfgDone (XSysAce *InstancePtr)

Xuint32 XSysAce_GetCfgSector (XSysAce *InstancePtr)
XStatus XSysAce_ProgramChain (XSysAce *InstancePtr, Xuint8 *BufferPtr, int

NumBytes)
void XSysAce_EnableInterrupt (XSysAce *InstancePtr)
void XSysAce_DisableInterrupt (XSysAce *InstancePtr)
void XSysAce_SetEventHandler (XSysAce *InstancePtr, XSysAce_EventHandler

FuncPtr, void *CallBackRef)
void XSysAce_InterruptHandler (void *InstancePtr)

XStatus XSysAce_SelfTest (XSysAce *InstancePtr)
Xuint16 XSysAce_GetVersion (XSysAce *InstancePtr)

Define Documentation

#define XSA_EVENT_CFG_DONE

 Configuration of JTAG chain is done

#define XSA_EVENT_DATA_DONE

 Data transfer to/from CompactFlash is done

#define XSA_EVENT_ERROR

 An error occurred. Use XSysAce_GetErrors() to determine the cause of the error(s).

Typedef Documentation

typedef void(* XSysAce_EventHandler)(void *CallBackRef, int Event)

Callback when an asynchronous event occurs during interrupt mode.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback

functions, and passed back to the upper layer when the callback is invoked.
Event is the event that occurred. See xsysace.h and the event identifiers prefixed with

XSA_EVENT_* for a description of possible events.

Function Documentation

XStatus XSysAce_AbortCF (XSysAce * InstancePtr)

Abort the CompactFlash operation currently in progress.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
❍ XST_SUCCESS if the abort was done successfully
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the CompactFlash is not ready for a command

Note:
According to the ASIC designer, the abort command has not been well tested.

void XSysAce_DisableInterrupt (XSysAce * InstancePtr)

Disable all System ACE interrupts and hold the interrupt request line of the device in reset.

Parameters:
InstancePtr is a pointer to the XSysAce instance that just interrupted.

Returns:
None.

Note:
None.

void XSysAce_EnableInterrupt (XSysAce * InstancePtr)

Enable System ACE interrupts. There are three interrupts that can be enabled. The error interrupt
enable serves as the driver's means to determine whether interrupts have been enabled or not. The
configuration-done interrupt is not enabled here, instead it is enabled during a reset - which can cause
a configuration process to start. The data-buffer-ready interrupt is not enabled here either. It is
enabled when a read or write operation is started. The reason for not enabling the latter two interrupts
are because the status bits may be set as a leftover of an earlier occurrence of the interrupt.

Parameters:
InstancePtr is a pointer to the XSysAce instance to work on.

Returns:
None.

Note:
None.

Xuint32 XSysAce_GetCfgSector (XSysAce * InstancePtr)

Get the sector ID of the CompactFlash sector being used for configuration of the target FPGA chain.
This sector ID (or logical block address) only affects transfers between the ACE configuration logic
and the CompactFlash card. This function is typically used for debug purposes to determine which
sector was being accessed when an error occurred.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
The sector ID (logical block address) being used for data transfers between the ACE
configuration logic and the CompactFlash. Sector IDs range from 0 to 0x10000000.

Note:
None.

Xuint32 XSysAce_GetErrors (XSysAce * InstancePtr)

Get all outstanding errors. Errors include the inability to read or write CompactFlash and the inability
to successfully configure FPGA devices along the target FPGA chain.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
A 32-bit mask of error values. See xsysace_l.h for a description of possible values. The error
identifiers are prefixed with XSA_ER_*.

Note:
None.

Xuint16 XSysAce_GetFatStatus (XSysAce * InstancePtr)

Get the status of the FAT filesystem on the first valid partition of the CompactFlash device such as
the boot record and FAT types found.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
A 16-bit mask of status values. These values are defined in xsysace_l.h with the prefix
XSA_FAT_*.

Note:
None.

Xuint16 XSysAce_GetVersion (XSysAce * InstancePtr)

Retrieve the version of the System ACE device.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
A 16-bit version where the 4 most significant bits are the major version number, the next four
bits are the minor version number, and the least significant 8 bits are the revision or build
number.

Note:
None.

XStatus XSysAce_IdentifyCF (XSysAce * InstancePtr,
XSysAce_CFParameters * ParamPtr

)

Identify the CompactFlash device. Retrieves the parameters for the CompactFlash storage device.
Note that this is a polled read of one sector of data. The data is read from the CompactFlash into a
byte buffer, which is then copied into the XSysAce_CFParameters structure passed in by the user.
The copy is necessary since we don't know how the compiler packs the XSysAce_CFParameters
structure.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

ParamPtr is a pointer to a XSysAce_CFParameters structure where the information for the
CompactFlash device will be stored. See xsysace.h for details on the
XSysAce_CFParameters structure.

Returns:
❍ XST_SUCCESS if the identify was done successfully
❍ XST_FAILURE if an error occurs. Use XSysAce_GetErrors() to determine cause.
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the CompactFlash is not ready for a command

Note:
None.

XStatus XSysAce_Initialize (XSysAce * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XSysAce instance. The configuration information for the given device ID is found
and the driver instance data is initialized appropriately.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

DeviceId is the unique id of the device controlled by this XSysAce instance.

Returns:
XST_SUCCESS if successful, or XST_DEVICE_NOT_FOUND if the device was not found
in the configuration table in xsysace_g.c.

Note:
We do not want to reset the configuration controller here since this could cause a
reconfiguration of the JTAG target chain, depending on how the CFGMODEPIN of the device
is wired.

void XSysAce_InterruptHandler (void * InstancePtr)

The interrupt handler for the System ACE driver. This handler must be connected by the user to an
interrupt controller or source. This function does not save or restore context.

This function continues reading or writing to the compact flash if such an operation is in progress, and
notifies the upper layer software through the event handler once the operation is complete or an error
occurs. On an error, any command currently in progress is aborted.

Parameters:
InstancePtr is a pointer to the XSysAce instance that just interrupted.

Returns:
None.

Note:
None.

Xboolean XSysAce_IsCfgDone (XSysAce * InstancePtr)

Check to see if the configuration of the target FPGA chain is complete. This function is typically only
used in polled mode. In interrupt mode, an event (XSA_EVENT_CFG_DONE) is returned to the user
in the asynchronous event handler.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
XTRUE if the configuration is complete. XFALSE otherwise.

Note:
None.

Xboolean XSysAce_IsCFReady (XSysAce * InstancePtr)

Check to see if the CompactFlash is ready for a command. The CompactFlash may delay after one
operation before it is ready for the next. This function helps the user determine when it is ready before
invoking a CompactFlash operation such as XSysAce_SectorRead() or XSysAce_SectorWrite();

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
XTRUE if the CompactFlash is ready for a command, and XFALSE otherwise.

Note:
None.

XStatus XSysAce_Lock (XSysAce * InstancePtr,
Xboolean Force

)

Attempt to lock access to the CompactFlash. The CompactFlash may be accessed by the MPU port as
well as the JTAG configuration port within the System ACE device. This function requests exclusive
access to the CompactFlash for the MPU port. This is a non-blocking request. If access cannot be
locked (because the configuration controller has the lock), an appropriate status is returned. In this
case, the user should call this function again until successful.

If the user requests a forced lock, the JTAG configuration controller will be put into a reset state in
case it currently has a lock on the CompactFlash. This effectively aborts any operation the
configuration controller had in progress and makes the configuration controller restart its process the
next time it is able to get a lock.

A lock must be granted to the user before attempting to read or write the CompactFlash device.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Force is a boolean value that, when set to XTRUE, will force the MPU lock to occur in
the System ACE. When set to XFALSE, the lock is requested and the device
arbitrates between the MPU request and JTAG requests. Forcing the MPU lock
resets the configuration controller, thus aborting any configuration operations in
progress.

Returns:
XST_SUCCESS if the lock was granted, or XST_DEVICE_BUSY if the lock was not granted
because the configuration controller currently has access to the CompactFlash.

Note:
If the lock is not granted to the MPU immediately, this function removes its request for a lock
so that a lock is not later granted at a time when the application is (a) not ready for the lock, or
(b) cannot be informed asynchronously about the granted lock since there is no such interrupt
event.

XSysAce_Config* XSysAce_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table XSysAce_ConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to look for.

Returns:
A pointer to the configuration data for the device, or XNULL if no match is found.

Note:
None.

XStatus XSysAce_ProgramChain (XSysAce * InstancePtr,
Xuint8 * BufferPtr,
int NumBytes

)

Program the target FPGA chain through the configuration JTAG port. This allows the user to program
the devices on the target FPGA chain from the MPU port instead of from CompactFlash. The user
specifies a buffer and the number of bytes to write. The buffer should be equivalent to an ACE (.ace)
file.

Note that when loading the ACE file via the MPU port, the first sector of the ACE file is discarded.
The CF filesystem controller in the System ACE device knows to skip the first sector when the ACE
file comes from the CF, but the CF filesystem controller is bypassed when the ACE file comes from
the MPU port. For this reason, this function skips the first sector of the buffer passed in.

In polled mode, the write is blocking. In interrupt mode, the write is non-blocking and an event,
XSA_EVENT_CFG_DONE, is returned to the user in the asynchronous event handler when the
configuration is complete.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

BufferPtr is a pointer to a buffer that will be used to program the configuration JTAG
devices.

NumBytes is the number of bytes in the buffer. We assume that there is at least one sector of
data in the .ace file, which is the information sector.

Returns:
❍ XST_SUCCESS if the write was successful. In interrupt mode, this does not mean the

write is complete, only that it has begun. An event is returned to the user when the write
is complete.

❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_FAILURE if an error occurred during the write. The user should call

XSysAce_GetErrors() to determine the cause of the error.

Note:
None.

XStatus XSysAce_ResetCF (XSysAce * InstancePtr)

Reset the CompactFlash device. This function does not reset the System ACE controller. An ATA
soft-reset of the CompactFlash is performed.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
❍ XST_SUCCESS if the reset was done successfully
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the CompactFlash is not ready for a command

Note:
None.

void XSysAce_ResetCfg (XSysAce * InstancePtr)

Reset the JTAG configuration controller. This comprises a reset of the JTAG configuration controller
and the CompactFlash controller (if it is currently being accessed by the configuration controller).
Note that the MPU controller is not reset, meaning the MPU registers remain unchanged. The
configuration controller is reset then released from reset in this function.

The CFGDONE status (and therefore interrupt) is cleared when the configuration controller is reset. If
interrupts have been enabled, we go ahead and enable the CFGDONE interrupt here. This means that
if and when a configuration process starts as a result of this reset, an interrupt will be received when it
is complete.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
None.

Note:
This function is not thread-safe.

XStatus XSysAce_SectorRead (XSysAce * InstancePtr,
Xuint32 StartSector,
int NumSectors,
Xuint8 * BufferPtr

)

Read at least one sector of data from the CompactFlash. The user specifies the starting sector ID and
the number of sectors to be read. The minimum unit that can be read from the CompactFlash is a
sector, which is 512 bytes.

In polled mode, this read is blocking. If there are other tasks in the system that must run, it is best to
keep the number of sectors to be read to a minimum (e.g., 1). In interrupt mode, this read is non-
blocking and an event, XSA_EVENT_DATA_DONE, is returned to the user in the asynchronous
event handler when the read is complete. The user must call XSysAce_EnableInterrupt() to put the
driver/device into interrupt mode.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

StartSector is the starting sector ID from where data will be read. Sector IDs range from 0
(first sector) to 0x10000000.

NumSectors is the number of sectors to read. The range can be from 1 to 256.
BufferPtr is a pointer to a buffer where the data will be stored. The user must ensure it is

big enough to hold (512 * NumSectors) bytes.

Returns:
❍ XST_SUCCESS if the read was successful. In interrupt mode, this does not mean the

read is complete, only that it has begun. An event is returned to the user when the read
is complete.

❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the ACE controller is not ready for a command
❍ XST_FAILURE if an error occurred during the read. The user should call

XSysAce_GetErrors() to determine the cause of the error.

Note:
None.

XStatus XSysAce_SectorWrite (XSysAce * InstancePtr,
Xuint32 StartSector,
int NumSectors,
Xuint8 * BufferPtr

)

Write data to the CompactFlash. The user specifies the starting sector ID and the number of sectors to
be written. The minimum unit that can be written to the CompactFlash is a sector, which is 512 bytes.

In polled mode, this write is blocking. If there are other tasks in the system that must run, it is best to
keep the number of sectors to be written to a minimum (e.g., 1). In interrupt mode, this write is non-
blocking and an event, XSA_EVENT_DATA_DONE, is returned to the user in the asynchronous
event handler when the write is complete. The user must call XSysAce_EnableInterrupt() to put the
driver/device into interrupt mode.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

StartSector is the starting sector ID from where data will be written. Sector IDs range from 0
(first sector) to 0x10000000.

NumSectors is the number of sectors to write. The range can be from 1 to 256.
BufferPtr is a pointer to the data buffer to be written. This buffer must have at least (512 *

NumSectors) bytes.

Returns:
❍ XST_SUCCESS if the write was successful. In interrupt mode, this does not mean the

write is complete, only that it has begun. An event is returned to the user when the write
is complete.

❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the ACE controller is not ready for a command
❍ XST_FAILURE if an error occurred during the write. The user should call

XSysAce_GetErrors() to determine the cause of the error.

Note:
None.

XStatus XSysAce_SelfTest (XSysAce * InstancePtr)

A self-test that simply proves communication to the ACE controller from the device driver by
obtaining an MPU lock, verifying it, then releasing it.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
XST_SUCCESS if self-test passes, or XST_FAILURE if an error occurs.

Note:
None.

void XSysAce_SetCfgAddr (XSysAce * InstancePtr,
unsigned int Address

)

Select the configuration address (or file) from the CompactFlash to be used for configuration of the
target FPGA chain.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Address is the address or file number to be used as the bitstream to configure the target
FPGA devices. There are 8 possible files, so the value of this parameter can
range from 0 to 7.

Returns:
None.

Note:
None.

void XSysAce_SetEventHandler (XSysAce * InstancePtr,
XSysAce_EventHandler FuncPtr,
void * CallBackRef

)

Set the callback function for handling events. The upper layer software should call this function
during initialization. The events are passed asynchronously to the upper layer software. The events
are described in xsysace.h and are named XSA_EVENT_*.

Note that the callback is invoked by the driver within interrupt context, so it needs to do its job
quickly. If there are potentially slow operations within the callback, these should be done at task-
level.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is a reference pointer to be passed back to the upper layer.

Returns:
None.

Note:
None.

void XSysAce_SetStartMode (XSysAce * InstancePtr,
Xboolean ImmedOnReset,
Xboolean StartCfg

)

Set the start mode for configuration of the target FPGA chain from CompactFlash. The configuration
process only starts after a reset. The user can indicate that the configuration should start immediately
after a reset, or the configuration process can be delayed until the user commands it to start (using this
function). The configuration controller can be reset using XSysAce_ResetCfg().

The user can select which configuration file on the CompactFlash to use using the
XSysAce_SetCfgAddr() function. If the user intends to configure the target FPGA chain directly
from the MPU port, this function is not needed. Instead, the user would simply call
XSysAce_ProgramChain().

The user can use XSysAce_IsCfgDone() when in polled mode to determine if the configuration is
complete. If in interrupt mode, the event XSA_EVENT_CFG_DONE will be returned
asynchronously to the user when the configuration is complete. The user must call
XSysAce_EnableInterrupt() to put the device/driver into interrupt mode.

Parameters:

InstancePtr is a pointer to the XSysAce instance to be worked on.

ImmedOnReset can be set to XTRUE to indicate the configuration process will start
immediately after a reset of the ACE configuration controller, or it can be set
to XFALSE to indicate the configuration process is delayed after a reset until
the user starts it (using this function).

StartCfg is a boolean indicating whether to start the configuration process or not.
When ImmedOnReset is set to XTRUE, this value is ignored. When
ImmedOnReset is set to XFALSE, then this value controls when the
configuration process is started. When set to XTRUE the configuration
process starts (assuming a reset of the device has occurred), and when set to
XFALSE the configuration process does not start.

Returns:
None.

Note:
None.

void XSysAce_Unlock (XSysAce * InstancePtr)

Release the MPU lock to the CompactFlash. If a lock is not currently granted to the MPU port, this
function has no effect.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace.c File
Reference

Detailed Description

The Xilinx System ACE driver component. This driver supports the Xilinx System Advanced
Configuration Environment (ACE) controller. It currently supports only the CompactFlash solution. See
xsysace.h for a detailed description of the driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress
 1.00a rmm 05/14/03 Fixed diab compiler warnings relating to asserts

#include "xparameters.h"

#include "xsysace.h"

#include "xsysace_l.h"

Functions

XStatus XSysAce_Initialize (XSysAce *InstancePtr, Xuint16 DeviceId)
XStatus XSysAce_Lock (XSysAce *InstancePtr, Xboolean Force)

void XSysAce_Unlock (XSysAce *InstancePtr)
Xuint32 XSysAce_GetErrors (XSysAce *InstancePtr)

XSysAce_Config * XSysAce_LookupConfig (Xuint16 DeviceId)

Function Documentation

Xuint32 XSysAce_GetErrors (XSysAce * InstancePtr)

Get all outstanding errors. Errors include the inability to read or write CompactFlash and the inability
to successfully configure FPGA devices along the target FPGA chain.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
A 32-bit mask of error values. See xsysace_l.h for a description of possible values. The error
identifiers are prefixed with XSA_ER_*.

Note:
None.

XStatus XSysAce_Initialize (XSysAce * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific XSysAce instance. The configuration information for the given device ID is found
and the driver instance data is initialized appropriately.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

DeviceId is the unique id of the device controlled by this XSysAce instance.

Returns:
XST_SUCCESS if successful, or XST_DEVICE_NOT_FOUND if the device was not found
in the configuration table in xsysace_g.c.

Note:
We do not want to reset the configuration controller here since this could cause a
reconfiguration of the JTAG target chain, depending on how the CFGMODEPIN of the device
is wired.

XStatus XSysAce_Lock (XSysAce * InstancePtr,
Xboolean Force

)

Attempt to lock access to the CompactFlash. The CompactFlash may be accessed by the MPU port as
well as the JTAG configuration port within the System ACE device. This function requests exclusive
access to the CompactFlash for the MPU port. This is a non-blocking request. If access cannot be
locked (because the configuration controller has the lock), an appropriate status is returned. In this
case, the user should call this function again until successful.

If the user requests a forced lock, the JTAG configuration controller will be put into a reset state in
case it currently has a lock on the CompactFlash. This effectively aborts any operation the
configuration controller had in progress and makes the configuration controller restart its process the
next time it is able to get a lock.

A lock must be granted to the user before attempting to read or write the CompactFlash device.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Force is a boolean value that, when set to XTRUE, will force the MPU lock to occur in
the System ACE. When set to XFALSE, the lock is requested and the device
arbitrates between the MPU request and JTAG requests. Forcing the MPU lock
resets the configuration controller, thus aborting any configuration operations in
progress.

Returns:
XST_SUCCESS if the lock was granted, or XST_DEVICE_BUSY if the lock was not granted
because the configuration controller currently has access to the CompactFlash.

Note:
If the lock is not granted to the MPU immediately, this function removes its request for a lock
so that a lock is not later granted at a time when the application is (a) not ready for the lock, or
(b) cannot be informed asynchronously about the granted lock since there is no such interrupt
event.

XSysAce_Config* XSysAce_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. The table XSysAce_ConfigTable
contains the configuration info for each device in the system.

Parameters:
DeviceId is the unique device ID to look for.

Returns:
A pointer to the configuration data for the device, or XNULL if no match is found.

Note:
None.

void XSysAce_Unlock (XSysAce * InstancePtr)

Release the MPU lock to the CompactFlash. If a lock is not currently granted to the MPU port, this
function has no effect.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_l.h
Go to the documentation of this file.

00001 /* $Id: xsysace_l.h,v 1.13 2002/10/24 20:51:00 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file sysace/v1_00_a/src/xsysace_l.h
00026 *
00027 * Defines identifiers and low-level macros/functions for the XSysAce driver.
00028 * These identifiers include register offsets and bit masks. A high-level driver
00029 * interface is defined in xsysace.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00a rpm 06/14/02 work in progress
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XSYSACE_L_H /* prevent circular inclusions */
00042 #define XSYSACE_L_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048
00049 /************************** Constant Definitions *****************************/
00050
00051 /*
00052 * Constant used to align the register offsets to the proper address. This was
00053 * used during development to handle both byte-addressable (alignment=1) and
00054 * word addressable (alignment=4) registers. The #ifndef allows the user to
00055 * modify this at compile-time.
00056 */
00057 #ifndef XSA_ADDR_ALIGN
00058 #define XSA_ADDR_ALIGN 1
00059 #endif
00060
00061 /** @name Register Offsets
00062 * System ACE register offsets
00063 * @{
00064 */
00065 #define XSA_BMR_OFFSET (XSA_ADDR_ALIGN * 0) /**< Bus mode (BUSMODEREG) */

00066 #define XSA_SR_OFFSET (XSA_ADDR_ALIGN * 4) /**< Status (STATUSREG) */

00067 #define XSA_ER_OFFSET (XSA_ADDR_ALIGN * 8) /**< Error (ERRORREG) */

00068 #define XSA_CLR_OFFSET (XSA_ADDR_ALIGN * 12) /**< Config LBA (CFGLBAREG) */

00069 #define XSA_MLR_OFFSET (XSA_ADDR_ALIGN * 16) /**< MPU LBA (MPULBAREG) */

00070 #define XSA_SCCR_OFFSET (XSA_ADDR_ALIGN * 20) /**< Sector cnt (SECCNTCMDREG)

*/
00071 #define XSA_VR_OFFSET (XSA_ADDR_ALIGN * 22) /**< Version (VERSIONREG) */

00072 #define XSA_CR_OFFSET (XSA_ADDR_ALIGN * 24) /**< Control (CONTROLREG) */

00073 #define XSA_FSR_OFFSET (XSA_ADDR_ALIGN * 28) /**< FAT status (FATSTATREG) */

00074 #define XSA_DBR_OFFSET (XSA_ADDR_ALIGN * 64) /**< Data buffer (DATABUFREG) */

00075 /*@}*/
00076
00077 /*
00078 * Bus Mode Register masks
00079 */
00080 #define XSA_BMR_16BIT_MASK 0x0101 /**< 16-bit access to ACE controller */

00081
00082
00083 /** @name Status Values
00084 * Status Register masks
00085 * @{
00086 */
00087 #define XSA_SR_CFGLOCK_MASK 0x00000001 /**< Config port lock status */

00088 #define XSA_SR_MPULOCK_MASK 0x00000002 /**< MPU port lock status */

00089 #define XSA_SR_CFGERROR_MASK 0x00000004 /**< Config port error status */

00090 #define XSA_SR_CFCERROR_MASK 0x00000008 /**< CF error status */

00091 #define XSA_SR_CFDETECT_MASK 0x00000010 /**< CF detect flag */

00092 #define XSA_SR_DATABUFRDY_MASK 0x00000020 /**< Data buffer ready status */

00093 #define XSA_SR_DATABUFMODE_MASK 0x00000040 /**< Data buffer mode status */

00094 #define XSA_SR_CFGDONE_MASK 0x00000080 /**< Configuration done status */

00095 #define XSA_SR_RDYFORCMD_MASK 0x00000100 /**< Ready for CF command */

00096 #define XSA_SR_CFGMODE_MASK 0x00000200 /**< Configuration mode status */

00097 #define XSA_SR_CFGADDR_MASK 0x0000E000 /**< Configuration address */

00098 #define XSA_SR_CFBSY_MASK 0x00020000 /**< CF busy (BSY bit) */

00099 #define XSA_SR_CFRDY_MASK 0x00040000 /**< CF ready (RDY bit) */

00100 #define XSA_SR_CFDWF_MASK 0x00080000 /**< CF data write fault (DWF bit)

*/
00101 #define XSA_SR_CFDSC_MASK 0x00100000 /**< CF ready (DSC bit) */

00102 #define XSA_SR_CFDRQ_MASK 0x00200000 /**< CF data request (DRQ) */

00103 #define XSA_SR_CFCORR_MASK 0x00400000 /**< CF correctable error (CORR

bit) */
00104 #define XSA_SR_CFERR_MASK 0x00800000 /**< CF error (ERR bit) */

00105 /*@}*/
00106
00107
00108 /** @name Error Values
00109 * Error Register masks.
00110 * @{
00111 */
00112 #define XSA_ER_CARD_RESET 0x00000001 /**< CF card failed to reset */

00113 #define XSA_ER_CARD_READY 0x00000002 /**< CF card failed to ready */

00114 #define XSA_ER_CARD_READ 0x00000004 /**< CF read command failed */

00115 #define XSA_ER_CARD_WRITE 0x00000008 /**< CF write command failed */

00116 #define XSA_ER_SECTOR_READY 0x00000010 /**< CF sector failed to ready */

00117 #define XSA_ER_CFG_ADDR 0x00000020 /**< Cfg address is invalid */

00118 #define XSA_ER_CFG_FAIL 0x00000040 /**< Failed to configure a device */

00119 #define XSA_ER_CFG_READ 0x00000080 /**< Cfg read of CF failed */

00120 #define XSA_ER_CFG_INSTR 0x00000100 /**< Invalid instruction during cfg */

00121 #define XSA_ER_CFG_INIT 0x00000200 /**< CFGINIT pin error - did not

00122 * go high within 500ms of start */
00123 #define XSA_ER_RESERVED 0x00000400 /**< reserved */

00124 #define XSA_ER_BAD_BLOCK 0x00000800 /**< CF bad block detected */

00125 #define XSA_ER_UNCORRECTABLE 0x00001000 /**< CF uncorrectable error */

00126 #define XSA_ER_SECTOR_ID 0x00002000 /**< CF sector ID not found */

00127 #define XSA_ER_ABORT 0x00004000 /**< CF command aborted */

00128 #define XSA_ER_GENERAL 0x00008000 /**< CF general error */

00129 /*@}*/
00130
00131
00132 /**
00133 * Config LBA Register - address mask
00134 */
00135 #define XSA_CLR_LBA_MASK 0x0FFFFFFF /* Logical Block Address mask */

00136
00137 /**
00138 * MPU LBA Register - address mask

00139 */
00140 #define XSA_MLR_LBA_MASK 0x0FFFFFFF /* Logical Block Address mask */

00141
00142
00143 /** @name Sector Cound/Command Values
00144 * Sector Count Command Register masks
00145 * @{
00146 */
00147 #define XSA_SCCR_COUNT_MASK 0x00FF /**< Sector count mask */

00148 #define XSA_SCCR_RESET_MASK 0x0100 /**< Reset CF card command */

00149 #define XSA_SCCR_IDENTIFY_MASK 0x0200 /**< Identify CF card command */

00150 #define XSA_SCCR_READDATA_MASK 0x0300 /**< Read CF card command */

00151 #define XSA_SCCR_WRITEDATA_MASK 0x0400 /**< Write CF card command */

00152 #define XSA_SCCR_ABORT_MASK 0x0600 /**< Abort CF command */

00153 #define XSA_SCCR_CMD_MASK 0x0700 /**< Command mask */

00154 /*@}*/
00155
00156
00157 /*
00158 * Version Register masks
00159 */
00160 #define XSA_VR_BUILD_MASK 0x00FF /* Revision/build number */
00161 #define XSA_VR_MINOR_MASK 0x0F00 /* Minor version number */
00162 #define XSA_VR_MAJOR_MASK 0xF000 /* Major version number */
00163
00164
00165 /** @name Control Values
00166 * Control Register masks
00167 * @{
00168 */
00169 #define XSA_CR_FORCELOCK_MASK 0x00000001 /**< Force lock request */

00170 #define XSA_CR_LOCKREQ_MASK 0x00000002 /**< MPU lock request */

00171 #define XSA_CR_FORCECFGADDR_MASK 0x00000004 /**< Force CFG address */

00172 #define XSA_CR_FORCECFGMODE_MASK 0x00000008 /**< Force CFG mode */

00173 #define XSA_CR_CFGMODE_MASK 0x00000010 /**< CFG mode */

00174 #define XSA_CR_CFGSTART_MASK 0x00000020 /**< CFG start */

00175 #define XSA_CR_CFGSEL_MASK 0x00000040 /**< CFG select */

00176 #define XSA_CR_CFGRESET_MASK 0x00000080 /**< CFG reset */

00177 #define XSA_CR_DATARDYIRQ_MASK 0x00000100 /**< Enable data ready IRQ */

00178 #define XSA_CR_ERRORIRQ_MASK 0x00000200 /**< Enable error IRQ */

00179 #define XSA_CR_CFGDONEIRQ_MASK 0x00000400 /**< Enable CFG done IRQ */

00180 #define XSA_CR_RESETIRQ_MASK 0x00000800 /**< Reset IRQ line */

00181 #define XSA_CR_CFGPROG_MASK 0x00001000 /**< Inverted CFGPROG pin */

00182 #define XSA_CR_CFGADDR_MASK 0x0000E000 /**< Config address mask */

00183 #define XSA_CR_CFGADDR_SHIFT 13 /**< Config address shift */

00184 /*@}*/
00185
00186
00187 /** @name FAT Status
00188 *

00189 * FAT filesystem status masks. The first valid partition of the CF
00190 * is a FAT partition.
00191 * @{
00192 */
00193 #define XSA_FAT_VALID_BOOT_REC 0x0001 /**< Valid master boot record */

00194 #define XSA_FAT_VALID_PART_REC 0x0002 /**< Valid partition boot record */

00195 #define XSA_FAT_12_BOOT_REC 0x0004 /**< FAT12 in master boot rec */

00196 #define XSA_FAT_12_PART_REC 0x0008 /**< FAT12 in parition boot rec */

00197 #define XSA_FAT_16_BOOT_REC 0x0010 /**< FAT16 in master boot rec */

00198 #define XSA_FAT_16_PART_REC 0x0020 /**< FAT16 in partition boot rec */

00199 #define XSA_FAT_12_CALC 0x0040 /**< Calculated FAT12 from clusters */

00200 #define XSA_FAT_16_CALC 0x0080 /**< Calculated FAT16 from clusters */

00201 /*@}*/
00202
00203
00204 #define XSA_DATA_BUFFER_SIZE 32 /**< Size of System ACE data buffer */

00205 #define XSA_CF_SECTOR_SIZE 512 /**< Number of bytes in a CF sector */

00206
00207 /**************************** Type Definitions *******************************/
00208
00209
00210 /***************** Macros (Inline Functions) Definitions *********************/
00211
00212 /***
00213 *
00214 * Low-level driver macros and functions. The list below provides signatures
00215 * to help the user use the macros.
00216 *
00217 * Xuint32 XSysAce_mGetControlReg(Xuint32 BaseAddress)
00218 * void XSysAce_mSetControlReg(Xuint32 BaseAddress, Xuint32 Data)
00219 * void XSysAce_mOrControlReg(Xuint32 BaseAddress, Xuint32 Data)
00220 * void XSysAce_mAndControlReg(Xuint32 BaseAddress, Xuint32 Data)
00221 * Xuint32 XSysAce_mGetErrorReg(Xuint32 BaseAddress)
00222 * Xuint32 XSysAce_mGetStatusReg(Xuint32 BaseAddress)
00223 *
00224 * void XSysAce_mSetCfgAddr(Xuint32 BaseAddress, unsigned int Address)
00225 * void XSysAce_mWaitForLock(Xuint32 BaseAddress)
00226 * void XSysAce_mEnableIntr(Xuint32 BaseAddress, Xuint32 Mask)
00227 * void XSysAce_mDisableIntr(Xuint32 BaseAddress, Xuint32 Mask)
00228 *
00229 * Xboolean XSysAce_mIsReadyForCmd(Xuint32 BaseAddress)
00230 * Xboolean XSysAce_mIsCfgDone(Xuint32 BaseAddress)
00231 * Xboolean XSysAce_mIsMpuLocked(Xuint32 BaseAddress)
00232 * Xboolean XSysAce_mIsIntrEnabled(Xuint32 BaseAddress)
00233 *
00234 ***/
00235
00236
00237 /***/
00238 /**
00239 *

00240 * Get the contents of the control register.
00241 *
00242 * @param BaseAddress is the base address of the device.
00243 *
00244 * @return The 32-bit value of the control register.
00245 *
00246 * @note None.
00247 *
00248 **/
00249 #define XSysAce_mGetControlReg(BaseAddress) \

00250 XSysAce_RegRead32((BaseAddress) + XSA_CR_OFFSET)
00251
00252
00253 /***/
00254 /**
00255 *
00256 * Set the contents of the control register.
00257 *
00258 * @param BaseAddress is the base address of the device.
00259 * @param Data is the 32-bit value to write to the register.
00260 *
00261 * @return None.
00262 *
00263 * @note None.
00264 *
00265 **/
00266 #define XSysAce_mSetControlReg(BaseAddress, Data) \

00267 XSysAce_RegWrite32((BaseAddress) + XSA_CR_OFFSET, (Data))
00268
00269
00270 /***/
00271 /**
00272 *
00273 * Set the contents of the control register to the value specified OR'ed with
00274 * its current contents.
00275 *
00276 * @param BaseAddress is the base address of the device.
00277 * @param Data is the 32-bit value to OR with the register.
00278 *
00279 * @return None.
00280 *
00281 * @note None.
00282 *
00283 **/
00284 #define XSysAce_mOrControlReg(BaseAddress, Data) \

00285 XSysAce_mSetControlReg((BaseAddress), \
00286 XSysAce_mGetControlReg(BaseAddress) | (Data))
00287
00288
00289 /***/
00290 /**
00291 *

00292 * Set the contents of the control register to the value specified AND'ed with
00293 * its current contents.
00294 *
00295 * @param BaseAddress is the base address of the device.
00296 * @param Data is the 32-bit value to AND with the register.
00297 *
00298 * @return None.
00299 *
00300 * @note None.
00301 *
00302 **/
00303 #define XSysAce_mAndControlReg(BaseAddress, Data) \

00304 XSysAce_mSetControlReg((BaseAddress), \
00305 XSysAce_mGetControlReg(BaseAddress) & (Data))
00306
00307
00308 /***/
00309 /**
00310 *
00311 * Get the contents of the error register.
00312 *
00313 * @param BaseAddress is the base address of the device.
00314 *
00315 * @return The 32-bit value of the register.
00316 *
00317 * @note None.
00318 *
00319 **/
00320 #define XSysAce_mGetErrorReg(BaseAddress) \

00321 XSysAce_RegRead32((BaseAddress) + XSA_ER_OFFSET)
00322
00323
00324 /***/
00325 /**
00326 *
00327 * Get the contents of the status register.
00328 *
00329 * @param BaseAddress is the base address of the device.
00330 *
00331 * @return The 32-bit value of the register.
00332 *
00333 * @note None.
00334 *
00335 **/
00336 #define XSysAce_mGetStatusReg(BaseAddress) \

00337 XSysAce_RegRead32((BaseAddress) + XSA_SR_OFFSET)
00338
00339
00340 /***/
00341 /**
00342 *
00343 * Set the configuration address, or file, of the CompactFlash. This address

00344 * indicates which .ace bitstream to use to configure the target FPGA chain.
00345 *
00346 * @param BaseAddress is the base address of the device.
00347 * @param Address ranges from 0 to 7 and represents the eight possible .ace
00348 * bitstreams that can reside on the CompactFlash.
00349 *
00350 * @return None.
00351 *
00352 * @note Used cryptic var names to avoid conflict with caller's var names.
00353 *
00354 **/
00355 #define XSysAce_mSetCfgAddr(BaseAddress, Address) \

00356 { \
00357 Xuint32 A66rMask = ((Address) << XSA_CR_CFGADDR_SHIFT) &
XSA_CR_CFGADDR_MASK; \
00358 Xuint32 C0ntr0l = XSysAce_mGetControlReg(BaseAddress); \
00359 C0ntr0l &= ~XSA_CR_CFGADDR_MASK; /* clear current address */ \
00360 C0ntr0l |= (A66rMask | XSA_CR_FORCECFGADDR_MASK); \
00361 XSysAce_mSetControlReg((BaseAddress), C0ntr0l); \
00362 }
00363
00364
00365 /***/
00366 /**
00367 *
00368 * Request then wait for the MPU lock. This is not a forced lock, so we must
00369 * contend with the configuration controller.
00370 *
00371 * @param BaseAddress is the base address of the device.
00372 *
00373 * @return None.
00374 *
00375 * @note None.
00376 *
00377 **/
00378 #define XSysAce_mWaitForLock(BaseAddress) \

00379 { \
00380 XSysAce_mOrControlReg((BaseAddress), XSA_CR_LOCKREQ_MASK); \
00381 while ((XSysAce_mGetStatusReg(BaseAddress) & XSA_SR_MPULOCK_MASK) == 0); \
00382 }
00383
00384 /***/
00385 /**
00386 *
00387 * Enable ACE controller interrupts.
00388 *
00389 * @param BaseAddress is the base address of the device.
00390 *
00391 * @return None.
00392 *
00393 * @note None.
00394 *

00395 **/
00396 #define XSysAce_mEnableIntr(BaseAddress, Mask) \

00397 XSysAce_mOrControlReg((BaseAddress), (Mask));
00398
00399
00400 /***/
00401 /**
00402 *
00403 * Disable ACE controller interrupts.
00404 *
00405 * @param BaseAddress is the base address of the device.
00406 *
00407 * @return None.
00408 *
00409 * @note None.
00410 *
00411 **/
00412 #define XSysAce_mDisableIntr(BaseAddress, Mask) \

00413 XSysAce_mAndControlReg((BaseAddress), ~(Mask));
00414
00415
00416 /***/
00417 /**
00418 *
00419 * Is the CompactFlash ready for a command?
00420 *
00421 * @param BaseAddress is the base address of the device.
00422 *
00423 * @return XTRUE if it is ready, XFALSE otherwise.
00424 *
00425 * @note None.
00426 *
00427 **/
00428 #define XSysAce_mIsReadyForCmd(BaseAddress) \

00429 (XSysAce_mGetStatusReg(BaseAddress) & XSA_SR_RDYFORCMD_MASK)
00430
00431
00432 /***/
00433 /**
00434 *
00435 * Is the ACE controller locked for MPU access?
00436 *
00437 * @param BaseAddress is the base address of the device.
00438 *
00439 * @return XTRUE if it is locked, XFALSE otherwise.
00440 *
00441 * @note None.
00442 *
00443 **/
00444 #define XSysAce_mIsMpuLocked(BaseAddress) \

00445 (XSysAce_mGetStatusReg(BaseAddress) & XSA_SR_MPULOCK_MASK)
00446

00447
00448 /***/
00449 /**
00450 *
00451 * Is the CompactFlash configuration of the target FPGA chain complete?
00452 *
00453 * @param BaseAddress is the base address of the device.
00454 *
00455 * @return XTRUE if it is ready, XFALSE otherwise.
00456 *
00457 * @note None.
00458 *
00459 **/
00460 #define XSysAce_mIsCfgDone(BaseAddress) \

00461 (XSysAce_mGetStatusReg(BaseAddress) & XSA_SR_CFGDONE_MASK)
00462
00463
00464 /***/
00465 /**
00466 *
00467 * Have interrupts been enabled by the user? We look for the interrupt reset
00468 * bit to be clear (meaning interrupts are armed, even though none may be
00469 * individually enabled).
00470 *
00471 * @param BaseAddress is the base address of the device.
00472 *
00473 * @return XTRUE if it is enabled, XFALSE otherwise.
00474 *
00475 * @note None.
00476 *
00477 **/
00478 #define XSysAce_mIsIntrEnabled(BaseAddress) \

00479 ((XSysAce_mGetControlReg(BaseAddress) & XSA_CR_RESETIRQ_MASK) == 0)
00480
00481
00482 /************************** Function Prototypes ******************************/
00483
00484 int XSysAce_ReadSector(Xuint32 BaseAddress, Xuint32 SectorId,

00485 Xuint8 *BufferPtr);

00486 int XSysAce_WriteSector(Xuint32 BaseAddress, Xuint32 SectorId,

00487 Xuint8 *BufferPtr);

00488
00489 /*
00490 * Utility functions to read and write registers and data buffer
00491 */
00492 Xuint32 XSysAce_RegRead32(Xuint32 Address);

00493 Xuint16 XSysAce_RegRead16(Xuint32 Address);

00494 void XSysAce_RegWrite32(Xuint32 Address, Xuint32 Data);

00495 void XSysAce_RegWrite16(Xuint32 Address, Xuint16 Data);

00496
00497 int XSysAce_ReadDataBuffer(Xuint32 BaseAddress, Xuint8 *BufferPtr,

00498 int NumBytes);
00499 int XSysAce_WriteDataBuffer(Xuint32 BaseAddress, Xuint8 *BufferPtr,

00500 int NumBytes);
00501
00502 #endif /* end of protection macro */
00503

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_l.c File
Reference

Detailed Description

This file contains low-level functions to read and write CompactFlash sectors and ACE controller
registers. These functions can be used when only the low-level functionality of the driver is desired. The
user would typically use the high-level driver functions defined in xsysace.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/14/02 work in progress

#include "xsysace_l.h"

Functions

Xuint32 XSysAce_RegRead32 (Xuint32 Address)
Xuint16 XSysAce_RegRead16 (Xuint32 Address)

void XSysAce_RegWrite32 (Xuint32 Address, Xuint32 Data)
void XSysAce_RegWrite16 (Xuint32 Address, Xuint16 Data)

int XSysAce_ReadSector (Xuint32 BaseAddress, Xuint32 SectorId, Xuint8 *BufferPtr)
int XSysAce_WriteSector (Xuint32 BaseAddress, Xuint32 SectorId, Xuint8 *BufferPtr)
int XSysAce_ReadDataBuffer (Xuint32 BaseAddress, Xuint8 *BufferPtr, int Size)
int XSysAce_WriteDataBuffer (Xuint32 BaseAddress, Xuint8 *BufferPtr, int Size)

Function Documentation

int XSysAce_ReadDataBuffer (Xuint32 BaseAddress,
Xuint8 * BufferPtr,
int Size

)

Read the specified number of bytes from the data buffer of the ACE controller. The data buffer, which
is 32 bytes, can only be read two bytes at a time. Once the data buffer is read, we wait for it to be
filled again before reading the next buffer's worth of data.

Parameters:
BaseAddress is the base address of the device
BufferPtr is a pointer to a buffer in which to store data.
Size is the number of bytes to read

Returns:
The total number of bytes read, or 0 if an error occurred.

Note:
If Size is not aligned with the size of the data buffer (32 bytes), this function will read the
entire data buffer, dropping the extra bytes on the floor since the user did not request them.
This is necessary to get the data buffer to be ready again.

int XSysAce_ReadSector (Xuint32 BaseAddress,
Xuint32 SectorId,
Xuint8 * BufferPtr

)

Read a CompactFlash sector. This is a blocking, low-level function which does not return until the
specified sector is read.

Parameters:
BaseAddress is the base address of the device
SectorId is the id of the sector to read
BufferPtr is a pointer to a buffer where the data will be stored.

Returns:
The number of bytes read. If this number is not equal to the sector size, 512 bytes, then an
error occurred.

Note:
None.

Xuint16 XSysAce_RegRead16 (Xuint32 Address)

Read a 16-bit value from the given address. Based on a compile-time constant, do the read in one 16-
bit read or two 8-bit reads.

Parameters:
Address is the address to read from.

Returns:
The 16-bit value of the address.

Note:
No need for endian conversion in 8-bit mode since this function gets the bytes into their proper
lanes in the 16-bit word.

Xuint32 XSysAce_RegRead32 (Xuint32 Address)

Read a 32-bit value from the given address. Based on a compile-time constant, do the read in two 16-
bit reads or four 8-bit reads.

Parameters:
Address is the address to read from.

Returns:
The 32-bit value of the address.

Note:
No need for endian conversion in 8-bit mode since this function gets the bytes into their proper
lanes in the 32-bit word.

void XSysAce_RegWrite16 (Xuint32 Address,
Xuint16 Data

)

Write a 16-bit value to the given address. Based on a compile-time constant, do the write in one 16-bit
write or two 8-bit writes.

Parameters:
Address is the address to write to.
Data is the value to write

Returns:
None.

Note:
No need for endian conversion in 8-bit mode since this function writes the bytes into their
proper lanes based on address.

void XSysAce_RegWrite32 (Xuint32 Address,
Xuint32 Data

)

Write a 32-bit value to the given address. Based on a compile-time constant, do the write in two 16-
bit writes or four 8-bit writes.

Parameters:
Address is the address to write to.
Data is the value to write

Returns:
None.

Note:
No need for endian conversion in 8-bit mode since this function writes the bytes into their
proper lanes based on address.

int XSysAce_WriteDataBuffer (Xuint32 BaseAddress,
Xuint8 * BufferPtr,
int Size

)

Write the specified number of bytes to the data buffer of the ACE controller. The data buffer, which is
32 bytes, can only be written two bytes at a time. Once the data buffer is written, we wait for it to be
empty again before writing the next buffer's worth of data. If the size of the incoming buffer is not
aligned with the System ACE data buffer size (32 bytes), then this routine pads out the data buffer
with zeros so the entire data buffer is written. This is necessary for the ACE controller to process the
data buffer.

Parameters:
BaseAddress is the base address of the device
BufferPtr is a pointer to a buffer used to write to the controller.
Size is the number of bytes to write

Returns:
The total number of bytes written (not including pad bytes), or 0 if an error occurs.

Note:
None.

int XSysAce_WriteSector (Xuint32 BaseAddress,
Xuint32 SectorId,
Xuint8 * BufferPtr

)

Write a CompactFlash sector. This is a blocking, low-level function which does not return until the
specified sector is written in its entirety.

Parameters:
BaseAddress is the base address of the device
SectorId is the id of the sector to write
BufferPtr is a pointer to a buffer used to write the sector.

Returns:
The number of bytes written. If this number is not equal to the sector size, 512 bytes, then an
error occurred.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XSysAce_Config Struct Reference
#include <xsysace.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress

Field Documentation

Xuint32 XSysAce_Config::BaseAddress

 Register base address

Xuint16 XSysAce_Config::DeviceId

 Unique ID of device

The documentation for this struct was generated from the following file:

● sysace/v1_00_a/src/xsysace.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of System ACE devices in the
system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress

#include "xsysace.h"

#include "xparameters.h"

Variables

XSysAce_Config XSysAce_ConfigTable [XPAR_XSYSACE_NUM_INSTANCES]

Variable Documentation

XSysAce_Config XSysAce_ConfigTable[XPAR_XSYSACE_NUM_INSTANCES]

The configuration table for System ACE devices in the system. Each device should have an entry in
this table.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XSysAce_CFParameters Struct
Reference

#include <xsysace.h>

Detailed Description

Typedef for CompactFlash identify drive parameters. Use XSysAce_IdentifyCF() to retrieve this
information from the CompactFlash storage device.

Data Fields

Xuint16 Signature
Xuint16 NumCylinders
Xuint16 NumHeads
Xuint16 NumBytesPerTrack
Xuint16 NumBytesPerSector
Xuint16 NumSectorsPerTrack
Xuint32 NumSectorsPerCard
Xuint16 VendorUnique
Xuint8 SerialNo [20]

Xuint16 BufferType
Xuint16 BufferSize
Xuint16 NumEccBytes
Xuint8 FwVersion [8]
Xuint8 ModelNo [40]

Xuint16 MaxSectors

Xuint16 DblWord
Xuint16 Capabilities
Xuint16 PioMode
Xuint16 DmaMode
Xuint16 TranslationValid
Xuint16 CurNumCylinders
Xuint16 CurNumHeads
Xuint16 CurSectorsPerTrack
Xuint32 CurSectorsPerCard
Xuint16 MultipleSectors
Xuint32 LbaSectors
Xuint16 SecurityStatus
Xuint8 VendorUniqueBytes [62]

Xuint16 PowerDesc

Field Documentation

Xuint16 XSysAce_CFParameters::BufferSize

 Buffer size in 512-byte increments

Xuint16 XSysAce_CFParameters::BufferType

 Buffer type

Xuint16 XSysAce_CFParameters::Capabilities

 Device capabilities

Xuint16 XSysAce_CFParameters::CurNumCylinders

 Current number of cylinders

Xuint16 XSysAce_CFParameters::CurNumHeads

 Current number of heads

Xuint32 XSysAce_CFParameters::CurSectorsPerCard

 Current capacity in sectors

Xuint16 XSysAce_CFParameters::CurSectorsPerTrack

 Current number of sectors per track

Xuint16 XSysAce_CFParameters::DblWord

 Double Word not supported

Xuint16 XSysAce_CFParameters::DmaMode

 DMA data transfer cycle timing mode

Xuint8 XSysAce_CFParameters::FwVersion[8]

 ASCII firmware version

Xuint32 XSysAce_CFParameters::LbaSectors

 Number of addressable sectors in LBA mode

Xuint16 XSysAce_CFParameters::MaxSectors

 Max sectors on R/W Multiple cmds

Xuint8 XSysAce_CFParameters::ModelNo[40]

 ASCII model number

Xuint16 XSysAce_CFParameters::MultipleSectors

 Multiple sector setting

Xuint16 XSysAce_CFParameters::NumBytesPerSector

 Number of unformatted bytes per sector

Xuint16 XSysAce_CFParameters::NumBytesPerTrack

 Number of unformatted bytes per track

Xuint16 XSysAce_CFParameters::NumCylinders

 Default number of cylinders

Xuint16 XSysAce_CFParameters::NumEccBytes

 Number of ECC bytes on R/W Long cmds

Xuint16 XSysAce_CFParameters::NumHeads

 Default number of heads

Xuint32 XSysAce_CFParameters::NumSectorsPerCard

 Default number of sectors per card

Xuint16 XSysAce_CFParameters::NumSectorsPerTrack

 Default number of sectors per track

Xuint16 XSysAce_CFParameters::PioMode

 PIO data transfer cycle timing mode

Xuint16 XSysAce_CFParameters::PowerDesc

 Power requirement description

Xuint16 XSysAce_CFParameters::SecurityStatus

 Security status

Xuint8 XSysAce_CFParameters::SerialNo[20]

 ASCII serial number

Xuint16 XSysAce_CFParameters::Signature

 CompactFlash signature is 0x848a

Xuint16 XSysAce_CFParameters::TranslationValid

 Translation parameters are valid

Xuint16 XSysAce_CFParameters::VendorUnique

 Vendor unique

Xuint8 XSysAce_CFParameters::VendorUniqueBytes[62]

 Vendor unique bytes

The documentation for this struct was generated from the following file:

● sysace/v1_00_a/src/xsysace.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_compactflash.c
File Reference

Detailed Description

Contains functions to reset, read, and write the CompactFlash device via the System ACE controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress

#include "xsysace.h"

#include "xsysace_l.h"

Functions

XStatus XSysAce_ResetCF (XSysAce *InstancePtr)
XStatus XSysAce_AbortCF (XSysAce *InstancePtr)
XStatus XSysAce_IdentifyCF (XSysAce *InstancePtr, XSysAce_CFParameters *ParamPtr)

Xboolean XSysAce_IsCFReady (XSysAce *InstancePtr)
XStatus XSysAce_SectorRead (XSysAce *InstancePtr, Xuint32 StartSector, int NumSectors, Xuint8

*BufferPtr)
XStatus XSysAce_SectorWrite (XSysAce *InstancePtr, Xuint32 StartSector, int NumSectors, Xuint8

*BufferPtr)
Xuint16 XSysAce_GetFatStatus (XSysAce *InstancePtr)

Function Documentation

XStatus XSysAce_AbortCF (XSysAce * InstancePtr)

Abort the CompactFlash operation currently in progress.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a lock has not
been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
❍ XST_SUCCESS if the abort was done successfully
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the CompactFlash is not ready for a command

Note:
According to the ASIC designer, the abort command has not been well tested.

Xuint16 XSysAce_GetFatStatus (XSysAce * InstancePtr)

Get the status of the FAT filesystem on the first valid partition of the CompactFlash device such as the boot
record and FAT types found.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
A 16-bit mask of status values. These values are defined in xsysace_l.h with the prefix XSA_FAT_*.

Note:
None.

XStatus XSysAce_IdentifyCF (XSysAce * InstancePtr,
XSysAce_CFParameters * ParamPtr

)

Identify the CompactFlash device. Retrieves the parameters for the CompactFlash storage device. Note that
this is a polled read of one sector of data. The data is read from the CompactFlash into a byte buffer, which is
then copied into the XSysAce_CFParameters structure passed in by the user. The copy is necessary since we
don't know how the compiler packs the XSysAce_CFParameters structure.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a lock has not
been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

ParamPtr is a pointer to a XSysAce_CFParameters structure where the information for the
CompactFlash device will be stored. See xsysace.h for details on the
XSysAce_CFParameters structure.

Returns:
❍ XST_SUCCESS if the identify was done successfully
❍ XST_FAILURE if an error occurs. Use XSysAce_GetErrors() to determine cause.
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the CompactFlash is not ready for a command

Note:
None.

Xboolean XSysAce_IsCFReady (XSysAce * InstancePtr)

Check to see if the CompactFlash is ready for a command. The CompactFlash may delay after one operation
before it is ready for the next. This function helps the user determine when it is ready before invoking a
CompactFlash operation such as XSysAce_SectorRead() or XSysAce_SectorWrite();

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
XTRUE if the CompactFlash is ready for a command, and XFALSE otherwise.

Note:
None.

XStatus XSysAce_ResetCF (XSysAce * InstancePtr)

Reset the CompactFlash device. This function does not reset the System ACE controller. An ATA soft-reset
of the CompactFlash is performed.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a lock has not
been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
❍ XST_SUCCESS if the reset was done successfully
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the CompactFlash is not ready for a command

Note:
None.

XStatus XSysAce_SectorRead (XSysAce * InstancePtr,
Xuint32 StartSector,
int NumSectors,
Xuint8 * BufferPtr

)

Read at least one sector of data from the CompactFlash. The user specifies the starting sector ID and the
number of sectors to be read. The minimum unit that can be read from the CompactFlash is a sector, which is
512 bytes.

In polled mode, this read is blocking. If there are other tasks in the system that must run, it is best to keep the
number of sectors to be read to a minimum (e.g., 1). In interrupt mode, this read is non-blocking and an event,
XSA_EVENT_DATA_DONE, is returned to the user in the asynchronous event handler when the read is
complete. The user must call XSysAce_EnableInterrupt() to put the driver/device into interrupt mode.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a lock has not
been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

StartSector is the starting sector ID from where data will be read. Sector IDs range from 0 (first
sector) to 0x10000000.

NumSectors is the number of sectors to read. The range can be from 1 to 256.
BufferPtr is a pointer to a buffer where the data will be stored. The user must ensure it is big

enough to hold (512 * NumSectors) bytes.

Returns:
❍ XST_SUCCESS if the read was successful. In interrupt mode, this does not mean the read is

complete, only that it has begun. An event is returned to the user when the read is complete.
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the ACE controller is not ready for a command
❍ XST_FAILURE if an error occurred during the read. The user should call

XSysAce_GetErrors() to determine the cause of the error.

Note:
None.

XStatus XSysAce_SectorWrite (XSysAce * InstancePtr,
Xuint32 StartSector,
int NumSectors,
Xuint8 * BufferPtr

)

Write data to the CompactFlash. The user specifies the starting sector ID and the number of sectors to be
written. The minimum unit that can be written to the CompactFlash is a sector, which is 512 bytes.

In polled mode, this write is blocking. If there are other tasks in the system that must run, it is best to keep the
number of sectors to be written to a minimum (e.g., 1). In interrupt mode, this write is non-blocking and an
event, XSA_EVENT_DATA_DONE, is returned to the user in the asynchronous event handler when the write
is complete. The user must call XSysAce_EnableInterrupt() to put the driver/device into interrupt mode.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a lock has not
been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

StartSector is the starting sector ID from where data will be written. Sector IDs range from 0 (first
sector) to 0x10000000.

NumSectors is the number of sectors to write. The range can be from 1 to 256.
BufferPtr is a pointer to the data buffer to be written. This buffer must have at least (512 *

NumSectors) bytes.

Returns:
❍ XST_SUCCESS if the write was successful. In interrupt mode, this does not mean the write is

complete, only that it has begun. An event is returned to the user when the write is complete.
❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_DEVICE_BUSY if the ACE controller is not ready for a command
❍ XST_FAILURE if an error occurred during the write. The user should call

XSysAce_GetErrors() to determine the cause of the error.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_jtagcfg.c
File Reference

Detailed Description

Contains functions to control the configuration of the target FPGA chain on the System ACE via the
JTAG configuration port.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress

#include "xsysace.h"

#include "xsysace_l.h"

Functions

void XSysAce_ResetCfg (XSysAce *InstancePtr)
void XSysAce_SetCfgAddr (XSysAce *InstancePtr, unsigned int Address)
void XSysAce_SetStartMode (XSysAce *InstancePtr, Xboolean ImmedOnReset, Xboolean

StartCfg)
XStatus XSysAce_ProgramChain (XSysAce *InstancePtr, Xuint8 *BufferPtr, int NumBytes)

Xboolean XSysAce_IsCfgDone (XSysAce *InstancePtr)
Xuint32 XSysAce_GetCfgSector (XSysAce *InstancePtr)

Function Documentation

Xuint32 XSysAce_GetCfgSector (XSysAce * InstancePtr)

Get the sector ID of the CompactFlash sector being used for configuration of the target FPGA chain.
This sector ID (or logical block address) only affects transfers between the ACE configuration logic
and the CompactFlash card. This function is typically used for debug purposes to determine which
sector was being accessed when an error occurred.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
The sector ID (logical block address) being used for data transfers between the ACE
configuration logic and the CompactFlash. Sector IDs range from 0 to 0x10000000.

Note:
None.

Xboolean XSysAce_IsCfgDone (XSysAce * InstancePtr)

Check to see if the configuration of the target FPGA chain is complete. This function is typically only
used in polled mode. In interrupt mode, an event (XSA_EVENT_CFG_DONE) is returned to the user
in the asynchronous event handler.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
XTRUE if the configuration is complete. XFALSE otherwise.

Note:
None.

XStatus XSysAce_ProgramChain (XSysAce * InstancePtr,
Xuint8 * BufferPtr,
int NumBytes

)

Program the target FPGA chain through the configuration JTAG port. This allows the user to program
the devices on the target FPGA chain from the MPU port instead of from CompactFlash. The user
specifies a buffer and the number of bytes to write. The buffer should be equivalent to an ACE (.ace)
file.

Note that when loading the ACE file via the MPU port, the first sector of the ACE file is discarded.
The CF filesystem controller in the System ACE device knows to skip the first sector when the ACE
file comes from the CF, but the CF filesystem controller is bypassed when the ACE file comes from
the MPU port. For this reason, this function skips the first sector of the buffer passed in.

In polled mode, the write is blocking. In interrupt mode, the write is non-blocking and an event,
XSA_EVENT_CFG_DONE, is returned to the user in the asynchronous event handler when the
configuration is complete.

An MPU lock, obtained using XSysAce_Lock(), must be granted before calling this function. If a
lock has not been granted, no action is taken and an error is returned.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

BufferPtr is a pointer to a buffer that will be used to program the configuration JTAG
devices.

NumBytes is the number of bytes in the buffer. We assume that there is at least one sector of
data in the .ace file, which is the information sector.

Returns:
❍ XST_SUCCESS if the write was successful. In interrupt mode, this does not mean the

write is complete, only that it has begun. An event is returned to the user when the write
is complete.

❍ XST_SYSACE_NO_LOCK if no MPU lock has yet been granted
❍ XST_FAILURE if an error occurred during the write. The user should call

XSysAce_GetErrors() to determine the cause of the error.

Note:
None.

void XSysAce_ResetCfg (XSysAce * InstancePtr)

Reset the JTAG configuration controller. This comprises a reset of the JTAG configuration controller
and the CompactFlash controller (if it is currently being accessed by the configuration controller).
Note that the MPU controller is not reset, meaning the MPU registers remain unchanged. The
configuration controller is reset then released from reset in this function.

The CFGDONE status (and therefore interrupt) is cleared when the configuration controller is reset. If
interrupts have been enabled, we go ahead and enable the CFGDONE interrupt here. This means that
if and when a configuration process starts as a result of this reset, an interrupt will be received when it
is complete.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
None.

Note:
This function is not thread-safe.

void XSysAce_SetCfgAddr (XSysAce * InstancePtr,
unsigned int Address

)

Select the configuration address (or file) from the CompactFlash to be used for configuration of the
target FPGA chain.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Address is the address or file number to be used as the bitstream to configure the target
FPGA devices. There are 8 possible files, so the value of this parameter can
range from 0 to 7.

Returns:
None.

Note:
None.

void XSysAce_SetStartMode (XSysAce * InstancePtr,
Xboolean ImmedOnReset,
Xboolean StartCfg

)

Set the start mode for configuration of the target FPGA chain from CompactFlash. The configuration
process only starts after a reset. The user can indicate that the configuration should start immediately
after a reset, or the configuration process can be delayed until the user commands it to start (using this
function). The configuration controller can be reset using XSysAce_ResetCfg().

The user can select which configuration file on the CompactFlash to use using the
XSysAce_SetCfgAddr() function. If the user intends to configure the target FPGA chain directly
from the MPU port, this function is not needed. Instead, the user would simply call
XSysAce_ProgramChain().

The user can use XSysAce_IsCfgDone() when in polled mode to determine if the configuration is
complete. If in interrupt mode, the event XSA_EVENT_CFG_DONE will be returned
asynchronously to the user when the configuration is complete. The user must call
XSysAce_EnableInterrupt() to put the device/driver into interrupt mode.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

ImmedOnReset can be set to XTRUE to indicate the configuration process will start
immediately after a reset of the ACE configuration controller, or it can be set
to XFALSE to indicate the configuration process is delayed after a reset until
the user starts it (using this function).

StartCfg is a boolean indicating whether to start the configuration process or not.
When ImmedOnReset is set to XTRUE, this value is ignored. When
ImmedOnReset is set to XFALSE, then this value controls when the
configuration process is started. When set to XTRUE the configuration
process starts (assuming a reset of the device has occurred), and when set to
XFALSE the configuration process does not start.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_intr.c File
Reference

Detailed Description

Contains functions related to System ACE interrupt mode. The driver's interrupt handler,
XSysAce_InterruptHandler(), must be connected by the user to the interrupt controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress

#include "xsysace.h"

#include "xsysace_l.h"

Functions

void XSysAce_EnableInterrupt (XSysAce *InstancePtr)
void XSysAce_DisableInterrupt (XSysAce *InstancePtr)
void XSysAce_InterruptHandler (void *InstancePtr)
void XSysAce_SetEventHandler (XSysAce *InstancePtr, XSysAce_EventHandler FuncPtr, void

*CallBackRef)

Function Documentation

void XSysAce_DisableInterrupt (XSysAce * InstancePtr)

Disable all System ACE interrupts and hold the interrupt request line of the device in reset.

Parameters:
InstancePtr is a pointer to the XSysAce instance that just interrupted.

Returns:
None.

Note:
None.

void XSysAce_EnableInterrupt (XSysAce * InstancePtr)

Enable System ACE interrupts. There are three interrupts that can be enabled. The error interrupt
enable serves as the driver's means to determine whether interrupts have been enabled or not. The
configuration-done interrupt is not enabled here, instead it is enabled during a reset - which can cause
a configuration process to start. The data-buffer-ready interrupt is not enabled here either. It is
enabled when a read or write operation is started. The reason for not enabling the latter two interrupts
are because the status bits may be set as a leftover of an earlier occurrence of the interrupt.

Parameters:
InstancePtr is a pointer to the XSysAce instance to work on.

Returns:
None.

Note:
None.

void XSysAce_InterruptHandler (void * InstancePtr)

The interrupt handler for the System ACE driver. This handler must be connected by the user to an
interrupt controller or source. This function does not save or restore context.

This function continues reading or writing to the compact flash if such an operation is in progress, and
notifies the upper layer software through the event handler once the operation is complete or an error
occurs. On an error, any command currently in progress is aborted.

Parameters:
InstancePtr is a pointer to the XSysAce instance that just interrupted.

Returns:
None.

Note:
None.

void XSysAce_SetEventHandler (XSysAce * InstancePtr,
XSysAce_EventHandler FuncPtr,
void * CallBackRef

)

Set the callback function for handling events. The upper layer software should call this function
during initialization. The events are passed asynchronously to the upper layer software. The events
are described in xsysace.h and are named XSA_EVENT_*.

Note that the callback is invoked by the driver within interrupt context, so it needs to do its job
quickly. If there are potentially slow operations within the callback, these should be done at task-
level.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is a reference pointer to be passed back to the upper layer.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

sysace/v1_00_a/src/xsysace_selftest.c
File Reference

Detailed Description

Contains diagnostic functions for the System ACE device and driver. This includes a self-test to make
sure communication to the device is possible and the ability to retrieve the ACE controller version.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 06/17/02 work in progress

#include "xsysace.h"

#include "xsysace_l.h"

Functions

XStatus XSysAce_SelfTest (XSysAce *InstancePtr)
Xuint16 XSysAce_GetVersion (XSysAce *InstancePtr)

Function Documentation

Xuint16 XSysAce_GetVersion (XSysAce * InstancePtr)

Retrieve the version of the System ACE device.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
A 16-bit version where the 4 most significant bits are the major version number, the next four
bits are the minor version number, and the least significant 8 bits are the revision or build
number.

Note:
None.

XStatus XSysAce_SelfTest (XSysAce * InstancePtr)

A self-test that simply proves communication to the ACE controller from the device driver by
obtaining an MPU lock, verifying it, then releasing it.

Parameters:
InstancePtr is a pointer to the XSysAce instance to be worked on.

Returns:
XST_SUCCESS if self-test passes, or XST_FAILURE if an error occurs.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi.h File Reference

Detailed Description

This component contains the implementation of the XSpi component. It is the driver for an SPI master or slave device.
User documentation for the driver functions is contained in this file in the form of comment blocks at the front of each
function.

SPI is a 4-wire serial interface. It is a full-duplex, synchronous bus that facilitates communication between one master
and one slave. The device is always full-duplex, which means that for every byte sent, one is received, and vice-versa.
The master controls the clock, so it can regulate when it wants to send or receive data. The slave is under control of the
master, it must respond quickly since it has no control of the clock and must send/receive data as fast or as slow as the
master does.

The application software between master and slave must implement a higher layer protocol so that slaves know what to
transmit to the master and when.

Multiple Masters

More than one master can exist, but arbitration is the responsibility of the higher layer software. The device driver does
not perform any type of arbitration.

Multiple Slaves

Multiple slaves are supported by adding additional slave select (SS) signals to each device, one for each slave on the bus.
The driver ensures that only one slave can be selected at any one time.

FIFOs

The SPI hardware is parameterized such that it can be built with or without FIFOs. When using FIFOs, both send and
receive must have FIFOs. The driver will not function correctly if one direction has a FIFO but the other direction does
not. The frequency of the interrupts which occur is proportional to the data rate such that high data rates without the
FIFOs could cause the software to consume large amounts of processing time. The driver is designed to work with or
without the FIFOs.

Interrupts

The user must connect the interrupt handler of the driver, XSpi_InterruptHandler to an interrupt system such that it will
be called when an interrupt occurs. This function does not save and restore the processor context such that the user must

provide this processing.

The driver handles the following interrupts:

● Data Transmit Register/FIFO Empty
● Data Transmit Register/FIFO Underrun
● Data Receive Register/FIFO Overrun
● Mode Fault Error
● Slave Mode Fault Error

The Data Transmit Register/FIFO Empty interrupt indicates that the SPI device has transmitted all the data available to
transmit, and now its data register (or FIFO) is empty. The driver uses this interrupt to indicate progress while sending
data. The driver may have more data to send, in which case the data transmit register (or FIFO) is filled for subsequent
transmission. When this interrupt arrives and all the data has been sent, the driver invokes the status callback with a value
of XST_SPI_TRANSFER_DONE to inform the upper layer software that all data has been sent.

The Data Transmit Register/FIFO Underrun interrupt indicates that, as slave, the SPI device was required to transmit but
there was no data available to transmit in the transmit register (or FIFO). This may not be an error if the master is not
expecting data, but in the case where the master is expecting data this serves as a notification of such a condition. The
driver reports this condition to the upper layer software through the status handler.

The Data Receive Register/FIFO Overrun interrupt indicates that the SPI device received data and subsequently dropped
the data because the data receive register (or FIFO) was full. The interrupt applies to both master and slave operation.
The driver reports this condition to the upper layer software through the status handler. This likely indicates a problem
with the higher layer protocol, or a problem with the slave performance.

The Mode Fault Error interrupt indicates that while configured as a master, the device was selected as a slave by another
master. This can be used by the application for arbitration in a multimaster environment or to indicate a problem with
arbitration. When this interrupt occurs, the driver invokes the status callback with a status value of
XST_SPI_MODE_FAULT. It is up to the application to resolve the conflict.

The Slave Mode Fault Error interrupt indicates that a slave device was selected as a slave by a master, but the slave
device was disabled. This can be used during system debugging or by the slave application to learn when the slave
application has not prepared for a master operation in a timely fashion. This likely indicates a problem with the higher
layer protocol, or a problem with the slave performance.

Note that during the FPGA implementation process, the interrupt registers of the IPIF can be parameterized away. This
driver is currently dependent on those interrupt registers and will not function without them.

Polled Operation

Currently there is no support for polled operation.

Device Busy

Some operations are disallowed when the device is busy. The driver tracks whether a device is busy. The device is
considered busy when a data transfer request is outstanding, and is considered not busy only when that transfer completes
(or is aborted with a mode fault error). This applies to both master and slave devices.

Device Configuration

The device can be configured in various ways during the FPGA implementation process. Configuration parameters are
stored in the xspi_g.c file. A table is defined where each entry contains configuration information for an SPI device. This
information includes such things as the base address of the memory-mapped device, the base address of the IPIF module
within the device, the number of slave select bits in the device, and whether the device has FIFOs and is configured as
slave-only.

RTOS Independence

This driver is intended to be RTOS and processor independent. It works with physical addresses only. Any needs for
dynamic memory management, threads or thread mutual exclusion, virtual memory, or cache control must be satisfied by
the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 10/11/01 First release
 1.00b jhl 03/14/02 Repartitioned driver for smaller files.

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XSpi
struct XSpi_Config
struct XSpi_Stats

Configuration options

The following options may be specified or retrieved for the device and enable/disable additional features of the SPI. Each
of the options are bit fields, so more than one may be specified.

#define XSP_MASTER_OPTION
#define XSP_CLK_ACTIVE_LOW_OPTION
#define XSP_CLK_PHASE_1_OPTION
#define XSP_LOOPBACK_OPTION
#define XSP_MANUAL_SSELECT_OPTION

Typedefs

typedef void(* XSpi_StatusHandler)(void *CallBackRef, Xuint32 StatusEvent, unsigned int ByteCount)

Functions

XStatus XSpi_Initialize (XSpi *InstancePtr, Xuint16 DeviceId)
XStatus XSpi_Start (XSpi *InstancePtr)
XStatus XSpi_Stop (XSpi *InstancePtr)

void XSpi_Reset (XSpi *InstancePtr)
XStatus XSpi_SetSlaveSelect (XSpi *InstancePtr, Xuint32 SlaveMask)
Xuint32 XSpi_GetSlaveSelect (XSpi *InstancePtr)
XStatus XSpi_Transfer (XSpi *InstancePtr, Xuint8 *SendBufPtr, Xuint8 *RecvBufPtr, unsigned int

ByteCount)
void XSpi_SetStatusHandler (XSpi *InstancePtr, void *CallBackRef, XSpi_StatusHandler FuncPtr)
void XSpi_InterruptHandler (void *InstancePtr)

XSpi_Config * XSpi_LookupConfig (Xuint16 DeviceId)
XStatus XSpi_SelfTest (XSpi *InstancePtr)

void XSpi_GetStats (XSpi *InstancePtr, XSpi_Stats *StatsPtr)
void XSpi_ClearStats (XSpi *InstancePtr)

XStatus XSpi_SetOptions (XSpi *InstancePtr, Xuint32 Options)
Xuint32 XSpi_GetOptions (XSpi *InstancePtr)

Define Documentation

#define XSP_CLK_ACTIVE_LOW_OPTION

 The Master option configures the SPI device as a master. By default, the
 device is a slave.

 The Active Low Clock option configures the device's clock polarity. Setting
 this option means the clock is active low and the SCK signal idles high. By
 default, the clock is active high and SCK idles low.

 The Clock Phase option configures the SPI device for one of two transfer
 formats. A clock phase of 0, the default, means data if valid on the first
 SCK edge (rising or falling) after the slave select (SS) signal has been
 asserted. A clock phase of 1 means data is valid on the second SCK edge
 (rising or falling) after SS has been asserted.

 The Loopback option configures the SPI device for loopback mode. Data is
 looped back from the transmitter to the receiver.

 The Manual Slave Select option, which is default, causes the device not
 to automatically drive the slave select. The driver selects the device
 at the start of a transfer and deselects it at the end of a transfer.
 If this option is off, then the device automatically toggles the slave
 select signal between bytes in a transfer.

#define XSP_CLK_PHASE_1_OPTION

 The Master option configures the SPI device as a master. By default, the
 device is a slave.

 The Active Low Clock option configures the device's clock polarity. Setting
 this option means the clock is active low and the SCK signal idles high. By
 default, the clock is active high and SCK idles low.

 The Clock Phase option configures the SPI device for one of two transfer
 formats. A clock phase of 0, the default, means data if valid on the first
 SCK edge (rising or falling) after the slave select (SS) signal has been
 asserted. A clock phase of 1 means data is valid on the second SCK edge
 (rising or falling) after SS has been asserted.

 The Loopback option configures the SPI device for loopback mode. Data is
 looped back from the transmitter to the receiver.

 The Manual Slave Select option, which is default, causes the device not
 to automatically drive the slave select. The driver selects the device
 at the start of a transfer and deselects it at the end of a transfer.
 If this option is off, then the device automatically toggles the slave
 select signal between bytes in a transfer.

#define XSP_LOOPBACK_OPTION

 The Master option configures the SPI device as a master. By default, the
 device is a slave.

 The Active Low Clock option configures the device's clock polarity. Setting
 this option means the clock is active low and the SCK signal idles high. By
 default, the clock is active high and SCK idles low.

 The Clock Phase option configures the SPI device for one of two transfer
 formats. A clock phase of 0, the default, means data if valid on the first
 SCK edge (rising or falling) after the slave select (SS) signal has been
 asserted. A clock phase of 1 means data is valid on the second SCK edge
 (rising or falling) after SS has been asserted.

 The Loopback option configures the SPI device for loopback mode. Data is
 looped back from the transmitter to the receiver.

 The Manual Slave Select option, which is default, causes the device not
 to automatically drive the slave select. The driver selects the device
 at the start of a transfer and deselects it at the end of a transfer.
 If this option is off, then the device automatically toggles the slave
 select signal between bytes in a transfer.

#define XSP_MANUAL_SSELECT_OPTION

 The Master option configures the SPI device as a master. By default, the
 device is a slave.

 The Active Low Clock option configures the device's clock polarity. Setting
 this option means the clock is active low and the SCK signal idles high. By
 default, the clock is active high and SCK idles low.

 The Clock Phase option configures the SPI device for one of two transfer
 formats. A clock phase of 0, the default, means data if valid on the first
 SCK edge (rising or falling) after the slave select (SS) signal has been
 asserted. A clock phase of 1 means data is valid on the second SCK edge
 (rising or falling) after SS has been asserted.

 The Loopback option configures the SPI device for loopback mode. Data is
 looped back from the transmitter to the receiver.

 The Manual Slave Select option, which is default, causes the device not
 to automatically drive the slave select. The driver selects the device
 at the start of a transfer and deselects it at the end of a transfer.
 If this option is off, then the device automatically toggles the slave
 select signal between bytes in a transfer.

#define XSP_MASTER_OPTION

 The Master option configures the SPI device as a master. By default, the
 device is a slave.

 The Active Low Clock option configures the device's clock polarity. Setting
 this option means the clock is active low and the SCK signal idles high. By
 default, the clock is active high and SCK idles low.

 The Clock Phase option configures the SPI device for one of two transfer
 formats. A clock phase of 0, the default, means data if valid on the first
 SCK edge (rising or falling) after the slave select (SS) signal has been
 asserted. A clock phase of 1 means data is valid on the second SCK edge
 (rising or falling) after SS has been asserted.

 The Loopback option configures the SPI device for loopback mode. Data is
 looped back from the transmitter to the receiver.

 The Manual Slave Select option, which is default, causes the device not
 to automatically drive the slave select. The driver selects the device
 at the start of a transfer and deselects it at the end of a transfer.
 If this option is off, then the device automatically toggles the slave
 select signal between bytes in a transfer.

Typedef Documentation

typedef void(* XSpi_StatusHandler)(void *CallBackRef, Xuint32 StatusEvent, unsigned int ByteCount)

The handler data type allows the user to define a callback function to handle the asynchronous processing of the SPI
driver. The application using this driver is expected to define a handler of this type to support interrupt driven mode.
The handler executes in an interrupt context such that minimal processing should be performed.

Parameters:
CallBackRef A callback reference passed in by the upper layer when setting the callback functions, and

passed back to the upper layer when the callback is invoked. Its type is unimportant to the driver
component, so it is a void pointer.

StatusEvent Indicates one or more status events that occurred. See the XSpi_SetStatusHandler() for details
on the status events that can be passed in the callback.

ByteCount Indicates how many bytes of data were successfully transferred. This may be less than the
number of bytes requested if the status event indicates an error.

Function Documentation

void XSpi_ClearStats (XSpi * InstancePtr)

Clears the statistics for the SPI device.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
None.

Xuint32 XSpi_GetOptions (XSpi * InstancePtr)

This function gets the options for the SPI device. The options control how the device behaves relative to the SPI bus.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
Options contains the specified options to be set. This is a bit mask where a 1 means to turn the option on, and a
0 means to turn the option off. One or more bit values may be contained in the mask. See the bit definitions
named XSP_*_OPTIONS in the file xspi.h.

Note:
None.

Xuint32 XSpi_GetSlaveSelect (XSpi * InstancePtr)

Gets the current slave select bit mask for the SPI device.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
The value returned is a 32-bit mask with a 1 in the bit position of the slave currently selected. The value may
be zero if no slaves are selected.

Note:
None.

void XSpi_GetStats (XSpi * InstancePtr,
XSpi_Stats * StatsPtr

)

Gets a copy of the statistics for an SPI device.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

StatsPtr is a pointer to a XSpi_Stats structure which will get a copy of current statistics.

Returns:
None.

Note:
None.

XStatus XSpi_Initialize (XSpi * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XSpi instance such that the driver is ready to use.

The state of the device after initialization is:

● Device is disabled
● Slave mode
● Active high clock polarity
● Clock phase 0

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

DeviceId is the unique id of the device controlled by this XSpi instance. Passing in a device id associates
the generic XSpi instance to a specific device, as chosen by the caller or application developer.

Returns:
The return value is XST_SUCCESS if successful. On error, a code indicating the specific error is returned.
Possible error codes are:

❍ XST_DEVICE_IS_STARTED if the device is started. It must be stopped to re-initialize.
❍ XST_DEVICE_NOT_FOUND if the device was not found in the configuration such that initialization

could not be accomplished.

Note:
None.

void XSpi_InterruptHandler (void * InstancePtr)

The interrupt handler for SPI interrupts. This function must be connected by the user to an interrupt source. This
function does not save and restore the processor context such that the user must provide this processing.

The interrupts that are handled are:

● Mode Fault Error. This interrupt is generated if this device is selected as a slave when it is configured as a
master. The driver aborts any data transfer that is in progress by resetting FIFOs (if present) and resetting its
buffer pointers. The upper layer software is informed of the error.

● Data Transmit Register (FIFO) Empty. This interrupt is generated when the transmit register or FIFO is empty.
The driver uses this interrupt during a transmission to continually send/receive data until there is no more data
to send/receive.

● Data Transmit Register (FIFO) Underrun. This interrupt is generated when the SPI device, when configured as
a slave, attempts to read an empty DTR/FIFO. An empty DTR/FIFO usually means that software is not giving
the device data in a timely manner. No action is taken by the driver other than to inform the upper layer
software of the error.

● Data Receive Register (FIFO) Overrun. This interrupt is generated when the SPI device attempts to write a

received byte to an already full DRR/FIFO. A full DRR/FIFO usually means software is not emptying the data
in a timely manner. No action is taken by the driver other than to inform the upper layer software of the error.

● Slave Mode Fault Error. This interrupt is generated if a slave device is selected as a slave while it is disabled.
No action is taken by the driver other than to inform the upper layer software of the error.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
The slave select register is being set to deselect the slave when a transfer is complete. This is being done
regardless of whether it is a slave or a master since the hardware does not drive the slave select as a slave.

XSpi_Config* XSpi_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration info for each
device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found. See xspi.h for the
definition of XSpi_Config.

Note:
None.

void XSpi_Reset (XSpi * InstancePtr)

Resets the SPI device. Reset must only be called after the driver has been initialized. The configuration of the device
after reset is the same as its configuration after initialization. Refer to the XSpi_Initialize function for more details.
This is a hard reset of the device. Any data transfer that is in progress is aborted.

The upper layer software is responsible for re-configuring (if necessary) and restarting the SPI device after the reset.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
None.

XStatus XSpi_SelfTest (XSpi * InstancePtr)

Runs a self-test on the driver/device. The self-test is destructive in that a reset of the device is performed in order to
check the reset values of the registers and to get the device into a known state. A simple loopback test is also
performed to verify that transmit and receive are working properly. The device is changed to master mode for the
loopback test, since only a master can initiate a data transfer.

Upon successful return from the self-test, the device is reset.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
XST_SUCCESS if successful, or one of the following error codes otherwise.

❍ XST_REGISTER_ERROR indicates a register did not read or write correctly
❍ XST_LOOPBACK_ERROR if a loopback error occurred.

Note:
None.

XStatus XSpi_SetOptions (XSpi * InstancePtr,
Xuint32 Options

)

This function sets the options for the SPI device driver. The options control how the device behaves relative to the
SPI bus. The device must be idle rather than busy transferring data before setting these device options.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Options contains the specified options to be set. This is a bit mask where a 1 means to turn the option on,
and a 0 means to turn the option off. One or more bit values may be contained in the mask. See
the bit definitions named XSP_*_OPTIONS in the file xspi.h.

Returns:
XST_SUCCESS if options are successfully set. Otherwise, returns:

❍ XST_DEVICE_BUSY if the device is currently transferring data. The transfer must complete or be
aborted before setting options.

❍ XST_SPI_SLAVE_ONLY if the caller attempted to configure a slave-only device as a master.

Note:
This function makes use of internal resources that are shared between the XSpi_Stop() and
XSpi_SetOptions() functions. So if one task might be setting device options options while another is trying to
stop the device, the user is required to provide protection of this shared data (typically using a semaphore).

XStatus XSpi_SetSlaveSelect (XSpi * InstancePtr,
Xuint32 SlaveMask

)

Selects or deselect the slave with which the master communicates. Each slave that can be selected is represented in
the slave select register by a bit. The argument passed to this function is the bit mask with a 1 in the bit position of the
slave being selected. Only one slave can be selected.

The user is not allowed to deselect the slave while a transfer is in progress. If no transfer is in progress, the user can
select a new slave, which implicitly deselects the current slave. In order to explicitly deselect the current slave, a zero
can be passed in as the argument to the function.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

SlaveMask is a 32-bit mask with a 1 in the bit position of the slave being selected. Only one slave can be
selected. The SlaveMask can be zero if the slave is being deselected.

Returns:
XST_SUCCESS if the slave is selected or deselected successfully. Otherwise, returns:

❍ XST_DEVICE_BUSY if a transfer is in progress, slave cannot be changed
❍ XST_SPI_TOO_MANY_SLAVES if more than one slave is being selected.

Note:
This function only sets the slave which will be selected when a transfer occurs. The slave is not selected when
the SPI is idle. The slave select has no affect when the device is configured as a slave.

void XSpi_SetStatusHandler (XSpi * InstancePtr,
void * CallBackRef,
XSpi_StatusHandler FuncPtr

)

Sets the status callback function, the status handler, which the driver calls when it encounters conditions that should
be reported to the higher layer software. The handler executes in an interrupt context, so it must minimize the amount
of processing performed such as transferring data to a thread context. One of the following status events is passed to
the status handler.

 XST_SPI_MODE_FAULT A mode fault error occurred, meaning another
 master tried to select this device as a slave
 when this device was configured to be a master.
 Any transfer in progress is aborted.

 XST_SPI_TRANSFER_DONE The requested data transfer is done

 XST_SPI_TRANSMIT_UNDERRUN As a slave device, the master clocked data
 but there were none available in the transmit
 register/FIFO. This typically means the slave
 application did not issue a transfer request
 fast enough, or the processor/driver could not
 fill the transmit register/FIFO fast enough.

 XST_SPI_RECEIVE_OVERRUN The SPI device lost data. Data was received
 but the receive data register/FIFO was full.
 This indicates that the device is receiving data

 faster than the processor/driver can consume it.
 XST_SPI_SLAVE_MODE_FAULT A slave SPI device was selected as a slave while
 it was disabled. This indicates the master is
 already transferring data (which is being
 dropped until the slave application issues a
 transfer).

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context, so it should do its work quickly and queue potentially time-
consuming work to a task-level thread.

XStatus XSpi_Start (XSpi * InstancePtr)

This function enables interrupts for the SPI device. It is up to the user to connect the SPI interrupt handler to the
interrupt controller before this Start function is called. The GetIntrHandler function is used for that purpose. If the
device is configured with FIFOs, the FIFOs are reset at this time.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
XST_SUCCESS if the device is successfully started, or XST_DEVICE_IS_STARTED if the device was
already started.

Note:
None.

XStatus XSpi_Stop (XSpi * InstancePtr)

This function stops the SPI device by disabling interrupts and disabling the device itself. Interrupts are disabled only
within the device itself. If desired, the caller is responsible for disabling interrupts in the interrupt controller and
disconnecting the interrupt handler from the interrupt controller.

If the device is in progress of transferring data on the SPI bus, this function returns a status indicating the device is
busy. The user will be notified via the status handler when the transfer is complete, and at that time can again try to
stop the device. As a master, we do not allow the device to be stopped while a transfer is in progress because the slave
may be left in a bad state. As a slave, we do not allow the device to be stopped while a transfer is in progress because
the master is not done with its transfer yet.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
XST_SUCCESS if the device is successfully started, or XST_DEVICE_BUSY if a transfer is in progress and
cannot be stopped.

Note:
This function makes use of internal resources that are shared between the XSpi_Stop() and
XSpi_SetOptions() functions. So if one task might be setting device options options while another is trying to
stop the device, the user is required to provide protection of this shared data (typically using a semaphore).

XStatus XSpi_Transfer (XSpi * InstancePtr,
Xuint8 * SendBufPtr,
Xuint8 * RecvBufPtr,
unsigned int ByteCount

)

Transfers the specified data on the SPI bus. If the SPI device is configured to be a master, this function initiates bus
communication and sends/receives the data to/from the selected SPI slave. If the SPI device is configured to be a
slave, this function prepares the data to be sent/received when selected by a master. For every byte sent, a byte is
received.

The caller has the option of providing two different buffers for send and receive, or one buffer for both send and
receive, or no buffer for receive. The receive buffer must be at least as big as the send buffer to prevent unwanted
memory writes. This implies that the byte count passed in as an argument must be the smaller of the two buffers if
they differ in size. Here are some sample usages:

 XSpi_Transfer(InstancePtr, SendBuf, RecvBuf, ByteCount)
 The caller wishes to send and receive, and provides two different
 buffers for send and receive.

 XSpi_Transfer(InstancePtr, SendBuf, NULL, ByteCount)
 The caller wishes only to send and does not care about the received
 data. The driver ignores the received data in this case.

 XSpi_Transfer(InstancePtr, SendBuf, SendBuf, ByteCount)
 The caller wishes to send and receive, but provides the same buffer
 for doing both. The driver sends the data and overwrites the send
 buffer with received data as it transfers the data.

 XSpi_Transfer(InstancePtr, RecvBuf, RecvBuf, ByteCount)
 The caller wishes to only receive and does not care about sending
 data. In this case, the caller must still provide a send buffer, but
 it can be the same as the receive buffer if the caller does not care
 what it sends. The device must send N bytes of data if it wishes to
 receive N bytes of data.

Although this function takes a buffer as an argument, the driver can only transfer a limited number of bytes at time. It
transfers only one byte at a time if there are no FIFOs, or it can transfer the number of bytes up to the size of the
FIFO. A call to this function only starts the transfer, then subsequent transfer of the data is performed by the interrupt
service routine until the entire buffer has been transferred. The status callback function is called when the entire
buffer has been sent/received.

This function is non-blocking. As a master, the SetSlaveSelect function must be called prior to this function.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

SendBufPtr is a pointer to a buffer of data which is to be sent. This buffer must not be NULL.
RecvBufPtr is a pointer to a buffer which will be filled with received data. This argument can be NULL if the

caller does not wish to receive data.
ByteCount contains the number of bytes to send/receive. The number of bytes received always equals the

number of bytes sent.

Returns:
XST_SUCCESS if the buffers are successfully handed off to the driver for transfer. Otherwise, returns:

❍ XST_DEVICE_IS_STOPPED if the device must be started before transferring data.
❍ XST_DEVICE_BUSY indicates that a data transfer is already in progress. This is determined by the

driver.
❍ XST_SPI_NO_SLAVE indicates the device is configured as a master and a slave has not yet been

selected.

Note:
This function is not thread-safe. he higher layer software must ensure that no two threads are transferring data
on the SPI bus at the same time.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XSpi Struct Reference
#include <xspi.h>

Detailed Description

The XSpi driver instance data. The user is required to allocate a variable of this type for every SPI device
in the system. A pointer to a variable of this type is then passed to the driver API functions.

The documentation for this struct was generated from the following file:

● spi/v1_00_b/src/xspi.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi.h
Go to the documentation of this file.

00001 /* $Id: xspi.h,v 1.4 2002/05/02 20:31:10 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file spi/v1_00_b/src/xspi.h
00026 *
00027 * This component contains the implementation of the XSpi component. It is the
00028 * driver for an SPI master or slave device. User documentation for the driver
00029 * functions is contained in this file in the form of comment blocks at the
00030 * front of each function.
00031 *
00032 * SPI is a 4-wire serial interface. It is a full-duplex, synchronous bus that
00033 * facilitates communication between one master and one slave. The device is
00034 * always full-duplex, which means that for every byte sent, one is received,
and
00035 * vice-versa. The master controls the clock, so it can regulate when it wants
00036 * to send or receive data. The slave is under control of the master, it must
00037 * respond quickly since it has no control of the clock and must send/receive
00038 * data as fast or as slow as the master does.
00039 *
00040 * The application software between master and slave must implement a higher
00041 * layer protocol so that slaves know what to transmit to the master and when.

00042 *
00043 * Multiple Masters
00044 *
00045 * More than one master can exist, but arbitration is the responsibility of the
00046 * higher layer software. The device driver does not perform any type of
00047 * arbitration.
00048 *
00049 * Multiple Slaves
00050 *
00051 * Multiple slaves are supported by adding additional slave select (SS) signals
00052 * to each device, one for each slave on the bus. The driver ensures that only
00053 * one slave can be selected at any one time.
00054 *
00055 * FIFOs
00056 *
00057 * The SPI hardware is parameterized such that it can be built with or without
00058 * FIFOs. When using FIFOs, both send and receive must have FIFOs. The driver
00059 * will not function correctly if one direction has a FIFO but the other
00060 * direction does not. The frequency of the interrupts which occur is
00061 * proportional to the data rate such that high data rates without the FIFOs
00062 * could cause the software to consume large amounts of processing time. The
00063 * driver is designed to work with or without the FIFOs.
00064 *
00065 * Interrupts
00066 *
00067 * The user must connect the interrupt handler of the driver,
00068 * XSpi_InterruptHandler to an interrupt system such that it will be called when
00069 * an interrupt occurs. This function does not save and restore the processor
00070 * context such that the user must provide this processing.
00071 *
00072 * The driver handles the following interrupts:
00073 * - Data Transmit Register/FIFO Empty
00074 * - Data Transmit Register/FIFO Underrun
00075 * - Data Receive Register/FIFO Overrun
00076 * - Mode Fault Error
00077 * - Slave Mode Fault Error
00078 *
00079 * The Data Transmit Register/FIFO Empty interrupt indicates that the SPI device
00080 * has transmitted all the data available to transmit, and now its data register
00081 * (or FIFO) is empty. The driver uses this interrupt to indicate progress while
00082 * sending data. The driver may have more data to send, in which case the data
00083 * transmit register (or FIFO) is filled for subsequent transmission. When this
00084 * interrupt arrives and all the data has been sent, the driver invokes the
status
00085 * callback with a value of XST_SPI_TRANSFER_DONE to inform the upper layer
00086 * software that all data has been sent.
00087 *
00088 * The Data Transmit Register/FIFO Underrun interrupt indicates that, as slave,
00089 * the SPI device was required to transmit but there was no data available to
00090 * transmit in the transmit register (or FIFO). This may not be an error if the
00091 * master is not expecting data, but in the case where the master is expecting
00092 * data this serves as a notification of such a condition. The driver reports
00093 * this condition to the upper layer software through the status handler.

00094 *
00095 * The Data Receive Register/FIFO Overrun interrupt indicates that the SPI
device
00096 * received data and subsequently dropped the data because the data receive
00097 * register (or FIFO) was full. The interrupt applies to both master and slave
00098 * operation. The driver reports this condition to the upper layer software
00099 * through the status handler. This likely indicates a problem with the higher
00100 * layer protocol, or a problem with the slave performance.
00101 *
00102 * The Mode Fault Error interrupt indicates that while configured as a master,
00103 * the device was selected as a slave by another master. This can be used by the
00104 * application for arbitration in a multimaster environment or to indicate a
00105 * problem with arbitration. When this interrupt occurs, the driver invokes the
00106 * status callback with a status value of XST_SPI_MODE_FAULT. It is up to the
00107 * application to resolve the conflict.
00108 *
00109 * The Slave Mode Fault Error interrupt indicates that a slave device was
00110 * selected as a slave by a master, but the slave device was disabled. This can
00111 * be used during system debugging or by the slave application to learn when the
00112 * slave application has not prepared for a master operation in a timely
fashion.
00113 * This likely indicates a problem with the higher layer protocol, or a problem
00114 * with the slave performance.
00115 *
00116 * Note that during the FPGA implementation process, the interrupt registers of
00117 * the IPIF can be parameterized away. This driver is currently dependent on
00118 * those interrupt registers and will not function without them.
00119 *
00120 * Polled Operation
00121 *
00122 * Currently there is no support for polled operation.
00123 *
00124 * Device Busy
00125 *
00126 * Some operations are disallowed when the device is busy. The driver tracks
00127 * whether a device is busy. The device is considered busy when a data transfer
00128 * request is outstanding, and is considered not busy only when that transfer
00129 * completes (or is aborted with a mode fault error). This applies to both
00130 * master and slave devices.
00131 *
00132 * Device Configuration
00133 *
00134 * The device can be configured in various ways during the FPGA implementation
00135 * process. Configuration parameters are stored in the xspi_g.c file. A table
00136 * is defined where each entry contains configuration information for an SPI
00137 * device. This information includes such things as the base address of the
00138 * memory-mapped device, the base address of the IPIF module within the device,
00139 * the number of slave select bits in the device, and whether the device has
00140 * FIFOs and is configured as slave-only.
00141 *
00142 * RTOS Independence
00143 *

00144 * This driver is intended to be RTOS and processor independent. It works
00145 * with physical addresses only. Any needs for dynamic memory management,
00146 * threads or thread mutual exclusion, virtual memory, or cache control must
00147 * be satisfied by the layer above this driver.
00148 *
00149 * <pre>
00150 * MODIFICATION HISTORY:
00151 *
00152 * Ver Who Date Changes
00153 * ----- ---- -------- ---
00154 * 1.00a rpm 10/11/01 First release
00155 * 1.00b jhl 03/14/02 Repartitioned driver for smaller files.
00156 * </pre>
00157 *
00158 **/
00159
00160 #ifndef XSPI_H /* prevent circular inclusions */
00161 #define XSPI_H /* by using protection macros */
00162
00163 /***************************** Include Files *********************************/
00164
00165 #include "xbasic_types.h"

00166 #include "xstatus.h"

00167
00168 /************************** Constant Definitions *****************************/
00169
00170 /** @name Configuration options
00171 *
00172 * The following options may be specified or retrieved for the device and
00173 * enable/disable additional features of the SPI. Each of the options
00174 * are bit fields, so more than one may be specified.
00175 *
00176 * @{
00177 */
00178 /**
00179 * <pre>
00180 * The Master option configures the SPI device as a master. By default, the
00181 * device is a slave.
00182 *
00183 * The Active Low Clock option configures the device's clock polarity. Setting
00184 * this option means the clock is active low and the SCK signal idles high. By
00185 * default, the clock is active high and SCK idles low.
00186 *
00187 * The Clock Phase option configures the SPI device for one of two transfer
00188 * formats. A clock phase of 0, the default, means data if valid on the first
00189 * SCK edge (rising or falling) after the slave select (SS) signal has been
00190 * asserted. A clock phase of 1 means data is valid on the second SCK edge
00191 * (rising or falling) after SS has been asserted.
00192 *
00193 * The Loopback option configures the SPI device for loopback mode. Data is
00194 * looped back from the transmitter to the receiver.
00195 *

00196 * The Manual Slave Select option, which is default, causes the device not
00197 * to automatically drive the slave select. The driver selects the device
00198 * at the start of a transfer and deselects it at the end of a transfer.
00199 * If this option is off, then the device automatically toggles the slave
00200 * select signal between bytes in a transfer.
00201 * </pre>
00202 */
00203 #define XSP_MASTER_OPTION 0x1

00204 #define XSP_CLK_ACTIVE_LOW_OPTION 0x2

00205 #define XSP_CLK_PHASE_1_OPTION 0x4

00206 #define XSP_LOOPBACK_OPTION 0x8

00207 #define XSP_MANUAL_SSELECT_OPTION 0x10

00208 /*@}*/
00209
00210 /**************************** Type Definitions *******************************/
00211
00212 /**
00213 * The handler data type allows the user to define a callback function to
00214 * handle the asynchronous processing of the SPI driver. The application using
00215 * this driver is expected to define a handler of this type to support
interrupt
00216 * driven mode. The handler executes in an interrupt context such that minimal
00217 * processing should be performed.
00218 *
00219 * @param CallBackRef A callback reference passed in by the upper layer when
00220 * setting the callback functions, and passed back to the
00221 * upper layer when the callback is invoked. Its type is
00222 * unimportant to the driver component, so it is a void
00223 * pointer.
00224 * @param StatusEvent Indicates one or more status events that occurred. See
00225 * the XSpi_SetStatusHandler() for details on the status
00226 * events that can be passed in the callback.
00227 * @param ByteCount Indicates how many bytes of data were successfully
00228 * transferred. This may be less than the number of
bytes
00229 * requested if the status event indicates an error.
00230 */
00231 typedef void (*XSpi_StatusHandler)(void *CallBackRef, Xuint32 StatusEvent,

00232 unsigned int ByteCount);
00233
00234 /**
00235 * XSpi statistics
00236 */
00237 typedef struct

00238 {
00239 Xuint32 ModeFaults; /**< Number of mode fault errors */

00240 Xuint32 XmitUnderruns; /**< Number of transmit underruns */

00241 Xuint32 RecvOverruns; /**< Number of receive overruns */

00242 Xuint32 SlaveModeFaults; /**< Number of selects as a slave while

disabled */
00243 Xuint32 BytesTransferred; /**< Number of bytes transferred */

00244 Xuint32 NumInterrupts; /**< Number of transmit/receive interrupts */

00245 } XSpi_Stats;

00246
00247 /**
00248 * This typedef contains configuration information for the device.
00249 */
00250 typedef struct

00251 {
00252 Xuint16 DeviceId; /**< Unique ID of device */

00253 Xuint32 BaseAddress; /**< Base address of the device */

00254
00255 /* Device capabilities */
00256 Xboolean HasFifos; /**< Does device have FIFOs? */

00257 Xboolean SlaveOnly; /**< Is the device slave only? */

00258 Xuint8 NumSlaveBits; /**< Number of slave select bits on the device */

00259 } XSpi_Config;

00260
00261 /**
00262 * The XSpi driver instance data. The user is required to allocate a
00263 * variable of this type for every SPI device in the system. A pointer
00264 * to a variable of this type is then passed to the driver API functions.
00265 */
00266 typedef struct

00267 {
00268 XSpi_Stats Stats; /* Statistics */

00269 Xuint32 BaseAddr; /* Base address of device (IPIF) */

00270 Xuint32 IsReady; /* Device is initialized and ready */

00271 Xuint32 IsStarted; /* Device has been started */

00272 Xboolean HasFifos; /* Device is configured with FIFOs or not */

00273 Xboolean SlaveOnly; /* Device is configured to be slave only */

00274 Xuint8 NumSlaveBits; /* Number of slave selects for this device */

00275 Xuint32 SlaveSelectMask; /* Mask that matches the number of SS bits */

00276 Xuint32 SlaveSelectReg; /* Slave select register */

00277
00278 Xuint8 *SendBufferPtr; /* Buffer to send (state) */

00279 Xuint8 *RecvBufferPtr; /* Buffer to receive (state) */

00280 unsigned int RequestedBytes; /* Number of bytes to transfer (state) */
00281 unsigned int RemainingBytes; /* Number of bytes left to transfer (state)
*/
00282 Xboolean IsBusy; /* A transfer is in progress (state) */

00283
00284 XSpi_StatusHandler StatusHandler;

00285 void *StatusRef; /* Callback reference for status handler */
00286
00287 } XSpi;

00288
00289 /***************** Macros (Inline Functions) Definitions *********************/
00290
00291
00292 /************************** Function Prototypes ******************************/

00293 /*
00294 * required functions, in xspi.c
00295 */
00296 XStatus XSpi_Initialize(XSpi *InstancePtr, Xuint16 DeviceId);

00297
00298 XStatus XSpi_Start(XSpi *InstancePtr);

00299 XStatus XSpi_Stop(XSpi *InstancePtr);

00300
00301 void XSpi_Reset(XSpi *InstancePtr);

00302
00303 XStatus XSpi_SetSlaveSelect(XSpi *InstancePtr, Xuint32 SlaveMask);

00304 Xuint32 XSpi_GetSlaveSelect(XSpi *InstancePtr);

00305
00306 XStatus XSpi_Transfer(XSpi *InstancePtr, Xuint8 *SendBufPtr, Xuint8

*RecvBufPtr,
00307 unsigned int ByteCount);
00308
00309 void XSpi_SetStatusHandler(XSpi *InstancePtr, void *CallBackRef,

00310 XSpi_StatusHandler FuncPtr);

00311 void XSpi_InterruptHandler(void *InstancePtr);

00312 XSpi_Config *XSpi_LookupConfig(Xuint16 DeviceId);

00313
00314
00315 /*
00316 * functions for selftest, in xspi_selftest.c
00317 */
00318 XStatus XSpi_SelfTest(XSpi *InstancePtr);

00319
00320 /*
00321 * functions for statistics, in xspi_stats.c
00322 */
00323 void XSpi_GetStats(XSpi *InstancePtr, XSpi_Stats *StatsPtr);

00324 void XSpi_ClearStats(XSpi *InstancePtr);

00325
00326 /*
00327 * functions for options, in xspi_options.c
00328 */
00329 XStatus XSpi_SetOptions(XSpi *InstancePtr, Xuint32 Options);

00330 Xuint32 XSpi_GetOptions(XSpi *InstancePtr);

00331
00332 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XSpi_Stats Struct Reference
#include <xspi.h>

Detailed Description

XSpi statistics

Data Fields

Xuint32 ModeFaults
Xuint32 XmitUnderruns
Xuint32 RecvOverruns
Xuint32 SlaveModeFaults
Xuint32 BytesTransferred
Xuint32 NumInterrupts

Field Documentation

Xuint32 XSpi_Stats::BytesTransferred

 Number of bytes transferred

Xuint32 XSpi_Stats::ModeFaults

 Number of mode fault errors

Xuint32 XSpi_Stats::NumInterrupts

 Number of transmit/receive interrupts

Xuint32 XSpi_Stats::RecvOverruns

 Number of receive overruns

Xuint32 XSpi_Stats::SlaveModeFaults

 Number of selects as a slave while disabled

Xuint32 XSpi_Stats::XmitUnderruns

 Number of transmit underruns

The documentation for this struct was generated from the following file:

● spi/v1_00_b/src/xspi.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XSpi_Config Struct Reference
#include <xspi.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress

Xboolean HasFifos
Xboolean SlaveOnly

Xuint8 NumSlaveBits

Field Documentation

Xuint32 XSpi_Config::BaseAddress

 Base address of the device

Xuint16 XSpi_Config::DeviceId

 Unique ID of device

Xboolean XSpi_Config::HasFifos

 Does device have FIFOs?

Xuint8 XSpi_Config::NumSlaveBits

 Number of slave select bits on the device

Xboolean XSpi_Config::SlaveOnly

 Is the device slave only?

The documentation for this struct was generated from the following file:

● spi/v1_00_b/src/xspi.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi.c File Reference

Detailed Description

Contains required functions of the XSpi driver component. See xspi.h for a detailed description of the device and driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 10/11/01 First release
 1.00b jhl 03/14/02 Repartitioned driver for smaller files.
 1.00b rpm 04/25/02 Collapsed IPIF and reg base addresses into one
 1.00b rmm 05/14/03 Fixed diab compiler warnings relating to asserts

#include "xparameters.h"

#include "xspi.h"

#include "xspi_i.h"

#include "xipif_v1_23_b.h"
#include "xio.h"

Functions

XStatus XSpi_Initialize (XSpi *InstancePtr, Xuint16 DeviceId)
XStatus XSpi_Start (XSpi *InstancePtr)
XStatus XSpi_Stop (XSpi *InstancePtr)

void XSpi_Reset (XSpi *InstancePtr)
XStatus XSpi_Transfer (XSpi *InstancePtr, Xuint8 *SendBufPtr, Xuint8 *RecvBufPtr, unsigned int

ByteCount)
XStatus XSpi_SetSlaveSelect (XSpi *InstancePtr, Xuint32 SlaveMask)
Xuint32 XSpi_GetSlaveSelect (XSpi *InstancePtr)

void XSpi_SetStatusHandler (XSpi *InstancePtr, void *CallBackRef, XSpi_StatusHandler FuncPtr)
void XSpi_InterruptHandler (void *InstancePtr)
void XSpi_Abort (XSpi *InstancePtr)

XSpi_Config * XSpi_LookupConfig (Xuint16 DeviceId)

Function Documentation

void XSpi_Abort (XSpi * InstancePtr)

Aborts a transfer in progress by setting the stop bit in the control register, then resetting the FIFOs if present. The byte
counts are cleared and the busy flag is set to false.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
This function does a read/modify/write of the control register. The user of this function needs to take care of
critical sections.

Xuint32 XSpi_GetSlaveSelect (XSpi * InstancePtr)

Gets the current slave select bit mask for the SPI device.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
The value returned is a 32-bit mask with a 1 in the bit position of the slave currently selected. The value may
be zero if no slaves are selected.

Note:
None.

XStatus XSpi_Initialize (XSpi * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XSpi instance such that the driver is ready to use.

The state of the device after initialization is:

● Device is disabled
● Slave mode
● Active high clock polarity
● Clock phase 0

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

DeviceId is the unique id of the device controlled by this XSpi instance. Passing in a device id associates
the generic XSpi instance to a specific device, as chosen by the caller or application developer.

Returns:
The return value is XST_SUCCESS if successful. On error, a code indicating the specific error is returned.
Possible error codes are:

❍ XST_DEVICE_IS_STARTED if the device is started. It must be stopped to re-initialize.
❍ XST_DEVICE_NOT_FOUND if the device was not found in the configuration such that initialization

could not be accomplished.

Note:
None.

void XSpi_InterruptHandler (void * InstancePtr)

The interrupt handler for SPI interrupts. This function must be connected by the user to an interrupt source. This
function does not save and restore the processor context such that the user must provide this processing.

The interrupts that are handled are:

● Mode Fault Error. This interrupt is generated if this device is selected as a slave when it is configured as a
master. The driver aborts any data transfer that is in progress by resetting FIFOs (if present) and resetting its
buffer pointers. The upper layer software is informed of the error.

● Data Transmit Register (FIFO) Empty. This interrupt is generated when the transmit register or FIFO is empty.
The driver uses this interrupt during a transmission to continually send/receive data until there is no more data
to send/receive.

● Data Transmit Register (FIFO) Underrun. This interrupt is generated when the SPI device, when configured as
a slave, attempts to read an empty DTR/FIFO. An empty DTR/FIFO usually means that software is not giving
the device data in a timely manner. No action is taken by the driver other than to inform the upper layer
software of the error.

● Data Receive Register (FIFO) Overrun. This interrupt is generated when the SPI device attempts to write a
received byte to an already full DRR/FIFO. A full DRR/FIFO usually means software is not emptying the data

in a timely manner. No action is taken by the driver other than to inform the upper layer software of the error.

● Slave Mode Fault Error. This interrupt is generated if a slave device is selected as a slave while it is disabled.
No action is taken by the driver other than to inform the upper layer software of the error.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
The slave select register is being set to deselect the slave when a transfer is complete. This is being done
regardless of whether it is a slave or a master since the hardware does not drive the slave select as a slave.

XSpi_Config* XSpi_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration info for each
device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found. See xspi.h for the
definition of XSpi_Config.

Note:
None.

void XSpi_Reset (XSpi * InstancePtr)

Resets the SPI device. Reset must only be called after the driver has been initialized. The configuration of the device
after reset is the same as its configuration after initialization. Refer to the XSpi_Initialize function for more details.
This is a hard reset of the device. Any data transfer that is in progress is aborted.

The upper layer software is responsible for re-configuring (if necessary) and restarting the SPI device after the reset.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:

None.

XStatus XSpi_SetSlaveSelect (XSpi * InstancePtr,
Xuint32 SlaveMask

)

Selects or deselect the slave with which the master communicates. Each slave that can be selected is represented in
the slave select register by a bit. The argument passed to this function is the bit mask with a 1 in the bit position of the
slave being selected. Only one slave can be selected.

The user is not allowed to deselect the slave while a transfer is in progress. If no transfer is in progress, the user can
select a new slave, which implicitly deselects the current slave. In order to explicitly deselect the current slave, a zero
can be passed in as the argument to the function.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

SlaveMask is a 32-bit mask with a 1 in the bit position of the slave being selected. Only one slave can be
selected. The SlaveMask can be zero if the slave is being deselected.

Returns:
XST_SUCCESS if the slave is selected or deselected successfully. Otherwise, returns:

❍ XST_DEVICE_BUSY if a transfer is in progress, slave cannot be changed
❍ XST_SPI_TOO_MANY_SLAVES if more than one slave is being selected.

Note:
This function only sets the slave which will be selected when a transfer occurs. The slave is not selected when
the SPI is idle. The slave select has no affect when the device is configured as a slave.

void XSpi_SetStatusHandler (XSpi * InstancePtr,
void * CallBackRef,
XSpi_StatusHandler FuncPtr

)

Sets the status callback function, the status handler, which the driver calls when it encounters conditions that should
be reported to the higher layer software. The handler executes in an interrupt context, so it must minimize the amount
of processing performed such as transferring data to a thread context. One of the following status events is passed to
the status handler.

 XST_SPI_MODE_FAULT A mode fault error occurred, meaning another
 master tried to select this device as a slave
 when this device was configured to be a master.
 Any transfer in progress is aborted.

 XST_SPI_TRANSFER_DONE The requested data transfer is done

 XST_SPI_TRANSMIT_UNDERRUN As a slave device, the master clocked data
 but there were none available in the transmit

 register/FIFO. This typically means the slave
 application did not issue a transfer request
 fast enough, or the processor/driver could not
 fill the transmit register/FIFO fast enough.

 XST_SPI_RECEIVE_OVERRUN The SPI device lost data. Data was received
 but the receive data register/FIFO was full.
 This indicates that the device is receiving data

 faster than the processor/driver can consume it.
 XST_SPI_SLAVE_MODE_FAULT A slave SPI device was selected as a slave while
 it was disabled. This indicates the master is
 already transferring data (which is being
 dropped until the slave application issues a
 transfer).

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context, so it should do its work quickly and queue potentially time-
consuming work to a task-level thread.

XStatus XSpi_Start (XSpi * InstancePtr)

This function enables interrupts for the SPI device. It is up to the user to connect the SPI interrupt handler to the
interrupt controller before this Start function is called. The GetIntrHandler function is used for that purpose. If the
device is configured with FIFOs, the FIFOs are reset at this time.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
XST_SUCCESS if the device is successfully started, or XST_DEVICE_IS_STARTED if the device was
already started.

Note:
None.

XStatus XSpi_Stop (XSpi * InstancePtr)

This function stops the SPI device by disabling interrupts and disabling the device itself. Interrupts are disabled only
within the device itself. If desired, the caller is responsible for disabling interrupts in the interrupt controller and
disconnecting the interrupt handler from the interrupt controller.

If the device is in progress of transferring data on the SPI bus, this function returns a status indicating the device is
busy. The user will be notified via the status handler when the transfer is complete, and at that time can again try to
stop the device. As a master, we do not allow the device to be stopped while a transfer is in progress because the slave
may be left in a bad state. As a slave, we do not allow the device to be stopped while a transfer is in progress because
the master is not done with its transfer yet.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
XST_SUCCESS if the device is successfully started, or XST_DEVICE_BUSY if a transfer is in progress and
cannot be stopped.

Note:
This function makes use of internal resources that are shared between the XSpi_Stop() and
XSpi_SetOptions() functions. So if one task might be setting device options options while another is trying to
stop the device, the user is required to provide protection of this shared data (typically using a semaphore).

XStatus XSpi_Transfer (XSpi * InstancePtr,
Xuint8 * SendBufPtr,
Xuint8 * RecvBufPtr,
unsigned int ByteCount

)

Transfers the specified data on the SPI bus. If the SPI device is configured to be a master, this function initiates bus
communication and sends/receives the data to/from the selected SPI slave. If the SPI device is configured to be a
slave, this function prepares the data to be sent/received when selected by a master. For every byte sent, a byte is
received.

The caller has the option of providing two different buffers for send and receive, or one buffer for both send and
receive, or no buffer for receive. The receive buffer must be at least as big as the send buffer to prevent unwanted
memory writes. This implies that the byte count passed in as an argument must be the smaller of the two buffers if
they differ in size. Here are some sample usages:

 XSpi_Transfer(InstancePtr, SendBuf, RecvBuf, ByteCount)
 The caller wishes to send and receive, and provides two different
 buffers for send and receive.

 XSpi_Transfer(InstancePtr, SendBuf, NULL, ByteCount)
 The caller wishes only to send and does not care about the received
 data. The driver ignores the received data in this case.

 XSpi_Transfer(InstancePtr, SendBuf, SendBuf, ByteCount)
 The caller wishes to send and receive, but provides the same buffer
 for doing both. The driver sends the data and overwrites the send
 buffer with received data as it transfers the data.

 XSpi_Transfer(InstancePtr, RecvBuf, RecvBuf, ByteCount)
 The caller wishes to only receive and does not care about sending
 data. In this case, the caller must still provide a send buffer, but
 it can be the same as the receive buffer if the caller does not care
 what it sends. The device must send N bytes of data if it wishes to
 receive N bytes of data.

Although this function takes a buffer as an argument, the driver can only transfer a limited number of bytes at time. It
transfers only one byte at a time if there are no FIFOs, or it can transfer the number of bytes up to the size of the
FIFO. A call to this function only starts the transfer, then subsequent transfer of the data is performed by the interrupt
service routine until the entire buffer has been transferred. The status callback function is called when the entire
buffer has been sent/received.

This function is non-blocking. As a master, the SetSlaveSelect function must be called prior to this function.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

SendBufPtr is a pointer to a buffer of data which is to be sent. This buffer must not be NULL.
RecvBufPtr is a pointer to a buffer which will be filled with received data. This argument can be NULL if the

caller does not wish to receive data.
ByteCount contains the number of bytes to send/receive. The number of bytes received always equals the

number of bytes sent.

Returns:
XST_SUCCESS if the buffers are successfully handed off to the driver for transfer. Otherwise, returns:

❍ XST_DEVICE_IS_STOPPED if the device must be started before transferring data.
❍ XST_DEVICE_BUSY indicates that a data transfer is already in progress. This is determined by the

driver.
❍ XST_SPI_NO_SLAVE indicates the device is configured as a master and a slave has not yet been

selected.

Note:
This function is not thread-safe. he higher layer software must ensure that no two threads are transferring data
on the SPI bus at the same time.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_i.h
Go to the documentation of this file.

00001 /* $Id: xspi_i.h,v 1.4 2002/05/02 20:31:10 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file spi/v1_00_b/src/xspi_i.h
00026 *
00027 * This header file contains internal identifiers. It is intended for internal
00028 * use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a rpm 10/11/01 First release
00036 * 1.00b jhl 03/14/02 Repartitioned driver for smaller files.
00037 * 1.00b rpm 04/24/02 Moved register definitions to xspi_l.h
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XSPI_I_H /* prevent circular inclusions */

00043 #define XSPI_I_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xspi_l.h"

00049
00050 /************************** Constant Definitions *****************************/
00051
00052 /*
00053 * IPIF SPI device interrupt mask. This mask is for the Device Interrupt
00054 * Register within the IPIF.
00055 */
00056 #define XSP_IPIF_SPI_MASK 0x4UL
00057
00058 #define XSP_IPIF_DEVICE_INTR_COUNT 3 /* Number of interrupt sources */
00059 #define XSP_IPIF_IP_INTR_COUNT 6 /* Number of SPI interrupts
00060 * note that there are 7 interrupts in
00061 * the h/w but s/w does not use the
00062 * half empty which only exists when
00063 * there are FIFOs, this allows the
IPIF
00064 * self test to pass with or without
00065 * FIFOs */
00066 /*
00067 * IPIF SPI IP interrupt masks. These masks are for the IP Interrupt Register
00068 * within the IPIF.
00069 */
00070 #define XSP_INTR_MODE_FAULT_MASK 0x1UL /* Mode fault error */
00071 #define XSP_INTR_SLAVE_MODE_FAULT_MASK 0x2UL /* Selected as slave while
00072 * disabled */
00073 #define XSP_INTR_TX_EMPTY_MASK 0x4UL /* DTR/TxFIFO is empty */
00074 #define XSP_INTR_TX_UNDERRUN_MASK 0x8UL /* DTR/TxFIFO was underrun */
00075 #define XSP_INTR_RX_FULL_MASK 0x10UL /* DRR/RxFIFO is full */
00076 #define XSP_INTR_RX_OVERRUN_MASK 0x20UL /* DRR/RxFIFO was overrun */
00077 #define XSP_INTR_TX_HALF_EMPTY_MASK 0x40UL /* TxFIFO is half empty */
00078
00079 /*
00080 * The interrupts we want at startup. We add the TX_EMPTY interrupt in later
00081 * when we're getting ready to transfer data. The others we don't care
00082 * about for now.
00083 */
00084 #define XSP_INTR_DFT_MASK (XSP_INTR_MODE_FAULT_MASK | \
00085 XSP_INTR_TX_UNDERRUN_MASK | \
00086 XSP_INTR_RX_OVERRUN_MASK | \
00087 XSP_INTR_SLAVE_MODE_FAULT_MASK)
00088
00089 /**************************** Type Definitions *******************************/
00090
00091 /***************** Macros (Inline Functions) Definitions *********************/
00092
00093

00094 /***/
00095 /*
00096 *
00097 * Clear the statistics of the driver instance.
00098 *
00099 * @param InstancePtr is a pointer to the XSpi instance to be worked on.
00100 *
00101 * @return None.
00102 *
00103 * @note
00104 *
00105 * Signature: void XSpi_mClearStats(XSpi *InstancePtr)
00106 *
00107 ***/
00108 #define XSpi_mClearStats(InstancePtr) \
00109 { \
00110 InstancePtr->Stats.ModeFaults = 0; \
00111 InstancePtr->Stats.XmitUnderruns = 0; \
00112 InstancePtr->Stats.RecvOverruns = 0; \
00113 InstancePtr->Stats.SlaveModeFaults = 0; \
00114 InstancePtr->Stats.BytesTransferred = 0;\
00115 InstancePtr->Stats.NumInterrupts = 0; \
00116 }
00117
00118 /************************** Function Prototypes ******************************/
00119
00120 void XSpi_Abort(XSpi *InstancePtr);

00121
00122 /************************** Variable Definitions *****************************/
00123
00124 extern XSpi_Config XSpi_ConfigTable[];

00125
00126 #endif /* end of protection macro */
00127

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_i.h File Reference

Detailed Description

This header file contains internal identifiers. It is intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 10/11/01 First release
 1.00b jhl 03/14/02 Repartitioned driver for smaller files.
 1.00b rpm 04/24/02 Moved register definitions to xspi_l.h

#include "xbasic_types.h"

#include "xspi_l.h"

Go to the source code of this file.

Functions

void XSpi_Abort (XSpi *InstancePtr)

Variables

XSpi_Config XSpi_ConfigTable []

Function Documentation

void XSpi_Abort (XSpi * InstancePtr)

Aborts a transfer in progress by setting the stop bit in the control register, then resetting the FIFOs if
present. The byte counts are cleared and the busy flag is set to false.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
This function does a read/modify/write of the control register. The user of this function needs
to take care of critical sections.

Variable Documentation

XSpi_Config XSpi_ConfigTable[] ()

 This table contains configuration information for each SPI device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_l.h File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xspi.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 04/24/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XSpi_mSetControlReg(BaseAddress, Mask)
#define XSpi_mGetControlReg(BaseAddress)
#define XSpi_mGetStatusReg(BaseAddress)
#define XSpi_mSetSlaveSelectReg(BaseAddress, Mask)
#define XSpi_mGetSlaveSelectReg(BaseAddress)
#define XSpi_mEnable(BaseAddress)
#define XSpi_mDisable(BaseAddress)
#define XSpi_mSendByte(BaseAddress, Data)

#define XSpi_mRecvByte(BaseAddress)

Define Documentation

#define XSpi_mDisable(BaseAddress)

Disable the device. Preserves the current contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XSpi_mEnable(BaseAddress)

Enable the device and uninhibit master transactions. Preserves the current contents of the control
register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XSpi_mGetControlReg(BaseAddress)

Get the contents of the control register. Use the XSP_CR_* constants defined above to interpret the
bit-mask returned.

Parameters:
BaseAddress is the base address of the device

Returns:
A 16-bit value representing the contents of the control register.

Note:
None.

#define XSpi_mGetSlaveSelectReg(BaseAddress)

Get the contents of the slave select register. Each bit in the mask corresponds to a slave select line.
Only one slave should be selected at any one time.

Parameters:
BaseAddress is the base address of the device

Returns:
The 32-bit value in the slave select register

Note:
None.

#define XSpi_mGetStatusReg(BaseAddress)

Get the contents of the status register. Use the XSP_SR_* constants defined above to interpret the bit-
mask returned.

Parameters:
BaseAddress is the base address of the device

Returns:
An 8-bit value representing the contents of the status register.

Note:
None.

#define XSpi_mRecvByte(BaseAddress)

Receive one byte from the device's receive FIFO/register. It is assumed that the byte is already
available.

Parameters:
BaseAddress is the base address of the device

Returns:
The byte retrieved from the receive FIFO/register.

Note:
None.

#define XSpi_mSendByte(BaseAddress,
Data)

Send one byte to the currently selected slave. The byte that is received from the slave is saved in the
receive FIFO/register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XSpi_mSetControlReg(BaseAddress,
Mask)

Set the contents of the control register. Use the XSP_CR_* constants defined above to create the bit-
mask to be written to the register.

Parameters:
BaseAddress is the base address of the device
Mask is the 16-bit value to write to the control register

Returns:
None.

Note:
None.

#define XSpi_mSetSlaveSelectReg(BaseAddress,
Mask)

Set the contents of the slave select register. Each bit in the mask corresponds to a slave select line.
Only one slave should be selected at any one time.

Parameters:
BaseAddress is the base address of the device
Mask is the 32-bit value to write to the slave select register

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_l.h
Go to the documentation of this file.

00001 /* $Id: xspi_l.h,v 1.1 2002/05/02 20:27:52 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file spi/v1_00_b/src/xspi_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xspi.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b rpm 04/24/02 First release
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XSPI_L_H /* prevent circular inclusions */
00042 #define XSPI_L_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048
00049 /************************** Constant Definitions *****************************/
00050
00051 /*
00052 * Offset from the device base address (IPIF) to the IP registers.
00053 */
00054 #define XSP_REGISTER_OFFSET 0x60
00055
00056 /*
00057 * Register offsets for the SPI. Each register except the CR & SSR is 8 bits,
00058 * so add 3 to the word-offset to get the LSB (in a big-endian system).
00059 */
00060 #define XSP_CR_OFFSET (XSP_REGISTER_OFFSET + 0x2) /* 16-bit Control */
00061 #define XSP_SR_OFFSET (XSP_REGISTER_OFFSET + 0x4 + 3) /* Status */
00062 #define XSP_DTR_OFFSET (XSP_REGISTER_OFFSET + 0x8 + 3) /* Data transmit */
00063 #define XSP_DRR_OFFSET (XSP_REGISTER_OFFSET + 0xC + 3) /* Data receive */
00064 #define XSP_SSR_OFFSET (XSP_REGISTER_OFFSET + 0x10) /* 32-bit slave select
*/
00065 #define XSP_TFO_OFFSET (XSP_REGISTER_OFFSET + 0x14 + 3) /* Transmit FIFO
occupancy */
00066 #define XSP_RFO_OFFSET (XSP_REGISTER_OFFSET + 0x18 + 3) /* Receive FIFO
occupancy */
00067
00068 /*
00069 * SPI Control Register (CR) masks
00070 */
00071 #define XSP_CR_LOOPBACK_MASK 0x1 /* Local loopback mode */
00072 #define XSP_CR_ENABLE_MASK 0x2 /* System enable */
00073 #define XSP_CR_MASTER_MODE_MASK 0x4 /* Enable master mode */
00074 #define XSP_CR_CLK_POLARITY_MASK 0x8 /* Clock polarity high or low */
00075 #define XSP_CR_CLK_PHASE_MASK 0x10 /* Clock phase 0 or 1 */
00076 #define XSP_CR_TXFIFO_RESET_MASK 0x20 /* Reset transmit FIFO */
00077 #define XSP_CR_RXFIFO_RESET_MASK 0x40 /* Reset receive FIFO */
00078 #define XSP_CR_MANUAL_SS_MASK 0x80 /* Manual slave select assertion */
00079 #define XSP_CR_TRANS_INHIBIT_MASK 0x100 /* Master transaction inhibit */
00080
00081 /*
00082 * SPI Status Register (SR) masks
00083 */
00084 #define XSP_SR_RX_EMPTY_MASK 0x1 /* Receive register/FIFO is empty */
00085 #define XSP_SR_RX_FULL_MASK 0x2 /* Receive register/FIFO is full */
00086 #define XSP_SR_TX_EMPTY_MASK 0x4 /* Transmit register/FIFO is empty */
00087 #define XSP_SR_TX_FULL_MASK 0x8 /* Transmit register/FIFO is full */
00088 #define XSP_SR_MODE_FAULT_MASK 0x10 /* Mode fault error */
00089
00090 /*
00091 * SPI Transmit FIFO Occupancy (TFO) mask. The binary value plus one yields

00092 * the occupancy.
00093 */
00094 #define XSP_TFO_MASK 0x1F
00095
00096 /*
00097 * SPI Receive FIFO Occupancy (RFO) mask. The binary value plus one yields
00098 * the occupancy.
00099 */
00100 #define XSP_RFO_MASK 0x1F
00101
00102
00103 /**************************** Type Definitions *******************************/
00104
00105 /***************** Macros (Inline Functions) Definitions *********************/
00106
00107
00108 /***
00109 *
00110 * Low-level driver macros. The list below provides signatures to help the
00111 * user use the macros.
00112 *
00113 * void XSpi_mSetControlReg(Xuint32 BaseAddress, Xuint16 Mask)
00114 * Xuint16 XSpi_mGetControlReg(Xuint32 BaseAddress)
00115 * Xuint8 XSpi_mGetStatusReg(Xuint32 BaseAddress)
00116 *
00117 * void XSpi_mSetSlaveSelectReg(Xuint32 BaseAddress, Xuint32 Mask)
00118 * Xuint32 XSpi_mGetSlaveSelectReg(Xuint32 BaseAddress)
00119 *
00120 * void XSpi_mEnable(Xuint32 BaseAddress)
00121 * void XSpi_mDisable(Xuint32 BaseAddress)
00122 *
00123 * void XSpi_mSendByte(Xuint32 BaseAddress, Xuint8 Data);
00124 * Xuint8 XSpi_mRecvByte(Xuint32 BaseAddress);
00125 *
00126 ***/
00127
00128 /**/
00129 /**
00130 *
00131 * Set the contents of the control register. Use the XSP_CR_* constants defined
00132 * above to create the bit-mask to be written to the register.
00133 *
00134 * @param BaseAddress is the base address of the device
00135 * @param Mask is the 16-bit value to write to the control register
00136 *
00137 * @return None.
00138 *
00139 * @note None.
00140 *
00141 ***/
00142 #define XSpi_mSetControlReg(BaseAddress, Mask) \

00143 XIo_Out16((BaseAddress) + XSP_CR_OFFSET, (Mask))

00144
00145
00146 /**/
00147 /**
00148 *
00149 * Get the contents of the control register. Use the XSP_CR_* constants defined
00150 * above to interpret the bit-mask returned.
00151 *
00152 * @param BaseAddress is the base address of the device
00153 *
00154 * @return A 16-bit value representing the contents of the control register.
00155 *
00156 * @note None.
00157 *
00158 ***/
00159 #define XSpi_mGetControlReg(BaseAddress) \

00160 XIo_In16((BaseAddress) + XSP_CR_OFFSET)
00161
00162
00163 /**/
00164 /**
00165 *
00166 * Get the contents of the status register. Use the XSP_SR_* constants defined
00167 * above to interpret the bit-mask returned.
00168 *
00169 * @param BaseAddress is the base address of the device
00170 *
00171 * @return An 8-bit value representing the contents of the status register.
00172 *
00173 * @note None.
00174 *
00175 ***/
00176 #define XSpi_mGetStatusReg(BaseAddress) \

00177 XIo_In8((BaseAddress) + XSP_SR_OFFSET)
00178
00179
00180 /**/
00181 /**
00182 *
00183 * Set the contents of the slave select register. Each bit in the mask
00184 * corresponds to a slave select line. Only one slave should be selected at
00185 * any one time.
00186 *
00187 * @param BaseAddress is the base address of the device
00188 * @param Mask is the 32-bit value to write to the slave select register
00189 *
00190 * @return None.
00191 *
00192 * @note None.
00193 *
00194 ***/
00195 #define XSpi_mSetSlaveSelectReg(BaseAddress, Mask) \

00196 XIo_Out32((BaseAddress) + XSP_SSR_OFFSET, (Mask))
00197
00198
00199 /**/
00200 /**
00201 *
00202 * Get the contents of the slave select register. Each bit in the mask
00203 * corresponds to a slave select line. Only one slave should be selected at
00204 * any one time.
00205 *
00206 * @param BaseAddress is the base address of the device
00207 *
00208 * @return The 32-bit value in the slave select register
00209 *
00210 * @note None.
00211 *
00212 ***/
00213 #define XSpi_mGetSlaveSelectReg(BaseAddress) \

00214 XIo_In32((BaseAddress) + XSP_SSR_OFFSET)
00215
00216 /**/
00217 /**
00218 *
00219 * Enable the device and uninhibit master transactions. Preserves the current
00220 * contents of the control register.
00221 *
00222 * @param BaseAddress is the base address of the device
00223 *
00224 * @return None.
00225 *
00226 * @note None.
00227 *
00228 ***/
00229 #define XSpi_mEnable(BaseAddress) \

00230 { \
00231 Xuint16 Control; \
00232 Control = XSpi_mGetControlReg((BaseAddress)); \
00233 Control |= XSP_CR_ENABLE_MASK; \
00234 Control &= ~XSP_CR_TRANS_INHIBIT_MASK; \
00235 XSpi_mSetControlReg((BaseAddress), Control); \
00236 }
00237
00238 /**/
00239 /**
00240 *
00241 * Disable the device. Preserves the current contents of the control register.
00242 *
00243 * @param BaseAddress is the base address of the device
00244 *
00245 * @return None.
00246 *
00247 * @note None.

00248 *
00249 ***/
00250 #define XSpi_mDisable(BaseAddress) \

00251 XSpi_mSetControlReg((BaseAddress), \
00252 XSpi_mGetControlReg((BaseAddress)) & ~XSP_CR_ENABLE_MASK)
00253
00254
00255 /**/
00256 /**
00257 *
00258 * Send one byte to the currently selected slave. The byte that is received
00259 * from the slave is saved in the receive FIFO/register.
00260 *
00261 * @param BaseAddress is the base address of the device
00262 *
00263 * @return None.
00264 *
00265 * @note None.
00266 *
00267 ***/
00268 #define XSpi_mSendByte(BaseAddress, Data) \

00269 XIo_Out8((BaseAddress) + XSP_DTR_OFFSET, (Data))
00270
00271
00272 /**/
00273 /**
00274 *
00275 * Receive one byte from the device's receive FIFO/register. It is assumed
00276 * that the byte is already available.
00277 *
00278 * @param BaseAddress is the base address of the device
00279 *
00280 * @return The byte retrieved from the receive FIFO/register.
00281 *
00282 * @note None.
00283 *
00284 ***/
00285 #define XSpi_mRecvByte(BaseAddress) \

00286 XIo_In8((BaseAddress) + XSP_DRR_OFFSET)
00287
00288 /************************** Function Prototypes ******************************/
00289
00290 /************************** Variable Definitions *****************************/
00291
00292 #endif /* end of protection macro */
00293

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_selftest.c File
Reference

Detailed Description

This component contains the implementation of selftest functions for the XSpi driver component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 2/27/02 First release
 1.00b rpm 04/25/02 Collapsed IPIF and reg base addresses into one

#include "xspi.h"

#include "xspi_i.h"

#include "xio.h"

#include "xipif_v1_23_b.h"

Functions

XStatus XSpi_SelfTest (XSpi *InstancePtr)

Function Documentation

XStatus XSpi_SelfTest (XSpi * InstancePtr)

Runs a self-test on the driver/device. The self-test is destructive in that a reset of the device is
performed in order to check the reset values of the registers and to get the device into a known state.
A simple loopback test is also performed to verify that transmit and receive are working properly. The
device is changed to master mode for the loopback test, since only a master can initiate a data
transfer.

Upon successful return from the self-test, the device is reset.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
XST_SUCCESS if successful, or one of the following error codes otherwise.

❍ XST_REGISTER_ERROR indicates a register did not read or write correctly
❍ XST_LOOPBACK_ERROR if a loopback error occurred.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_stats.c File
Reference

Detailed Description

This component contains the implementation of statistics functions for the XSpi driver component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 03/14/02 First release
 1.00b rpm 04/25/02 Changed macro naming convention

#include "xspi.h"

#include "xspi_i.h"

Functions

void XSpi_GetStats (XSpi *InstancePtr, XSpi_Stats *StatsPtr)
void XSpi_ClearStats (XSpi *InstancePtr)

Function Documentation

void XSpi_ClearStats (XSpi * InstancePtr)

Clears the statistics for the SPI device.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
None.

Note:
None.

void XSpi_GetStats (XSpi * InstancePtr,
XSpi_Stats * StatsPtr

)

Gets a copy of the statistics for an SPI device.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

StatsPtr is a pointer to a XSpi_Stats structure which will get a copy of current statistics.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_options.c File
Reference

Detailed Description

Contains functions for the configuration of the XSpi driver component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 2/27/02 First release
 1.00b rpm 04/25/02 Collapsed IPIF and reg base addresses into one

#include "xspi.h"

#include "xspi_i.h"

#include "xio.h"

Data Structures

struct OptionsMap

Functions

XStatus XSpi_SetOptions (XSpi *InstancePtr, Xuint32 Options)
Xuint32 XSpi_GetOptions (XSpi *InstancePtr)

Function Documentation

Xuint32 XSpi_GetOptions (XSpi * InstancePtr)

This function gets the options for the SPI device. The options control how the device behaves relative
to the SPI bus.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Returns:
Options contains the specified options to be set. This is a bit mask where a 1 means to turn the
option on, and a 0 means to turn the option off. One or more bit values may be contained in the
mask. See the bit definitions named XSP_*_OPTIONS in the file xspi.h.

Note:
None.

XStatus XSpi_SetOptions (XSpi * InstancePtr,
Xuint32 Options

)

This function sets the options for the SPI device driver. The options control how the device behaves
relative to the SPI bus. The device must be idle rather than busy transferring data before setting these
device options.

Parameters:
InstancePtr is a pointer to the XSpi instance to be worked on.

Options contains the specified options to be set. This is a bit mask where a 1 means to
turn the option on, and a 0 means to turn the option off. One or more bit values
may be contained in the mask. See the bit definitions named XSP_*_OPTIONS
in the file xspi.h.

Returns:
XST_SUCCESS if options are successfully set. Otherwise, returns:

❍ XST_DEVICE_BUSY if the device is currently transferring data. The transfer must
complete or be aborted before setting options.

❍ XST_SPI_SLAVE_ONLY if the caller attempted to configure a slave-only device as a

master.

Note:
This function makes use of internal resources that are shared between the XSpi_Stop() and
XSpi_SetOptions() functions. So if one task might be setting device options options while
another is trying to stop the device, the user is required to provide protection of this shared
data (typically using a semaphore).

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

spi/v1_00_b/src/xspi_g.c File Reference

Detailed Description

This file contains a configuration table that specifies the configuration of SPI devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rpm 10/11/01 First release
 1.00b jhl 03/14/02 Repartitioned driver for smaller files.
 1.00b rpm 04/24/02 Condensed config typedef - got rid of versions and
 multiple base addresses.

#include "xspi.h"

#include "xparameters.h"

Variables

XSpi_Config XSpi_ConfigTable [XPAR_XSPI_NUM_INSTANCES]

Variable Documentation

XSpi_Config XSpi_ConfigTable[XPAR_XSPI_NUM_INSTANCES]

 This table contains configuration information for each SPI device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr.h File Reference

Detailed Description

The Xilinx timer/counter component. This component supports the Xilinx timer/counter. More detailed description of
the driver operation can be found in the xtmrctr.c file.

The Xilinx timer/counter supports the following features:

● Polled mode.
● Interrupt driven mode
● enabling and disabling specific timers
● PWM operation

The driver does not currently support the PWM operation of the device.

The timer counter operates in 2 primary modes, compare and capture. In either mode, the timer counter may count up
or down, with up being the default.

Compare mode is typically used for creating a single time period or multiple repeating time periods in the auto reload
mode, such as a periodic interrupt. When started, the timer counter loads an initial value, referred to as the compare
value, into the timer counter and starts counting down or up. The timer counter expires when it rolls over/under
depending upon the mode of counting. An external compare output signal may be configured such that a pulse is
generated with this signal when it hits the compare value.

Capture mode is typically used for measuring the time period between external events. This mode uses an external
capture input signal to cause the value of the timer counter to be captured. When started, the timer counter loads an
initial value, referred to as the compare value,

The timer can be configured to either cause an interrupt when the count reaches the compare value in compare mode
or latch the current count value in the capture register when an external input is asserted in capture mode. The external
capture input can be enabled/disabled using the XTmrCtr_SetOptions function. While in compare mode, it is also
possible to drive an external output when the compare value is reached in the count register The external compare
output can be enabled/disabled using the XTmrCtr_SetOptions function.

Interrupts

It is the responsibility of the application to connect the interrupt handler of the timer/counter to the interrupt source.

The interrupt handler function, XTmrCtr_InterruptHandler, is visible such that the user can connect it to the interrupt
source. Note that this interrupt handler does not provide interrupt context save and restore processing, the user must
perform this processing.

The driver services interrupts and passes timeouts to the upper layer software through callback functions. The upper
layer software must register its callback functions during initialization. The driver requires callback functions for
timers.

Note:
The default settings for the timers are:

❍ Interrupt generation disabled
❍ Count up mode
❍ Compare mode
❍ Hold counter (will not reload the timer)
❍ External compare output disabled
❍ External capture input disabled
❍ Pulse width modulation disabled
❍ Timer disabled, waits for Start function to be called

A timer counter device may contain multiple timer counters. The symbol
XTC_DEVICE_TIMER_COUNT defines the number of timer counters in the device. The device
currently contains 2 timer counters.

This driver is intended to be RTOS and processor independent. It works with physical addresses only.
Any needs for dynamic memory management, threads or thread mutual exclusion, virtual memory, or
cache control must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xbasic_types.h"

#include "xstatus.h"

#include "xtmrctr_l.h"

Go to the source code of this file.

Data Structures

struct XTmrCtr
struct XTmrCtr_Config

struct XTmrCtrStats

Configuration options

These options are used in XTmrCtr_SetOptions() and XTmrCtr_GetOptions()

#define XTC_ENABLE_ALL_OPTION
#define XTC_DOWN_COUNT_OPTION
#define XTC_CAPTURE_MODE_OPTION
#define XTC_INT_MODE_OPTION
#define XTC_AUTO_RELOAD_OPTION
#define XTC_EXT_COMPARE_OPTION

Typedefs

typedef void(* XTmrCtr_Handler)(void *CallBackRef, Xuint8 TmrCtrNumber)

Functions

XStatus XTmrCtr_Initialize (XTmrCtr *InstancePtr, Xuint16 DeviceId)
void XTmrCtr_Start (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_Stop (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

Xuint32 XTmrCtr_GetValue (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_SetResetValue (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber, Xuint32 ResetValue)

Xuint32 XTmrCtr_GetCaptureValue (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
Xboolean XTmrCtr_IsExpired (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

void XTmrCtr_Reset (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_SetOptions (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber, Xuint32 Options)

Xuint32 XTmrCtr_GetOptions (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_GetStats (XTmrCtr *InstancePtr, XTmrCtrStats *StatsPtr)
void XTmrCtr_ClearStats (XTmrCtr *InstancePtr)

XStatus XTmrCtr_SelfTest (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_SetHandler (XTmrCtr *InstancePtr, XTmrCtr_Handler FuncPtr, void *CallBackRef)
void XTmrCtr_InterruptHandler (void *InstancePtr)

Define Documentation

#define XTC_AUTO_RELOAD_OPTION

Used to configure the timer counter device.

 XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
 XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
 start value, the default is to count up.
 XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
 value when the external capture line is asserted.
 The default mode is compare mode.
 XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
 XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
 reload from the compare value. The default mode
 causes the timer counter to hold when the compare
 value is hit.
 In capture mode, configures the timer counter to
 not hold the previous capture value if a new event
 occurs. The default mode cause the timer counter
 to hold the capture value until recognized.
 XTC_EXT_COMPARE_OPTION Enables the external compare output signal.

#define XTC_CAPTURE_MODE_OPTION

Used to configure the timer counter device.

 XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
 XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
 start value, the default is to count up.
 XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
 value when the external capture line is asserted.
 The default mode is compare mode.
 XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
 XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
 reload from the compare value. The default mode
 causes the timer counter to hold when the compare
 value is hit.
 In capture mode, configures the timer counter to
 not hold the previous capture value if a new event
 occurs. The default mode cause the timer counter
 to hold the capture value until recognized.
 XTC_EXT_COMPARE_OPTION Enables the external compare output signal.

#define XTC_DOWN_COUNT_OPTION

Used to configure the timer counter device.

 XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
 XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
 start value, the default is to count up.
 XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
 value when the external capture line is asserted.
 The default mode is compare mode.
 XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
 XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
 reload from the compare value. The default mode
 causes the timer counter to hold when the compare
 value is hit.
 In capture mode, configures the timer counter to
 not hold the previous capture value if a new event
 occurs. The default mode cause the timer counter
 to hold the capture value until recognized.
 XTC_EXT_COMPARE_OPTION Enables the external compare output signal.

#define XTC_ENABLE_ALL_OPTION

Used to configure the timer counter device.

 XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
 XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
 start value, the default is to count up.
 XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
 value when the external capture line is asserted.
 The default mode is compare mode.
 XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
 XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
 reload from the compare value. The default mode
 causes the timer counter to hold when the compare
 value is hit.
 In capture mode, configures the timer counter to
 not hold the previous capture value if a new event
 occurs. The default mode cause the timer counter
 to hold the capture value until recognized.
 XTC_EXT_COMPARE_OPTION Enables the external compare output signal.

#define XTC_EXT_COMPARE_OPTION

Used to configure the timer counter device.

 XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
 XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
 start value, the default is to count up.
 XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
 value when the external capture line is asserted.
 The default mode is compare mode.
 XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
 XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
 reload from the compare value. The default mode
 causes the timer counter to hold when the compare
 value is hit.
 In capture mode, configures the timer counter to
 not hold the previous capture value if a new event
 occurs. The default mode cause the timer counter
 to hold the capture value until recognized.
 XTC_EXT_COMPARE_OPTION Enables the external compare output signal.

#define XTC_INT_MODE_OPTION

Used to configure the timer counter device.

 XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
 XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
 start value, the default is to count up.
 XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
 value when the external capture line is asserted.
 The default mode is compare mode.
 XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
 XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
 reload from the compare value. The default mode
 causes the timer counter to hold when the compare
 value is hit.
 In capture mode, configures the timer counter to
 not hold the previous capture value if a new event
 occurs. The default mode cause the timer counter
 to hold the capture value until recognized.
 XTC_EXT_COMPARE_OPTION Enables the external compare output signal.

Typedef Documentation

typedef void(* XTmrCtr_Handler)(void *CallBackRef, Xuint8 TmrCtrNumber)

Signature for the callback function.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the callback functions,

and passed back to the upper layer when the callback is invoked. Its type is unimportant to
the driver, so it is a void pointer.

TmrCtrNumber is the number of the timer/counter within the device. The device typically contains at least
two timer/counters. The timer number is a zero based number with a range of 0 to
(XTC_DEVICE_TIMER_COUNT - 1).

Function Documentation

void XTmrCtr_ClearStats (XTmrCtr * InstancePtr)

Clear the XTmrCtrStats structure for this driver.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

Returns:
None.

Note:
None.

Xuint32 XTmrCtr_GetCaptureValue (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Returns the timer counter value that was captured the last time the external capture input was asserted.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The current capture value for the indicated timer counter.

Note:
None.

Xuint32 XTmrCtr_GetOptions (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Get the options for the specified timer counter.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The currently set options. An option which is set to a '1' is enabled and set to a '0' is disabled. The options
are bit masks such that multiple options may be set or cleared. The options are described in xtmrctr.h.

Note:
None.

void XTmrCtr_GetStats (XTmrCtr * InstancePtr,
XTmrCtrStats * StatsPtr

)

Get a copy of the XTmrCtrStats structure, which contains the current statistics for this driver.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

StatsPtr is a pointer to a XTmrCtrStats structure which will get a copy of current statistics.

Returns:
None.

Note:
None.

Xuint32 XTmrCtr_GetValue (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Get the current value of the specified timer counter. The timer counter may be either incrementing or decrementing
based upon the current mode of operation.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The current value for the timer counter.

Note:
None.

XStatus XTmrCtr_Initialize (XTmrCtr * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific timer/counter instance/driver. Initialize fields of the XTmrCtr structure, then reset the
timer/counter

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

DeviceId is the unique id of the device controlled by this XTmrCtr component. Passing in a device id
associates the generic XTmrCtr component to a specific device, as chosen by the caller or
application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if the device doesn't exist

Note:
None.

void XTmrCtr_InterruptHandler (void * InstancePtr)

Interrupt Service Routine (ISR) for the driver. This function only performs processing for the device and does not
save and restore the interrupt context.

Parameters:
InstancePtr contains a pointer to the timer/counter instance for the nterrupt.

Returns:
None.

Note:
None.

Xboolean XTmrCtr_IsExpired (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Checks if the specified timer counter of the device has expired. In capture mode, expired is defined as a capture
occurred. In compare mode, expired is defined as the timer counter rolled over/under for up/down counting.

When interrupts are enabled, the expiration causes an interrupt. This function is typically used to poll a timer
counter to determine when it has expired.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
XTRUE if the timer has expired, and XFALSE otherwise.

Note:
None.

void XTmrCtr_Reset (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Resets the specified timer counter of the device. A reset causes the timer counter to set it's value to the reset value.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

XStatus XTmrCtr_SelfTest (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Runs a self-test on the driver/device. This test verifies that the specified timer counter of the device can be enabled
and increments.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
XST_SUCCESS if self-test was successful, or XST_FAILURE if the timer is not incrementing.

Note:
This is a destructive test using the provided timer. The current settings of the timer are returned to the
initialized values and all settings at the time this function is called are overwritten.

void XTmrCtr_SetHandler (XTmrCtr * InstancePtr,
XTmrCtr_Handler FuncPtr,
void * CallBackRef

)

Sets the timer callback function, which the driver calls when the specified timer times out.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is invoked.
FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context so the function that is called should either be short or pass the
more extensive processing off to another task to allow the interrupt to return and normal processing to
continue.

void XTmrCtr_SetOptions (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber,
Xuint32 Options

)

Enables the specified options for the specified timer counter. This function sets the options without regard to the
current options of the driver. To prevent a loss of the current options, the user should call XTmrCtr_GetOptions()
prior to this function and modify the retrieved options to pass into this function to prevent loss of the current
options.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Options contains the desired options to be set or cleared. Setting the option to '1' enables the
option, clearing the to '0' disables the option. The options are bit masks such that multiple
options may be set or cleared. The options are described in xtmrctr.h.

Returns:
None.

Note:
None.

void XTmrCtr_SetResetValue (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber,
Xuint32 ResetValue

)

Set the reset value for the specified timer counter. This is the value that is loaded into the timer counter when it is
reset. This value is also loaded when the timer counter is started.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

ResetValue contains the value to be used to reset the timer counter.

Returns:
None.

Note:
None.

void XTmrCtr_Start (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Starts the specified timer counter of the device such that it starts running. The timer counter is reset before it is
started and the reset value is loaded into the timer counter.

If interrupt mode is specified in the options, it is necessary for the caller to connect the interrupt handler of the
timer/counter to the interrupt source, typically an interrupt controller, and enable the interrupt within the interrupt
controller.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

void XTmrCtr_Stop (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Stops the timer counter by disabling it.

It is the callers' responsibility to disconnect the interrupt handler of the timer_counter from the interrupt source,
typically an interrupt controller, and disable the interrupt within the interrupt controller.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain multiple timer
counters. The timer number is a zero based number with a range of 0 -
(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr.c File
Reference

Detailed Description

Contains required functions for the XTmrCtr driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xbasic_types.h"

#include "xstatus.h"

#include "xparameters.h"

#include "xtmrctr.h"

#include "xtmrctr_i.h"

Functions

XStatus XTmrCtr_Initialize (XTmrCtr *InstancePtr, Xuint16 DeviceId)
void XTmrCtr_Start (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_Stop (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

Xuint32 XTmrCtr_GetValue (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

void XTmrCtr_SetResetValue (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber, Xuint32
ResetValue)

Xuint32 XTmrCtr_GetCaptureValue (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)
void XTmrCtr_Reset (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

Xboolean XTmrCtr_IsExpired (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

Function Documentation

Xuint32 XTmrCtr_GetCaptureValue (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Returns the timer counter value that was captured the last time the external capture input was asserted.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The current capture value for the indicated timer counter.

Note:
None.

Xuint32 XTmrCtr_GetValue (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Get the current value of the specified timer counter. The timer counter may be either incrementing or
decrementing based upon the current mode of operation.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The current value for the timer counter.

Note:
None.

XStatus XTmrCtr_Initialize (XTmrCtr * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific timer/counter instance/driver. Initialize fields of the XTmrCtr structure, then
reset the timer/counter

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

DeviceId is the unique id of the device controlled by this XTmrCtr component. Passing in
a device id associates the generic XTmrCtr component to a specific device, as
chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if the device doesn't exist

Note:
None.

Xboolean XTmrCtr_IsExpired (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Checks if the specified timer counter of the device has expired. In capture mode, expired is defined as
a capture occurred. In compare mode, expired is defined as the timer counter rolled over/under for
up/down counting.

When interrupts are enabled, the expiration causes an interrupt. This function is typically used to poll
a timer counter to determine when it has expired.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
XTRUE if the timer has expired, and XFALSE otherwise.

Note:
None.

void XTmrCtr_Reset (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Resets the specified timer counter of the device. A reset causes the timer counter to set it's value to the
reset value.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:

None.

void XTmrCtr_SetResetValue (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber,
Xuint32 ResetValue

)

Set the reset value for the specified timer counter. This is the value that is loaded into the timer
counter when it is reset. This value is also loaded when the timer counter is started.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

ResetValue contains the value to be used to reset the timer counter.

Returns:
None.

Note:
None.

void XTmrCtr_Start (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Starts the specified timer counter of the device such that it starts running. The timer counter is reset
before it is started and the reset value is loaded into the timer counter.

If interrupt mode is specified in the options, it is necessary for the caller to connect the interrupt
handler of the timer/counter to the interrupt source, typically an interrupt controller, and enable the
interrupt within the interrupt controller.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

void XTmrCtr_Stop (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Stops the timer counter by disabling it.

It is the callers' responsibility to disconnect the interrupt handler of the timer_counter from the
interrupt source, typically an interrupt controller, and disable the interrupt within the interrupt
controller.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XTmrCtr Struct Reference
#include <xtmrctr.h>

Detailed Description

The XTmrCtr driver instance data. The user is required to allocate a variable of this type for every
timer/counter device in the system. A pointer to a variable of this type is then passed to the driver API
functions.

The documentation for this struct was generated from the following file:

● tmrctr/v1_00_b/src/xtmrctr.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr.h
Go to the documentation of this file.

00001 /* $Id: xtmrctr.h,v 1.10 2002/05/03 17:13:57 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file tmrctr/v1_00_b/src/xtmrctr.h
00026 *
00027 * The Xilinx timer/counter component. This component supports the Xilinx
00028 * timer/counter. More detailed description of the driver operation can
00029 * be found in the xtmrctr.c file.
00030 *
00031 * The Xilinx timer/counter supports the following features:
00032 * - Polled mode.
00033 * - Interrupt driven mode
00034 * - enabling and disabling specific timers
00035 * - PWM operation
00036 *
00037 * The driver does not currently support the PWM operation of the device.
00038 *
00039 * The timer counter operates in 2 primary modes, compare and capture. In
00040 * either mode, the timer counter may count up or down, with up being the
00041 * default.
00042 *

00043 * Compare mode is typically used for creating a single time period or multiple
00044 * repeating time periods in the auto reload mode, such as a periodic interrupt.
00045 * When started, the timer counter loads an initial value, referred to as the
00046 * compare value, into the timer counter and starts counting down or up. The
00047 * timer counter expires when it rolls over/under depending upon the mode of
00048 * counting. An external compare output signal may be configured such that a
00049 * pulse is generated with this signal when it hits the compare value.
00050 *
00051 * Capture mode is typically used for measuring the time period between
00052 * external events. This mode uses an external capture input signal to cause
00053 * the value of the timer counter to be captured. When started, the timer
00054 * counter loads an initial value, referred to as the compare value,
00055
00056 * The timer can be configured to either cause an interrupt when the count
00057 * reaches the compare value in compare mode or latch the current count
00058 * value in the capture register when an external input is asserted
00059 * in capture mode. The external capture input can be enabled/disabled using the
00060 * XTmrCtr_SetOptions function. While in compare mode, it is also possible to
00061 * drive an external output when the compare value is reached in the count
00062 * register The external compare output can be enabled/disabled using the
00063 * XTmrCtr_SetOptions function.
00064 *
00065 * Interrupts
00066 *
00067 * It is the responsibility of the application to connect the interrupt
00068 * handler of the timer/counter to the interrupt source. The interrupt
00069 * handler function, XTmrCtr_InterruptHandler, is visible such that the user
00070 * can connect it to the interrupt source. Note that this interrupt handler
00071 * does not provide interrupt context save and restore processing, the user
00072 * must perform this processing.
00073 *
00074 * The driver services interrupts and passes timeouts to the upper layer
00075 * software through callback functions. The upper layer software must register
00076 * its callback functions during initialization. The driver requires callback
00077 * functions for timers.
00078 *
00079 * @note
00080 * The default settings for the timers are:
00081 * - Interrupt generation disabled
00082 * - Count up mode
00083 * - Compare mode
00084 * - Hold counter (will not reload the timer)
00085 * - External compare output disabled
00086 * - External capture input disabled
00087 * - Pulse width modulation disabled
00088 * - Timer disabled, waits for Start function to be called
00089 *

00090 * A timer counter device may contain multiple timer counters. The symbol
00091 * XTC_DEVICE_TIMER_COUNT defines the number of timer counters in the device.
00092 * The device currently contains 2 timer counters.
00093 *

00094 * This driver is intended to be RTOS and processor independent. It works with
00095 * physical addresses only. Any needs for dynamic memory management, threads

00096 * or thread mutual exclusion, virtual memory, or cache control must be
00097 * satisfied by the layer above this driver.
00098 *
00099 * <pre>
00100 * MODIFICATION HISTORY:
00101 *
00102 * Ver Who Date Changes
00103 * ----- ---- -------- ---
00104 * 1.00a ecm 08/16/01 First release
00105 * 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
00106 * </pre>
00107 *
00108 **/
00109
00110 #ifndef XTMRCTR_H /* prevent circular inclusions */
00111 #define XTMRCTR_H /* by using protection macros */
00112
00113 /***************************** Include Files *********************************/
00114
00115 #include "xbasic_types.h"

00116 #include "xstatus.h"

00117 #include "xtmrctr_l.h"

00118
00119 /************************** Constant Definitions *****************************/
00120
00121 /**
00122 * @name Configuration options
00123 * These options are used in XTmrCtr_SetOptions() and XTmrCtr_GetOptions()
00124 * @{
00125 */
00126 /**
00127 * Used to configure the timer counter device.
00128 * <pre>
00129 * XTC_ENABLE_ALL_OPTION Enables all timer counters at once.
00130 * XTC_DOWN_COUNT_OPTION Configures the timer counter to count down from
00131 * start value, the default is to count up.
00132 * XTC_CAPTURE_MODE_OPTION Configures the timer to capture the timer counter
00133 * value when the external capture line is asserted.
00134 * The default mode is compare mode.
00135 * XTC_INT_MODE_OPTION Enables the timer counter interrupt output.
00136 * XTC_AUTO_RELOAD_OPTION In compare mode, configures the timer counter to
00137 * reload from the compare value. The default mode
00138 * causes the timer counter to hold when the compare
00139 * value is hit.
00140 * In capture mode, configures the timer counter to
00141 * not hold the previous capture value if a new event
00142 * occurs. The default mode cause the timer counter
00143 * to hold the capture value until recognized.
00144 * XTC_EXT_COMPARE_OPTION Enables the external compare output signal.
00145 * </pre>
00146 */
00147 #define XTC_ENABLE_ALL_OPTION 0x00000040UL

00148 #define XTC_DOWN_COUNT_OPTION 0x00000020UL

00149 #define XTC_CAPTURE_MODE_OPTION 0x00000010UL

00150 #define XTC_INT_MODE_OPTION 0x00000008UL

00151 #define XTC_AUTO_RELOAD_OPTION 0x00000004UL

00152 #define XTC_EXT_COMPARE_OPTION 0x00000002UL

00153 /*@}*/
00154
00155 /**************************** Type Definitions *******************************/
00156
00157 /**
00158 * This typedef contains configuration information for the device.
00159 */
00160 typedef struct

00161 {
00162 Xuint16 DeviceId; /**< Unique ID of device */

00163 Xuint32 BaseAddress; /**< Register base address */

00164 } XTmrCtr_Config;

00165
00166 /**
00167 * Signature for the callback function.
00168 *
00169 * @param CallBackRef is a callback reference passed in by the upper layer
00170 * when setting the callback functions, and passed back to the upper
00171 * layer when the callback is invoked. Its type is unimportant to the
00172 * driver, so it is a void pointer.
00173 * @param TmrCtrNumber is the number of the timer/counter within the device.
00174 * The device typically contains at least two timer/counters. The
00175 * timer number is a zero based number with a range of 0 to
00176 * (XTC_DEVICE_TIMER_COUNT - 1).
00177 */
00178 typedef void (*XTmrCtr_Handler)(void *CallBackRef, Xuint8 TmrCtrNumber);

00179
00180 /**
00181 * Timer/Counter statistics
00182 */
00183 typedef struct

00184 {
00185 Xuint32 Interrupts; /**< The number of interrupts that have occurred

*/
00186 } XTmrCtrStats;

00187
00188 /**
00189 * The XTmrCtr driver instance data. The user is required to allocate a
00190 * variable of this type for every timer/counter device in the system. A
00191 * pointer to a variable of this type is then passed to the driver API
00192 * functions.
00193 */
00194 typedef struct

00195 {
00196 XTmrCtrStats Stats; /* Component Statistics */

00197 Xuint32 BaseAddress; /* Base address of registers */

00198 Xuint32 IsReady; /* Device is initialized and ready */

00199
00200 XTmrCtr_Handler Handler; /* Callback function */

00201 void *CallBackRef; /* Callback reference for handler */
00202 } XTmrCtr;

00203
00204
00205 /***************** Macros (Inline Functions) Definitions *********************/
00206
00207
00208 /************************** Function Prototypes ******************************/
00209
00210 /*
00211 * Required functions, in file xtmrctr.c
00212 */
00213 XStatus XTmrCtr_Initialize(XTmrCtr *InstancePtr, Xuint16 DeviceId);

00214 void XTmrCtr_Start(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00215 void XTmrCtr_Stop(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00216 Xuint32 XTmrCtr_GetValue(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00217 void XTmrCtr_SetResetValue(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber,

00218 Xuint32 ResetValue);

00219 Xuint32 XTmrCtr_GetCaptureValue(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00220 Xboolean XTmrCtr_IsExpired(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00221 void XTmrCtr_Reset(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00222
00223 XTmrCtr_Config *XTmrCtr_LookupConfig(Xuint16 DeviceId);

00224
00225 /*
00226 * Functions for options, in file xtmrctr_options.c
00227 */
00228 void XTmrCtr_SetOptions(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber,

00229 Xuint32 Options);

00230 Xuint32 XTmrCtr_GetOptions(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00231
00232 /*
00233 * Functions for statistics, in file xtmrctr_stats.c
00234 */
00235 void XTmrCtr_GetStats(XTmrCtr *InstancePtr, XTmrCtrStats *StatsPtr);

00236 void XTmrCtr_ClearStats(XTmrCtr *InstancePtr);

00237
00238 /*
00239 * Functions for self-test, in file xtmrctr_selftest.c
00240 */
00241 XStatus XTmrCtr_SelfTest(XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber);

00242
00243 /*
00244 * Functions for interrupts, in file xtmrctr_intr.c
00245 */
00246 void XTmrCtr_SetHandler(XTmrCtr *InstancePtr, XTmrCtr_Handler FuncPtr,

00247 void *CallBackRef);

00248 void XTmrCtr_InterruptHandler(void *InstancePtr);

00249
00250 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. The user should refer to the hardware device specification for more details of the device
operation. High-level driver functions are defined in xtmrctr.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XTC_DEVICE_TIMER_COUNT
#define XTimerCtr_mReadReg(BaseAddress, TmrCtrNumber, RegOffset)
#define XTmrCtr_mWriteReg(BaseAddress, TmrCtrNumber, RegOffset, ValueToWrite)
#define XTmrCtr_mSetControlStatusReg(BaseAddress, TmrCtrNumber, RegisterValue)
#define XTmrCtr_mGetControlStatusReg(BaseAddress, TmrCtrNumber)

#define XTmrCtr_mGetTimerCounterReg(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mSetLoadReg(BaseAddress, TmrCtrNumber, RegisterValue)
#define XTmrCtr_mGetLoadReg(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mEnable(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mDisable(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mEnableIntr(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mDisableIntr(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mLoadTimerCounterReg(BaseAddress, TmrCtrNumber)
#define XTmrCtr_mHasEventOccurred(BaseAddress, TmrCtrNumber)

Define Documentation

#define XTC_DEVICE_TIMER_COUNT

Defines the number of timer counters within a single hardware device. This number is not currently
parameterized in the hardware but may be in the future.

#define XTimerCtr_mReadReg(BaseAddress,
TmrCtrNumber,
RegOffset)

Read one of the timer counter registers.

Parameters:
BaseAddress contains the base address of the timer counter device.
TmrCtrNumber contains the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).
RegOffset contains the offset from the 1st register of the timer counter to select the

specific register of the timer counter.

Returns:
The value read from the register, a 32 bit value.

Note:
None.

#define XTmrCtr_mDisable(BaseAddress,
TmrCtrNumber)

Disable a timer counter such that it stops running.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

#define XTmrCtr_mDisableIntr(BaseAddress,
TmrCtrNumber)

Disable the interrupt for a timer counter.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

#define XTmrCtr_mEnable(BaseAddress,
TmrCtrNumber)

Enable a timer counter such that it starts running.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

#define XTmrCtr_mEnableIntr(BaseAddress,
TmrCtrNumber)

Enable the interrupt for a timer counter.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

#define XTmrCtr_mGetControlStatusReg(BaseAddress,
TmrCtrNumber)

Get the Control Status Register of a timer counter.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The value read from the register, a 32 bit value.

Note:
None.

#define XTmrCtr_mGetLoadReg(BaseAddress,
TmrCtrNumber)

Get the Load Register of a timer counter.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The value read from the register, a 32 bit value.

Note:
None.

#define XTmrCtr_mGetTimerCounterReg(BaseAddress,
TmrCtrNumber)

Get the Timer Counter Register of a timer counter.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The value read from the register, a 32 bit value.

Note:
None.

#define XTmrCtr_mHasEventOccurred(BaseAddress,
TmrCtrNumber)

Determine if a timer counter event has occurred. Events are defined to be when a capture has occurred
or the counter has roller over.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Note:
None.

#define XTmrCtr_mLoadTimerCounterReg(BaseAddress,
TmrCtrNumber)

Cause the timer counter to load it's Timer Counter Register with the value in the Load Register.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).

Returns:
None.

Note:
None.

#define XTmrCtr_mSetControlStatusReg(BaseAddress,
TmrCtrNumber,
RegisterValue)

Set the Control Status Register of a timer counter to the specified value.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).
RegisterValue is the 32 bit value to be written to the register.

Returns:
None.

Note:
None.

#define XTmrCtr_mSetLoadReg(BaseAddress,
TmrCtrNumber,
RegisterValue)

Set the Load Register of a timer counter to the specified value.

Parameters:
BaseAddress is the base address of the device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).
RegisterValue is the 32 bit value to be written to the register.

Returns:
None.

Note:
None.

#define XTmrCtr_mWriteReg(BaseAddress,
TmrCtrNumber,
RegOffset,
ValueToWrite)

Write a specified value to a register of a timer counter.

Parameters:
BaseAddress is the base address of the timer counter device.
TmrCtrNumber is the specific timer counter within the device, a zero based number, 0 -

(XTC_DEVICE_TIMER_COUNT - 1).
RegOffset contain the offset from the 1st register of the timer counter to select the

specific register of the timer counter.
ValueToWrite is the 32 bit value to be written to the register.

Returns:
None

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_l.h
Go to the documentation of this file.

00001 /* $Id: xtmrctr_l.h,v 1.2 2002/05/03 17:13:57 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file tmrctr/v1_00_b/src/xtmrctr_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xtmrctr.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00b jhl 04/24/02 First release
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XTMRCTR_L_H /* prevent circular inclusions */

00043 #define XTMRCTR_L_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xio.h"

00049
00050 /************************** Constant Definitions *****************************/
00051
00052 /**
00053 * Defines the number of timer counters within a single hardware device. This
00054 * number is not currently parameterized in the hardware but may be in the
00055 * future.
00056 */
00057 #define XTC_DEVICE_TIMER_COUNT 2

00058
00059 /* Each timer counter consumes 16 bytes of address space */
00060
00061 #define XTC_TIMER_COUNTER_OFFSET 16
00062
00063 /* Register offsets within a timer counter, there are multiple timer counters
00064 * within a single device
00065 */
00066
00067 #define XTC_TCSR_OFFSET 0 /* control/status register */
00068 #define XTC_TLR_OFFSET 4 /* load register */
00069 #define XTC_TCR_OFFSET 8 /* timer counter register */
00070
00071 /* Control Status Register bit masks */
00072
00073 #define XTC_CSR_ENABLE_ALL_MASK 0x00000400 /* ENALL bit */
00074 #define XTC_CSR_ENABLE_PWM_MASK 0x00000200 /* PWMA bit */
00075 #define XTC_CSR_INT_OCCURED_MASK 0x00000100 /* TINT bit */
00076 #define XTC_CSR_ENABLE_TMR_MASK 0x00000080 /* ENT bit */
00077 #define XTC_CSR_ENABLE_INT_MASK 0x00000040 /* ENIT bit */
00078 #define XTC_CSR_LOAD_MASK 0x00000020 /* LOAD bit */
00079 #define XTC_CSR_AUTO_RELOAD_MASK 0x00000010 /* ARHT bit */
00080 #define XTC_CSR_EXT_CAPTURE_MASK 0x00000008 /* CAPT bit */
00081 #define XTC_CSR_EXT_GENERATE_MASK 0x00000004 /* GENT bit */
00082 #define XTC_CSR_DOWN_COUNT_MASK 0x00000002 /* UDT bit */
00083 #define XTC_CSR_CAPTURE_MODE_MASK 0x00000001 /* MDT bit */
00084
00085 /**************************** Type Definitions *******************************/
00086
00087 extern Xuint8 XTmrCtr_Offsets[];

00088
00089 /***************** Macros (Inline Functions) Definitions *********************/
00090
00091
00092 /***
00093 *
00094 * Low-level driver macros. The list below provides signatures to help the

00095 * user use the macros.
00096 *
00097 * Xuint32 XTmrCtr_mReadReg(Xuint32 BaseAddress, Xuint8 TimerNumber,
00098 * unsigned RegOffset)
00099 * void XTmrCtr_mWriteReg(Xuint32 BaseAddress, Xuint8 TimerNumber,
00100 * unsigned RegOffset, Xuint32 ValueToWrite)
00101 *
00102 * void XTmrCtr_mSetControlStatusReg(Xuint32 BaseAddress, Xuint8 TmrCtrNumber,
00103 * Xuint32 RegisterValue)
00104 * Xuint32 XTmrCtr_mGetControlStatusReg(Xuint32 BaseAddress, Xuint8
TmrCtrNumber)
00105 *
00106 * Xuint32 XTmrCtr_mGetTimerCounterReg(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00107 *
00108 * void XTmrCtr_mSetLoadReg(Xuint32 BaseAddress, Xuint8 TmrCtrNumber,
00109 * Xuint32 RegisterValue)
00110 * Xuint32 XTmrCtr_mGetLoadReg(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00111 *
00112 * void XTmrCtr_mEnable(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00113 * void XTmrCtr_mDisable(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00114 *
00115 * void XTmrCtr_mEnableIntr(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00116 * void XTmrCtr_mDisableIntr(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00117 *
00118 * void XTmrCtr_mLoadTimerCounterReg(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00119 * Xboolean XTmrCtr_mHasEventOccurred(Xuint32 BaseAddress, Xuint8 TmrCtrNumber)
00120 *
00121 **/
00122
00123 /***/
00124 /**
00125 * Read one of the timer counter registers.
00126 *
00127 * @param BaseAddress contains the base address of the timer counter device.
00128 * @param TmrCtrNumber contains the specific timer counter within the device,
00129 * a zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00130 * @param RegOffset contains the offset from the 1st register of the timer
00131 * counter to select the specific register of the timer counter.
00132 *
00133 * @return The value read from the register, a 32 bit value.
00134 *
00135 * @note None.
00136 *
00137 **/
00138 #define XTimerCtr_mReadReg(BaseAddress, TmrCtrNumber, RegOffset) \

00139 XIo_In32((BaseAddress) + XTmrCtr_Offsets[(TmrCtrNumber)] + (RegOffset))
00140
00141 /***/
00142 /**
00143 * Write a specified value to a register of a timer counter.
00144 *
00145 * @param BaseAddress is the base address of the timer counter device.

00146 * @param TmrCtrNumber is the specific timer counter within the device, a
00147 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00148 * @param RegOffset contain the offset from the 1st register of the timer
00149 * counter to select the specific register of the timer counter.
00150 * @param ValueToWrite is the 32 bit value to be written to the register.
00151 *
00152 * @return None
00153 *
00154 **/
00155 #define XTmrCtr_mWriteReg(BaseAddress, TmrCtrNumber, RegOffset, ValueToWrite) \

00156 XIo_Out32(((BaseAddress) + XTmrCtr_Offsets[(TmrCtrNumber)] + \
00157 (RegOffset)), (ValueToWrite))
00158
00159 /**/
00160 /**
00161 *
00162 * Set the Control Status Register of a timer counter to the specified value.
00163 *
00164 * @param BaseAddress is the base address of the device.
00165 * @param TmrCtrNumber is the specific timer counter within the device, a
00166 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00167 * @param RegisterValue is the 32 bit value to be written to the register.
00168 *
00169 * @return None.
00170 *
00171 * @note None.
00172 *
00173 ***/
00174 #define XTmrCtr_mSetControlStatusReg(BaseAddress, TmrCtrNumber, RegisterValue)

\
00175 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET, \
00176 (RegisterValue))
00177
00178 /**/
00179 /**
00180 *
00181 * Get the Control Status Register of a timer counter.
00182 *
00183 * @param BaseAddress is the base address of the device.
00184 * @param TmrCtrNumber is the specific timer counter within the device, a
00185 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00186 *
00187 * @return The value read from the register, a 32 bit value.
00188 *
00189 * @note None.
00190 *
00191 ***/
00192 #define XTmrCtr_mGetControlStatusReg(BaseAddress, TmrCtrNumber) \

00193 XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET)
00194
00195 /**/
00196 /**

00197 *
00198 * Get the Timer Counter Register of a timer counter.
00199 *
00200 * @param BaseAddress is the base address of the device.
00201 * @param TmrCtrNumber is the specific timer counter within the device, a
00202 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00203 *
00204 * @return The value read from the register, a 32 bit value.
00205 *
00206 * @note None.
00207 *
00208 ***/
00209 #define XTmrCtr_mGetTimerCounterReg(BaseAddress, TmrCtrNumber) \

00210 XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), XTC_TCR_OFFSET)
00211
00212 /**/
00213 /**
00214 *
00215 * Set the Load Register of a timer counter to the specified value.
00216 *
00217 * @param BaseAddress is the base address of the device.
00218 * @param TmrCtrNumber is the specific timer counter within the device, a
00219 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00220 * @param RegisterValue is the 32 bit value to be written to the register.
00221 *
00222 * @return None.
00223 *
00224 * @note None.
00225 *
00226 ***/
00227 #define XTmrCtr_mSetLoadReg(BaseAddress, TmrCtrNumber, RegisterValue) \

00228 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TLR_OFFSET, \
00229 (RegisterValue))
00230
00231 /**/
00232 /**
00233 *
00234 * Get the Load Register of a timer counter.
00235 *
00236 * @param BaseAddress is the base address of the device.
00237 * @param TmrCtrNumber is the specific timer counter within the device, a
00238 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00239 *
00240 * @return The value read from the register, a 32 bit value.
00241 *
00242 * @note None.
00243 *
00244 ***/
00245 #define XTmrCtr_mGetLoadReg(BaseAddress, TmrCtrNumber) \

00246 XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), XTC_TLR_OFFSET)
00247
00248 /**/

00249 /**
00250 *
00251 * Enable a timer counter such that it starts running.
00252 *
00253 * @param BaseAddress is the base address of the device.
00254 * @param TmrCtrNumber is the specific timer counter within the device, a
00255 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00256 *
00257 * @return None.
00258 *
00259 * @note None.
00260 *
00261 ***/
00262 #define XTmrCtr_mEnable(BaseAddress, TmrCtrNumber) \

00263 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET, \
00264 (XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), \
00265 XTC_TCSR_OFFSET) | XTC_CSR_ENABLE_TMR_MASK))
00266
00267 /**/
00268 /**
00269 *
00270 * Disable a timer counter such that it stops running.
00271 *
00272 * @param BaseAddress is the base address of the device.
00273 * @param TmrCtrNumber is the specific timer counter within the device, a
00274 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00275 *
00276 * @return None.
00277 *
00278 * @note None.
00279 *
00280 ***/
00281 #define XTmrCtr_mDisable(BaseAddress, TmrCtrNumber) \

00282 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET, \
00283 (XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), \
00284 XTC_TCSR_OFFSET) & ~XTC_CSR_ENABLE_TMR_MASK))
00285
00286 /**/
00287 /**
00288 *
00289 * Enable the interrupt for a timer counter.
00290 *
00291 * @param BaseAddress is the base address of the device.
00292 * @param TmrCtrNumber is the specific timer counter within the device, a
00293 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00294 *
00295 * @return None.
00296 *
00297 * @note None.
00298 *
00299 ***/
00300 #define XTmrCtr_mEnableIntr(BaseAddress, TmrCtrNumber) \

00301 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET, \
00302 (XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), \
00303 XTC_TCSR_OFFSET) | XTC_CSR_ENABLE_INT_MASK))
00304
00305 /**/
00306 /**
00307 *
00308 * Disable the interrupt for a timer counter.
00309 *
00310 * @param BaseAddress is the base address of the device.
00311 * @param TmrCtrNumber is the specific timer counter within the device, a
00312 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00313 *
00314 * @return None.
00315 *
00316 * @note None.
00317 *
00318 ***/
00319 #define XTmrCtr_mDisableIntr(BaseAddress, TmrCtrNumber) \

00320 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET, \
00321 (XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), \
00322 XTC_TCSR_OFFSET) & ~XTC_CSR_ENABLE_INT_MASK))
00323
00324
00325 /**/
00326 /**
00327 *
00328 * Cause the timer counter to load it's Timer Counter Register with the value
00329 * in the Load Register.
00330 *
00331 * @param BaseAddress is the base address of the device.
00332 * @param TmrCtrNumber is the specific timer counter within the device, a
00333 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00334 *
00335 * @return None.
00336 *
00337 * @note None.
00338 *
00339 ***/
00340 #define XTmrCtr_mLoadTimerCounterReg(BaseAddress, TmrCtrNumber) \

00341 XTmrCtr_mWriteReg((BaseAddress), (TmrCtrNumber), XTC_TCSR_OFFSET, \
00342 (XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), \
00343 XTC_TCSR_OFFSET) | XTC_CSR_LOAD_MASK))
00344
00345 /**/
00346 /**
00347 *
00348 * Determine if a timer counter event has occurred. Events are defined to be
00349 * when a capture has occurred or the counter has roller over.
00350 *
00351 * @param BaseAddress is the base address of the device.
00352 * @param TmrCtrNumber is the specific timer counter within the device, a

00353 * zero based number, 0 - (XTC_DEVICE_TIMER_COUNT - 1).
00354 *
00355 * @note None.
00356 *
00357 ***/
00358 #define XTmrCtr_mHasEventOccurred(BaseAddress, TmrCtrNumber) \

00359 (XTimerCtr_mReadReg((BaseAddress), (TmrCtrNumber), \
00360 XTC_TCSR_OFFSET) & XTC_CSR_INT_OCCURED_MASK)
00361
00362 /************************** Function Prototypes ******************************/
00363
00364 /************************** Variable Definitions *****************************/
00365
00366 #endif /* end of protection macro */
00367

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XTmrCtr_Config Struct Reference
#include <xtmrctr.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress

Field Documentation

Xuint32 XTmrCtr_Config::BaseAddress

 Register base address

Xuint16 XTmrCtr_Config::DeviceId

 Unique ID of device

The documentation for this struct was generated from the following file:

● tmrctr/v1_00_b/src/xtmrctr.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XTmrCtrStats Struct Reference
#include <xtmrctr.h>

Detailed Description

Timer/Counter statistics

Data Fields

Xuint32 Interrupts

Field Documentation

Xuint32 XTmrCtrStats::Interrupts

 The number of interrupts that have occurred

The documentation for this struct was generated from the following file:

● tmrctr/v1_00_b/src/xtmrctr.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_options.c File
Reference

Detailed Description

Contains configuration options functions for the XTmrCtr component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release

#include "xbasic_types.h"

#include "xtmrctr.h"

#include "xtmrctr_i.h"

Data Structures

struct Mapping

Functions

void XTmrCtr_SetOptions (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber, Xuint32 Options)
Xuint32 XTmrCtr_GetOptions (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

Function Documentation

Xuint32 XTmrCtr_GetOptions (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Get the options for the specified timer counter.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
The currently set options. An option which is set to a '1' is enabled and set to a '0' is disabled.
The options are bit masks such that multiple options may be set or cleared. The options are
described in xtmrctr.h.

Note:
None.

void XTmrCtr_SetOptions (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber,
Xuint32 Options

)

Enables the specified options for the specified timer counter. This function sets the options without
regard to the current options of the driver. To prevent a loss of the current options, the user should
call XTmrCtr_GetOptions() prior to this function and modify the retrieved options to pass into this
function to prevent loss of the current options.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Options contains the desired options to be set or cleared. Setting the option to '1'
enables the option, clearing the to '0' disables the option. The options are bit
masks such that multiple options may be set or cleared. The options are
described in xtmrctr.h.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_i.h
Go to the documentation of this file.

00001 /* $Id: xtmrctr_i.h,v 1.6 2002/05/02 20:38:16 linnj Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file tmrctr/v1_00_b/src/xtmrctr_i.h
00026 *
00027 * This file contains data which is shared between files internal to the
00028 * XTmrCtr component. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00b jhl 02/06/02 First release
00036 * </pre>
00037 *
00038 **/
00039
00040 #ifndef XTMRCTR_I_H /* prevent circular inclusions */
00041 #define XTMRCTR_I_H /* by using protection macros */
00042

00043 /***************************** Include Files *********************************/
00044
00045 #include "xbasic_types.h"

00046
00047 /************************** Constant Definitions *****************************/
00048
00049
00050 /************************** Function Prototypes ******************************/
00051
00052
00053 /************************** Variable Definitions *****************************/
00054
00055 extern XTmrCtr_Config XTmrCtr_ConfigTable[];

00056
00057 extern Xuint8 XTmrCtr_Offsets[];

00058

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_i.h File
Reference

Detailed Description

This file contains data which is shared between files internal to the XTmrCtr component. It is intended
for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release

#include "xbasic_types.h"

Go to the source code of this file.

Variables

XTmrCtr_Config XTmrCtr_ConfigTable []

Variable Documentation

XTmrCtr_Config XTmrCtr_ConfigTable[] ()

 The timer/counter configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_stats.c File
Reference

Detailed Description

Contains function to get and clear statistics for the XTmrCtr component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release

#include "xbasic_types.h"

#include "xtmrctr.h"

Functions

void XTmrCtr_GetStats (XTmrCtr *InstancePtr, XTmrCtrStats *StatsPtr)
void XTmrCtr_ClearStats (XTmrCtr *InstancePtr)

Function Documentation

void XTmrCtr_ClearStats (XTmrCtr * InstancePtr)

Clear the XTmrCtrStats structure for this driver.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

Returns:
None.

Note:
None.

void XTmrCtr_GetStats (XTmrCtr * InstancePtr,
XTmrCtrStats * StatsPtr

)

Get a copy of the XTmrCtrStats structure, which contains the current statistics for this driver.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

StatsPtr is a pointer to a XTmrCtrStats structure which will get a copy of current
statistics.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_selftest.c File
Reference

Detailed Description

Contains diagnostic/self-test functions for the XTmrCtr component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release

#include "xbasic_types.h"

#include "xio.h"

#include "xtmrctr.h"

#include "xtmrctr_i.h"

Functions

XStatus XTmrCtr_SelfTest (XTmrCtr *InstancePtr, Xuint8 TmrCtrNumber)

Function Documentation

XStatus XTmrCtr_SelfTest (XTmrCtr * InstancePtr,
Xuint8 TmrCtrNumber

)

Runs a self-test on the driver/device. This test verifies that the specified timer counter of the device
can be enabled and increments.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

TmrCtrNumber is the timer counter of the device to operate on. Each device may contain
multiple timer counters. The timer number is a zero based number with a
range of 0 - (XTC_DEVICE_TIMER_COUNT - 1).

Returns:
XST_SUCCESS if self-test was successful, or XST_FAILURE if the timer is not
incrementing.

Note:
This is a destructive test using the provided timer. The current settings of the timer are
returned to the initialized values and all settings at the time this function is called are
overwritten.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_intr.c File
Reference

Detailed Description

Contains interrupt-related functions for the XTmrCtr component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release

#include "xbasic_types.h"

#include "xtmrctr.h"

#include "xtmrctr_l.h"

Functions

void XTmrCtr_SetHandler (XTmrCtr *InstancePtr, XTmrCtr_Handler FuncPtr, void *CallBackRef)
void XTmrCtr_InterruptHandler (void *InstancePtr)

Function Documentation

void XTmrCtr_InterruptHandler (void * InstancePtr)

Interrupt Service Routine (ISR) for the driver. This function only performs processing for the device
and does not save and restore the interrupt context.

Parameters:
InstancePtr contains a pointer to the timer/counter instance for the nterrupt.

Returns:
None.

Note:
None.

void XTmrCtr_SetHandler (XTmrCtr * InstancePtr,
XTmrCtr_Handler FuncPtr,
void * CallBackRef

)

Sets the timer callback function, which the driver calls when the specified timer times out.

Parameters:
InstancePtr is a pointer to the XTmrCtr instance to be worked on.

CallBackRef is the upper layer callback reference passed back when the callback function is
invoked.

FuncPtr is the pointer to the callback function.

Returns:
None.

Note:
The handler is called within interrupt context so the function that is called should either be
short or pass the more extensive processing off to another task to allow the interrupt to return
and normal processing to continue.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of timer/counter devices in the
system. Each timer/counter device should have an entry in this table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xtmrctr.h"

#include "xparameters.h"

Variables

XTmrCtr_Config XTmrCtr_ConfigTable [XPAR_XTMRCTR_NUM_INSTANCES]

Variable Documentation

XTmrCtr_Config XTmrCtr_ConfigTable[XPAR_XTMRCTR_NUM_INSTANCES]

 The timer/counter configuration table, sized by the number of instances defined in xparameters.h.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen.h
File Reference

Detailed Description

This driver supports the following features:

● Polled mode
● Interrupt driven mode

Interrupts

In order to use interrupts, it is necessary for the user to connect the driver interrupt handler,
XTouchscreen_InterruptHandler(), to the interrupt system of the application. This function does not save and
restore the processor context such that the user must provide it. A handler must be set for the driver such that the
handler is called when interrupt events occur. The handler is called from interrupt context and is designed to allow
application specific processing to be performed.

Note:
None.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/15/02 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xtouchscreen_l.h"

Go to the source code of this file.

Data Structures

struct XTouchscreen
struct XTouchscreen_Config

Functions

XStatus XTouchscreen_Initialize (XTouchscreen *InstancePtr, Xuint16 DeviceId)
XTouchscreen_Config * XTouchscreen_LookupConfig (Xuint16 DeviceId)

void XTouchscreen_GetPosition_2D (XTouchscreen *InstancePtr, Xuint32 *x, Xuint32
*y)

void XTouchscreen_GetPosition_3D (XTouchscreen *InstancePtr, Xuint32 *x, Xuint32 *y,
Xuint32 *z)

void XTouchscreen_SetHandler (XTouchscreen *InstancePtr, XTouchscreen_Handler
FuncPtr, void *CallBackRef)

void XTouchscreen_InterruptHandler (XTouchscreen *InstancePtr)

Function Documentation

void XTouchscreen_GetPosition_2D (XTouchscreen * InstancePtr,
Xuint32 * x,
Xuint32 * y

)

This function reads 2D (X & Y) coordinates from the touchscreen.

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
x pointer to store the x coordinate. *y pointer to store the y coordinate.

Returns:
None.

Note:
None.

void XTouchscreen_GetPosition_3D (XTouchscreen * InstancePtr,
Xuint32 * x,
Xuint32 * y,
Xuint32 * z

)

This function reads 3D (X, Y & Z) coordinates from the touchscreen. x and y are the actual positions, the
pressure has to be calculated from z1 and z2

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
x pointer to store the x coordinate. *y pointer to store the y coordinate. *z pointer to store

the z coordinate (pressure)

Returns:
None.

Note:
None.

XStatus XTouchscreen_Initialize (XTouchscreen * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific touchscreen instance such that it is ready to be used. The default operating mode of the
driver is polled mode.

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
DeviceId is the unique id of the device controlled by this XTouchscreen instance. Passing in a

device id associates the generic XTouchscreen instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_NOT_FOUND if the device ID could not be found in the configuration table

Note:
None.

void XTouchscreen_InterruptHandler (XTouchscreen * InstancePtr)

This function is the interrupt handler for the Touchscreen driver. It must be connected to an interrupt system
by the user such that it is called when an interrupt for any PS/2 port occurs. This function does not save or
restore the processor context such that the user must ensure this occurs.

Parameters:
InstancePtr contains a pointer to the Touchscreen instance.

Returns:
None.

Note:
None.

XTouchscreen_Config* XTouchscreen_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration info for
each device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found.

Note:
None.

void XTouchscreen_SetHandler (XTouchscreen * InstancePtr,
XTouchscreen_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The purpose of
the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_l.h
Go to the documentation of this file.

00001 /* $Id: xtouchscreen_l.h,v 1.3 2002/10/24 00:01:12 carsten Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file touchscreen_ref/v1_00_a/src/xtouchscreen_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xtouchscreen.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00a ch 08/08/02 First release
00038 * </pre>
00039 *
00040 ***/
00041
00042 #ifndef XTOUCHSCREEN_L_H /* prevent circular inclusions */

00043 #define XTOUCHSCREEN_L_H /* by using protection macros */
00044
00045 /***************************** Include Files ********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xio.h"

00049
00050 /************************** Constant Definitions ****************************/
00051
00052 /* Register offsets */
00053 #define XTOUCHSCREEN_CTRL_REG_OFFSET 0
00054 #define XTOUCHSCREEN_INTR_REG_OFFSET 4
00055
00056 /* control register channel selectors */
00057 #define XTOUCHSCREEN_CTRL_CHSEL_X 0xd3
00058 #define XTOUCHSCREEN_CTRL_CHSEL_Y 0x93
00059 #define XTOUCHSCREEN_CTRL_CHSEL_Z1 0xb3
00060 #define XTOUCHSCREEN_CTRL_CHSEL_Z2 0xc3
00061
00062 /* interrupt register positions */
00063 #define XTOUCHSCREEN_INT_PEN_UP 0x01
00064 #define XTOUCHSCREEN_INT_PEN_DOWN 0x02
00065
00066 /* error reading touchscreen */
00067 #define XTOUCHSCREEN_SAMPLE_ERROR 0xffffffff
00068
00069 /**************************** Type Definitions ******************************/
00070
00071 /***************** Macros (Inline Functions) Definitions ********************/
00072
00073 /***
00074 *
00075 * Low-level driver macros. The list below provides signatures to help the
00076 * user use the macros.
00077 *
00078 * Xuint32 XTouchscreen_mReadCtrlReg(Xuint32 BaseAddress)
00079 * void XTouchscreen_mWriteCtrlReg(Xuint32 BaseAddress, Xuint8 Value)
00080 *
00081 * Xuint32 XTouchscreen_mGetIntrStatus(Xuint32 BaseAddress)
00082 * void XTouchscreen_mClearIntr(Xuint32 BaseAddress, Xuint32 ClearMask)
00083 *
00084 ***/
00085
00086 /**/
00087 /**
00088 * Read the control register.
00089 *
00090 * @param BaseAddress contains the base address of the device.
00091 *
00092 * @return The value read from the register.
00093 *
00094 * @note None.

00095 *
00096 ***/
00097 #define XTouchscreen_mReadCtrlReg(BaseAddress) \

00098 XIo_In32((BaseAddress) + XTOUCHSCREEN_CTRL_REG_OFFSET)
00099
00100 /**/
00101 /**
00102 * Write to the control register
00103 *
00104 * @param BaseAddress contains the base address of the device.
00105 Value to be written
00106 *
00107 * @return None.
00108 *
00109 * @note None.
00110 *
00111 ***/
00112 #define XTouchscreen_mWriteCtrlReg(BaseAddress, Value) \

00113 XIo_Out8((BaseAddress) + XTOUCHSCREEN_CTRL_REG_OFFSET, Value)
00114
00115 /**/
00116 /**
00117 * Read the interrupt status register.
00118 *
00119 * @param BaseAddress contains the base address of the device.
00120 *
00121 * @return The value read from the register.
00122 *
00123 * @note None.
00124 *
00125 ***/
00126 #define XTouchscreen_mGetIntrStatus(BaseAddress) \

00127 XIo_In32((BaseAddress) + XTOUCHSCREEN_INTR_REG_OFFSET)
00128
00129 /**/
00130 /**
00131 * Clear pending interrupts.
00132 *
00133 * @param BaseAddress contains the base address of the device.
00134 * Bitmask for interrupts to be cleared. A "1" clears the interrupt.
00135 *
00136 * @return None.
00137 *
00138 * @note None.
00139 *
00140 ***/
00141 #define XTouchscreen_mClearIntr(BaseAddress, ClearMask) \

00142 XIo_Out32((BaseAddress) + XTOUCHSCREEN_INTR_REG_OFFSET, ClearMask)
00143
00144 /************************** Variable Definitions ****************************/
00145
00146 /************************** Function Prototypes *****************************/

00147
00148 Xuint32 XTouchscreen_GetValue(Xuint32 BaseAddress, Xuint8 Channel);

00149
00150 /**/
00151
00152 #endif

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_l.h
File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access the device.
The user should refer to the hardware device specification for more details of the device operation. High-level driver
functions are defined in xtouchscreen.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/08/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XTouchscreen_mReadCtrlReg(BaseAddress)
#define XTouchscreen_mWriteCtrlReg(BaseAddress, Value)
#define XTouchscreen_mGetIntrStatus(BaseAddress)
#define XTouchscreen_mClearIntr(BaseAddress, ClearMask)

Functions

Xuint32 XTouchscreen_GetValue (Xuint32 BaseAddress, Xuint8 Channel)

Define Documentation

#define XTouchscreen_mClearIntr(BaseAddress,
ClearMask)

Clear pending interrupts.

Parameters:
BaseAddress contains the base address of the device. Bitmask for interrupts to be cleared. A "1" clears the

interrupt.

Returns:
None.

Note:
None.

#define XTouchscreen_mGetIntrStatus(BaseAddress)

Read the interrupt status register.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XTouchscreen_mReadCtrlReg(BaseAddress)

Read the control register.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XTouchscreen_mWriteCtrlReg(BaseAddress,
Value)

Write to the control register

Parameters:
BaseAddress contains the base address of the device. Value to be written

Returns:
None.

Note:
None.

Function Documentation

Xuint32 XTouchscreen_GetValue (Xuint32 BaseAddress,
Xuint8 Channel

)

This function reads a digitized value from the touchscreen controller.

Parameters:
BaseAddress contains the base address of the touchscreen controller.
Channel addresses the channel to be read.

Returns:
Digitized value of the addressed channel.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_l.c
File Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer to the
hardware device specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/08/02 First release

#include "xbasic_types.h"

#include "xenv.h"

#include "xtouchscreen_l.h"

Functions

Xuint32 XTouchscreen_GetValue (Xuint32 BaseAddress, Xuint8 Channel)

Function Documentation

Xuint32 XTouchscreen_GetValue (Xuint32 BaseAddress,
Xuint8 Channel

)

This function reads a digitized value from the touchscreen controller.

Parameters:
BaseAddress contains the base address of the touchscreen controller.
Channel addresses the channel to be read.

Returns:
Digitized value of the addressed channel.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen.h
Go to the documentation of this file.

00001 /* $Id: xtouchscreen.h,v 1.4 2002/10/25 23:18:10 carsten Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /***/
00023 /**
00024 *
00025 * @file touchscreen_ref/v1_00_a/src/xtouchscreen.h
00026 *
00027 * This driver supports the following features:
00028 *
00029 * - Polled mode
00030 * - Interrupt driven mode
00031 *
00032 * Interrupts
00033 *
00034 * In order to use interrupts, it is necessary for the user to connect the
00035 * driver interrupt handler, XTouchscreen_InterruptHandler(), to the interrupt
00036 * system of the application. This function does not save and restore the
00037 * processor context such that the user must provide it. A handler must be set
00038 * for the driver such that the handler is called when interrupt events occur.
00039 * The handler is called from interrupt context and is designed to allow
00040 * application specific processing to be performed.
00041 *
00042 * @note

00043 *
00044 * None.
00045 *
00046 * <pre>
00047 * MODIFICATION HISTORY:
00048 *
00049 * Ver Who Date Changes
00050 * ----- ---- -------- ---
00051 * 1.00a ch 08/15/02 First release
00052 * </pre>
00053 *
00054 **/
00055
00056 #ifndef XTOUCHSCREEN_H /* prevent circular inclusions */
00057 #define XTOUCHSCREEN_H /* by using protection macros */
00058
00059 /***************************** Include Files ********************************/
00060
00061 #include "xbasic_types.h"

00062 #include "xstatus.h"

00063 #include "xtouchscreen_l.h"

00064
00065 /************************** Constant Definitions ****************************/
00066
00067 /*
00068 * These constants specify the handler events that are passed to
00069 * a handler from the driver. These constants are not bit masks suuch that
00070 * only one will be passed at a time to the handler
00071 */
00072 #define XTOUCHSCREEN_EVENT_PEN_UP 1
00073 #define XTOUCHSCREEN_EVENT_PEN_DOWN 2
00074
00075 /*
00076 * These constants are used to specify the current pen state.
00077 * They are only used internally.
00078 */
00079 #define XTOUCHSCREEN_STATE_PEN_UP 1
00080 #define XTOUCHSCREEN_STATE_PEN_DOWN 2
00081
00082 /**************************** Type Definitions ******************************/
00083
00084 /*
00085 * This typedef contains configuration information for the device
00086 */
00087 typedef struct
00088 {
00089 Xuint16 DeviceId;

00090 Xuint32 BaseAddress;

00091 } XTouchscreen_Config;
00092
00093 /*
00094 * This data type defines a handler which the application must define

00095 * when using interrupt mode. The handler will be called from the driver in an
00096 * interrupt context to handle application specific processing.
00097 *
00098 * @param CallBackRef is a callback reference passed in by the upper layer
00099 * when setting the handler, and is passed back to the upper layer when
00100 * the handler is called.
00101 * @param Event contains one of the event constants indicating why the handler
00102 * is being called.
00103 * @param EventData contains the number of bytes sent or received at the time
00104 * of the call.
00105 */
00106 typedef void (*XTouchscreen_Handler)(void *CallBackRef, Xuint32 Event,

00107 unsigned int EventData);
00108 /*
00109 * The Touchscreen driver instance data. The user is required to allocate a
00110 * variable of this type for every touchscreen device in the system.
00111 * A pointer to a variable of this type is then passed to the driver API
00112 * functions
00113 */
00114 typedef struct
00115 {
00116 Xuint32 BaseAddress;

00117 Xuint32 IsReady;

00118 Xuint32 CurrentState;

00119 XTouchscreen_Handler Handler;
00120 void *CallBackRef;
00121 } XTouchscreen;
00122
00123 /***************** Macros (Inline Functions) Definitions ********************/
00124
00125 /************************** Function Prototypes *****************************/
00126
00127 /*
00128 * required functions is xtouchscreen.c
00129 */
00130 XStatus XTouchscreen_Initialize(XTouchscreen *InstancePtr, Xuint16 DeviceId);

00131 XTouchscreen_Config *XTouchscreen_LookupConfig(Xuint16 DeviceId);

00132 void XTouchscreen_GetPosition_2D(XTouchscreen *InstancePtr, Xuint32 *x,

00133 Xuint32 *y);

00134 void XTouchscreen_GetPosition_3D(XTouchscreen *InstancePtr, Xuint32 *x,

00135 Xuint32 *y, Xuint32 *z);

00136 /*
00137 * interrupt functions in xtouchscreen_intr.c
00138 */
00139 void XTouchscreen_SetHandler(XTouchscreen *InstancePtr,

00140 XTouchscreen_Handler FuncPtr, void *CallBackRef);
00141 void XTouchscreen_InterruptHandler(XTouchscreen *InstancePtr);

00142
00143 #endif

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen.c
File Reference

Detailed Description

This file contains the required functions for the touchscreen driver. Refer to the header file xtouchscreen.h for
more detailed information.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/15/02 First release
 1.00a rmm 05/15/03 Fixed diab compiler warnings relating to asserts

#include "xenv.h"

#include "xstatus.h"

#include "xparameters.h"

#include "xtouchscreen.h"

#include "xtouchscreen_i.h"

#include "xtouchscreen_l.h"

#include "xio.h"

Functions

XStatus XTouchscreen_Initialize (XTouchscreen *InstancePtr, Xuint16 DeviceId)
XTouchscreen_Config * XTouchscreen_LookupConfig (Xuint16 DeviceId)

void XTouchscreen_GetPosition_2D (XTouchscreen *InstancePtr, Xuint32 *x, Xuint32
*y)

void XTouchscreen_GetPosition_3D (XTouchscreen *InstancePtr, Xuint32 *x, Xuint32
*y, Xuint32 *z)

Function Documentation

void XTouchscreen_GetPosition_2D (XTouchscreen * InstancePtr,
Xuint32 * x,
Xuint32 * y

)

This function reads 2D (X & Y) coordinates from the touchscreen.

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
x pointer to store the x coordinate. *y pointer to store the y coordinate.

Returns:
None.

Note:
None.

void XTouchscreen_GetPosition_3D (XTouchscreen * InstancePtr,
Xuint32 * x,
Xuint32 * y,
Xuint32 * z

)

This function reads 3D (X, Y & Z) coordinates from the touchscreen. x and y are the actual positions, the
pressure has to be calculated from z1 and z2

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
x pointer to store the x coordinate. *y pointer to store the y coordinate. *z pointer to store

the z coordinate (pressure)

Returns:
None.

Note:
None.

XStatus XTouchscreen_Initialize (XTouchscreen * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific touchscreen instance such that it is ready to be used. The default operating mode of the
driver is polled mode.

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
DeviceId is the unique id of the device controlled by this XTouchscreen instance. Passing in a

device id associates the generic XTouchscreen instance to a specific device, as chosen by
the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_NOT_FOUND if the device ID could not be found in the configuration table

Note:
None.

XTouchscreen_Config* XTouchscreen_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration info for
each device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_i.h
Go to the documentation of this file.

00001 /* $Id: xtouchscreen_i.h,v 1.1 2002/08/15 22:17:01 carsten Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file touchscreen_ref/v1_00_a/src/xtouchscreen_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between the files of the driver. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ch 08/15/02 First release
00036 * </pre>
00037 *
00038 **/
00039 #ifndef XTOUCHSCREEN_I_H /* prevent circular inclusions */
00040 #define XTOUCHSCREEN_I_H /* by using protection macros */
00041
00042 /***************************** Include Files ********************************/

00043
00044 #include "xtouchscreen.h"

00045
00046 /************************** Constant Definitions ****************************/
00047
00048 /**************************** Type Definitions ******************************/
00049
00050 /***************** Macros (Inline Functions) Definitions ********************/
00051
00052 /************************** Variable Definitions ****************************/
00053
00054 extern XTouchscreen_Config XTouchscreen_ConfigTable[];
00055
00056 /************************** Function Prototypes *****************************/
00057
00058 #endif

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_i.h
File Reference

Detailed Description

This header file contains internal identifiers, which are those shared between the files of the driver. It is intended for
internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/15/02 First release

#include "xtouchscreen.h"

Go to the source code of this file.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_intr.c
File Reference

Detailed Description

This file contains the functions that are related to interrupt processing for the touchscreen driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/15/02 First release

#include "xio.h"

#include "xtouchscreen.h"

#include "xtouchscreen_l.h"

Functions

void XTouchscreen_SetHandler (XTouchscreen *InstancePtr, XTouchscreen_Handler FuncPtr, void *CallBackRef)
void XTouchscreen_InterruptHandler (XTouchscreen *InstancePtr)

Function Documentation

void XTouchscreen_InterruptHandler (XTouchscreen * InstancePtr)

This function is the interrupt handler for the Touchscreen driver. It must be connected to an interrupt system by the user
such that it is called when an interrupt for any PS/2 port occurs. This function does not save or restore the processor
context such that the user must ensure this occurs.

Parameters:
InstancePtr contains a pointer to the Touchscreen instance.

Returns:
None.

Note:
None.

void XTouchscreen_SetHandler (XTouchscreen * InstancePtr,
XTouchscreen_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The purpose of the handler
is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XTouchscreen instance to be worked on.
FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_stats.c File
Reference

Detailed Description

This file contains the statistics functions for the UART Lite component (XUartLite).

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xbasic_types.h"

#include "xuartlite.h"

#include "xuartlite_i.h"

Functions

void XUartLite_GetStats (XUartLite *InstancePtr, XUartLite_Stats *StatsPtr)
void XUartLite_ClearStats (XUartLite *InstancePtr)

Function Documentation

void XUartLite_ClearStats (XUartLite * InstancePtr)

This function zeros the statistics for the given instance.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

void XUartLite_GetStats (XUartLite * InstancePtr,
XUartLite_Stats * StatsPtr

)

Returns a snapshot of the current statistics in the structure specified.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

StatsPtr is a pointer to a XUartLiteStats structure to where the statistics are to be copied.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartLite Struct Reference
#include <xuartlite.h>

Detailed Description

The XUartLite driver instance data. The user is required to allocate a variable of this type for every
UART Lite device in the system. A pointer to a variable of this type is then passed to the driver API
functions.

The documentation for this struct was generated from the following file:

● uartlite/v1_00_b/src/xuartlite.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite.h
Go to the documentation of this file.

00001 /* $Id: xuartlite.h,v 1.10 2002/07/24 22:35:28 robertm Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file uartlite/v1_00_b/src/xuartlite.h
00026 *
00027 * This component contains the implementation of the XUartLite component which
is
00028 * the driver for the Xilinx UART Lite device. This UART is a minimal hardware
00029 * implementation with minimal features. Most of the features, including baud
00030 * rate, parity, and number of data bits are only configurable when the hardware
00031 * device is built, rather than at run time by software.
00032 *
00033 * The device has 16 byte transmit and receive FIFOs and supports interrupts.
00034 * The device does not have any way to disable the receiver such that the
00035 * receive FIFO may contain unwanted data. The FIFOs are not flushed when the
00036 * driver is initialized, but a function is provided to allow the user to
00037 * reset the FIFOs if desired.
00038 *
00039 * The driver defaults to no interrupts at initialization such that interrupts
00040 * must be enabled if desired. An interrupt is generated when the transmit FIFO
00041 * transitions from having data to being empty or when any data is contained in

00042 * the receive FIFO.
00043 *
00044 * In order to use interrupts, it's necessary for the user to connect the driver
00045 * interrupt handler, XUartLite_InterruptHandler, to the interrupt system of the
00046 * application. This function does not save and restore the processor context
00047 * such that the user must provide it. Send and receive handlers may be set for
00048 * the driver such that the handlers are called when transmit and receive
00049 * interrupts occur. The handlers are called from interrupt context and are
00050 * designed to allow application specific processing to be performed.
00051 *
00052 * The functions, XUartLite_Send and XUartLite_Recv, are provided in the driver
00053 * to allow data to be sent and received. They are designed to be used in
00054 * polled or interrupt modes.
00055 *
00056 * The driver provides a status for each received byte indicating any parity
00057 * frame or overrun error. The driver provides statistics which allow visibility
00058 * into these errors.
00059 *
00060 * RTOS Independence
00061 *
00062 * This driver is intended to be RTOS and processor independent. It works
00063 * with physical addresses only. Any needs for dynamic memory management,
00064 * threads or thread mutual exclusion, virtual memory, or cache control must
00065 * be satisfied by the layer above this driver.
00066 *
00067 * @note
00068 *
00069 * The driver is partitioned such that a minimal implementation may be used.
00070 * More features require additional files to be linked in.
00071 *
00072 * <pre>
00073 * MODIFICATION HISTORY:
00074 *
00075 * Ver Who Date Changes
00076 * ----- ---- -------- ---
00077 * 1.00a ecm 08/31/01 First release
00078 * 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
00079 * </pre>
00080 *
00081 ***/
00082
00083 #ifndef XUARTLITE_H /* prevent circular inclusions */
00084 #define XUARTLITE_H /* by using protection macros */
00085
00086 /***************************** Include Files ********************************/
00087
00088 #include "xbasic_types.h"

00089 #include "xstatus.h"

00090
00091 /************************** Constant Definitions ****************************/
00092
00093 /**************************** Type Definitions ******************************/

00094
00095 /**
00096 * Callback function. The first argument is a callback reference passed in by
00097 * the upper layer when setting the callback functions, and passed back to the
00098 * upper layer when the callback is invoked.
00099 * The second argument is the ByteCount which is the number of bytes that
00100 * actually moved from/to the buffer provided in the _Send/_Receive call.
00101 */
00102 typedef void (*XUartLite_Handler)(void *CallBackRef, unsigned int ByteCount);

00103
00104 /**
00105 * Statistics for the XUartLite driver
00106 */
00107 typedef struct

00108 {
00109 Xuint32 TransmitInterrupts; /**< Number of transmit interrupts */

00110 Xuint32 ReceiveInterrupts; /**< Number of receive interrupts */

00111 Xuint32 CharactersTransmitted; /**< Number of characters transmitted */

00112 Xuint32 CharactersReceived; /**< Number of characters received */

00113 Xuint32 ReceiveOverrunErrors; /**< Number of receive overruns */

00114 Xuint32 ReceiveParityErrors; /**< Number of receive parity errors */

00115 Xuint32 ReceiveFramingErrors; /**< Number of receive framing errors */

00116 } XUartLite_Stats;

00117
00118 /**
00119 * The following data type is used to manage the buffers that are handled
00120 * when sending and receiving data in the interrupt mode. It is intended
00121 * for internal use only.
00122 */
00123 typedef struct

00124 {
00125 Xuint8 *NextBytePtr;

00126 unsigned int RequestedBytes;
00127 unsigned int RemainingBytes;
00128 } XUartLite_Buffer;

00129
00130 /**
00131 * This typedef contains configuration information for the device.
00132 */
00133 typedef struct

00134 {
00135 Xuint16 DeviceId; /**< Unique ID of device */

00136 Xuint32 RegBaseAddr; /**< Register base address */

00137 Xuint32 BaudRate; /**< Fixed baud rate */

00138 Xuint8 UseParity; /**< Parity generator enabled when XTRUE */

00139 Xuint8 ParityOdd; /**< Parity generated is odd when XTRUE, even when

00140 XFALSE */
00141 Xuint8 DataBits; /**< Fixed data bits */

00142 } XUartLite_Config;

00143

00144 /**
00145 * The XUartLite driver instance data. The user is required to allocate a
00146 * variable of this type for every UART Lite device in the system. A pointer
00147 * to a variable of this type is then passed to the driver API functions.
00148 */
00149 typedef struct

00150 {
00151 XUartLite_Stats Stats; /* Component Statistics */

00152 Xuint32 RegBaseAddress; /* Base address of registers */

00153 Xuint32 IsReady; /* Device is initialized and ready */

00154
00155
00156 XUartLite_Buffer SendBuffer;

00157 XUartLite_Buffer ReceiveBuffer;

00158
00159 XUartLite_Handler RecvHandler;

00160 void *RecvCallBackRef; /* Callback reference for recv handler */
00161 XUartLite_Handler SendHandler;

00162 void *SendCallBackRef; /* Callback reference for send handler */
00163 } XUartLite;

00164
00165
00166 /***************** Macros (Inline Functions) Definitions ********************/
00167
00168
00169 /************************** Function Prototypes *****************************/
00170
00171 /*
00172 * Required functions, in file xuart.c
00173 */
00174 XStatus XUartLite_Initialize(XUartLite *InstancePtr, Xuint16 DeviceId);

00175
00176 void XUartLite_ResetFifos(XUartLite *InstancePtr);

00177
00178 unsigned int XUartLite_Send(XUartLite *InstancePtr, Xuint8 *DataBufferPtr,

00179 unsigned int NumBytes);
00180 unsigned int XUartLite_Recv(XUartLite *InstancePtr, Xuint8 *DataBufferPtr,

00181 unsigned int NumBytes);
00182
00183 Xboolean XUartLite_IsSending(XUartLite *InstancePtr);

00184 XUartLite_Config *XUartLite_LookupConfig(Xuint16 DeviceId);

00185
00186 /*
00187 * Functions for statistics, in file xuartlite_stats.c
00188 */
00189 void XUartLite_GetStats(XUartLite *InstancePtr, XUartLite_Stats *StatsPtr);

00190 void XUartLite_ClearStats(XUartLite *InstancePtr);

00191
00192 /*
00193 * Functions for self-test, in file xuartlite_selftest.c

00194 */
00195 XStatus XUartLite_SelfTest(XUartLite *InstancePtr);

00196
00197 /*
00198 * Functions for interrupts, in file xuartlite_intr.c
00199 */
00200 void XUartLite_EnableInterrupt(XUartLite *InstancePtr);

00201 void XUartLite_DisableInterrupt(XUartLite *InstancePtr);

00202
00203 void XUartLite_SetRecvHandler(XUartLite *InstancePtr, XUartLite_Handler

FuncPtr,
00204 void *CallBackRef);
00205 void XUartLite_SetSendHandler(XUartLite *InstancePtr, XUartLite_Handler

FuncPtr,
00206 void *CallBackRef);
00207
00208 void XUartLite_InterruptHandler(XUartLite *InstancePtr);

00209
00210 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite.h File
Reference

Detailed Description

This component contains the implementation of the XUartLite component which is the driver for the
Xilinx UART Lite device. This UART is a minimal hardware implementation with minimal features.
Most of the features, including baud rate, parity, and number of data bits are only configurable when the
hardware device is built, rather than at run time by software.

The device has 16 byte transmit and receive FIFOs and supports interrupts. The device does not have any
way to disable the receiver such that the receive FIFO may contain unwanted data. The FIFOs are not
flushed when the driver is initialized, but a function is provided to allow the user to reset the FIFOs if
desired.

The driver defaults to no interrupts at initialization such that interrupts must be enabled if desired. An
interrupt is generated when the transmit FIFO transitions from having data to being empty or when any
data is contained in the receive FIFO.

In order to use interrupts, it's necessary for the user to connect the driver interrupt handler,
XUartLite_InterruptHandler, to the interrupt system of the application. This function does not save and
restore the processor context such that the user must provide it. Send and receive handlers may be set for
the driver such that the handlers are called when transmit and receive interrupts occur. The handlers are
called from interrupt context and are designed to allow application specific processing to be performed.

The functions, XUartLite_Send and XUartLite_Recv, are provided in the driver to allow data to be sent
and received. They are designed to be used in polled or interrupt modes.

The driver provides a status for each received byte indicating any parity frame or overrun error. The
driver provides statistics which allow visibility into these errors.

RTOS Independence

This driver is intended to be RTOS and processor independent. It works with physical addresses only.
Any needs for dynamic memory management, threads or thread mutual exclusion, virtual memory, or
cache control must be satisfied by the layer above this driver.

Note:
The driver is partitioned such that a minimal implementation may be used. More features require
additional files to be linked in.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XUartLite
struct XUartLite_Buffer
struct XUartLite_Config
struct XUartLite_Stats

Typedefs

typedef void(* XUartLite_Handler)(void *CallBackRef, unsigned int ByteCount)

Functions

XStatus XUartLite_Initialize (XUartLite *InstancePtr, Xuint16 DeviceId)
void XUartLite_ResetFifos (XUartLite *InstancePtr)

unsigned int XUartLite_Send (XUartLite *InstancePtr, Xuint8 *DataBufferPtr, unsigned int
NumBytes)

unsigned int XUartLite_Recv (XUartLite *InstancePtr, Xuint8 *DataBufferPtr, unsigned int
NumBytes)

Xboolean XUartLite_IsSending (XUartLite *InstancePtr)
void XUartLite_GetStats (XUartLite *InstancePtr, XUartLite_Stats *StatsPtr)
void XUartLite_ClearStats (XUartLite *InstancePtr)

XStatus XUartLite_SelfTest (XUartLite *InstancePtr)
void XUartLite_EnableInterrupt (XUartLite *InstancePtr)
void XUartLite_DisableInterrupt (XUartLite *InstancePtr)
void XUartLite_SetRecvHandler (XUartLite *InstancePtr, XUartLite_Handler FuncPtr,

void *CallBackRef)
void XUartLite_SetSendHandler (XUartLite *InstancePtr, XUartLite_Handler FuncPtr,

void *CallBackRef)
void XUartLite_InterruptHandler (XUartLite *InstancePtr)

Typedef Documentation

typedef void(* XUartLite_Handler)(void *CallBackRef, unsigned int ByteCount)

Callback function. The first argument is a callback reference passed in by the upper layer when
setting the callback functions, and passed back to the upper layer when the callback is invoked. The
second argument is the ByteCount which is the number of bytes that actually moved from/to the
buffer provided in the _Send/_Receive call.

Function Documentation

void XUartLite_ClearStats (XUartLite * InstancePtr)

This function zeros the statistics for the given instance.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

void XUartLite_DisableInterrupt (XUartLite * InstancePtr)

This function disables the UART interrupt. After calling this function, data may still be received by
the UART but no interrupt will be generated since the hardware device has no way to disable the
receiver.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

void XUartLite_EnableInterrupt (XUartLite * InstancePtr)

This function enables the UART interrupt such that an interrupt will occur when data is received or
data has been transmitted. The device contains 16 byte receive and transmit FIFOs such that an
interrupt is generated anytime there is data in the receive FIFO and when the transmit FIFO
transitions from not empty to empty.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

void XUartLite_GetStats (XUartLite * InstancePtr,
XUartLite_Stats * StatsPtr

)

Returns a snapshot of the current statistics in the structure specified.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

StatsPtr is a pointer to a XUartLiteStats structure to where the statistics are to be copied.

Returns:
None.

Note:
None.

XStatus XUartLite_Initialize (XUartLite * InstancePtr,
Xuint16 DeviceId

)

Initialize a XUartLite instance. The receive and transmit FIFOs of the UART are not flushed, so the
user may want to flush them. The hardware device does not have any way to disable the receiver such
that any valid data may be present in the receive FIFO. This function disables the UART interrupt.
The baudrate and format of the data are fixed in the hardware at hardware build time.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

DeviceId is the unique id of the device controlled by this XUartLite instance. Passing in a
device id associates the generic XUartLite instance to a specific device, as
chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the device is not found in the configuration table.

Note:
None.

void XUartLite_InterruptHandler (XUartLite * InstancePtr)

This function is the interrupt handler for the UART lite driver. It must be connected to an interrupt
system by the user such that it is called when an interrupt for any UART lite occurs. This function
does not save or restore the processor context such that the user must ensure this occurs.

Parameters:
InstancePtr contains a pointer to the instance of the UART that the interrupt is for.

Returns:
None.

Note:
None.

Xboolean XUartLite_IsSending (XUartLite * InstancePtr)

This function determines if the specified UART is sending data. If the transmitter register is not
empty, it is sending data.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
A value of XTRUE if the UART is sending data, otherwise XFALSE.

Note:
None.

unsigned int XUartLite_Recv (XUartLite * InstancePtr,
Xuint8 * DataBufferPtr,
unsigned int NumBytes

)

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer in the FIFO.
The application may need to call it repeatedly to receive a buffer. Polled mode is the default mode of
operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue receiving data until the buffer has been received. A callback function, as specified by the
application, will be called to indicate the completion of receiving the buffer or when any receive
errors or timeouts occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

BufferPtr is pointer to buffer for data to be received into
NumBytes is the number of bytes to be received. A value of zero will stop a previous receive

operation that is in progress in interrupt mode.

Returns:
The number of bytes received.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

void XUartLite_ResetFifos (XUartLite * InstancePtr)

This function resets the FIFOs, both transmit and receive, of the UART such that they are emptied.
Since the UART does not have any way to disable it from receiving data, it may be necessary for the
application to reset the FIFOs to get rid of any unwanted data.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

XStatus XUartLite_SelfTest (XUartLite * InstancePtr)

Runs a self-test on the device hardware. Since there is no way to perform a loopback in the hardware,
this test can only check the state of the status register to verify it is correct. This test assumes that the
hardware device is still in its reset state, but has been initialized with the Initialize function.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
❍ XST_SUCCESS if the self-test was successful.
❍ XST_FAILURE if the self-test failed, the status register value was not correct

Note:
None.

unsigned int XUartLite_Send (XUartLite * InstancePtr,
Xuint8 * DataBufferPtr,
unsigned int NumBytes

)

This functions sends the specified buffer of data using the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART. If the UART is busy sending data, it will return and indicate zero bytes were sent.

In a polled mode, this function will only send as much data as the UART can buffer in the FIFO. The
application may need to call it repeatedly to send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue sending data until the buffer has been sent. A callback function, as specified
by the application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

BufferPtr is pointer to a buffer of data to be sent.
NumBytes contains the number of bytes to be sent. A value of zero will stop a previous send

operation that is in progress in interrupt mode. Any data that was already put into
the transmit FIFO will be sent.

Returns:
The number of bytes actually sent.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

void XUartLite_SetRecvHandler (XUartLite * InstancePtr,
XUartLite_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

void XUartLite_SetSendHandler (XUartLite * InstancePtr,
XUartLite_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartLite_Buffer Struct Reference
#include <xuartlite.h>

Detailed Description

The following data type is used to manage the buffers that are handled when sending and receiving data
in the interrupt mode. It is intended for internal use only.

The documentation for this struct was generated from the following file:

● uartlite/v1_00_b/src/xuartlite.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartLite_Config Struct Reference
#include <xuartlite.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 RegBaseAddr
Xuint32 BaudRate
Xuint8 UseParity
Xuint8 ParityOdd
Xuint8 DataBits

Field Documentation

Xuint32 XUartLite_Config::BaudRate

 Fixed baud rate

Xuint8 XUartLite_Config::DataBits

 Fixed data bits

Xuint16 XUartLite_Config::DeviceId

 Unique ID of device

Xuint8 XUartLite_Config::ParityOdd

 Parity generated is odd when XTRUE, even when XFALSE

Xuint32 XUartLite_Config::RegBaseAddr

 Register base address

Xuint8 XUartLite_Config::UseParity

 Parity generator enabled when XTRUE

The documentation for this struct was generated from the following file:

● uartlite/v1_00_b/src/xuartlite.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartLite_Stats Struct Reference
#include <xuartlite.h>

Detailed Description

Statistics for the XUartLite driver

Data Fields

Xuint32 TransmitInterrupts
Xuint32 ReceiveInterrupts
Xuint32 CharactersTransmitted
Xuint32 CharactersReceived
Xuint32 ReceiveOverrunErrors
Xuint32 ReceiveParityErrors
Xuint32 ReceiveFramingErrors

Field Documentation

Xuint32 XUartLite_Stats::CharactersReceived

 Number of characters received

Xuint32 XUartLite_Stats::CharactersTransmitted

 Number of characters transmitted

Xuint32 XUartLite_Stats::ReceiveFramingErrors

 Number of receive framing errors

Xuint32 XUartLite_Stats::ReceiveInterrupts

 Number of receive interrupts

Xuint32 XUartLite_Stats::ReceiveOverrunErrors

 Number of receive overruns

Xuint32 XUartLite_Stats::ReceiveParityErrors

 Number of receive parity errors

Xuint32 XUartLite_Stats::TransmitInterrupts

 Number of transmit interrupts

The documentation for this struct was generated from the following file:

● uartlite/v1_00_b/src/xuartlite.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite.c File
Reference

Detailed Description

Contains required functions for the XUartLite driver. See the xuartlite.h header file for more details on
this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
 1.00b rmm 05/13/03 Fixed diab compiler warnings relating to asserts

#include "xbasic_types.h"

#include "xstatus.h"

#include "xparameters.h"

#include "xuartlite.h"

#include "xuartlite_i.h"

#include "xio.h"

Functions

XStatus XUartLite_Initialize (XUartLite *InstancePtr, Xuint16 DeviceId)

unsigned int XUartLite_Send (XUartLite *InstancePtr, Xuint8 *DataBufferPtr, unsigned int
NumBytes)

unsigned int XUartLite_Recv (XUartLite *InstancePtr, Xuint8 *DataBufferPtr, unsigned int
NumBytes)

void XUartLite_ResetFifos (XUartLite *InstancePtr)
Xboolean XUartLite_IsSending (XUartLite *InstancePtr)

unsigned int XUartLite_SendBuffer (XUartLite *InstancePtr)
unsigned int XUartLite_ReceiveBuffer (XUartLite *InstancePtr)

Function Documentation

XStatus XUartLite_Initialize (XUartLite * InstancePtr,
Xuint16 DeviceId

)

Initialize a XUartLite instance. The receive and transmit FIFOs of the UART are not flushed, so the
user may want to flush them. The hardware device does not have any way to disable the receiver such
that any valid data may be present in the receive FIFO. This function disables the UART interrupt.
The baudrate and format of the data are fixed in the hardware at hardware build time.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

DeviceId is the unique id of the device controlled by this XUartLite instance. Passing in a
device id associates the generic XUartLite instance to a specific device, as
chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if everything starts up as expected.
❍ XST_DEVICE_NOT_FOUND if the device is not found in the configuration table.

Note:
None.

Xboolean XUartLite_IsSending (XUartLite * InstancePtr)

This function determines if the specified UART is sending data. If the transmitter register is not
empty, it is sending data.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
A value of XTRUE if the UART is sending data, otherwise XFALSE.

Note:
None.

unsigned int XUartLite_ReceiveBuffer (XUartLite * InstancePtr)

This function receives a buffer that has been previously specified by setting up the instance variables
of the instance. This function is designed to be an internal function for the XUartLite component
such that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if there is no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer, either in the
receiver or in the FIFO if present and enabled. The application may need to call it repeatedly to
receive a buffer. Polled mode is the default mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue until the buffer has been received. A callback function, as specified by the application, will
be called to indicate the completion of receiving the buffer or when any receive errors or timeouts
occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
The number of bytes received.

Note:
None.

unsigned int XUartLite_Recv (XUartLite * InstancePtr,
Xuint8 * DataBufferPtr,
unsigned int NumBytes

)

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer in the FIFO.
The application may need to call it repeatedly to receive a buffer. Polled mode is the default mode of
operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue receiving data until the buffer has been received. A callback function, as specified by the
application, will be called to indicate the completion of receiving the buffer or when any receive
errors or timeouts occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

BufferPtr is pointer to buffer for data to be received into
NumBytes is the number of bytes to be received. A value of zero will stop a previous receive

operation that is in progress in interrupt mode.

Returns:
The number of bytes received.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

void XUartLite_ResetFifos (XUartLite * InstancePtr)

This function resets the FIFOs, both transmit and receive, of the UART such that they are emptied.
Since the UART does not have any way to disable it from receiving data, it may be necessary for the
application to reset the FIFOs to get rid of any unwanted data.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

unsigned int XUartLite_Send (XUartLite * InstancePtr,
Xuint8 * DataBufferPtr,
unsigned int NumBytes

)

This functions sends the specified buffer of data using the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART. If the UART is busy sending data, it will return and indicate zero bytes were sent.

In a polled mode, this function will only send as much data as the UART can buffer in the FIFO. The
application may need to call it repeatedly to send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue sending data until the buffer has been sent. A callback function, as specified
by the application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

BufferPtr is pointer to a buffer of data to be sent.
NumBytes contains the number of bytes to be sent. A value of zero will stop a previous send

operation that is in progress in interrupt mode. Any data that was already put into
the transmit FIFO will be sent.

Returns:
The number of bytes actually sent.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

unsigned int XUartLite_SendBuffer (XUartLite * InstancePtr)

This function sends a buffer that has been previously specified by setting up the instance variables of
the instance. This function is designed to be an internal function for the XUartLite component such
that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function sends the specified buffer of data to the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART.

In a polled mode, this function will only send as much data as the UART can buffer, either in the
transmitter or in the FIFO if present and enabled. The application may need to call it repeatedly to
send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue until the buffer has been sent. A callback function, as specified by the
application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
NumBytes is the number of bytes actually sent (put into the UART transmitter and/or FIFO).

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_i.h
Go to the documentation of this file.

00001 /* $Id: xuartlite_i.h,v 1.7 2002/05/02 20:34:12 moleres Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file uartlite/v1_00_b/src/xuartlite_i.h
00026 *
00027 * Contains data which is shared between the files of the XUartLite component.
00028 * It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ecm 08/31/01 First release
00036 * 1.00b jhl 02/21/02 Reparitioned the driver for smaller files
00037 * 1.00b rpm 04/24/02 Moved register definitions to xuartlite_l.h and
00038 * updated macro naming convention
00039 * </pre>
00040 *
00041 ***/
00042

00043 #ifndef XUARTLITE_I_H /* prevent circular inclusions */
00044 #define XUARTLITE_I_H /* by using protection macros */
00045
00046 /***************************** Include Files ********************************/
00047
00048 #include "xuartlite.h"

00049 #include "xuartlite_l.h"

00050
00051 /************************** Constant Definitions ****************************/
00052
00053 /**************************** Type Definitions ******************************/
00054
00055 /***************** Macros (Inline Functions) Definitions ********************/
00056
00057 /**
00058 *
00059 * Update the statistics of the instance.
00060 *
00061 * @param InstancePtr is a pointer to the XUartLite instance to be worked on.
00062 * @param StatusRegister contains the contents of the UART status register
00063 * to update the statistics with.
00064 *
00065 * @return
00066 *
00067 * None.
00068 *
00069 * @note
00070 *
00071 * Signature: void XUartLite_mUpdateStats(XUartLite *InstancePtr,
00072 * Xuint32 StatusRegister)
00073 *
00074 ***/
00075 #define XUartLite_mUpdateStats(InstancePtr, StatusRegister) \
00076 { \
00077 if ((StatusRegister) & XUL_SR_OVERRUN_ERROR) \
00078 { \
00079 (InstancePtr)->Stats.ReceiveOverrunErrors++; \
00080 } \
00081 if ((StatusRegister) & XUL_SR_PARITY_ERROR) \
00082 { \
00083 (InstancePtr)->Stats.ReceiveParityErrors++; \
00084 } \
00085 if ((StatusRegister) & XUL_SR_FRAMING_ERROR) \
00086 { \
00087 (InstancePtr)->Stats.ReceiveFramingErrors++; \
00088 } \
00089 }
00090
00091 /**
00092 *
00093 * Clear the statistics for the instance.
00094 *

00095 * @param InstancePtr is a pointer to the XUartLite instance to be worked on.
00096 *
00097 * @return
00098 *
00099 * None.
00100 *
00101 * @note
00102 *
00103 * Signature: void XUartLite_mClearStats(XUartLite *InstancePtr)
00104 *
00105 ***/
00106 #define XUartLite_mClearStats(InstancePtr) \
00107 { \
00108 (InstancePtr)->Stats.TransmitInterrupts = 0UL; \
00109 (InstancePtr)->Stats.ReceiveInterrupts = 0UL; \
00110 (InstancePtr)->Stats.CharactersTransmitted = 0UL; \
00111 (InstancePtr)->Stats.CharactersReceived = 0UL; \
00112 (InstancePtr)->Stats.ReceiveOverrunErrors = 0UL; \
00113 (InstancePtr)->Stats.ReceiveFramingErrors = 0UL; \
00114 (InstancePtr)->Stats.ReceiveParityErrors = 0UL; \
00115 }
00116
00117 /************************** Variable Definitions ****************************/
00118
00119 /* the configuration table */
00120 extern XUartLite_Config XUartLite_ConfigTable[];

00121
00122 /************************** Function Prototypes *****************************/
00123
00124 unsigned int XUartLite_SendBuffer(XUartLite *InstancePtr);

00125 unsigned int XUartLite_ReceiveBuffer(XUartLite *InstancePtr);

00126
00127
00128 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_i.h File
Reference

Detailed Description

Contains data which is shared between the files of the XUartLite component. It is intended for internal
use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Reparitioned the driver for smaller files
 1.00b rpm 04/24/02 Moved register definitions to xuartlite_l.h and

 updated macro naming convention

#include "xuartlite.h"

#include "xuartlite_l.h"

Go to the source code of this file.

Functions

unsigned int XUartLite_SendBuffer (XUartLite *InstancePtr)
unsigned int XUartLite_ReceiveBuffer (XUartLite *InstancePtr)

Variables

XUartLite_Config XUartLite_ConfigTable []

Function Documentation

unsigned int XUartLite_ReceiveBuffer (XUartLite * InstancePtr)

This function receives a buffer that has been previously specified by setting up the instance variables
of the instance. This function is designed to be an internal function for the XUartLite component
such that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if there is no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer, either in the
receiver or in the FIFO if present and enabled. The application may need to call it repeatedly to
receive a buffer. Polled mode is the default mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue until the buffer has been received. A callback function, as specified by the application, will
be called to indicate the completion of receiving the buffer or when any receive errors or timeouts
occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
The number of bytes received.

Note:
None.

unsigned int XUartLite_SendBuffer (XUartLite * InstancePtr)

This function sends a buffer that has been previously specified by setting up the instance variables of
the instance. This function is designed to be an internal function for the XUartLite component such
that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function sends the specified buffer of data to the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART.

In a polled mode, this function will only send as much data as the UART can buffer, either in the
transmitter or in the FIFO if present and enabled. The application may need to call it repeatedly to
send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue until the buffer has been sent. A callback function, as specified by the
application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
NumBytes is the number of bytes actually sent (put into the UART transmitter and/or FIFO).

Note:
None.

Variable Documentation

XUartLite_Config XUartLite_ConfigTable[] ()

 The configuration table for UART Lite devices

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xuartlite.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 04/25/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XUartLite_mSetControlReg(BaseAddress, Mask)
#define XUartLite_mGetControlReg(BaseAddress)
#define XUartLite_mGetStatusReg(BaseAddress)
#define XUartLite_mIsReceiveEmpty(BaseAddress)
#define XUartLite_mIsTransmitFull(BaseAddress)
#define XUartLite_mIsIntrEnabled(BaseAddress)

#define XUartLite_mEnableIntr(BaseAddress)
#define XUartLite_mDisableIntr(BaseAddress)

Functions

void XUartLite_SendByte (Xuint32 BaseAddress, Xuint8 Data)
Xuint8 XUartLite_RecvByte (Xuint32 BaseAddress)

Define Documentation

#define XUartLite_mDisableIntr(BaseAddress)

Disable the device interrupt. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XUartLite_mEnableIntr(BaseAddress)

Enable the device interrupt. Preserve the contents of the control register.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XUartLite_mGetControlReg(BaseAddress)

Get the contents of the control register. Use the XUL_CR_* constants defined above to interpret the
bit-mask returned.

Parameters:
BaseAddress is the base address of the device

Returns:
A 32-bit value representing the contents of the control register.

Note:
None.

#define XUartLite_mGetStatusReg(BaseAddress)

Get the contents of the status register. Use the XUL_SR_* constants defined above to interpret the bit-
mask returned.

Parameters:
BaseAddress is the base address of the device

Returns:
A 32-bit value representing the contents of the status register.

Note:
None.

#define XUartLite_mIsIntrEnabled(BaseAddress)

Check to see if the interrupt is enabled.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if the interrupt is enabled, XFALSE otherwise.

Note:
None.

#define XUartLite_mIsReceiveEmpty(BaseAddress)

Check to see if the receiver has data.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if the receiver is empty, XFALSE if there is data present.

Note:
None.

#define XUartLite_mIsTransmitFull(BaseAddress)

Check to see if the transmitter is full.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if the transmitter is full, XFALSE otherwise.

Note:
None.

#define XUartLite_mSetControlReg(BaseAddress,
Mask)

Set the contents of the control register. Use the XUL_CR_* constants defined above to create the bit-
mask to be written to the register.

Parameters:
BaseAddress is the base address of the device
Mask is the 32-bit value to write to the control register

Returns:
None.

Note:
None.

Function Documentation

Xuint8 XUartLite_RecvByte (Xuint32 BaseAddress)

This functions receives a single byte using the UART. It is blocking in that it waits for the receiver to
become non-empty before it reads from the receive register.

Parameters:
BaseAddress is the base address of the device

Returns:
The byte of data received.

Note:
None.

void XUartLite_SendByte (Xuint32 BaseAddress,
Xuint8 Data

)

This functions sends a single byte using the UART. It is blocking in that it waits for the transmitter to
become non-full before it writes the byte to the transmit register.

Parameters:
BaseAddress is the base address of the device
Data is the byte of data to send

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_l.h
Go to the documentation of this file.

00001 /* $Id: xuartlite_l.h,v 1.2 2002/07/24 22:35:28 robertm Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file uartlite/v1_00_b/src/xuartlite_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xuartlite.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b rpm 04/25/02 First release
00037 * </pre>
00038 *
00039 ***/
00040
00041 #ifndef XUARTLITE_L_H /* prevent circular inclusions */
00042 #define XUARTLITE_L_H /* by using protection macros */

00043
00044 /***************************** Include Files ********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048
00049 /************************** Constant Definitions ****************************/
00050
00051 /* UART Lite register offsets */
00052
00053 #define XUL_RX_FIFO_OFFSET 0 /* receive FIFO, read only */
00054 #define XUL_TX_FIFO_OFFSET 4 /* transmit FIFO, write only */
00055 #define XUL_STATUS_REG_OFFSET 8 /* status register, read only */
00056 #define XUL_CONTROL_REG_OFFSET 12 /* control register, write only */
00057
00058 /* control register bit positions */
00059
00060 #define XUL_CR_ENABLE_INTR 0x10 /* enable interrupt */
00061 #define XUL_CR_FIFO_RX_RESET 0x02 /* reset receive FIFO */
00062 #define XUL_CR_FIFO_TX_RESET 0x01 /* reset transmit FIFO */
00063
00064 /* status register bit positions */
00065
00066 #define XUL_SR_PARITY_ERROR 0x80
00067 #define XUL_SR_FRAMING_ERROR 0x40
00068 #define XUL_SR_OVERRUN_ERROR 0x20
00069 #define XUL_SR_INTR_ENABLED 0x10 /* interrupt enabled */
00070 #define XUL_SR_TX_FIFO_FULL 0x08 /* transmit FIFO full */
00071 #define XUL_SR_TX_FIFO_EMPTY 0x04 /* transmit FIFO empty */
00072 #define XUL_SR_RX_FIFO_FULL 0x02 /* receive FIFO full */
00073 #define XUL_SR_RX_FIFO_VALID_DATA 0x01 /* data in receive FIFO */
00074
00075 /* the following constant specifies the size of the FIFOs, the size of the
00076 * FIFOs includes the transmitter and receiver such that it is the total number
00077 * of bytes that the UART can buffer
00078 */
00079 #define XUL_FIFO_SIZE 16
00080
00081 /* Stop bits are fixed at 1. Baud, parity, and data bits are fixed on a
00082 * per instance basis
00083 */
00084 #define XUL_STOP_BITS 1
00085
00086 /* Parity definitions
00087 */
00088 #define XUL_PARITY_NONE 0
00089 #define XUL_PARITY_ODD 1
00090 #define XUL_PARITY_EVEN 2
00091
00092 /**************************** Type Definitions ******************************/
00093
00094 /***************** Macros (Inline Functions) Definitions ********************/

00095
00096 /***
00097 *
00098 * Low-level driver macros and functions. The list below provides signatures
00099 * to help the user use the macros.
00100 *
00101 * void XUartLite_mSetControlReg(Xuint32 BaseAddress, Xuint32 Mask)
00102 * Xuint32 XUartLite_mGetControlReg(Xuint32 BaseAddress)
00103 * Xuint32 XUartLite_mGetStatusReg(Xuint32 BaseAddress)
00104 *
00105 * Xboolean XUartLite_mIsReceiveEmpty(Xuint32 BaseAddress)
00106 * Xboolean XUartLite_mIsTransmitFull(Xuint32 BaseAddress)
00107 * Xboolean XUartLite_mIsIntrEnabled(Xuint32 BaseAddress)
00108 *
00109 * void XUartLite_mEnableIntr(Xuint32 BaseAddress)
00110 * void XUartLite_mDisableIntr(Xuint32 BaseAddress)
00111 *
00112 * void XUartLite_SendByte(Xuint32 BaseAddress, Xuint8 Data);
00113 * Xuint8 XUartLite_RecvByte(Xuint32 BaseAddress);
00114 *
00115 ***/
00116
00117 /**/
00118 /**
00119 *
00120 * Set the contents of the control register. Use the XUL_CR_* constants defined
00121 * above to create the bit-mask to be written to the register.
00122 *
00123 * @param BaseAddress is the base address of the device
00124 * @param Mask is the 32-bit value to write to the control register
00125 *
00126 * @return None.
00127 *
00128 * @note None.
00129 *
00130 ***/
00131 #define XUartLite_mSetControlReg(BaseAddress, Mask) \

00132 XIo_Out32((BaseAddress) + XUL_CONTROL_REG_OFFSET, (Mask))
00133
00134
00135 /**/
00136 /**
00137 *
00138 * Get the contents of the control register. Use the XUL_CR_* constants defined
00139 * above to interpret the bit-mask returned.
00140 *
00141 * @param BaseAddress is the base address of the device
00142 *
00143 * @return A 32-bit value representing the contents of the control register.
00144 *
00145 * @note None.
00146 *

00147 ***/
00148 #define XUartLite_mGetControlReg(BaseAddress) \

00149 XIo_In32((BaseAddress) + XUL_CONTROL_REG_OFFSET)
00150
00151
00152 /**/
00153 /**
00154 *
00155 * Get the contents of the status register. Use the XUL_SR_* constants defined
00156 * above to interpret the bit-mask returned.
00157 *
00158 * @param BaseAddress is the base address of the device
00159 *
00160 * @return A 32-bit value representing the contents of the status register.
00161 *
00162 * @note None.
00163 *
00164 ***/
00165 #define XUartLite_mGetStatusReg(BaseAddress) \

00166 XIo_In32((BaseAddress) + XUL_STATUS_REG_OFFSET)
00167
00168
00169 /**/
00170 /**
00171 *
00172 * Check to see if the receiver has data.
00173 *
00174 * @param BaseAddress is the base address of the device
00175 *
00176 * @return XTRUE if the receiver is empty, XFALSE if there is data present.
00177 *
00178 * @note None.
00179 *
00180 ***/
00181 #define XUartLite_mIsReceiveEmpty(BaseAddress) \

00182 (!(XUartLite_mGetStatusReg((BaseAddress)) &
XUL_SR_RX_FIFO_VALID_DATA))
00183
00184
00185 /**/
00186 /**
00187 *
00188 * Check to see if the transmitter is full.
00189 *
00190 * @param BaseAddress is the base address of the device
00191 *
00192 * @return XTRUE if the transmitter is full, XFALSE otherwise.
00193 *
00194 * @note None.
00195 *
00196 ***/
00197 #define XUartLite_mIsTransmitFull(BaseAddress) \

00198 (XUartLite_mGetStatusReg((BaseAddress)) & XUL_SR_TX_FIFO_FULL)
00199
00200
00201 /**/
00202 /**
00203 *
00204 * Check to see if the interrupt is enabled.
00205 *
00206 * @param BaseAddress is the base address of the device
00207 *
00208 * @return XTRUE if the interrupt is enabled, XFALSE otherwise.
00209 *
00210 * @note None.
00211 *
00212 ***/
00213 #define XUartLite_mIsIntrEnabled(BaseAddress) \

00214 (XUartLite_mGetStatusReg((BaseAddress)) & XUL_SR_INTR_ENABLED)
00215
00216
00217 /**/
00218 /**
00219 *
00220 * Enable the device interrupt. Preserve the contents of the control register.
00221 *
00222 * @param BaseAddress is the base address of the device
00223 *
00224 * @return None.
00225 *
00226 * @note None.
00227 *
00228 ***/
00229 #define XUartLite_mEnableIntr(BaseAddress) \

00230 XUartLite_mSetControlReg((BaseAddress), \
00231 XUartLite_mGetControlReg((BaseAddress)) |
XUL_CR_ENABLE_INTR)
00232
00233
00234 /**/
00235 /**
00236 *
00237 * Disable the device interrupt. Preserve the contents of the control register.
00238 *
00239 * @param BaseAddress is the base address of the device
00240 *
00241 * @return None.
00242 *
00243 * @note None.
00244 *
00245 ***/
00246 #define XUartLite_mDisableIntr(BaseAddress) \

00247 XUartLite_mSetControlReg((BaseAddress), \
00248 XUartLite_mGetControlReg((BaseAddress)) &

~XUL_CR_ENABLE_INTR)
00249
00250
00251 /************************** Function Prototypes *****************************/
00252
00253 void XUartLite_SendByte(Xuint32 BaseAddress, Xuint8 Data);

00254 Xuint8 XUartLite_RecvByte(Xuint32 BaseAddress);

00255
00256
00257 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_l.c File
Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer
to the hardware device specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 04/25/02 First release

#include "xuartlite_l.h"

Functions

void XUartLite_SendByte (Xuint32 BaseAddress, Xuint8 Data)
Xuint8 XUartLite_RecvByte (Xuint32 BaseAddress)

Function Documentation

Xuint8 XUartLite_RecvByte (Xuint32 BaseAddress)

This functions receives a single byte using the UART. It is blocking in that it waits for the receiver to
become non-empty before it reads from the receive register.

Parameters:
BaseAddress is the base address of the device

Returns:
The byte of data received.

Note:
None.

void XUartLite_SendByte (Xuint32 BaseAddress,
Xuint8 Data

)

This functions sends a single byte using the UART. It is blocking in that it waits for the transmitter to
become non-full before it writes the byte to the transmit register.

Parameters:
BaseAddress is the base address of the device
Data is the byte of data to send

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_selftest.c
File Reference

Detailed Description

This file contains the self-test functions for the UART Lite component (XUartLite).

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xbasic_types.h"

#include "xstatus.h"

#include "xuartlite.h"

#include "xuartlite_i.h"

#include "xio.h"

Functions

XStatus XUartLite_SelfTest (XUartLite *InstancePtr)

Function Documentation

XStatus XUartLite_SelfTest (XUartLite * InstancePtr)

Runs a self-test on the device hardware. Since there is no way to perform a loopback in the hardware,
this test can only check the state of the status register to verify it is correct. This test assumes that the
hardware device is still in its reset state, but has been initialized with the Initialize function.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
❍ XST_SUCCESS if the self-test was successful.
❍ XST_FAILURE if the self-test failed, the status register value was not correct

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_intr.c File
Reference

Detailed Description

This file contains interrupt-related functions for the UART Lite component (XUartLite).

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xbasic_types.h"

#include "xuartlite.h"

#include "xuartlite_i.h"

#include "xio.h"

Functions

void XUartLite_SetRecvHandler (XUartLite *InstancePtr, XUartLite_Handler FuncPtr, void
*CallBackRef)

void XUartLite_SetSendHandler (XUartLite *InstancePtr, XUartLite_Handler FuncPtr, void
*CallBackRef)

void XUartLite_InterruptHandler (XUartLite *InstancePtr)
void XUartLite_DisableInterrupt (XUartLite *InstancePtr)

void XUartLite_EnableInterrupt (XUartLite *InstancePtr)

Function Documentation

void XUartLite_DisableInterrupt (XUartLite * InstancePtr)

This function disables the UART interrupt. After calling this function, data may still be received by
the UART but no interrupt will be generated since the hardware device has no way to disable the
receiver.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

void XUartLite_EnableInterrupt (XUartLite * InstancePtr)

This function enables the UART interrupt such that an interrupt will occur when data is received or
data has been transmitted. The device contains 16 byte receive and transmit FIFOs such that an
interrupt is generated anytime there is data in the receive FIFO and when the transmit FIFO
transitions from not empty to empty.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

Returns:
None.

Note:
None.

void XUartLite_InterruptHandler (XUartLite * InstancePtr)

This function is the interrupt handler for the UART lite driver. It must be connected to an interrupt
system by the user such that it is called when an interrupt for any UART lite occurs. This function
does not save or restore the processor context such that the user must ensure this occurs.

Parameters:
InstancePtr contains a pointer to the instance of the UART that the interrupt is for.

Returns:
None.

Note:
None.

void XUartLite_SetRecvHandler (XUartLite * InstancePtr,
XUartLite_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

void XUartLite_SetSendHandler (XUartLite * InstancePtr,
XUartLite_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XUartLite instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartlite/v1_00_b/src/xuartlite_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of UART Lite devices in the
system. Each device in the system should have an entry in the table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/31/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files

#include "xuartlite.h"

#include "xparameters.h"

Variables

XUartLite_Config XUartLite_ConfigTable [XPAR_XUARTLITE_NUM_INSTANCES]

Variable Documentation

XUartLite_Config XUartLite_ConfigTable[XPAR_XUARTLITE_NUM_INSTANCES]

 The configuration table for UART Lite devices

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_stats.c
File Reference

Detailed Description

This file contains the statistics functions for the 16450/16550 UART driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.

#include "xuartns550.h"

#include "xuartns550_i.h"

Functions

void XUartNs550_GetStats (XUartNs550 *InstancePtr, XUartNs550Stats *StatsPtr)
void XUartNs550_ClearStats (XUartNs550 *InstancePtr)

Function Documentation

void XUartNs550_ClearStats (XUartNs550 * InstancePtr)

This function zeros the statistics for the given instance.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
None.

Note:
None.

void XUartNs550_GetStats (XUartNs550 * InstancePtr,
XUartNs550Stats * StatsPtr

)

This functions returns a snapshot of the current statistics in the area provided.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

StatsPtr is a pointer to a XUartNs550Stats structure to where the statistics are to be copied
to.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550.h
Go to the documentation of this file.

00001 /* $Id: xuartns550.h,v 1.4 2002/05/02 20:56:21 linnj Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file uartns550/v1_00_b/src/xuartns550.h
00026 *
00027 * This driver supports the following features in the Xilinx 16450/16550
00028 * compatible UART.
00029 *
00030 * - Dynamic data format (baud rate, data bits, stop bits, parity)
00031 * - Polled mode
00032 * - Interrupt driven mode
00033 * - Transmit and receive FIFOs (16 bytes each for the 16550)
00034 * - Access to the external modem control lines and the two discrete outputs
00035 *
00036 * The only difference between the 16450 and the 16550 is the addition of
00037 * transmit and receive FIFOs in the 16550.
00038 *
00039 * Baud Rate
00040 *
00041 * The UART has an internal baud rate generator that is clocked at a specified
00042 * input clock frequency. Not all baud rates can be generated from some clock

00043 * frequencies. The requested baud rate is checked using the provided clock for
00044 * the system, and checked against the acceptable error range. An error may be
00045 * returned from some functions indicating the baud rate was in error because
00046 * it could not be generated.
00047 *
00048 * Interrupts
00049 *
00050 * The device does not have any way to disable the receiver such that the
00051 * receive FIFO may contain unwanted data. The FIFOs are not flushed when the
00052 * driver is initialized, but a function is provided to allow the user to reset
00053 * the FIFOs if desired.
00054 *
00055 * The driver defaults to no interrupts at initialization such that interrupts
00056 * must be enabled if desired. An interrupt is generated for any of the
following
00057 * conditions.
00058 *
00059 * - Transmit FIFO is empty
00060 * - Data in the receive FIFO equal to the receive threshold
00061 * - Data in the receiver when FIFOs are disabled
00062 * - Any receive status error or break condition detected
00063 * - Data in the receive FIFO for 4 character times without receiver activity
00064 * - A change of a modem signal
00065 *
00066 * The application can control which interrupts are enabled using the SetOptions
00067 * function.
00068 *
00069 * In order to use interrupts, it is necessary for the user to connect the
driver
00070 * interrupt handler, XUartNs550_InterruptHandler(), to the interrupt system of
00071 * the application. This function does not save and restore the processor
context
00072 * such that the user must provide it. A handler must be set for the driver such
00073 * that the handler is called when interrupt events occur. The handler is called
00074 * from interrupt context and is designed to allow application specific
processing
00075 * to be performed.
00076 *
00077 * The functions, XUartNs550_Send() and XUartNs550_Recv(), are provided in the
00078 * driver to allow data to be sent and received. They are designed to be used in
00079 * polled or interrupt modes.
00080 *
00081 * @note
00082 *
00083 * The default configuration for the UART after initialization is:
00084 *
00085 * - 19,200 bps or XPAR_DEFAULT_BAUD_RATE if defined
00086 * - 8 data bits
00087 * - 1 stop bit
00088 * - no parity
00089 * - FIFO's are enabled with a receive threshold of 8 bytes
00090 *
00091 * <pre>

00092 * MODIFICATION HISTORY:
00093 *
00094 * Ver Who Date Changes
00095 * ----- ---- -------- ---
00096 * 1.00a ecm 08/16/01 First release
00097 * 1.00b jhl 03/11/02 Repartitioned the driver for smaller files.
00098 * </pre>
00099 *
00100 ***/
00101
00102 #ifndef XUARTNS550_H /* prevent circular inclusions */
00103 #define XUARTNS550_H /* by using protection macros */
00104
00105 /***************************** Include Files ********************************/
00106
00107 #include "xbasic_types.h"

00108 #include "xstatus.h"

00109 #include "xuartns550_l.h"

00110
00111 /************************** Constant Definitions ****************************/
00112
00113 /* The following constants indicate the max and min baud rates and these
00114 * numbers are based only on the testing that has been done. The hardware
00115 * is capable of other baud rates.
00116 */
00117 #define XUN_NS16550_MAX_RATE 115200
00118 #define XUN_NS16550_MIN_RATE 300
00119
00120 /** @name Configuration options
00121 * @{
00122 */
00123 /**
00124 * These constants specify the options that may be set or retrieved
00125 * with the driver, each is a unique bit mask such that multiple options
00126 * may be specified. These constants indicate the function of the option
00127 * when in the active state.
00128 *
00129 * <pre>
00130 * XUN_OPTION_SET_BREAK Set a break condition
00131 * XUN_OPTION_LOOPBACK Enable local loopback
00132 * XUN_OPTION_DATA_INTR Enable data interrupts
00133 * XUN_OPTION_MODEM_INTR Enable modem interrupts
00134 * XUN_OPTION_FIFOS_ENABLE Enable FIFOs
00135 * XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
00136 * XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
00137 * XUN_OPTION_ASSERT_OUT2 Assert out2 signal
00138 * XUN_OPTION_ASSERT_OUT1 Assert out1 signal
00139 * XUN_OPTION_ASSERT_RTS Assert RTS signal
00140 * XUN_OPTION_ASSERT_DTR Assert DTR signal
00141 * </pre>
00142 */
00143 #define XUN_OPTION_SET_BREAK 0x0400

00144 #define XUN_OPTION_LOOPBACK 0x0200

00145 #define XUN_OPTION_DATA_INTR 0x0100

00146 #define XUN_OPTION_MODEM_INTR 0x0080

00147 #define XUN_OPTION_FIFOS_ENABLE 0x0040

00148 #define XUN_OPTION_RESET_TX_FIFO 0x0020

00149 #define XUN_OPTION_RESET_RX_FIFO 0x0010

00150 #define XUN_OPTION_ASSERT_OUT2 0x0008

00151 #define XUN_OPTION_ASSERT_OUT1 0x0004

00152 #define XUN_OPTION_ASSERT_RTS 0x0002

00153 #define XUN_OPTION_ASSERT_DTR 0x0001

00154 /*@}*/
00155
00156 /** @name Data format values
00157 * @{
00158 */
00159 /**
00160 * These constants specify the data format that may be set or retrieved
00161 * with the driver. The data format includes the number of data bits, the
00162 * number of stop bits and parity.
00163 *
00164 * <pre>
00165 * XUN_FORMAT_8_BITS 8 data bits
00166 * XUN_FORMAT_7_BITS 7 data bits
00167 * XUN_FORMAT_6_BITS 6 data bits
00168 * XUN_FORMAT_5_BITS 5 data bits
00169 * XUN_FORMAT_EVEN_PARITY Even parity
00170 * XUN_FORMAT_ODD_PARITY Odd parity
00171 * XUN_FORMAT_NO_PARITY No parity
00172 * XUN_FORMAT_2_STOP_BIT 2 stop bits
00173 * XUN_FORMAT_1_STOP_BIT 1 stop bit
00174 * </pre>
00175 */
00176 #define XUN_FORMAT_8_BITS 3

00177 #define XUN_FORMAT_7_BITS 2

00178 #define XUN_FORMAT_6_BITS 1

00179 #define XUN_FORMAT_5_BITS 0

00180
00181 #define XUN_FORMAT_EVEN_PARITY 2

00182 #define XUN_FORMAT_ODD_PARITY 1

00183 #define XUN_FORMAT_NO_PARITY 0

00184
00185 #define XUN_FORMAT_2_STOP_BIT 1

00186 #define XUN_FORMAT_1_STOP_BIT 0

00187 /*@}*/
00188
00189 /** @name FIFO trigger values
00190 * @{
00191 */
00192 /*
00193 * These constants specify receive FIFO trigger levels which specify

00194 * the number of bytes at which a receive data event (interrupt) will occur.
00195 *
00196 * <pre>
00197 * XUN_FIFO_TRIGGER_14 14 byte trigger level
00198 * XUN_FIFO_TRIGGER_08 8 byte trigger level
00199 * XUN_FIFO_TRIGGER_04 4 byte trigger level
00200 * XUN_FIFO_TRIGGER_01 1 byte trigger level
00201 * </pre>
00202 */
00203 #define XUN_FIFO_TRIGGER_14 0xC0
00204 #define XUN_FIFO_TRIGGER_08 0x80
00205 #define XUN_FIFO_TRIGGER_04 0x40
00206 #define XUN_FIFO_TRIGGER_01 0x00
00207 /*@}*/
00208
00209 /** @name Modem status values
00210 * @{
00211 */
00212 /**
00213 * These constants specify the modem status that may be retrieved
00214 * from the driver.
00215 *
00216 * <pre>
00217 * XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
00218 * XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
00219 * XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
00220 * XUN_MODEM_RINGING_MASK Ring signal is active
00221 * XUN_MODEM_DSR_MASK Current state of DSR signal
00222 * XUN_MODEM_CTS_MASK Current state of CTS signal
00223 * XUN_MODEM_DCD_MASK Current state of DCD signal
00224 * XUN_MODEM_RING_STOP_MASK Ringing has stopped
00225 * </pre>
00226 */
00227 #define XUN_MODEM_DCD_DELTA_MASK 0x80

00228 #define XUN_MODEM_DSR_DELTA_MASK 0x02

00229 #define XUN_MODEM_CTS_DELTA_MASK 0x01

00230 #define XUN_MODEM_RINGING_MASK 0x40

00231 #define XUN_MODEM_DSR_MASK 0x20

00232 #define XUN_MODEM_CTS_MASK 0x10

00233 #define XUN_MODEM_DCD_MASK 0x08

00234 #define XUN_MODEM_RING_STOP_MASK 0x04

00235 /*@}*/
00236
00237 /** @name Callback events
00238 * @{
00239 */
00240 /**
00241 * These constants specify the handler events that are passed to
00242 * a handler from the driver. These constants are not bit masks such that
00243 * only one will be passed at a time to the handler.
00244 *
00245 * <pre>

00246 * XUN_EVENT_RECV_DATA Data has been received
00247 * XUN_EVENT_RECV_TIMEOUT A receive timeout occurred
00248 * XUN_EVENT_SENT_DATA Data has been sent
00249 * XUN_EVENT_RECV_ERROR A receive error was detected
00250 * XUN_EVENT_MODEM A change in modem status
00251 * </pre>
00252 */
00253 #define XUN_EVENT_RECV_DATA 1

00254 #define XUN_EVENT_RECV_TIMEOUT 2

00255 #define XUN_EVENT_SENT_DATA 3

00256 #define XUN_EVENT_RECV_ERROR 4

00257 #define XUN_EVENT_MODEM 5

00258 /*@}*/
00259
00260 /** @name Error values
00261 * @{
00262 */
00263 /**
00264 * These constants specify the errors that may be retrieved from
00265 * the driver using the XUartNs550_GetLastErrors function. All of them are
00266 * bit masks, except no error, such that multiple errors may be specified.
00267 *
00268 * <pre>
00269 * XUN_ERROR_BREAK_MASK Break detected
00270 * XUN_ERROR_FRAMING_MASK Receive framing error
00271 * XUN_ERROR_PARITY_MASK Receive parity error
00272 * XUN_ERROR_OVERRUN_MASK Receive overrun error
00273 * XUN_ERROR_NONE No error
00274 * </pre>
00275 */
00276 #define XUN_ERROR_BREAK_MASK 0x10

00277 #define XUN_ERROR_FRAMING_MASK 0x08

00278 #define XUN_ERROR_PARITY_MASK 0x04

00279 #define XUN_ERROR_OVERRUN_MASK 0x02

00280 #define XUN_ERROR_NONE 0x00

00281 /*@}*/
00282
00283 /**************************** Type Definitions ******************************/
00284
00285 /**
00286 * This typedef contains configuration information for the device.
00287 */
00288 typedef struct

00289 {
00290 Xuint16 DeviceId; /**< Unique ID of device */

00291 Xuint32 BaseAddress; /**< Base address of device (IPIF) */

00292 Xuint32 InputClockHz; /**< Input clock frequency */

00293 } XUartNs550_Config;

00294
00295 /*
00296 * The following data type is used to manage the buffers that are handled

00297 * when sending and receiving data in the interrupt mode.
00298 */
00299 typedef struct
00300 {
00301 Xuint8 *NextBytePtr;

00302 unsigned int RequestedBytes;
00303 unsigned int RemainingBytes;
00304 } XUartNs550Buffer;
00305
00306 /**
00307 * This data type allows the data format of the device to be set
00308 * and retrieved.
00309 */
00310 typedef struct

00311 {
00312 Xuint32 BaudRate; /**< In bps, ie 1200 */

00313 Xuint32 DataBits; /**< Number of data bits */

00314 Xuint32 Parity; /**< Parity */

00315 Xuint8 StopBits; /**< Number of stop bits */

00316 } XUartNs550Format;

00317
00318 /**
00319 * This data type defines a handler which the application must define
00320 * when using interrupt mode. The handler will be called from the driver in an
00321 * interrupt context to handle application specific processing.
00322 *
00323 * @param CallBackRef is a callback reference passed in by the upper layer
00324 * when setting the handler, and is passed back to the upper layer when
00325 * the handler is called.
00326 * @param Event contains one of the event constants indicating why the handler
00327 * is being called.
00328 * @param EventData contains the number of bytes sent or received at the time
of
00329 * the call for send and receive events and contains the modem status
for
00330 * modem events.
00331 */
00332 typedef void (*XUartNs550_Handler)(void *CallBackRef, Xuint32 Event,

00333 unsigned int EventData);
00334
00335 /**
00336 * UART statistics
00337 */
00338 typedef struct

00339 {
00340 Xuint16 TransmitInterrupts; /**< Number of transmit interrupts */

00341 Xuint16 ReceiveInterrupts; /**< Number of receive interrupts */

00342 Xuint16 StatusInterrupts; /**< Number of status interrupts */

00343 Xuint16 ModemInterrupts; /**< Number of modem interrupts */

00344 Xuint16 CharactersTransmitted; /**< Number of characters transmitted

*/

00345 Xuint16 CharactersReceived; /**< Number of characters received */

00346 Xuint16 ReceiveOverrunErrors; /**< Number of receive overruns */

00347 Xuint16 ReceiveParityErrors; /**< Number of receive parity errors */

00348 Xuint16 ReceiveFramingErrors; /**< Number of receive framing errors

*/
00349 Xuint16 ReceiveBreakDetected; /**< Number of receive breaks */

00350 } XUartNs550Stats;

00351
00352 /**
00353 * The XUartNs550 driver instance data. The user is required to allocate a
00354 * variable of this type for every UART 16550/16450 device in the system.
00355 * A pointer to a variable of this type is then passed to the driver API
00356 * functions.
00357 */
00358 typedef struct

00359 {
00360 XUartNs550Stats Stats; /* Component Statistics */

00361 Xuint32 BaseAddress; /* Base address of device (IPIF) */

00362 Xuint32 InputClockHz; /* Input clock frequency */

00363 Xuint32 IsReady; /* Device is initialized and ready */

00364 Xuint32 BaudRate; /* current baud rate of hw */

00365 Xuint8 LastErrors; /* the accumulated errors */

00366
00367 XUartNs550Buffer SendBuffer;
00368 XUartNs550Buffer ReceiveBuffer;
00369
00370 XUartNs550_Handler Handler;

00371 void *CallBackRef; /* Callback reference for control handler */
00372 } XUartNs550;

00373
00374
00375 /***************** Macros (Inline Functions) Definitions ********************/
00376
00377
00378 /************************** Function Prototypes *****************************/
00379 /*
00380 * required functions in xuartns550.c
00381 */
00382 XStatus XUartNs550_Initialize(XUartNs550 *InstancePtr, Xuint16 DeviceId);

00383
00384 unsigned int XUartNs550_Send(XUartNs550 *InstancePtr, Xuint8 *BufferPtr,

00385 unsigned int NumBytes);
00386 unsigned int XUartNs550_Recv(XUartNs550 *InstancePtr, Xuint8 *BufferPtr,

00387 unsigned int NumBytes);
00388 XUartNs550_Config *XUartNs550_LookupConfig(Xuint16 DeviceId);

00389
00390 /*
00391 * options functions in xuartns550_options.c
00392 */
00393 XStatus XUartNs550_SetOptions(XUartNs550 *InstancePtr, Xuint16 Options);

00394 Xuint16 XUartNs550_GetOptions(XUartNs550 *InstancePtr);

00395
00396 XStatus XUartNs550_SetFifoThreshold(XUartNs550 *InstancePtr,

00397 Xuint8 TriggerLevel);

00398 Xuint8 XUartNs550_GetFifoThreshold(XUartNs550 *InstancePtr);

00399
00400 Xboolean XUartNs550_IsSending(XUartNs550 *InstancePtr);

00401
00402 Xuint8 XUartNs550_GetLastErrors(XUartNs550 *InstancePtr);

00403
00404 Xuint8 XUartNs550_GetModemStatus(XUartNs550 *InstancePtr);

00405
00406 /*
00407 * data format functions in xuartns550_format.c
00408 */
00409 XStatus XUartNs550_SetDataFormat(XUartNs550 *InstancePtr,

00410 XUartNs550Format *Format);

00411 void XUartNs550_GetDataFormat(XUartNs550 *InstancePtr,

00412 XUartNs550Format *Format);

00413 /*
00414 * interrupt functions in xuartns550_intr.c
00415 */
00416 void XUartNs550_SetHandler(XUartNs550 *InstancePtr, XUartNs550_Handler FuncPtr,

00417 void *CallBackRef);
00418
00419 void XUartNs550_InterruptHandler(XUartNs550 *InstancePtr);

00420
00421 /*
00422 * statistics functions in xuartns550_stats.c
00423 */
00424 void XUartNs550_GetStats(XUartNs550 *InstancePtr, XUartNs550Stats *StatsPtr);

00425 void XUartNs550_ClearStats(XUartNs550 *InstancePtr);

00426
00427 /*
00428 * self-test functions in xuartns550_selftest.c
00429 */
00430 XStatus XUartNs550_SelfTest(XUartNs550 *InstancePtr);

00431
00432 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550.h File
Reference

Detailed Description

This driver supports the following features in the Xilinx 16450/16550 compatible UART.

● Dynamic data format (baud rate, data bits, stop bits, parity)
● Polled mode
● Interrupt driven mode
● Transmit and receive FIFOs (16 bytes each for the 16550)
● Access to the external modem control lines and the two discrete outputs

The only difference between the 16450 and the 16550 is the addition of transmit and receive FIFOs in the
16550.

Baud Rate

The UART has an internal baud rate generator that is clocked at a specified input clock frequency. Not
all baud rates can be generated from some clock frequencies. The requested baud rate is checked using
the provided clock for the system, and checked against the acceptable error range. An error may be
returned from some functions indicating the baud rate was in error because it could not be generated.

Interrupts

The device does not have any way to disable the receiver such that the receive FIFO may contain
unwanted data. The FIFOs are not flushed when the driver is initialized, but a function is provided to
allow the user to reset the FIFOs if desired.

The driver defaults to no interrupts at initialization such that interrupts must be enabled if desired. An
interrupt is generated for any of the following conditions.

● Transmit FIFO is empty
● Data in the receive FIFO equal to the receive threshold
● Data in the receiver when FIFOs are disabled
● Any receive status error or break condition detected
● Data in the receive FIFO for 4 character times without receiver activity
● A change of a modem signal

The application can control which interrupts are enabled using the SetOptions function.

In order to use interrupts, it is necessary for the user to connect the driver interrupt handler,
XUartNs550_InterruptHandler(), to the interrupt system of the application. This function does not
save and restore the processor context such that the user must provide it. A handler must be set for the
driver such that the handler is called when interrupt events occur. The handler is called from interrupt
context and is designed to allow application specific processing to be performed.

The functions, XUartNs550_Send() and XUartNs550_Recv(), are provided in the driver to allow data
to be sent and received. They are designed to be used in polled or interrupt modes.

Note:
The default configuration for the UART after initialization is:

● 19,200 bps or XPAR_DEFAULT_BAUD_RATE if defined
● 8 data bits
● 1 stop bit
● no parity
● FIFO's are enabled with a receive threshold of 8 bytes

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 03/11/02 Repartitioned the driver for smaller files.

#include "xbasic_types.h"

#include "xstatus.h"

#include "xuartns550_l.h"

Go to the source code of this file.

Data Structures

struct XUartNs550
struct XUartNs550_Config
struct XUartNs550Buffer
struct XUartNs550Format
struct XUartNs550Stats

Configuration options

#define XUN_OPTION_SET_BREAK
#define XUN_OPTION_LOOPBACK
#define XUN_OPTION_DATA_INTR
#define XUN_OPTION_MODEM_INTR
#define XUN_OPTION_FIFOS_ENABLE
#define XUN_OPTION_RESET_TX_FIFO
#define XUN_OPTION_RESET_RX_FIFO
#define XUN_OPTION_ASSERT_OUT2
#define XUN_OPTION_ASSERT_OUT1
#define XUN_OPTION_ASSERT_RTS
#define XUN_OPTION_ASSERT_DTR

Data format values

#define XUN_FORMAT_8_BITS
#define XUN_FORMAT_7_BITS
#define XUN_FORMAT_6_BITS
#define XUN_FORMAT_5_BITS
#define XUN_FORMAT_EVEN_PARITY
#define XUN_FORMAT_ODD_PARITY
#define XUN_FORMAT_NO_PARITY
#define XUN_FORMAT_2_STOP_BIT
#define XUN_FORMAT_1_STOP_BIT

Modem status values

#define XUN_MODEM_DCD_DELTA_MASK
#define XUN_MODEM_DSR_DELTA_MASK
#define XUN_MODEM_CTS_DELTA_MASK
#define XUN_MODEM_RINGING_MASK
#define XUN_MODEM_DSR_MASK
#define XUN_MODEM_CTS_MASK
#define XUN_MODEM_DCD_MASK
#define XUN_MODEM_RING_STOP_MASK

Callback events

#define XUN_EVENT_RECV_DATA
#define XUN_EVENT_RECV_TIMEOUT
#define XUN_EVENT_SENT_DATA
#define XUN_EVENT_RECV_ERROR
#define XUN_EVENT_MODEM

Error values

#define XUN_ERROR_BREAK_MASK
#define XUN_ERROR_FRAMING_MASK
#define XUN_ERROR_PARITY_MASK
#define XUN_ERROR_OVERRUN_MASK
#define XUN_ERROR_NONE

Typedefs

typedef void(* XUartNs550_Handler)(void *CallBackRef, Xuint32 Event, unsigned int
EventData)

Functions

XStatus XUartNs550_Initialize (XUartNs550 *InstancePtr, Xuint16 DeviceId)
unsigned int XUartNs550_Send (XUartNs550 *InstancePtr, Xuint8 *BufferPtr, unsigned int

NumBytes)
unsigned int XUartNs550_Recv (XUartNs550 *InstancePtr, Xuint8 *BufferPtr, unsigned int

NumBytes)
XUartNs550_Config * XUartNs550_LookupConfig (Xuint16 DeviceId)

XStatus XUartNs550_SetOptions (XUartNs550 *InstancePtr, Xuint16 Options)
Xuint16 XUartNs550_GetOptions (XUartNs550 *InstancePtr)
XStatus XUartNs550_SetFifoThreshold (XUartNs550 *InstancePtr, Xuint8

TriggerLevel)
Xuint8 XUartNs550_GetFifoThreshold (XUartNs550 *InstancePtr)

Xboolean XUartNs550_IsSending (XUartNs550 *InstancePtr)
Xuint8 XUartNs550_GetLastErrors (XUartNs550 *InstancePtr)
Xuint8 XUartNs550_GetModemStatus (XUartNs550 *InstancePtr)

XStatus XUartNs550_SetDataFormat (XUartNs550 *InstancePtr,
XUartNs550Format *Format)

void XUartNs550_GetDataFormat (XUartNs550 *InstancePtr,
XUartNs550Format *Format)

void XUartNs550_SetHandler (XUartNs550 *InstancePtr, XUartNs550_Handler
FuncPtr, void *CallBackRef)

void XUartNs550_InterruptHandler (XUartNs550 *InstancePtr)
void XUartNs550_GetStats (XUartNs550 *InstancePtr, XUartNs550Stats

*StatsPtr)
void XUartNs550_ClearStats (XUartNs550 *InstancePtr)

XStatus XUartNs550_SelfTest (XUartNs550 *InstancePtr)

Define Documentation

#define XUN_ERROR_BREAK_MASK

These constants specify the errors that may be retrieved from the driver using the
XUartNs550_GetLastErrors function. All of them are bit masks, except no error, such that multiple
errors may be specified.

 XUN_ERROR_BREAK_MASK Break detected
 XUN_ERROR_FRAMING_MASK Receive framing error
 XUN_ERROR_PARITY_MASK Receive parity error
 XUN_ERROR_OVERRUN_MASK Receive overrun error
 XUN_ERROR_NONE No error

#define XUN_ERROR_FRAMING_MASK

These constants specify the errors that may be retrieved from the driver using the
XUartNs550_GetLastErrors function. All of them are bit masks, except no error, such that multiple
errors may be specified.

 XUN_ERROR_BREAK_MASK Break detected
 XUN_ERROR_FRAMING_MASK Receive framing error
 XUN_ERROR_PARITY_MASK Receive parity error
 XUN_ERROR_OVERRUN_MASK Receive overrun error
 XUN_ERROR_NONE No error

#define XUN_ERROR_NONE

These constants specify the errors that may be retrieved from the driver using the
XUartNs550_GetLastErrors function. All of them are bit masks, except no error, such that multiple
errors may be specified.

 XUN_ERROR_BREAK_MASK Break detected
 XUN_ERROR_FRAMING_MASK Receive framing error
 XUN_ERROR_PARITY_MASK Receive parity error
 XUN_ERROR_OVERRUN_MASK Receive overrun error
 XUN_ERROR_NONE No error

#define XUN_ERROR_OVERRUN_MASK

These constants specify the errors that may be retrieved from the driver using the
XUartNs550_GetLastErrors function. All of them are bit masks, except no error, such that multiple
errors may be specified.

 XUN_ERROR_BREAK_MASK Break detected
 XUN_ERROR_FRAMING_MASK Receive framing error
 XUN_ERROR_PARITY_MASK Receive parity error
 XUN_ERROR_OVERRUN_MASK Receive overrun error
 XUN_ERROR_NONE No error

#define XUN_ERROR_PARITY_MASK

These constants specify the errors that may be retrieved from the driver using the
XUartNs550_GetLastErrors function. All of them are bit masks, except no error, such that multiple
errors may be specified.

 XUN_ERROR_BREAK_MASK Break detected
 XUN_ERROR_FRAMING_MASK Receive framing error
 XUN_ERROR_PARITY_MASK Receive parity error
 XUN_ERROR_OVERRUN_MASK Receive overrun error
 XUN_ERROR_NONE No error

#define XUN_EVENT_MODEM

These constants specify the handler events that are passed to a handler from the driver. These
constants are not bit masks such that only one will be passed at a time to the handler.

 XUN_EVENT_RECV_DATA Data has been received
 XUN_EVENT_RECV_TIMEOUT A receive timeout occurred
 XUN_EVENT_SENT_DATA Data has been sent
 XUN_EVENT_RECV_ERROR A receive error was detected
 XUN_EVENT_MODEM A change in modem status

#define XUN_EVENT_RECV_DATA

These constants specify the handler events that are passed to a handler from the driver. These
constants are not bit masks such that only one will be passed at a time to the handler.

 XUN_EVENT_RECV_DATA Data has been received
 XUN_EVENT_RECV_TIMEOUT A receive timeout occurred
 XUN_EVENT_SENT_DATA Data has been sent
 XUN_EVENT_RECV_ERROR A receive error was detected
 XUN_EVENT_MODEM A change in modem status

#define XUN_EVENT_RECV_ERROR

These constants specify the handler events that are passed to a handler from the driver. These
constants are not bit masks such that only one will be passed at a time to the handler.

 XUN_EVENT_RECV_DATA Data has been received
 XUN_EVENT_RECV_TIMEOUT A receive timeout occurred
 XUN_EVENT_SENT_DATA Data has been sent
 XUN_EVENT_RECV_ERROR A receive error was detected
 XUN_EVENT_MODEM A change in modem status

#define XUN_EVENT_RECV_TIMEOUT

These constants specify the handler events that are passed to a handler from the driver. These
constants are not bit masks such that only one will be passed at a time to the handler.

 XUN_EVENT_RECV_DATA Data has been received
 XUN_EVENT_RECV_TIMEOUT A receive timeout occurred
 XUN_EVENT_SENT_DATA Data has been sent
 XUN_EVENT_RECV_ERROR A receive error was detected
 XUN_EVENT_MODEM A change in modem status

#define XUN_EVENT_SENT_DATA

These constants specify the handler events that are passed to a handler from the driver. These
constants are not bit masks such that only one will be passed at a time to the handler.

 XUN_EVENT_RECV_DATA Data has been received
 XUN_EVENT_RECV_TIMEOUT A receive timeout occurred
 XUN_EVENT_SENT_DATA Data has been sent
 XUN_EVENT_RECV_ERROR A receive error was detected
 XUN_EVENT_MODEM A change in modem status

#define XUN_FORMAT_1_STOP_BIT

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_2_STOP_BIT

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_5_BITS

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_6_BITS

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_7_BITS

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_8_BITS

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_EVEN_PARITY

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_NO_PARITY

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_FORMAT_ODD_PARITY

These constants specify the data format that may be set or retrieved with the driver. The data format
includes the number of data bits, the number of stop bits and parity.

 XUN_FORMAT_8_BITS 8 data bits
 XUN_FORMAT_7_BITS 7 data bits
 XUN_FORMAT_6_BITS 6 data bits
 XUN_FORMAT_5_BITS 5 data bits
 XUN_FORMAT_EVEN_PARITY Even parity
 XUN_FORMAT_ODD_PARITY Odd parity
 XUN_FORMAT_NO_PARITY No parity
 XUN_FORMAT_2_STOP_BIT 2 stop bits
 XUN_FORMAT_1_STOP_BIT 1 stop bit

#define XUN_MODEM_CTS_DELTA_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_CTS_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_DCD_DELTA_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_DCD_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_DSR_DELTA_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_DSR_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_RING_STOP_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_MODEM_RINGING_MASK

These constants specify the modem status that may be retrieved from the driver.

 XUN_MODEM_DCD_DELTA_MASK DCD signal changed state
 XUN_MODEM_DSR_DELTA_MASK DSR signal changed state
 XUN_MODEM_CTS_DELTA_MASK CTS signal changed state
 XUN_MODEM_RINGING_MASK Ring signal is active
 XUN_MODEM_DSR_MASK Current state of DSR signal
 XUN_MODEM_CTS_MASK Current state of CTS signal
 XUN_MODEM_DCD_MASK Current state of DCD signal
 XUN_MODEM_RING_STOP_MASK Ringing has stopped

#define XUN_OPTION_ASSERT_DTR

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal

 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_ASSERT_OUT1

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_ASSERT_OUT2

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_ASSERT_RTS

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_DATA_INTR

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_FIFOS_ENABLE

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_LOOPBACK

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_MODEM_INTR

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_RESET_RX_FIFO

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_RESET_TX_FIFO

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

#define XUN_OPTION_SET_BREAK

These constants specify the options that may be set or retrieved with the driver, each is a unique bit
mask such that multiple options may be specified. These constants indicate the function of the option
when in the active state.

 XUN_OPTION_SET_BREAK Set a break condition
 XUN_OPTION_LOOPBACK Enable local loopback
 XUN_OPTION_DATA_INTR Enable data interrupts
 XUN_OPTION_MODEM_INTR Enable modem interrupts
 XUN_OPTION_FIFOS_ENABLE Enable FIFOs
 XUN_OPTION_RESET_TX_FIFO Reset the transmit FIFO
 XUN_OPTION_RESET_RX_FIFO Reset the receive FIFO
 XUN_OPTION_ASSERT_OUT2 Assert out2 signal
 XUN_OPTION_ASSERT_OUT1 Assert out1 signal
 XUN_OPTION_ASSERT_RTS Assert RTS signal
 XUN_OPTION_ASSERT_DTR Assert DTR signal

Typedef Documentation

typedef void(* XUartNs550_Handler)(void *CallBackRef, Xuint32 Event, unsigned int EventData)

This data type defines a handler which the application must define when using interrupt mode. The
handler will be called from the driver in an interrupt context to handle application specific processing.

Parameters:
CallBackRef is a callback reference passed in by the upper layer when setting the handler, and

is passed back to the upper layer when the handler is called.
Event contains one of the event constants indicating why the handler is being called.
EventData contains the number of bytes sent or received at the time of the call for send and

receive events and contains the modem status for modem events.

Function Documentation

void XUartNs550_ClearStats (XUartNs550 * InstancePtr)

This function zeros the statistics for the given instance.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
None.

Note:
None.

void XUartNs550_GetDataFormat (XUartNs550 * InstancePtr,
XUartNs550Format * FormatPtr

)

Gets the data format for the specified UART. The data format includes the baud rate, number of data
bits, number of stop bits, and parity.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

FormatPtr is a pointer to a format structure that will contain the data format after this call
completes.

Returns:
None.

Note:
None.

Xuint8 XUartNs550_GetFifoThreshold (XUartNs550 * InstancePtr)

This function gets the receive FIFO trigger level. The receive trigger level indicates the number of
bytes in the receive FIFO that cause a receive data event (interrupt) to be generated.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The current receive FIFO trigger level. Constants which define each trigger level are contained
in the file xuartns550.h and named XUN_FIFO_TRIGGER_*.

Note:
None.

Xuint8 XUartNs550_GetLastErrors (XUartNs550 * InstancePtr)

This function returns the last errors that have occurred in the specified UART. It also clears the errors
such that they cannot be retrieved again. The errors include parity error, receive overrun error,
framing error, and break detection.

The last errors is an accumulation of the errors each time an error is discovered in the driver. A status
is checked for each received byte and this status is accumulated in the last errors.

If this function is called after receiving a buffer of data, it will indicate any errors that occurred for the
bytes of the buffer. It does not indicate which bytes contained errors.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The last errors that occurred. The errors are bit masks that are contained in the file
xuartns550.h and named XUN_ERROR_*.

Note:
None.

Xuint8 XUartNs550_GetModemStatus (XUartNs550 * InstancePtr)

This function gets the modem status from the specified UART. The modem status indicates any
changes of the modem signals. This function allows the modem status to be read in a polled mode.
The modem status is updated whenever it is read such that reading it twice may not yield the same
results.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The modem status which are bit masks that are contained in the file xuartns550.h and named
XUN_MODEM_*.

Note:
The bit masks used for the modem status are the exact bits of the modem status register with
no abstraction.

Xuint16 XUartNs550_GetOptions (XUartNs550 * InstancePtr)

Gets the options for the specified driver instance. The options are implemented as bit masks such that
multiple options may be enabled or disabled simulataneously.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The current options for the UART. The optionss are bit masks that are contained in the file
xuartns550.h and named XUN_OPTION_*.

Returns:
None.

void XUartNs550_GetStats (XUartNs550 * InstancePtr,
XUartNs550Stats * StatsPtr

)

This functions returns a snapshot of the current statistics in the area provided.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

StatsPtr is a pointer to a XUartNs550Stats structure to where the statistics are to be
copied to.

Returns:
None.

Note:
None.

XStatus XUartNs550_Initialize (XUartNs550 * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XUartNs550 instance such that it is ready to be used. The data format of the
device is setup for 8 data bits, 1 stop bit, and no parity by default. The baud rate is set to a default
value specified by XPAR_DEFAULT_BAUD_RATE if the symbol is defined, otherwise it is set to
19.2K baud. If the device has FIFOs (16550), they are enabled and the a receive FIFO threshold is set
for 8 bytes. The default operating mode of the driver is polled mode.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

DeviceId is the unique id of the device controlled by this XUartNs550 instance. Passing in
a device id associates the generic XUartNs550 instance to a specific device, as
chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_NOT_FOUND if the device ID could not be found in the configuration

table
❍ XST_UART_BAUD_ERROR if the baud rate is not possible because the input clock

frequency is not divisible with an acceptable amount of error

Note:
None.

void XUartNs550_InterruptHandler (XUartNs550 * InstancePtr)

This function is the interrupt handler for the 16450/16550 UART driver. It must be connected to an
interrupt system by the user such that it is called when an interrupt for any 16450/16550 UART
occurs. This function does not save or restore the processor context such that the user must ensure this
occurs.

Parameters:
InstancePtr contains a pointer to the instance of the UART that the interrupt is for.

Returns:
None.

Note:
None.

Xboolean XUartNs550_IsSending (XUartNs550 * InstancePtr)

This function determines if the specified UART is sending data. If the transmitter register is not
empty, it is sending data.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
A value of XTRUE if the UART is sending data, otherwise XFALSE.

Note:
None.

XUartNs550_Config* XUartNs550_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration
info for each device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found.

Note:
None.

unsigned int XUartNs550_Recv (XUartNs550 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer, either in the
receiver or in the FIFO if present and enabled. The application may need to call it repeatedly to
receive a buffer. Polled mode is the default mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue receiving data until the buffer has been received. A callback function, as specified by the
application, will be called to indicate the completion of receiving the buffer or when any receive
errors or timeouts occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

BufferPtr is pointer to buffer for data to be received into
NumBytes is the number of bytes to be received. A value of zero will stop a previous receive

operation that is in progress in interrupt mode.

Returns:
The number of bytes received.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

XStatus XUartNs550_SelfTest (XUartNs550 * InstancePtr)

This functions runs a self-test on the driver and hardware device. This self test performs a local
loopback and verifies data can be sent and received.

The statistics are cleared at the end of the test. The time for this test to execute is proportional to the
baud rate that has been set prior to calling this function.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
❍ XST_SUCCESS if the test was successful
❍ XST_UART_TEST_FAIL if the test failed looping back the data

Note:
This function can hang if the hardware is not functioning properly.

unsigned int XUartNs550_Send (XUartNs550 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This functions sends the specified buffer of data using the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART. If the UART is busy sending data, it will return and indicate zero bytes were sent.

In a polled mode, this function will only send as much data as the UART can buffer, either in the
transmitter or in the FIFO if present and enabled. The application may need to call it repeatedly to
send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue sending data until the buffer has been sent. A callback function, as specified
by the application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

BufferPtr is pointer to a buffer of data to be sent.
NumBytes contains the number of bytes to be sent. A value of zero will stop a previous send

operation that is in progress in interrupt mode. Any data that was already put into
the transmit FIFO will be sent.

Returns:
The number of bytes actually sent.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

This function and the XUartNs550_SetOptions() function modify shared data such that there
may be a need for mutual exclusion in a multithreaded environment and if
XUartNs550_SetOptions() if called from a handler.

XStatus XUartNs550_SetDataFormat (XUartNs550 * InstancePtr,
XUartNs550Format * FormatPtr

)

Sets the data format for the specified UART. The data format includes the baud rate, number of data
bits, number of stop bits, and parity. It is the caller's responsibility to ensure that the UART is not
sending or receiving data when this function is called.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

FormatPtr is a pointer to a format structure containing the data format to be set.

Returns:
❍ XST_SUCCESS if the data format was successfully set.
❍ XST_UART_BAUD_ERROR indicates the baud rate could not be set because of the

amount of error with the baud rate and the input clock frequency.
❍ XST_INVALID_PARAM if one of the parameters was not valid.

Note:
The data types in the format type, data bits and parity, are 32 bit fields to prevent a compiler
warning that is a bug with the GNU PowerPC compiler. The asserts in this function will cause
a warning if these fields are bytes.

The baud rates tested include: 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200.

XStatus XUartNs550_SetFifoThreshold (XUartNs550 * InstancePtr,
Xuint8 TriggerLevel

)

This functions sets the receive FIFO trigger level. The receive trigger level specifies the number of
bytes in the receive FIFO that cause a receive data event (interrupt) to be generated. The FIFOs must
be enabled to set the trigger level.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

TriggerLevel contains the trigger level to set. Constants which define each trigger level are
contained in the file xuartns550.h and named XUN_FIFO_TRIGGER_*.

Returns:
❍ XST_SUCCESS if the trigger level was set

❍ XST_UART_CONFIG_ERROR if the trigger level could not be set, either the
hardware does not support the FIFOs or FIFOs are not enabled

Note:
None.

void XUartNs550_SetHandler (XUartNs550 * InstancePtr,
XUartNs550_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

XStatus XUartNs550_SetOptions (XUartNs550 * InstancePtr,
Xuint16 Options

)

Sets the options for the specified driver instance. The options are implemented as bit masks such that
multiple options may be enabled or disabled simultaneously.

The GetOptions function may be called to retrieve the currently enabled options. The result is ORed
in the desired new settings to be enabled and ANDed with the inverse to clear the settings to be
disabled. The resulting value is then used as the options for the SetOption function call.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Options contains the options to be set which are bit masks contained in the file
xuartns550.h and named XUN_OPTION_*.

Returns:
❍ XST_SUCCESS if the options were set successfully.
❍ XST_UART_CONFIG_ERROR if the options could not be set because the hardware

does not support FIFOs

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550.c File
Reference

Detailed Description

This file contains the required functions for the 16450/16550 UART driver. Refer to the header file
xuartns550.h for more detailed information.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.
 1.00b rmm 05/14/03 Fixed diab compiler warnings relating to asserts.

#include "xstatus.h"

#include "xparameters.h"

#include "xuartns550.h"

#include "xuartns550_i.h"

#include "xio.h"

Functions

XStatus XUartNs550_Initialize (XUartNs550 *InstancePtr, Xuint16 DeviceId)
unsigned int XUartNs550_Send (XUartNs550 *InstancePtr, Xuint8 *BufferPtr, unsigned int

NumBytes)

unsigned int XUartNs550_Recv (XUartNs550 *InstancePtr, Xuint8 *BufferPtr, unsigned int
NumBytes)

unsigned int XUartNs550_SendBuffer (XUartNs550 *InstancePtr)
unsigned int XUartNs550_ReceiveBuffer (XUartNs550 *InstancePtr)

XUartNs550_Config * XUartNs550_LookupConfig (Xuint16 DeviceId)

Function Documentation

XStatus XUartNs550_Initialize (XUartNs550 * InstancePtr,
Xuint16 DeviceId

)

Initializes a specific XUartNs550 instance such that it is ready to be used. The data format of the
device is setup for 8 data bits, 1 stop bit, and no parity by default. The baud rate is set to a default
value specified by XPAR_DEFAULT_BAUD_RATE if the symbol is defined, otherwise it is set to
19.2K baud. If the device has FIFOs (16550), they are enabled and the a receive FIFO threshold is set
for 8 bytes. The default operating mode of the driver is polled mode.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

DeviceId is the unique id of the device controlled by this XUartNs550 instance. Passing in
a device id associates the generic XUartNs550 instance to a specific device, as
chosen by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_NOT_FOUND if the device ID could not be found in the configuration

table
❍ XST_UART_BAUD_ERROR if the baud rate is not possible because the input clock

frequency is not divisible with an acceptable amount of error

Note:
None.

XUartNs550_Config* XUartNs550_LookupConfig (Xuint16 DeviceId)

Looks up the device configuration based on the unique device ID. A table contains the configuration
info for each device in the system.

Parameters:
DeviceId contains the ID of the device to look up the configuration for.

Returns:
A pointer to the configuration found or XNULL if the specified device ID was not found.

Note:
None.

unsigned int XUartNs550_ReceiveBuffer (XUartNs550 * InstancePtr)

This function receives a buffer that has been previously specified by setting up the instance variables
of the instance. This function is designed to be an internal function for the XUartNs550 component
such that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if there is no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer, either in the
receiver or in the FIFO if present and enabled. The application may need to call it repeatedly to
receive a buffer. Polled mode is the default mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue until the buffer has been received. A callback function, as specified by the application, will
be called to indicate the completion of receiving the buffer or when any receive errors or timeouts
occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The number of bytes received.

Note:
None.

unsigned int XUartNs550_Recv (XUartNs550 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer, either in the
receiver or in the FIFO if present and enabled. The application may need to call it repeatedly to
receive a buffer. Polled mode is the default mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue receiving data until the buffer has been received. A callback function, as specified by the
application, will be called to indicate the completion of receiving the buffer or when any receive
errors or timeouts occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

BufferPtr is pointer to buffer for data to be received into
NumBytes is the number of bytes to be received. A value of zero will stop a previous receive

operation that is in progress in interrupt mode.

Returns:
The number of bytes received.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

unsigned int XUartNs550_Send (XUartNs550 * InstancePtr,
Xuint8 * BufferPtr,
unsigned int NumBytes

)

This functions sends the specified buffer of data using the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART. If the UART is busy sending data, it will return and indicate zero bytes were sent.

In a polled mode, this function will only send as much data as the UART can buffer, either in the
transmitter or in the FIFO if present and enabled. The application may need to call it repeatedly to
send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue sending data until the buffer has been sent. A callback function, as specified
by the application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

BufferPtr is pointer to a buffer of data to be sent.
NumBytes contains the number of bytes to be sent. A value of zero will stop a previous send

operation that is in progress in interrupt mode. Any data that was already put into
the transmit FIFO will be sent.

Returns:
The number of bytes actually sent.

Note:
The number of bytes is not asserted so that this function may be called with a value of zero to
stop an operation that is already in progress.

This function and the XUartNs550_SetOptions() function modify shared data such that there
may be a need for mutual exclusion in a multithreaded environment and if
XUartNs550_SetOptions() if called from a handler.

unsigned int XUartNs550_SendBuffer (XUartNs550 * InstancePtr)

This function sends a buffer that has been previously specified by setting up the instance variables of
the instance. This function is designed to be an internal function for the XUartNs550 component such
that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function sends the specified buffer of data to the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART.

In a polled mode, this function will only send as much data as the UART can buffer, either in the
transmitter or in the FIFO if present and enabled. The application may need to call it repeatedly to
send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue until the buffer has been sent. A callback function, as specified by the
application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
NumBytes is the number of bytes actually sent (put into the UART tranmitter and/or FIFO).

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_l.h
File Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. The user should refer to the hardware device specification for more details of the device
operation. High-level driver functions are defined in xuartns550.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XUartNs550_mReadReg(BaseAddress, RegOffset)
#define XUartNs550_mWriteReg(BaseAddress, RegOffset, RegisterValue)
#define XUartNs550_mGetLineStatusReg(BaseAddress)
#define XUartNs550_mGetLineControlReg(BaseAddress)
#define XUartNs550_mSetLineControlReg(BaseAddress, RegisterValue)

#define XUartNs550_mEnableIntr(BaseAddress)
#define XUartNs550_mDisableIntr(BaseAddress)
#define XUartNs550_mIsReceiveData(BaseAddress)
#define XUartNs550_mIsTransmitEmpty(BaseAddress)

Functions

void XUartNs550_SendByte (Xuint32 BaseAddress, Xuint8 Data)
Xuint8 XUartNs550_RecvByte (Xuint32 BaseAddress)

Define Documentation

#define XUartNs550_mDisableIntr(BaseAddress)

Disable the transmit and receive interrupts of the UART.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XUartNs550_mEnableIntr(BaseAddress)

Enable the transmit and receive interrupts of the UART.

Parameters:
BaseAddress contains the base address of the device.

Returns:
None.

Note:
None.

#define XUartNs550_mGetLineControlReg(BaseAddress)

Get the UART Line Status Register.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XUartNs550_mGetLineStatusReg(BaseAddress)

Get the UART Line Status Register.

Parameters:
BaseAddress contains the base address of the device.

Returns:
The value read from the register.

Note:
None.

#define XUartNs550_mIsReceiveData(BaseAddress)

Determine if there is receive data in the receiver and/or FIFO.

Parameters:
BaseAddress contains the base address of the device.

Returns:
XTRUE if there is receive data, XFALSE otherwise.

Note:
None.

#define XUartNs550_mIsTransmitEmpty(BaseAddress)

Determine if a byte of data can be sent with the transmitter.

Parameters:
BaseAddress contains the base address of the device.

Returns:
XTRUE if a byte can be sent, XFALSE otherwise.

Note:
None.

#define XUartNs550_mReadReg(BaseAddress,
RegOffset)

Read a UART register.

Parameters:
BaseAddress contains the base address of the device.
RegOffset contains the offset from the 1st register of the device to select the specific

register.

Returns:
The value read from the register.

Note:
None.

#define XUartNs550_mSetLineControlReg(BaseAddress,
RegisterValue)

Set the UART Line Status Register.

Parameters:
BaseAddress contains the base address of the device.
RegisterValue is the value to be written to the register.

Returns:
None.

Note:
None.

#define XUartNs550_mWriteReg(BaseAddress,
RegOffset,
RegisterValue)

Write to a UART register.

Parameters:
BaseAddress contains the base address of the device.
RegOffset contains the offset from the 1st register of the device to select the specific

register.

Returns:
The value read from the register.

Note:
None.

Function Documentation

Xuint8 XUartNs550_RecvByte (Xuint32 BaseAddress)

This function receives a byte from the UART. It operates in a polling mode and blocks until a byte of
data is received.

Parameters:
BaseAddress contains the base address of the UART.

Returns:
The data byte received by the UART.

Note:
None.

void XUartNs550_SendByte (Xuint32 BaseAddress,
Xuint8 Data

)

This function sends a data byte with the UART. This function operates in the polling mode and blocks
until the data has been put into the UART transmit holding register.

Parameters:
BaseAddress contains the base address of the UART.
Data contains the data byte to be sent.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_l.h
Go to the documentation of this file.

00001 /* $Id: xuartns550_l.h,v 1.2 2002/05/17 18:31:39 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file uartns550/v1_00_b/src/xuartns550_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. The user should refer to the
00029 * hardware device specification for more details of the device operation.
00030 * High-level driver functions are defined in xuartns550.h.
00031 *
00032 * <pre>
00033 * MODIFICATION HISTORY:
00034 *
00035 * Ver Who Date Changes
00036 * ----- ---- -------- ---
00037 * 1.00b jhl 04/24/02 First release
00038 * </pre>
00039 *
00040 **/
00041
00042 #ifndef XUARTNS550_L_H /* prevent circular inclusions */

00043 #define XUARTNS550_L_H /* by using protection macros */
00044
00045 /***************************** Include Files *********************************/
00046
00047 #include "xbasic_types.h"

00048 #include "xio.h"

00049
00050 /************************** Constant Definitions *****************************/
00051
00052 /*
00053 * Offset from the device base address (IPIF) to the IP registers.
00054 */
00055 #define XUN_REG_OFFSET 0x1000
00056
00057 /* 16450/16550 compatible UART, register offsets as byte registers */
00058
00059 #define XUN_RBR_OFFSET (XUN_REG_OFFSET + 0x03) /* receive buffer, read only */
00060 #define XUN_THR_OFFSET (XUN_REG_OFFSET + 0x03) /* transmit holding register */
00061 #define XUN_IER_OFFSET (XUN_REG_OFFSET + 0x07) /* interrupt enable */
00062 #define XUN_IIR_OFFSET (XUN_REG_OFFSET + 0x0B) /* interrupt id, read only */
00063 #define XUN_FCR_OFFSET (XUN_REG_OFFSET + 0x0B) /* fifo control, write only */
00064 #define XUN_LCR_OFFSET (XUN_REG_OFFSET + 0x0F) /* line control register */
00065 #define XUN_MCR_OFFSET (XUN_REG_OFFSET + 0x13) /* modem control register */
00066 #define XUN_LSR_OFFSET (XUN_REG_OFFSET + 0x17) /* line status register */
00067 #define XUN_MSR_OFFSET (XUN_REG_OFFSET + 0x1B) /* modem status register */
00068 #define XUN_DRLS_OFFSET (XUN_REG_OFFSET + 0x03) /* divisor register LSB */
00069 #define XUN_DRLM_OFFSET (XUN_REG_OFFSET + 0x07) /* divisor register MSB */
00070
00071 /* the following constant specifies the size of the FIFOs, the size of the
00072 * FIFOs includes the transmitter and receiver such that it is the total number
00073 * of bytes that the UART can buffer
00074 */
00075 #define XUN_FIFO_SIZE 16
00076
00077 /* Interrupt Enable Register bits */
00078
00079 #define XUN_IER_MODEM_STATUS 0x08 /* modem status interrupt */
00080 #define XUN_IER_RX_LINE 0x04 /* receive status interrupt */
00081 #define XUN_IER_TX_EMPTY 0x02 /* transmitter empty interrupt */
00082 #define XUN_IER_RX_DATA 0x01 /* receiver data available */
00083
00084 /* Interrupt ID Register bits */
00085
00086 #define XUN_INT_ID_MASK 0x0F /* only the interrupt ID */
00087 #define XUN_INT_ID_FIFOS_ENABLED 0xC0 /* only the FIFOs enable */
00088
00089 /* FIFO Control Register bits */
00090
00091 #define XUN_FIFO_RX_TRIG_MSB 0x80 /* trigger level MSB */
00092 #define XUN_FIFO_RX_TRIG_LSB 0x40 /* trigger level LSB */
00093 #define XUN_FIFO_TX_RESET 0x04 /* reset the transmit FIFO */
00094 #define XUN_FIFO_RX_RESET 0x02 /* reset the receive FIFO */

00095 #define XUN_FIFO_ENABLE 0x01 /* enable the FIFOs */
00096 #define XUN_FIFO_RX_TRIGGER 0xC0 /* both trigger level bits */
00097
00098 /* Line Control Register bits */
00099
00100 #define XUN_LCR_DLAB 0x80 /* divisor latch access */
00101 #define XUN_LCR_SET_BREAK 0x40 /* cause a break condition */
00102 #define XUN_LCR_STICK_PARITY 0x20
00103 #define XUN_LCR_EVEN_PARITY 0x10 /* 1 = even, 0 = odd parity */
00104 #define XUN_LCR_ENABLE_PARITY 0x08
00105 #define XUN_LCR_2_STOP_BITS 0x04 /* 1 = 2 stop bits,0 = 1 stop bit
*/
00106 #define XUN_LCR_8_DATA_BITS 0x03
00107 #define XUN_LCR_7_DATA_BITS 0x02
00108 #define XUN_LCR_6_DATA_BITS 0x01
00109 #define XUN_LCR_LENGTH_MASK 0x03 /* both length bits mask */
00110 #define XUN_LCR_PARITY_MASK 0x18 /* both parity bits mask */
00111
00112 /* Modem Control Register bits */
00113
00114 #define XUN_MCR_LOOP 0x10 /* local loopback */
00115 #define XUN_MCR_OUT_2 0x08 /* general output 2 signal */
00116 #define XUN_MCR_OUT_1 0x04 /* general output 1 signal */
00117 #define XUN_MCR_RTS 0x02 /* RTS signal */
00118 #define XUN_MCR_DTR 0x01 /* DTR signal */
00119
00120 /* Line Status Register bits */
00121
00122 #define XUN_LSR_RX_FIFO_ERROR 0x80 /* an errored byte is in the FIFO
*/
00123 #define XUN_LSR_TX_EMPTY 0x40 /* transmitter is empty */
00124 #define XUN_LSR_TX_BUFFER_EMPTY 0x20 /* transmit holding reg empty */
00125 #define XUN_LSR_BREAK_INT 0x10 /* break detected interrupt */
00126 #define XUN_LSR_FRAMING_ERROR 0x08 /* framing error on current byte */
00127 #define XUN_LSR_PARITY_ERROR 0x04 /* parity error on current byte */
00128 #define XUN_LSR_OVERRUN_ERROR 0x02 /* overrun error on receive FIFO */
00129 #define XUN_LSR_DATA_READY 0x01 /* receive data ready */
00130 #define XUN_LSR_ERROR_BREAK 0x1E /* errors except FIFO error and
00131 break detected */
00132
00133 #define XUN_DIVISOR_BYTE_MASK 0xFF
00134
00135 /**************************** Type Definitions *******************************/
00136
00137
00138 /***************** Macros (Inline Functions) Definitions *********************/
00139
00140
00141 /***
00142 *
00143 * Low-level driver macros. The list below provides signatures to help the
00144 * user use the macros.
00145 *

00146 * Xuint8 XUartNs550_mReadReg(Xuint32 BaseAddress. int RegOffset)
00147 * void XUartNs550_mWriteReg(Xuint32 BaseAddress, int RegOffset,
00148 * Xuint8 RegisterValue)
00149 *
00150 * Xuint8 XUartNs550_mGetLineStatusReg(Xuint32 BaseAddress)
00151 * Xuint8 XUartNs550_mGetLineControlReg(Xuint32 BaseAddress)
00152 * void XUartNs550_mSetLineControlReg(Xuint32 BaseAddress, Xuint8 RegisterValue)
00153 *
00154 * void XUartNs550_mEnableIntr(Xuint32 BaseAddress)
00155 * void XUartNs550_mDisableIntr(Xuint32 BaseAddress)
00156 *
00157 * Xboolean XUartNs550_mIsReceiveData(Xuint32 BaseAddress)
00158 * Xboolean XUartNs550_mIsTransmitEmpty(Xuint32 BaseAddress)
00159 *
00160 ***/
00161
00162 /**/
00163 /**
00164 * Read a UART register.
00165 *
00166 * @param BaseAddress contains the base address of the device.
00167 * @param RegOffset contains the offset from the 1st register of the device
00168 * to select the specific register.
00169 *
00170 * @return The value read from the register.
00171 *
00172 * @note None.
00173 *
00174 **/
00175 #define XUartNs550_mReadReg(BaseAddress, RegOffset) \

00176 XIo_In8((BaseAddress) + (RegOffset))
00177
00178 /**/
00179 /**
00180 * Write to a UART register.
00181 *
00182 * @param BaseAddress contains the base address of the device.
00183 * @param RegOffset contains the offset from the 1st register of the device
00184 * to select the specific register.
00185 *
00186 * @return The value read from the register.
00187 *
00188 * @note None.
00189 *
00190 **/
00191 #define XUartNs550_mWriteReg(BaseAddress, RegOffset, RegisterValue) \

00192 XIo_Out8((BaseAddress) + (RegOffset), (RegisterValue))
00193
00194 /**/
00195 /**
00196 * Get the UART Line Status Register.
00197 *

00198 * @param BaseAddress contains the base address of the device.
00199 *
00200 * @return The value read from the register.
00201 *
00202 * @note None.
00203 *
00204 **/
00205 #define XUartNs550_mGetLineStatusReg(BaseAddress) \

00206 XIo_In8((BaseAddress) + XUN_LSR_OFFSET)
00207
00208 /**/
00209 /**
00210 * Get the UART Line Status Register.
00211 *
00212 * @param BaseAddress contains the base address of the device.
00213 *
00214 * @return The value read from the register.
00215 *
00216 * @note None.
00217 *
00218 **/
00219 #define XUartNs550_mGetLineControlReg(BaseAddress) \

00220 XIo_In8((BaseAddress) + XUN_LCR_OFFSET)
00221
00222 /**/
00223 /**
00224 * Set the UART Line Status Register.
00225 *
00226 * @param BaseAddress contains the base address of the device.
00227 * @param RegisterValue is the value to be written to the register.
00228 *
00229 * @return None.
00230 *
00231 * @note None.
00232 *
00233 **/
00234 #define XUartNs550_mSetLineControlReg(BaseAddress, RegisterValue) \

00235 XIo_Out8((BaseAddress) + XUN_LCR_OFFSET, (RegisterValue))
00236
00237 /**/
00238 /**
00239 * Enable the transmit and receive interrupts of the UART.
00240 *
00241 * @param BaseAddress contains the base address of the device.
00242 *
00243 * @return None.
00244 *
00245 * @note None.
00246 *
00247 **/
00248 #define XUartNs550_mEnableIntr(BaseAddress) \

00249 XIo_Out8((BaseAddress) + XUN_LCR_OFFSET, \

00250 XIo_In8((BaseAddress) + XUN_IER_OFFSET) | \
00251 (XUN_IER_RX_LINE | XUN_IER_TX_EMPTY | XUN_IER_RX_DATA))
00252
00253 /**/
00254 /**
00255 * Disable the transmit and receive interrupts of the UART.
00256 *
00257 * @param BaseAddress contains the base address of the device.
00258 *
00259 * @return None.
00260 *
00261 * @note None.
00262 *
00263 **/
00264 #define XUartNs550_mDisableIntr(BaseAddress) \

00265 XIo_Out8((BaseAddress) + XUN_LCR_OFFSET, \
00266 XIo_In8((BaseAddress) + XUN_IER_OFFSET) & \
00267 ~(XUN_IER_RX_LINE | XUN_IER_TX_EMPTY | XUN_IER_RX_DATA))
00268
00269 /**/
00270 /**
00271 * Determine if there is receive data in the receiver and/or FIFO.
00272 *
00273 * @param BaseAddress contains the base address of the device.
00274 *
00275 * @return XTRUE if there is receive data, XFALSE otherwise.
00276 *
00277 * @note None.
00278 *
00279 **/
00280 #define XUartNs550_mIsReceiveData(BaseAddress) \

00281 (XIo_In8((BaseAddress) + XUN_LSR_OFFSET) & XUN_LSR_DATA_READY)
00282
00283 /**/
00284 /**
00285 * Determine if a byte of data can be sent with the transmitter.
00286 *
00287 * @param BaseAddress contains the base address of the device.
00288 *
00289 * @return XTRUE if a byte can be sent, XFALSE otherwise.
00290 *
00291 * @note None.
00292 *
00293 **/
00294 #define XUartNs550_mIsTransmitEmpty(BaseAddress) \

00295 (XIo_In8((BaseAddress) + XUN_LSR_OFFSET) & XUN_LSR_TX_BUFFER_EMPTY)
00296
00297 /************************** Function Prototypes ******************************/
00298
00299 void XUartNs550_SendByte(Xuint32 BaseAddress, Xuint8 Data);

00300
00301 Xuint8 XUartNs550_RecvByte(Xuint32 BaseAddress);

00302
00303 void XUartNs550_SetBaud(Xuint32 BaseAddress, Xuint32 InputClockHz,

00304 Xuint32 BaudRate);

00305
00306 /************************** Variable Definitions *****************************/
00307
00308 #endif /* end of protection macro */
00309

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_l.c
File Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer
to the hardware device specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xuartns550_l.h"

Functions

void XUartNs550_SendByte (Xuint32 BaseAddress, Xuint8 Data)
Xuint8 XUartNs550_RecvByte (Xuint32 BaseAddress)

Function Documentation

Xuint8 XUartNs550_RecvByte (Xuint32 BaseAddress)

This function receives a byte from the UART. It operates in a polling mode and blocks until a byte of
data is received.

Parameters:
BaseAddress contains the base address of the UART.

Returns:
The data byte received by the UART.

Note:
None.

void XUartNs550_SendByte (Xuint32 BaseAddress,
Xuint8 Data

)

This function sends a data byte with the UART. This function operates in the polling mode and blocks
until the data has been put into the UART transmit holding register.

Parameters:
BaseAddress contains the base address of the UART.
Data contains the data byte to be sent.

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartNs550_Config Struct Reference
#include <xuartns550.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddress
Xuint32 InputClockHz

Field Documentation

Xuint32 XUartNs550_Config::BaseAddress

 Base address of device (IPIF)

Xuint16 XUartNs550_Config::DeviceId

 Unique ID of device

Xuint32 XUartNs550_Config::InputClockHz

 Input clock frequency

The documentation for this struct was generated from the following file:

● uartns550/v1_00_b/src/xuartns550.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartNs550Format Struct Reference
#include <xuartns550.h>

Detailed Description

This data type allows the data format of the device to be set and retrieved.

Data Fields

Xuint32 BaudRate
Xuint32 DataBits
Xuint32 Parity
Xuint8 StopBits

Field Documentation

Xuint32 XUartNs550Format::BaudRate

 In bps, ie 1200

Xuint32 XUartNs550Format::DataBits

 Number of data bits

Xuint32 XUartNs550Format::Parity

 Parity

Xuint8 XUartNs550Format::StopBits

 Number of stop bits

The documentation for this struct was generated from the following file:

● uartns550/v1_00_b/src/xuartns550.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartNs550Stats Struct Reference
#include <xuartns550.h>

Detailed Description

UART statistics

Data Fields

Xuint16 TransmitInterrupts
Xuint16 ReceiveInterrupts
Xuint16 StatusInterrupts
Xuint16 ModemInterrupts
Xuint16 CharactersTransmitted
Xuint16 CharactersReceived
Xuint16 ReceiveOverrunErrors
Xuint16 ReceiveParityErrors
Xuint16 ReceiveFramingErrors
Xuint16 ReceiveBreakDetected

Field Documentation

Xuint16 XUartNs550Stats::CharactersReceived

 Number of characters received

Xuint16 XUartNs550Stats::CharactersTransmitted

 Number of characters transmitted

Xuint16 XUartNs550Stats::ModemInterrupts

 Number of modem interrupts

Xuint16 XUartNs550Stats::ReceiveBreakDetected

 Number of receive breaks

Xuint16 XUartNs550Stats::ReceiveFramingErrors

 Number of receive framing errors

Xuint16 XUartNs550Stats::ReceiveInterrupts

 Number of receive interrupts

Xuint16 XUartNs550Stats::ReceiveOverrunErrors

 Number of receive overruns

Xuint16 XUartNs550Stats::ReceiveParityErrors

 Number of receive parity errors

Xuint16 XUartNs550Stats::StatusInterrupts

 Number of status interrupts

Xuint16 XUartNs550Stats::TransmitInterrupts

 Number of transmit interrupts

The documentation for this struct was generated from the following file:

● uartns550/v1_00_b/src/xuartns550.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XUartNs550 Struct Reference
#include <xuartns550.h>

Detailed Description

The XUartNs550 driver instance data. The user is required to allocate a variable of this type for every
UART 16550/16450 device in the system. A pointer to a variable of this type is then passed to the driver
API functions.

The documentation for this struct was generated from the following file:

● uartns550/v1_00_b/src/xuartns550.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_i.h
Go to the documentation of this file.

00001 /* $Id: xuartns550_i.h,v 1.4 2002/05/02 20:56:21 linnj Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file uartns550/v1_00_b/src/xuartns550_i.h
00026 *
00027 * This header file contains internal identifiers, which are those shared
00028 * between the files of the driver. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00a ecm 08/16/01 First release
00036 * 1.00b jhl 03/11/02 Repartitioned driver for smaller files.
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XUARTNS550_I_H /* prevent circular inclusions */
00042 #define XUARTNS550_I_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xuartns550.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050
00051 /************************** Constant Definitions *****************************/
00052
00053
00054 /**************************** Type Definitions *******************************/
00055
00056
00057 /***************** Macros (Inline Functions) Definitions *********************/
00058
00059
00060 /**
00061 *
00062 * This macro updates the status based upon a specified line status register
00063 * value. The stats that are updated are based upon bits in this register. It
00064 * also keeps the last errors instance variable updated. The purpose of this
00065 * macro is to allow common processing between the modules of the component
00066 * with less overhead than a function in the required module.
00067 *
00068 * @param InstancePtr is a pointer to the XUartNs550 instance to be worked
on.
00069 * @param CurrentLsr contains the Line Status Register value to be used for
00070 * the update.
00071 *
00072 * @return
00073 *
00074 * None.
00075 *
00076 * @note
00077 *
00078 * Signature:
00079 * void XUartNs550_mUpdateStats(XUartNs550 *InstancePtr, Xuint8 CurrentLsr)
00080 *
00081 ***/
00082 #define XUartNs550_mUpdateStats(InstancePtr, CurrentLsr) \
00083 { \
00084 InstancePtr->LastErrors |= CurrentLsr; \
00085 \
00086 if (CurrentLsr & XUN_LSR_OVERRUN_ERROR) \
00087 { \
00088 InstancePtr->Stats.ReceiveOverrunErrors++; \
00089 } \
00090 if (CurrentLsr & XUN_LSR_PARITY_ERROR) \
00091 { \
00092 InstancePtr->Stats.ReceiveParityErrors++; \
00093 } \

00094 if (CurrentLsr & XUN_LSR_FRAMING_ERROR) \
00095 { \
00096 InstancePtr->Stats.ReceiveFramingErrors++; \
00097 } \
00098 if (CurrentLsr & XUN_LSR_BREAK_INT) \
00099 { \
00100 InstancePtr->Stats.ReceiveBreakDetected++; \
00101 } \
00102 }
00103
00104 /**
00105 *
00106 * This macro clears the statistics of the component instance. The purpose of
00107 * this macro is to allow common processing between the modules of the
00108 * component with less overhead than a function in the required module.
00109 *
00110 * @param InstancePtr is a pointer to the XUartNs550 instance to be worked
on.
00111 *
00112 * @return
00113 *
00114 * None.
00115 *
00116 * @note
00117 *
00118 * Signature: void XUartNs550_mClearStats(XUartNs550 *InstancePtr)
00119 *
00120 ***/
00121 #define XUartNs550_mClearStats(InstancePtr) \
00122 { \
00123 InstancePtr->Stats.TransmitInterrupts = 0UL; \
00124 InstancePtr->Stats.ReceiveInterrupts = 0UL; \
00125 InstancePtr->Stats.StatusInterrupts = 0UL; \
00126 InstancePtr->Stats.ModemInterrupts = 0UL; \
00127 InstancePtr->Stats.CharactersTransmitted = 0UL; \
00128 InstancePtr->Stats.CharactersReceived = 0UL; \
00129 InstancePtr->Stats.ReceiveOverrunErrors = 0UL; \
00130 InstancePtr->Stats.ReceiveFramingErrors = 0UL; \
00131 InstancePtr->Stats.ReceiveParityErrors = 0UL; \
00132 InstancePtr->Stats.ReceiveBreakDetected = 0UL; \
00133 }
00134
00135 /************************** Function Prototypes ******************************/
00136
00137 XStatus XUartNs550_SetBaudRate(XUartNs550 *InstancePtr, Xuint32 BaudRate);

00138
00139 unsigned int XUartNs550_SendBuffer(XUartNs550 *InstancePtr);

00140
00141 unsigned int XUartNs550_ReceiveBuffer(XUartNs550 *InstancePtr);

00142
00143 /************************** Variable Definitions ****************************/
00144

00145 extern XUartNs550_Config XUartNs550_ConfigTable[];

00146
00147 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_i.h
File Reference

Detailed Description

This header file contains internal identifiers, which are those shared between the files of the driver. It is
intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.

#include "xuartns550.h"

Go to the source code of this file.

Functions

unsigned int XUartNs550_SendBuffer (XUartNs550 *InstancePtr)
unsigned int XUartNs550_ReceiveBuffer (XUartNs550 *InstancePtr)

Variables

XUartNs550_Config XUartNs550_ConfigTable []

Function Documentation

unsigned int XUartNs550_ReceiveBuffer (XUartNs550 * InstancePtr)

This function receives a buffer that has been previously specified by setting up the instance variables
of the instance. This function is designed to be an internal function for the XUartNs550 component
such that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function will attempt to receive a specified number of bytes of data from the UART and store it
into the specified buffer. This function is designed for either polled or interrupt driven modes. It is
non-blocking such that it will return if there is no data has already received by the UART.

In a polled mode, this function will only receive as much data as the UART can buffer, either in the
receiver or in the FIFO if present and enabled. The application may need to call it repeatedly to
receive a buffer. Polled mode is the default mode of operation for the driver.

In interrupt mode, this function will start receiving and then the interrupt handler of the driver will
continue until the buffer has been received. A callback function, as specified by the application, will
be called to indicate the completion of receiving the buffer or when any receive errors or timeouts
occur. Interrupt mode must be enabled using the SetOptions function.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The number of bytes received.

Note:
None.

unsigned int XUartNs550_SendBuffer (XUartNs550 * InstancePtr)

This function sends a buffer that has been previously specified by setting up the instance variables of
the instance. This function is designed to be an internal function for the XUartNs550 component such
that it may be called from a shell function that sets up the buffer or from an interrupt handler.

This function sends the specified buffer of data to the UART in either polled or interrupt driven
modes. This function is non-blocking such that it will return before the data has been sent by the
UART.

In a polled mode, this function will only send as much data as the UART can buffer, either in the
transmitter or in the FIFO if present and enabled. The application may need to call it repeatedly to
send a buffer.

In interrupt mode, this function will start sending the specified buffer and then the interrupt handler of
the driver will continue until the buffer has been sent. A callback function, as specified by the
application, will be called to indicate the completion of sending the buffer.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
NumBytes is the number of bytes actually sent (put into the UART tranmitter and/or FIFO).

Note:
None.

Variable Documentation

XUartNs550_Config XUartNs550_ConfigTable[] ()

The configuration table for UART 16550/16450 devices in the table. Each device should have an
entry in this table.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_options.c
File Reference

Detailed Description

The implementation of the options functions for the XUartNs550 driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.

#include "xuartns550.h"

#include "xuartns550_i.h"

#include "xio.h"

Data Structures

struct Mapping

Functions

Xuint16 XUartNs550_GetOptions (XUartNs550 *InstancePtr)
XStatus XUartNs550_SetOptions (XUartNs550 *InstancePtr, Xuint16 Options)
Xuint8 XUartNs550_GetFifoThreshold (XUartNs550 *InstancePtr)

XStatus XUartNs550_SetFifoThreshold (XUartNs550 *InstancePtr, Xuint8 TriggerLevel)
Xuint8 XUartNs550_GetLastErrors (XUartNs550 *InstancePtr)
Xuint8 XUartNs550_GetModemStatus (XUartNs550 *InstancePtr)

Xboolean XUartNs550_IsSending (XUartNs550 *InstancePtr)

Function Documentation

Xuint8 XUartNs550_GetFifoThreshold (XUartNs550 * InstancePtr)

This function gets the receive FIFO trigger level. The receive trigger level indicates the number of bytes in the
receive FIFO that cause a receive data event (interrupt) to be generated.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The current receive FIFO trigger level. Constants which define each trigger level are contained in the
file xuartns550.h and named XUN_FIFO_TRIGGER_*.

Note:
None.

Xuint8 XUartNs550_GetLastErrors (XUartNs550 * InstancePtr)

This function returns the last errors that have occurred in the specified UART. It also clears the errors such
that they cannot be retrieved again. The errors include parity error, receive overrun error, framing error, and
break detection.

The last errors is an accumulation of the errors each time an error is discovered in the driver. A status is
checked for each received byte and this status is accumulated in the last errors.

If this function is called after receiving a buffer of data, it will indicate any errors that occurred for the bytes
of the buffer. It does not indicate which bytes contained errors.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The last errors that occurred. The errors are bit masks that are contained in the file xuartns550.h and
named XUN_ERROR_*.

Note:
None.

Xuint8 XUartNs550_GetModemStatus (XUartNs550 * InstancePtr)

This function gets the modem status from the specified UART. The modem status indicates any changes of
the modem signals. This function allows the modem status to be read in a polled mode. The modem status is
updated whenever it is read such that reading it twice may not yield the same results.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The modem status which are bit masks that are contained in the file xuartns550.h and named
XUN_MODEM_*.

Note:
The bit masks used for the modem status are the exact bits of the modem status register with no
abstraction.

Xuint16 XUartNs550_GetOptions (XUartNs550 * InstancePtr)

Gets the options for the specified driver instance. The options are implemented as bit masks such that multiple
options may be enabled or disabled simulataneously.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
The current options for the UART. The optionss are bit masks that are contained in the file
xuartns550.h and named XUN_OPTION_*.

Returns:
None.

Xboolean XUartNs550_IsSending (XUartNs550 * InstancePtr)

This function determines if the specified UART is sending data. If the transmitter register is not empty, it is
sending data.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
A value of XTRUE if the UART is sending data, otherwise XFALSE.

Note:
None.

XStatus XUartNs550_SetFifoThreshold (XUartNs550 * InstancePtr,
Xuint8 TriggerLevel

)

This functions sets the receive FIFO trigger level. The receive trigger level specifies the number of bytes in
the receive FIFO that cause a receive data event (interrupt) to be generated. The FIFOs must be enabled to set
the trigger level.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

TriggerLevel contains the trigger level to set. Constants which define each trigger level are contained
in the file xuartns550.h and named XUN_FIFO_TRIGGER_*.

Returns:
❍ XST_SUCCESS if the trigger level was set
❍ XST_UART_CONFIG_ERROR if the trigger level could not be set, either the hardware does

not support the FIFOs or FIFOs are not enabled

Note:
None.

XStatus XUartNs550_SetOptions (XUartNs550 * InstancePtr,
Xuint16 Options

)

Sets the options for the specified driver instance. The options are implemented as bit masks such that multiple
options may be enabled or disabled simultaneously.

The GetOptions function may be called to retrieve the currently enabled options. The result is ORed in the
desired new settings to be enabled and ANDed with the inverse to clear the settings to be disabled. The
resulting value is then used as the options for the SetOption function call.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Options contains the options to be set which are bit masks contained in the file xuartns550.h and
named XUN_OPTION_*.

Returns:
❍ XST_SUCCESS if the options were set successfully.
❍ XST_UART_CONFIG_ERROR if the options could not be set because the hardware does not

support FIFOs

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_format.c
File Reference

Detailed Description

This file contains the data format functions for the 16450/16550 UART driver. The data format functions
allow the baud rate, number of data bits, number of stop bits and parity to be set and retrieved.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.
 1.00b rmm 05/15/03 Fixed diab compiler warnings.

#include "xstatus.h"

#include "xuartns550.h"

#include "xuartns550_i.h"

#include "xio.h"

Functions

XStatus XUartNs550_SetDataFormat (XUartNs550 *InstancePtr, XUartNs550Format *FormatPtr)
void XUartNs550_GetDataFormat (XUartNs550 *InstancePtr, XUartNs550Format *FormatPtr)

Function Documentation

void XUartNs550_GetDataFormat (XUartNs550 * InstancePtr,
XUartNs550Format * FormatPtr

)

Gets the data format for the specified UART. The data format includes the baud rate, number of data bits,
number of stop bits, and parity.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

FormatPtr is a pointer to a format structure that will contain the data format after this call
completes.

Returns:
None.

Note:
None.

XStatus XUartNs550_SetDataFormat (XUartNs550 * InstancePtr,
XUartNs550Format * FormatPtr

)

Sets the data format for the specified UART. The data format includes the baud rate, number of data bits,
number of stop bits, and parity. It is the caller's responsibility to ensure that the UART is not sending or
receiving data when this function is called.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

FormatPtr is a pointer to a format structure containing the data format to be set.

Returns:
❍ XST_SUCCESS if the data format was successfully set.
❍ XST_UART_BAUD_ERROR indicates the baud rate could not be set because of the amount

of error with the baud rate and the input clock frequency.
❍ XST_INVALID_PARAM if one of the parameters was not valid.

Note:
The data types in the format type, data bits and parity, are 32 bit fields to prevent a compiler
warning that is a bug with the GNU PowerPC compiler. The asserts in this function will cause a
warning if these fields are bytes.

The baud rates tested include: 1200, 2400, 4800, 9600, 19200, 38400, 57600 and 115200.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_intr.c
File Reference

Detailed Description

This file contains the functions that are related to interrupt processing for the 16450/16550 UART driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.

#include "xuartns550.h"

#include "xuartns550_i.h"

#include "xio.h"

Functions

void XUartNs550_SetHandler (XUartNs550 *InstancePtr, XUartNs550_Handler FuncPtr, void
*CallBackRef)

void XUartNs550_InterruptHandler (XUartNs550 *InstancePtr)

Function Documentation

void XUartNs550_InterruptHandler (XUartNs550 * InstancePtr)

This function is the interrupt handler for the 16450/16550 UART driver. It must be connected to an
interrupt system by the user such that it is called when an interrupt for any 16450/16550 UART
occurs. This function does not save or restore the processor context such that the user must ensure this
occurs.

Parameters:
InstancePtr contains a pointer to the instance of the UART that the interrupt is for.

Returns:
None.

Note:
None.

void XUartNs550_SetHandler (XUartNs550 * InstancePtr,
XUartNs550_Handler FuncPtr,
void * CallBackRef

)

This function sets the handler that will be called when an event (interrupt) occurs in the driver. The
purpose of the handler is to allow application specific processing to be performed.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

FuncPtr is the pointer to the callback function.
CallBackRef is the upper layer callback reference passed back when the callback function is

invoked.

Returns:
None.

Note:
There is no assert on the CallBackRef since the driver doesn't know what it is (nor should it)

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_selftest.c
File Reference

Detailed Description

This file contains the self-test functions for the 16450/16550 UART driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.

#include "xstatus.h"

#include "xuartns550.h"

#include "xuartns550_i.h"

#include "xio.h"

Functions

XStatus XUartNs550_SelfTest (XUartNs550 *InstancePtr)

Function Documentation

XStatus XUartNs550_SelfTest (XUartNs550 * InstancePtr)

This functions runs a self-test on the driver and hardware device. This self test performs a local loopback and
verifies data can be sent and received.

The statistics are cleared at the end of the test. The time for this test to execute is proportional to the baud rate
that has been set prior to calling this function.

Parameters:
InstancePtr is a pointer to the XUartNs550 instance to be worked on.

Returns:
❍ XST_SUCCESS if the test was successful
❍ XST_UART_TEST_FAIL if the test failed looping back the data

Note:
This function can hang if the hardware is not functioning properly.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

uartns550/v1_00_b/src/xuartns550_g.c
File Reference

Detailed Description

This file contains a configuration table that specifies the configuration of NS16550 devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 03/11/02 Repartitioned driver for smaller files.

#include "xuartns550.h"

#include "xparameters.h"

Variables

XUartNs550_Config XUartNs550_ConfigTable []

Variable Documentation

XUartNs550_Config XUartNs550_ConfigTable[]

The configuration table for UART 16550/16450 devices in the table. Each device should have an
entry in this table.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xutil.h File Reference

Detailed Description

This file contains utility functions such as memory test functions.

Memory test description

A subset of the memory tests can be selected or all of the tests can be run in order. If there is an error detected by a
subtest, the test stops and the failure code is returned. Further tests are not run even if all of the tests are selected.

Subtest descriptions:

 XUT_ALLMEMTESTS:
 Runs all of the following tests

 XUT_INCREMENT:
 Incrementing Value Test.
 This test starts at 'XUT_MEMTEST_INIT_VALUE' and uses the incrementing
 value as the test value for memory.

 XUT_WALKONES:
 Walking Ones Test.
 This test uses a walking '1' as the test value for memory.
 location 1 = 0x00000001
 location 2 = 0x00000002
 ...

 XUT_WALKZEROS:
 Walking Zero's Test.
 This test uses the inverse value of the walking ones test
 as the test value for memory.
 location 1 = 0xFFFFFFFE
 location 2 = 0xFFFFFFFD
 ...

 XUT_INVERSEADDR:
 Inverse Address Test.

 This test uses the inverse of the address of the location under test
 as the test value for memory.

 XUT_FIXEDPATTERN:
 Fixed Pattern Test.
 This test uses the provided patters as the test value for memory.
 If zero is provided as the pattern the test uses '0xDEADBEEF".

WARNING

The tests are DESTRUCTIVE. Run before any initialized memory spaces have been set up.

The address, Addr, provided to the memory tests is not checked for validity except for the XNULL case. It is
possible to provide a code-space pointer for this test to start with and ultimately destroy executable code causing
random failures.

Note:
Used for spaces where the address range of the region is smaller than the data width. If the memory range is
greater than 2 ** width, the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a
boundry of a power of two making it more difficult to detect addressing errors. The XUT_INCREMENT
and XUT_INVERSEADDR tests suffer the same problem. Ideally, if large blocks of memory are to be
tested, break them up into smaller regions of memory to allow the test patterns used not to repeat over the
region tested.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 11/01/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Memory subtests

#define XUT_ALLMEMTESTS
#define XUT_INCREMENT
#define XUT_WALKONES
#define XUT_WALKZEROS

#define XUT_INVERSEADDR
#define XUT_FIXEDPATTERN
#define XUT_MAXTEST

Functions

XStatus XUtil_MemoryTest32 (Xuint32 *Addr, Xuint32 Words, Xuint32 Pattern, Xuint8 Subtest)
XStatus XUtil_MemoryTest16 (Xuint16 *Addr, Xuint32 Words, Xuint16 Pattern, Xuint8 Subtest)
XStatus XUtil_MemoryTest8 (Xuint8 *Addr, Xuint32 Words, Xuint8 Pattern, Xuint8 Subtest)

Define Documentation

#define XUT_ALLMEMTESTS

 See the detailed description of the subtests in the file description.

#define XUT_FIXEDPATTERN

 See the detailed description of the subtests in the file description.

#define XUT_INCREMENT

 See the detailed description of the subtests in the file description.

#define XUT_INVERSEADDR

 See the detailed description of the subtests in the file description.

#define XUT_MAXTEST

 See the detailed description of the subtests in the file description.

#define XUT_WALKONES

 See the detailed description of the subtests in the file description.

#define XUT_WALKZEROS

 See the detailed description of the subtests in the file description.

Function Documentation

XStatus XUtil_MemoryTest16 (Xuint16 * Addr,
Xuint32 Words,
Xuint16 Pattern,
Xuint8 Subtest

)

Performs a destructive 16-bit wide memory test.

Parameters:
Addr is a pointer to the region of memory to be tested.
Words is the length of the block.
Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.
Subtest is the test selected. See xutil.h for possible values.

Returns:
❍ XST_MEMTEST_FAILED is returned for a failure
❍ XST_SUCCESS is returned for a pass

Note:
Used for spaces where the address range of the region is smaller than the data width. If the memory
range is greater than 2 ** width, the patterns used in XUT_WALKONES and XUT_WALKZEROS will
repeat on a boundry of a power of two making it more difficult to detect addressing errors. The
XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same problem. Ideally, if large blocks
of memory are to be tested, break them up into smaller regions of memory to allow the test patterns used
not to repeat over the region tested.

XStatus XUtil_MemoryTest32 (Xuint32 * Addr,
Xuint32 Words,
Xuint32 Pattern,
Xuint8 Subtest

)

Performs a destructive 32-bit wide memory test.

Parameters:
Addr is a pointer to the region of memory to be tested.
Words is the length of the block.
Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.
Subtest is the test selected. See xutil.h for possible values.

Returns:
❍ XST_MEMTEST_FAILED is returned for a failure
❍ XST_SUCCESS is returned for a pass

Note:
Used for spaces where the address range of the region is smaller than the data width. If the memory
range is greater than 2 ** width, the patterns used in XUT_WALKONES and XUT_WALKZEROS will
repeat on a boundry of a power of two making it more difficult to detect addressing errors. The
XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same problem. Ideally, if large blocks
of memory are to be tested, break them up into smaller regions of memory to allow the test patterns used
not to repeat over the region tested.

XStatus XUtil_MemoryTest8 (Xuint8 * Addr,
Xuint32 Words,
Xuint8 Pattern,
Xuint8 Subtest

)

Performs a destructive 8-bit wide memory test.

Parameters:
Addr is a pointer to the region of memory to be tested.
Words is the length of the block.
Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.
Subtest is the test selected. See xutil.h for possible values.

Returns:
❍ XST_MEMTEST_FAILED is returned for a failure
❍ XST_SUCCESS is returned for a pass

Note:
Used for spaces where the address range of the region is smaller than the data width. If the memory
range is greater than 2 ** width, the patterns used in XUT_WALKONES and XUT_WALKZEROS will
repeat on a boundry of a power of two making it more difficult to detect addressing errors. The
XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same problem. Ideally, if large blocks
of memory are to be tested, break them up into smaller regions of memory to allow the test patterns used
not to repeat over the region tested.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xutil.h
Go to the documentation of this file.

00001 /* $Id: xutil.h,v 1.4 2002/03/12 23:56:48 moleres Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /**
00024 *
00025 * @file common/v1_00_a/src/xutil.h
00026 *
00027 * This file contains utility functions such as memory test functions.
00028 *
00029 * Memory test description
00030 *
00031 * A subset of the memory tests can be selected or all of the tests can be run
00032 * in order. If there is an error detected by a subtest, the test stops and the
00033 * failure code is returned. Further tests are not run even if all of the tests
00034 * are selected.
00035 *
00036 * Subtest descriptions:
00037 * <pre>
00038 * XUT_ALLMEMTESTS:
00039 * Runs all of the following tests
00040 *
00041 * XUT_INCREMENT:
00042 * Incrementing Value Test.

00043 * This test starts at 'XUT_MEMTEST_INIT_VALUE' and uses the incrementing
00044 * value as the test value for memory.
00045 *
00046 * XUT_WALKONES:
00047 * Walking Ones Test.
00048 * This test uses a walking '1' as the test value for memory.
00049 * location 1 = 0x00000001
00050 * location 2 = 0x00000002
00051 * ...
00052 *
00053 * XUT_WALKZEROS:
00054 * Walking Zero's Test.
00055 * This test uses the inverse value of the walking ones test
00056 * as the test value for memory.
00057 * location 1 = 0xFFFFFFFE
00058 * location 2 = 0xFFFFFFFD
00059 * ...
00060 *
00061 * XUT_INVERSEADDR:
00062 * Inverse Address Test.
00063 * This test uses the inverse of the address of the location under test
00064 * as the test value for memory.
00065 *
00066 * XUT_FIXEDPATTERN:
00067 * Fixed Pattern Test.
00068 * This test uses the provided patters as the test value for memory.
00069 * If zero is provided as the pattern the test uses '0xDEADBEEF".
00070 * </pre>
00071 *
00072 * <i>WARNING</i>
00073 *
00074 * The tests are DESTRUCTIVE. Run before any initialized memory spaces
00075 * have been set up.
00076 *
00077 * The address, Addr, provided to the memory tests is not checked for
00078 * validity except for the XNULL case. It is possible to provide a code-space
00079 * pointer for this test to start with and ultimately destroy executable code
00080 * causing random failures.
00081 *
00082 * @note
00083 *
00084 * Used for spaces where the address range of the region is smaller than
00085 * the data width. If the memory range is greater than 2 ** width,
00086 * the patterns used in XUT_WALKONES and XUT_WALKZEROS will repeat on a
00087 * boundry of a power of two making it more difficult to detect addressing
00088 * errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the same
00089 * problem. Ideally, if large blocks of memory are to be tested, break
00090 * them up into smaller regions of memory to allow the test patterns used
00091 * not to repeat over the region tested.
00092 *
00093 * <pre>
00094 * MODIFICATION HISTORY:
00095 *

00096 * Ver Who Date Changes
00097 * ----- ---- -------- ---
00098 * 1.00a ecm 11/01/01 First release
00099 * </pre>
00100 *
00101 **/
00102
00103 #ifndef XUTIL_H /* prevent circular inclusions */
00104 #define XUTIL_H /* by using protection macros */
00105
00106 /***************************** Include Files *********************************/
00107 #include "xbasic_types.h"

00108 #include "xstatus.h"

00109
00110 /************************** Constant Definitions *****************************/
00111
00112
00113 /**************************** Type Definitions *******************************/
00114
00115 /* xutil_memtest defines */
00116
00117 #define XUT_MEMTEST_INIT_VALUE 1
00118
00119 /** @name Memory subtests
00120 * @{
00121 */
00122 /** See the detailed description of the subtests in the file description. */
00123 #define XUT_ALLMEMTESTS 0

00124 #define XUT_INCREMENT 1

00125 #define XUT_WALKONES 2

00126 #define XUT_WALKZEROS 3

00127 #define XUT_INVERSEADDR 4

00128 #define XUT_FIXEDPATTERN 5

00129 #define XUT_MAXTEST XUT_FIXEDPATTERN

00130 /*@}*/
00131
00132 /***************** Macros (Inline Functions) Definitions *********************/
00133
00134
00135 /************************** Function Prototypes ******************************/
00136
00137 /* xutil_memtest prototypes */
00138
00139 XStatus XUtil_MemoryTest32(Xuint32 *Addr, Xuint32 Words, Xuint32 Pattern,

00140 Xuint8 Subtest);

00141 XStatus XUtil_MemoryTest16(Xuint16 *Addr, Xuint32 Words, Xuint16 Pattern,

00142 Xuint8 Subtest);

00143 XStatus XUtil_MemoryTest8(Xuint8 *Addr, Xuint32 Words, Xuint8 Pattern,

00144 Xuint8 Subtest);

00145
00146

00147 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

common/v1_00_a/src/xutil_memtest.c
File Reference

Detailed Description

Contains the memory test utility functions.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 11/01/01 First release

#include "xbasic_types.h"

#include "xstatus.h"

#include "xutil.h"

Functions

XStatus XUtil_MemoryTest32 (Xuint32 *Addr, Xuint32 Words, Xuint32 Pattern, Xuint8 Subtest)
XStatus XUtil_MemoryTest16 (Xuint16 *Addr, Xuint32 Words, Xuint16 Pattern, Xuint8 Subtest)
XStatus XUtil_MemoryTest8 (Xuint8 *Addr, Xuint32 Words, Xuint8 Pattern, Xuint8 Subtest)

Function Documentation

XStatus XUtil_MemoryTest16 (Xuint16 * Addr,
Xuint32 Words,
Xuint16 Pattern,
Xuint8 Subtest

)

Performs a destructive 16-bit wide memory test.

Parameters:
Addr is a pointer to the region of memory to be tested.
Words is the length of the block.
Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.
Subtest is the test selected. See xutil.h for possible values.

Returns:
❍ XST_MEMTEST_FAILED is returned for a failure
❍ XST_SUCCESS is returned for a pass

Note:
Used for spaces where the address range of the region is smaller than the data width. If the
memory range is greater than 2 ** width, the patterns used in XUT_WALKONES and
XUT_WALKZEROS will repeat on a boundry of a power of two making it more difficult to
detect addressing errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the
same problem. Ideally, if large blocks of memory are to be tested, break them up into smaller
regions of memory to allow the test patterns used not to repeat over the region tested.

XStatus XUtil_MemoryTest32 (Xuint32 * Addr,
Xuint32 Words,
Xuint32 Pattern,
Xuint8 Subtest

)

Performs a destructive 32-bit wide memory test.

Parameters:
Addr is a pointer to the region of memory to be tested.
Words is the length of the block.
Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.
Subtest is the test selected. See xutil.h for possible values.

Returns:
❍ XST_MEMTEST_FAILED is returned for a failure
❍ XST_SUCCESS is returned for a pass

Note:
Used for spaces where the address range of the region is smaller than the data width. If the
memory range is greater than 2 ** width, the patterns used in XUT_WALKONES and
XUT_WALKZEROS will repeat on a boundry of a power of two making it more difficult to
detect addressing errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the
same problem. Ideally, if large blocks of memory are to be tested, break them up into smaller
regions of memory to allow the test patterns used not to repeat over the region tested.

XStatus XUtil_MemoryTest8 (Xuint8 * Addr,
Xuint32 Words,
Xuint8 Pattern,
Xuint8 Subtest

)

Performs a destructive 8-bit wide memory test.

Parameters:
Addr is a pointer to the region of memory to be tested.
Words is the length of the block.
Pattern is the constant used for the constant pattern test, if 0, 0xDEADBEEF is used.
Subtest is the test selected. See xutil.h for possible values.

Returns:
❍ XST_MEMTEST_FAILED is returned for a failure
❍ XST_SUCCESS is returned for a pass

Note:

Used for spaces where the address range of the region is smaller than the data width. If the
memory range is greater than 2 ** width, the patterns used in XUT_WALKONES and
XUT_WALKZEROS will repeat on a boundry of a power of two making it more difficult to
detect addressing errors. The XUT_INCREMENT and XUT_INVERSEADDR tests suffer the
same problem. Ideally, if large blocks of memory are to be tested, break them up into smaller
regions of memory to allow the test patterns used not to repeat over the region tested.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb_i.h File
Reference

Detailed Description

This file contains data which is shared between files and internal to the XWdtTb component. It is
intended for internal use only.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release
 1.00b rpm 04/26/02 Moved register definitions to xwdttb_l.h

#include "xwdttb_l.h"

Go to the source code of this file.

Variables

XWdtTb_Config XWdtTb_ConfigTable []

Variable Documentation

XWdtTb_Config XWdtTb_ConfigTable[] ()

 This table contains configuration information for each watchdog timer device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XWdtTb Struct Reference
#include <xwdttb.h>

Detailed Description

The XWdtTb driver instance data. The user is required to allocate a variable of this type for every
watchdog/timer device in the system. A pointer to a variable of this type is then passed to the driver API
functions.

The documentation for this struct was generated from the following file:

● wdttb/v1_00_b/src/xwdttb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb.h
Go to the documentation of this file.

00001 /* $Id: xwdttb.h,v 1.7 2002/05/02 20:25:26 moleres Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file wdttb/v1_00_b/src/xwdttb.h
00026 *
00027 * The Xilinx watchdog timer/timebase component supports the Xilinx watchdog
00028 * timer/timebase hardware. More detailed description of the driver operation
00029 * for each function can be found in the xwdttb.c file.
00030 *
00031 * The Xilinx watchdog timer/timebase driver supports the following features:
00032 * - Polled mode
00033 * - enabling and disabling (if allowed by the hardware) the watchdog timer
00034 * - restarting the watchdog.
00035 * - reading the timebase.
00036 *
00037 * It is the responsibility of the application to provide an interrupt handler
00038 * for the timebase and the watchdog and connect them to the interrupt
00039 * system if interrupt driven mode is desired.
00040 *
00041 * The watchdog timer/timebase component ALWAYS generates an interrupt output
00042 * when:

00043 * - the watchdog expires the first time
00044 * - the timebase rolls over
00045 *
00046 * and ALWAYS generates a reset output when the watchdog timer expires a second
00047 * time. This is not configurable in any way from the software driver's
00048 * perspective.
00049 *
00050 * The Timebase is reset to 0 when the Watchdog Timer is enabled.
00051 *
00052 * If the hardware interrupt signal is not connected, polled mode is the only
00053 * option (using IsWdtExpired) for the watchdog. Reset output will occur for the
00054 * second watchdog timeout regardless. Polled mode for the timebase rollover is
00055 * just reading the contents of the register and seeing if the MSB has
00056 * transitioned from 1 to 0.
00057 *
00058 * The IsWdtExpired function is used for polling the watchdog timer and it is
00059 * also used to check if the watchdog was the cause of the last reset. In this
00060 * situation, call Initialize then call WdtIsExpired. If the result is true
00061 * watchdog timeout caused the last system reset. It is then acceptable to
further
00062 * initialize the component which will reset this bit.
00063 *
00064 * This driver is intended to be RTOS and processor independent. It works with
00065 * physical addresses only. Any needs for dynamic memory management, threads
00066 * or thread mutual exclusion, virtual memory, or cache control must be
00067 * satisfied by the layer above this driver.
00068 *
00069 * <pre>
00070 * MODIFICATION HISTORY:
00071 *
00072 * Ver Who Date Changes
00073 * ----- ---- -------- ---
00074 * 1.00a ecm 08/16/01 First release
00075 * 1.00b jhl 02/21/02 Repartitioned driver for smaller files
00076 * 1.00b rpm 04/26/02 Made LookupConfig public and added XWdtTb_Config
00077 * </pre>
00078 *
00079 **/
00080
00081 #ifndef XWDTTB_H /* prevent circular inclusions */
00082 #define XWDTTB_H /* by using protection macros */
00083
00084 /***************************** Include Files *********************************/
00085
00086 #include "xbasic_types.h"

00087 #include "xstatus.h"

00088
00089 /************************** Constant Definitions *****************************/
00090
00091
00092 /**************************** Type Definitions *******************************/
00093

00094 /**
00095 * This typedef contains configuration information for the device.
00096 */
00097 typedef struct

00098 {
00099 Xuint16 DeviceId; /**< Unique ID of device */

00100 Xuint32 BaseAddr; /**< Base address of the device */

00101 } XWdtTb_Config;

00102
00103
00104 /**
00105 * The XWdtTb driver instance data. The user is required to allocate a
00106 * variable of this type for every watchdog/timer device in the system.
00107 * A pointer to a variable of this type is then passed to the driver API
00108 * functions.
00109 */
00110 typedef struct

00111 {
00112 Xuint32 RegBaseAddress; /* Base address of registers */

00113 Xuint32 IsReady; /* Device is initialized and ready */

00114 Xuint32 IsStarted; /* Device watchdog timer is running */

00115 } XWdtTb;

00116
00117 /***************** Macros (Inline Functions) Definitions *********************/
00118
00119
00120 /************************** Function Prototypes ******************************/
00121
00122 /*
00123 * Required functions in xwdttb.c
00124 */
00125 XStatus XWdtTb_Initialize(XWdtTb *InstancePtr, Xuint16 DeviceId);

00126
00127 void XWdtTb_Start(XWdtTb *InstancePtr);

00128
00129 XStatus XWdtTb_Stop(XWdtTb *InstancePtr);

00130
00131 Xboolean XWdtTb_IsWdtExpired(XWdtTb *InstancePtr);

00132
00133 void XWdtTb_RestartWdt(XWdtTb *InstancePtr);

00134
00135 Xuint32 XWdtTb_GetTbValue(XWdtTb *InstancePtr);

00136
00137 XWdtTb_Config *XWdtTb_LookupConfig(Xuint16 DeviceId);

00138
00139 /*
00140 * Self-test functions in xwdttb_selftest.c
00141 */
00142 XStatus XWdtTb_SelfTest(XWdtTb *InstancePtr);

00143

00144 #endif /* end of protection macro */

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb.h File
Reference

Detailed Description

The Xilinx watchdog timer/timebase component supports the Xilinx watchdog timer/timebase hardware.
More detailed description of the driver operation for each function can be found in the xwdttb.c file.

The Xilinx watchdog timer/timebase driver supports the following features:

● Polled mode
● enabling and disabling (if allowed by the hardware) the watchdog timer
● restarting the watchdog.
● reading the timebase.

It is the responsibility of the application to provide an interrupt handler for the timebase and the
watchdog and connect them to the interrupt system if interrupt driven mode is desired.

The watchdog timer/timebase component ALWAYS generates an interrupt output when:

● the watchdog expires the first time
● the timebase rolls over

and ALWAYS generates a reset output when the watchdog timer expires a second time. This is not
configurable in any way from the software driver's perspective.

The Timebase is reset to 0 when the Watchdog Timer is enabled.

If the hardware interrupt signal is not connected, polled mode is the only option (using IsWdtExpired) for
the watchdog. Reset output will occur for the second watchdog timeout regardless. Polled mode for the
timebase rollover is just reading the contents of the register and seeing if the MSB has transitioned from

1 to 0.

The IsWdtExpired function is used for polling the watchdog timer and it is also used to check if the
watchdog was the cause of the last reset. In this situation, call Initialize then call WdtIsExpired. If the
result is true watchdog timeout caused the last system reset. It is then acceptable to further initialize the
component which will reset this bit.

This driver is intended to be RTOS and processor independent. It works with physical addresses only.
Any needs for dynamic memory management, threads or thread mutual exclusion, virtual memory, or
cache control must be satisfied by the layer above this driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 02/21/02 Repartitioned driver for smaller files
 1.00b rpm 04/26/02 Made LookupConfig public and added XWdtTb_Config

#include "xbasic_types.h"

#include "xstatus.h"

Go to the source code of this file.

Data Structures

struct XWdtTb
struct XWdtTb_Config

Functions

XStatus XWdtTb_Initialize (XWdtTb *InstancePtr, Xuint16 DeviceId)
void XWdtTb_Start (XWdtTb *InstancePtr)

XStatus XWdtTb_Stop (XWdtTb *InstancePtr)
Xboolean XWdtTb_IsWdtExpired (XWdtTb *InstancePtr)

void XWdtTb_RestartWdt (XWdtTb *InstancePtr)

Xuint32 XWdtTb_GetTbValue (XWdtTb *InstancePtr)
XStatus XWdtTb_SelfTest (XWdtTb *InstancePtr)

Function Documentation

Xuint32 XWdtTb_GetTbValue (XWdtTb * InstancePtr)

Returns the current contents of the timebase.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
The contents of the timebase.

Note:
None.

XStatus XWdtTb_Initialize (XWdtTb * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific watchdog timer/timebase instance/driver. This function must be called before
other functions of the driver are called.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

DeviceId is the unique id of the device controlled by this XWdtTb instance. Passing in a
device id associates the generic XWdtTb instance to a specific device, as chosen
by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if the configuration for device ID was not found

Note:
None.

Xboolean XWdtTb_IsWdtExpired (XWdtTb * InstancePtr)

Check if the watchdog timer has expired. This function is used for polled mode and it is also used to
check if the last reset was caused by the watchdog timer.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
XTRUE if the watchdog has expired, and XFALSE otherwise.

Note:
None.

void XWdtTb_RestartWdt (XWdtTb * InstancePtr)

Restart the watchdog timer. An application needs to call this function periodically to keep the timer
from asserting the reset output.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
None.

Note:
None.

XStatus XWdtTb_SelfTest (XWdtTb * InstancePtr)

Run a self-test on the timebase. This test verifies that the timebase is incrementing. The watchdog
timer is not tested due to the time required to wait for the watchdog timer to expire. The time
consumed by this test is dependant on the system clock and the configuration of the dividers in for the
input clock of the timebase.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
❍ XST_SUCCESS if self-test was successful
❍ XST_WDTTB_TIMER_FAILED if the timebase is not incrementing

Note:
None.

void XWdtTb_Start (XWdtTb * InstancePtr)

Start the watchdog timer of the device.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
None.

Note:
The Timebase is reset to 0 when the Watchdog Timer is started. The Timebase is always
incrementing

XStatus XWdtTb_Stop (XWdtTb * InstancePtr)

Disable the watchdog timer.

It is the caller's responsibility to disconnect the interrupt handler of the watchdog timer from the
interrupt source, typically an interrupt controller, and disable the interrupt in the interrupt controller.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
❍ XST_SUCCESS if the watchdog was stopped successfully
❍ XST_NO_FEATURE if the watchdog cannot be stopped

Note:
The hardware configuration controls this functionality. If it is not allowed by the hardware the
failure will be returned and the timer will continue without interruption.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb.c File
Reference

Detailed Description

Contains the required functions of the XWdtTb driver component. See xwdttb.h for a description of the
driver.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ecm 08/16/01 First release
 1.00b jhl 02/21/02 Repartitioned the driver for smaller files
 1.00b rpm 04/26/02 Made LookupConfig public

#include "xbasic_types.h"

#include "xparameters.h"

#include "xio.h"

#include "xwdttb.h"

#include "xwdttb_i.h"

Functions

XStatus XWdtTb_Initialize (XWdtTb *InstancePtr, Xuint16 DeviceId)
void XWdtTb_Start (XWdtTb *InstancePtr)

XStatus XWdtTb_Stop (XWdtTb *InstancePtr)

Xboolean XWdtTb_IsWdtExpired (XWdtTb *InstancePtr)
void XWdtTb_RestartWdt (XWdtTb *InstancePtr)

Xuint32 XWdtTb_GetTbValue (XWdtTb *InstancePtr)

Function Documentation

Xuint32 XWdtTb_GetTbValue (XWdtTb * InstancePtr)

Returns the current contents of the timebase.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
The contents of the timebase.

Note:
None.

XStatus XWdtTb_Initialize (XWdtTb * InstancePtr,
Xuint16 DeviceId

)

Initialize a specific watchdog timer/timebase instance/driver. This function must be called before
other functions of the driver are called.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

DeviceId is the unique id of the device controlled by this XWdtTb instance. Passing in a
device id associates the generic XWdtTb instance to a specific device, as chosen
by the caller or application developer.

Returns:
❍ XST_SUCCESS if initialization was successful
❍ XST_DEVICE_IS_STARTED if the device has already been started
❍ XST_DEVICE_NOT_FOUND if the configuration for device ID was not found

Note:

None.

Xboolean XWdtTb_IsWdtExpired (XWdtTb * InstancePtr)

Check if the watchdog timer has expired. This function is used for polled mode and it is also used to
check if the last reset was caused by the watchdog timer.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
XTRUE if the watchdog has expired, and XFALSE otherwise.

Note:
None.

void XWdtTb_RestartWdt (XWdtTb * InstancePtr)

Restart the watchdog timer. An application needs to call this function periodically to keep the timer
from asserting the reset output.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
None.

Note:
None.

void XWdtTb_Start (XWdtTb * InstancePtr)

Start the watchdog timer of the device.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
None.

Note:
The Timebase is reset to 0 when the Watchdog Timer is started. The Timebase is always
incrementing

XStatus XWdtTb_Stop (XWdtTb * InstancePtr)

Disable the watchdog timer.

It is the caller's responsibility to disconnect the interrupt handler of the watchdog timer from the
interrupt source, typically an interrupt controller, and disable the interrupt in the interrupt controller.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
❍ XST_SUCCESS if the watchdog was stopped successfully
❍ XST_NO_FEATURE if the watchdog cannot be stopped

Note:
The hardware configuration controls this functionality. If it is not allowed by the hardware the
failure will be returned and the timer will continue without interruption.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb_i.h
Go to the documentation of this file.

00001 /* $Id: xwdttb_i.h,v 1.7 2002/05/02 20:25:26 moleres Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file wdttb/v1_00_b/src/xwdttb_i.h
00026 *
00027 * This file contains data which is shared between files and internal to the
00028 * XWdtTb component. It is intended for internal use only.
00029 *
00030 * <pre>
00031 * MODIFICATION HISTORY:
00032 *
00033 * Ver Who Date Changes
00034 * ----- ---- -------- ---
00035 * 1.00b jhl 02/06/02 First release
00036 * 1.00b rpm 04/26/02 Moved register definitions to xwdttb_l.h
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XWDTTB_I_H /* prevent circular inclusions */
00042 #define XWDTTB_I_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xwdttb_l.h"

00047
00048 /************************** Constant Definitions *****************************/
00049
00050 /* The following constant controls how long the loop in the self-test
00051 * executes
00052 */
00053 #define XWT_MAX_SELFTEST_LOOP_COUNT 0x00010000
00054
00055 /**************************** Type Definitions *******************************/
00056
00057
00058 /***************** Macros (Inline Functions) Definitions *********************/
00059
00060
00061 /************************** Variable Definitions *****************************/
00062
00063 extern XWdtTb_Config XWdtTb_ConfigTable[];

00064
00065 /************************** Function Prototypes ******************************/
00066
00067
00068 #endif
00069

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb_l.h File
Reference

Detailed Description

This header file contains identifiers and low-level driver functions (or macros) that can be used to access
the device. High-level driver functions are defined in xwdttb.h.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b rpm 04/26/02 First release

#include "xbasic_types.h"

#include "xio.h"

Go to the source code of this file.

Defines

#define XWdtTb_mGetTimebaseReg(BaseAddress)
#define XWdtTb_mEnableWdt(BaseAddress)
#define XWdtTb_mDisableWdt(BaseAddress)
#define XWdtTb_mRestartWdt(BaseAddress)
#define XWdtTb_mHasReset(BaseAddress)
#define XWdtTb_mHasExpired(BaseAddress)

Define Documentation

#define XWdtTb_mDisableWdt(BaseAddress)

Disable the watchdog timer.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XWdtTb_mEnableWdt(BaseAddress)

Enable the watchdog timer. Clear previous expirations. The timebase is reset to 0.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

#define XWdtTb_mGetTimebaseReg(BaseAddress)

Get the contents of the timebase register.

Parameters:
BaseAddress is the base address of the device

Returns:
A 32-bit value representing the timebase.

Note:
None.

#define XWdtTb_mHasExpired(BaseAddress)

Check to see if the watchdog timer has expired.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if the watchdog did expire, XFALSE otherwise.

Note:
None.

#define XWdtTb_mHasReset(BaseAddress)

Check to see if the last system reset was caused by the timer expiring.

Parameters:
BaseAddress is the base address of the device

Returns:
XTRUE if the watchdog did cause the last reset, XFALSE otherwise.

Note:
None.

#define XWdtTb_mRestartWdt(BaseAddress)

Restart the watchdog timer.

Parameters:
BaseAddress is the base address of the device

Returns:
None.

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb_l.h
Go to the documentation of this file.

00001 /* $Id: xwdttb_l.h,v 1.1 2002/05/02 20:21:24 moleres Exp $ */
00002 /***
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 ***/
00022 /**/
00023 /**
00024 *
00025 * @file wdttb/v1_00_b/src/xwdttb_l.h
00026 *
00027 * This header file contains identifiers and low-level driver functions (or
00028 * macros) that can be used to access the device. High-level driver functions
00029 * are defined in xwdttb.h.
00030 *
00031 * <pre>
00032 * MODIFICATION HISTORY:
00033 *
00034 * Ver Who Date Changes
00035 * ----- ---- -------- ---
00036 * 1.00b rpm 04/26/02 First release
00037 * </pre>
00038 *
00039 **/
00040
00041 #ifndef XWDTTB_L_H /* prevent circular inclusions */
00042 #define XWDTTB_L_H /* by using protection macros */

00043
00044 /***************************** Include Files *********************************/
00045
00046 #include "xbasic_types.h"

00047 #include "xio.h"

00048
00049 /************************** Constant Definitions *****************************/
00050
00051 /* Offsets of registers from the start of the device */
00052
00053 #define XWT_TWCSR0_OFFSET 0x0
00054 #define XWT_TWCSR1_OFFSET 0x4
00055 #define XWT_TBR_OFFSET 0x8
00056
00057 /* TWCSR0 Control/Status Register 0 bits */
00058
00059 #define XWT_CSR0_WRS_MASK 0x00000008 /* reset status */
00060 #define XWT_CSR0_WDS_MASK 0x00000004 /* timer state */
00061 #define XWT_CSR0_EWDT1_MASK 0x00000002 /* enable bit 1 */
00062
00063 /* TWCSR0/1 Control/Status Register 0/1 bits */
00064
00065 #define XWT_CSRX_EWDT2_MASK 0x00000001 /* enable bit 2 */
00066
00067
00068 /**************************** Type Definitions *******************************/
00069
00070
00071 /***************** Macros (Inline Functions) Definitions *********************/
00072
00073 /***
00074 *
00075 * Low-level driver macros and functions. The list below provides signatures
00076 * to help the user use the macros.
00077 *
00078 * Xuint32 XWdtTb_mGetTimebaseReg(Xuint32 BaseAddress)
00079 *
00080 * void XWdtTb_mEnableWdt(Xuint32 BaseAddress)
00081 * void XWdtTb_mDisableWdt(Xuint32 BaseAddress)
00082 * void XWdtTb_mRestartWdt(Xuint32 BaseAddress)
00083 *
00084 * Xboolean XWdtTb_mHasReset(Xuint32 BaseAddress)
00085 * Xboolean XWdtTb_mHasExpired(Xuint32 BaseAddress)
00086 *
00087 ***/
00088
00089
00090 /**/
00091 /**
00092 *
00093 * Get the contents of the timebase register.
00094 *

00095 * @param BaseAddress is the base address of the device
00096 *
00097 * @return A 32-bit value representing the timebase.
00098 *
00099 * @note None.
00100 *
00101 ***/
00102 #define XWdtTb_mGetTimebaseReg(BaseAddress) \

00103 XIo_In32((BaseAddress) + XWT_TBR_OFFSET)
00104
00105
00106 /**/
00107 /**
00108 *
00109 * Enable the watchdog timer. Clear previous expirations. The timebase is
00110 * reset to 0.
00111 *
00112 * @param BaseAddress is the base address of the device
00113 *
00114 * @return None.
00115 *
00116 * @note None.
00117 *
00118 ***/
00119 #define XWdtTb_mEnableWdt(BaseAddress) \

00120 { \
00121 XIo_Out32((BaseAddress) + XWT_TWCSR0_OFFSET, XWT_CSR0_EWDT1_MASK | \
00122 XWT_CSR0_WRS_MASK | XWT_CSR0_WDS_MASK); \
00123 XIo_Out32((BaseAddress) + XWT_TWCSR1_OFFSET, XWT_CSRX_EWDT2_MASK); \
00124 }
00125
00126
00127 /**/
00128 /**
00129 *
00130 * Disable the watchdog timer.
00131 *
00132 * @param BaseAddress is the base address of the device
00133 *
00134 * @return None.
00135 *
00136 * @note None.
00137 *
00138 ***/
00139 #define XWdtTb_mDisableWdt(BaseAddress) \

00140 { \
00141 XIo_Out32((BaseAddress) + XWT_TWCSR0_OFFSET, 0); \
00142 XIo_Out32((BaseAddress) + XWT_TWCSR1_OFFSET, 0); \
00143 }
00144
00145
00146 /**/

00147 /**
00148 *
00149 * Restart the watchdog timer.
00150 *
00151 * @param BaseAddress is the base address of the device
00152 *
00153 * @return None.
00154 *
00155 * @note None.
00156 *
00157 ***/
00158 #define XWdtTb_mRestartWdt(BaseAddress) \

00159 XIo_Out32((BaseAddress) + XWT_TWCSR0_OFFSET, \
00160 XWT_CSR0_EWDT1_MASK | XWT_CSR0_WRS_MASK |
XWT_CSR0_WDS_MASK)
00161
00162
00163 /**/
00164 /**
00165 *
00166 * Check to see if the last system reset was caused by the timer expiring.
00167 *
00168 * @param BaseAddress is the base address of the device
00169 *
00170 * @return XTRUE if the watchdog did cause the last reset, XFALSE otherwise.
00171 *
00172 * @note None.
00173 *
00174 ***/
00175 #define XWdtTb_mHasReset(BaseAddress) \

00176 (XIo_In32((BaseAddress) + XWT_TWCSR0_OFFSET) &
XWT_CSR0_WRS_MASK)
00177
00178
00179 /**/
00180 /**
00181 *
00182 * Check to see if the watchdog timer has expired.
00183 *
00184 * @param BaseAddress is the base address of the device
00185 *
00186 * @return XTRUE if the watchdog did expire, XFALSE otherwise.
00187 *
00188 * @note None.
00189 *
00190 ***/
00191 #define XWdtTb_mHasExpired(BaseAddress) \

00192 (XIo_In32((BaseAddress) + XWT_TWCSR0_OFFSET) &
XWT_CSR0_WDS_MASK)
00193
00194
00195 /************************** Function Prototypes ******************************/

00196
00197
00198 /************************** Variable Definitions *****************************/
00199
00200
00201 #endif
00202

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

XWdtTb_Config Struct Reference
#include <xwdttb.h>

Detailed Description

This typedef contains configuration information for the device.

Data Fields

Xuint16 DeviceId
Xuint32 BaseAddr

Field Documentation

Xuint32 XWdtTb_Config::BaseAddr

 Base address of the device

Xuint16 XWdtTb_Config::DeviceId

 Unique ID of device

The documentation for this struct was generated from the following file:

● wdttb/v1_00_b/src/xwdttb.h

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb_selftest.c File
Reference

Detailed Description

Contains diagnostic self-test functions for the XWdtTb component.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 02/06/02 First release

#include "xbasic_types.h"

#include "xio.h"

#include "xwdttb.h"

#include "xwdttb_i.h"

Functions

XStatus XWdtTb_SelfTest (XWdtTb *InstancePtr)

Function Documentation

XStatus XWdtTb_SelfTest (XWdtTb * InstancePtr)

Run a self-test on the timebase. This test verifies that the timebase is incrementing. The watchdog
timer is not tested due to the time required to wait for the watchdog timer to expire. The time
consumed by this test is dependant on the system clock and the configuration of the dividers in for the
input clock of the timebase.

Parameters:
InstancePtr is a pointer to the XWdtTb instance to be worked on.

Returns:
❍ XST_SUCCESS if self-test was successful
❍ XST_WDTTB_TIMER_FAILED if the timebase is not incrementing

Note:
None.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

wdttb/v1_00_b/src/xwdttb_g.c File
Reference

Detailed Description

This file contains a table that specifies the configuration of all watchdog timer devices in the system.
Each device should have an entry in the table.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 01/18/01 First release
 1.00b jhl 02/21/02 Repartitioned driver for smaller files

#include "xwdttb.h"

#include "xparameters.h"

Variables

XWdtTb_Config XWdtTb_ConfigTable [XPAR_XWDTTB_NUM_INSTANCES]

Variable Documentation

XWdtTb_Config XWdtTb_ConfigTable[XPAR_XWDTTB_NUM_INSTANCES]

 This table contains configuration information for each watchdog timer device in the system.

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

channel_fifo/v1_00_a/src/xchannel_fifo_v1_00_a.h
00001 /* $Id: xchannel_fifo_v1_00_a.h,v 1.1 2003/05/20 22:20:57 meinelte Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /*
00024 *
00025 * @file channel_fifo/v1_00_a/src/xchannel_fifo_v1_00_a.h
00026 *
00027 * This component is a common component because it's primary purpose is to
00028 * prevent code duplication in drivers. A driver which must handle a channel
00029 * FIFO uses this component rather than directly manipulating a channel FIFO
00030 * directly.
00031 *
00032 * A FIFO is a device which has dual port memory such that one user may be
00033 * inserting data into the FIFO while another is consuming data from the FIFO.
00034 * A channel FIFO is designed for use with channel protocols such as HDLC.
00035 * It is typically only used with devices when DMA and/or Scatter Gather
00036 * is used.
00037 *
00038 * @note
00039 *
00040 * This component has the capability to generate an interrupt when an error
00041 * condition occurs. It is the user's responsibility to provide the interrupt
00042 * processing to handle the interrupt. This component provides the ability to
00043 * determine if that interrupt is active, a deadlock condition, and the ability
00044 * to reset the FIFO to clear the condition. In this condition, the device which

00045 * is using the FIFO should also be reset to prevent other problems. This error
00046 * condition could occur as a normal part of operation if the size of the FIFO
00047 * is not setup correctly. See the hardware IP specification for more details.
00048 *
00049 * <pre>
00050 * MODIFICATION HISTORY:
00051 *
00052 * Ver Who Date Changes
00053 * ----- ---- -------- ---
00054 * 1.00a ecm 04/18/03 First release
00055 * </pre>
00056 *
00057 ***/
00058 #ifndef XCHANNEL_FIFO_H /* prevent circular inclusions */
00059 #define XCHANNEL_FIFO_H /* by using protection macros */
00060
00061 /***************************** Include Files *********************************/
00062
00063 #include "xbasic_types.h"

00064 #include "xstatus.h"

00065
00066 /************************** Constant Definitions *****************************/
00067
00068 #define XST_CFIFO_BAD_REG_VALUE 0 /* s/b XStatus
*/
00069 #define XST_CFIFO_LACK_OF_DATA 0 /* s/b XStatus
*/
00070 #define XST_CFIFO_NO_ROOM 0 /* s/b
XStatus */
00071
00072 /* need to fix these */
00073 #define XCF_RESET_REG_OFFSET 0x00
00074 #define XCF_COUNT_STATUS_REG_OFFSET 0x00
00075
00076 /*
00077 * This constant specifies the width of the FIFOs.
00078 */
00079 #define XCF_FIFO_WIDTH_BYTE_COUNT 4
00080
00081 /*
00082 * These constants specify the FIFO type and are mutually exclusive
00083 */
00084 #define XCF_READ_FIFO_TYPE 0 /* a read FIFO */
00085 #define XCF_WRITE_FIFO_TYPE 1 /* a write FIFO */
00086
00087 /*
00088 * These constants define the offsets to each of the registers from the
00089 * register base Addr, each of the constants are a number of bytes
00090 */
00091 #define XCF_TXFIFO_DATA_OFFSET 0x0000UL
00092 #define XCF_TXFIFO_STATUS_OFFSET 0x0000UL
00093 #define XCF_RXFIFO_STATUS_OFFSET 0x2000UL
00094 #define XCF_RXFIFO_DATA_OFFSET 0x2004UL

00095
00096 /*
00097 * This constant is used with the Reset Register
00098 */
00099 #define XCF_RESET_FIFO_MASK 0x0000000A
00100
00101 /*
00102 * These constants are used with the Occupancy/Vacancy Count Register. This
00103 * register also contains FIFO status
00104 */
00105 #define XCF_COUNT_MASK 0x01FFFFFF
00106 #define XCF_HALF_EMPTY_FULL_MASK 0x20000000
00107 #define XCF_ALMOST_EMPTY_FULL_MASK 0x40000000
00108 #define XCF_EMPTY_FULL_MASK 0x80000000
00109
00110 /*
00111 * These constants are used with the FIFO write operation. Used to
00112 * indicate the number of valid bytes in the last write operation
00113 * which also indicates the end of packet (EOP).
00114 */
00115 #define XCF_1_BYTES_VALID_OFFSET 0x00000014 /* only 1 byte
valid */
00116 #define XCF_2_BYTES_VALID_OFFSET 0x00000018 /* only 2 bytes
valid */
00117 #define XCF_3_BYTES_VALID_OFFSET 0x0000001C /* only 3 bytes
valid */
00118 #define XCF_4_BYTES_VALID_OFFSET 0x00000010 /* all 4 bytes
valid */
00119
00120 /**************************** Type Definitions *******************************/
00121
00122 /***************** Macros (Inline Functions) Definitions *********************/
00123
00124 /***/
00125 /*
00126 *
00127 * Reset the specified channel FIFO. Resetting a FIFO will cause any data
00128 * contained in the FIFO to be lost.
00129 *
00130 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00131 *
00132 * @return
00133 *
00134 * None.
00135 *
00136 * @note
00137 *
00138 * Signature: void XCF_V100A_RESET(XChannelFifoAddrV100a InstancePtr)
00139 *
00140 **/
00141 #define XCF_V100A_RESET(ChannelBaseAddr) \
00142 XIo_Out32((ChannelBaseAddr) + XCF_RESET_REG_OFFSET, XCF_RESET_FIFO_MASK);
00143

00144
00145 /***/
00146 /*
00147 *
00148 * Get the occupancy count for a read channel FIFO and the vacancy count for a
00149 * write channel FIFO. These counts indicate the number of 32-bit words
00150 * contained (occupancy) in the FIFO or the number of 32-bit words available
00151 * to write (vacancy) in the FIFO.
00152 *
00153 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00154 *
00155 * @return
00156 *
00157 * The occupancy or vacancy count for the specified channel FIFO.
00158 *
00159 * @note
00160 *
00161 * Signature: Xuint32 XCF_V100A_GET_COUNT(XChannelFifoAddrV100a InstancePtr)
00162 *
00163 **/
00164 #define XCF_V100A_GET_COUNT(ChannelBaseAddr) \
00165 (XIo_In32((ChannelBaseAddr) + XCF_COUNT_STATUS_REG_OFFSET) & \
00166 XCF_COUNT_MASK)
00167
00168
00169 /***/
00170 /*
00171 *
00172 * Determine if the specified channel FIFO is almost empty. Almost empty is
00173 * defined for a read FIFO when there is only one data word in the FIFO.
00174 *
00175 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00176 *
00177 * @return
00178 *
00179 * XTRUE if the channel FIFO is almost empty, XFALSE otherwise.
00180 *
00181 * @note
00182 *
00183 * Signature: Xboolean XCF_V100A_IS_ALMOST_EMPTY(XChannelFifoAddrV100a
InstancePtr)
00184 *
00185 **/
00186 #define XCF_V100A_IS_ALMOST_EMPTY(ChannelBaseAddr) \
00187 (XIo_In32((ChannelBaseAddr) + XCF_COUNT_STATUS_REG_OFFSET) & \
00188 XCF_ALMOST_EMPTY_FULL_MASK)
00189
00190
00191 /***/
00192 /*
00193 *
00194 * Determine if the specified channel FIFO is almost full. Almost full is
00195 * defined for a write FIFO when there is only one available data word in the

00196 * FIFO.
00197 *
00198 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00199 *
00200 * @return
00201 *
00202 * XTRUE if the channel FIFO is almost full, XFALSE otherwise.
00203 *
00204 * @note
00205 *
00206 * Signature: Xboolean XCF_V100A_IS_ALMOST_FULL(XChannelFifoAddrV100a
InstancePtr)
00207 *
00208 **/
00209 #define XCF_V100A_IS_ALMOST_FULL(ChannelBaseAddr) \
00210 (XIo_In32((ChannelBaseAddr) + XCF_COUNT_STATUS_REG_OFFSET) & \
00211 XCF_ALMOST_EMPTY_FULL_MASK)
00212
00213
00214 /***/
00215 /*
00216 *
00217 * Determine if the specified channel FIFO is empty. This applies only to a
00218 * read FIFO.
00219 *
00220 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00221 *
00222 * @return
00223 *
00224 * XTRUE if the channel FIFO is empty, XFALSE otherwise.
00225 *
00226 * @note
00227 *
00228 * Signature: Xboolean XCF_V100A_IS_EMPTY(XChannelFifoAddrV100a InstancePtr)
00229 *
00230 **/
00231 #define XCF_V100A_IS_EMPTY(ChannelBaseAddr) \
00232 (XIo_In32((ChannelBaseAddr) + XCF_COUNT_STATUS_REG_OFFSET) & \
00233 XCF_EMPTY_FULL_MASK)
00234
00235
00236 /***/
00237 /*
00238 *
00239 * Determine if the specified channel FIFO is full. This applies only to a
00240 * write FIFO.
00241 *
00242 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00243 *
00244 * @return
00245 *
00246 * XTRUE if the channel FIFO is full, XFALSE otherwise.
00247 *

00248 * @note
00249 *
00250 * Signature: Xboolean XCF_V100A_IS_FULL(XChannelFifoAddrV100a InstancePtr)
00251 *
00252 **/
00253 #define XCF_V100A_IS_FULL(ChannelBaseAddr) \
00254 (XIo_In32((ChannelBaseAddr) + XCF_COUNT_STATUS_REG_OFFSET) & \
00255 XCF_EMPTY_FULL_MASK)
00256
00257
00258 /***/
00259 /*
00260 *
00261 * Determine if the specified channel FIFO is deadlocked. This condition occurs
00262 * when the FIFO is full and empty at the same time and is caused by a channel
00263 * being written to the FIFO which exceeds the total data capacity of the FIFO.
00264 * It occurs because of the mark/restore features of the channel FIFO which
allow
00265 * retransmission of a channel. The software should reset the FIFO and any
devices
00266 * using the FIFO when this condition occurs.
00267 *
00268 * @param ChannelBaseAddr contains the base address of the FIFO to operate on.
00269 *
00270 * @return
00271 *
00272 * XTRUE if the channel FIFO is deadlocked, XFALSE otherwise.
00273 *
00274 * @note
00275 *
00276 * This component has the capability to generate an interrupt when an error
00277 * condition occurs. It is the user's responsibility to provide the interrupt
00278 * processing to handle the interrupt. This function provides the ability to
00279 * determine if a deadlock condition, and the ability to reset the FIFO to
00280 * clear the condition.
00281 *
00282 * In this condition, the device which is using the FIFO should also be reset
00283 * to prevent other problems. This error condition could occur as a normal part
00284 * of operation if the size of the FIFO is not setup correctly.
00285 *
00286 * Signature: Xboolean XCF_V100A_IS_DEADLOCKED(XChannelFifoAddrV100a
InstancePtr)
00287 *
00288 **/
00289 #define XCF_V100A_IS_DEADLOCKED(ChannelBaseAddr) \
00290 (XIo_In32((ChannelBaseAddr) + XCF_COUNT_STATUS_REG_OFFSET) & \
00291 XCF_DEADLOCK_MASK)
00292
00293
00294 /************************** Function Prototypes ******************************/
00295
00296 /* Standard functions */
00297

00298 XStatus XChannelFifoV100a_SelfTest(Xuint32 ChannelBaseAddr,

00299 Xuint32

FifoType);
00300
00301 /* Data functions */
00302
00303 XStatus XChannelFifoV100a_Read(Xuint32 ChannelBaseAddr,

00304 Xuint32 *ReadBufferPtr,

00305 Xuint32 ByteCount,

00306 Xuint32 *StatusRegister);

00307
00308 XStatus XChannelFifoV100a_Write(Xuint32 ChannelBaseAddr,

00309 Xuint32 *WriteBufferPtr,

00310 Xuint32 ByteCount,

00311 Xuint32 *StatusRegister);

00312
00313 #endif /* end of protection macro */
00314
00315
00316
00317

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

emc/v1_00_a/src/xemc_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of EMC devices in the system. In
addition, there is a lookup function used by the driver to access its configuration information.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a rmm 02/04/02 First release
 1.00a rpm 05/14/02 Made configuration table/lookup public

#include "xemc.h"

#include "xparameters.h"

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

iic/v1_01_c/src/xiic_slave.c File
Reference

Detailed Description

Contains slave functions for the XIic component. This file is necessary when slave operations, sending
and receiving data as a slave on the IIC bus, are desired.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- --- ------- ---
 1.01b jhl 3/26/02 repartioned the driver
 1.01c ecm 12/05/02 new rev

#include "xiic.h"

#include "xiic_i.h"

#include "xio.h"

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

intc/v1_00_b/src/xintc_lg.c File
Reference

Detailed Description

This file contains the generated configuration data for the low level driver of the interrupt controller.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a jhl 05/02/02 First release

#include "xbasic_types.h"

#include "xintc_l.h"

#include "xparameters.h"

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

packet_fifo/v2_00_a/src/xpacket_fifo_v2_00_a.h
00001 /* $Id: xpacket_fifo_v2_00_a.h,v 1.1 2003/01/08 17:45:20 meinelte Exp $ */
00002 /**
00003 *
00004 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"
00005 * AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND
00006 * SOLUTIONS FOR XILINX DEVICES. BY PROVIDING THIS DESIGN, CODE,
00007 * OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,
00008 * APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION
00009 * THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,
00010 * AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE
00011 * FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY DISCLAIMS ANY
00012 * WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE
00013 * IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR
00014 * REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF
00015 * INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00016 * FOR A PARTICULAR PURPOSE.
00017 *
00018 * (c) Copyright 2002 Xilinx Inc.
00019 * All rights reserved.
00020 *
00021 **/
00022 /***/
00023 /*
00024 *
00025 * @file packet_fifo/v2_00_a/src/xpacket_fifo_v2_00_a.h
00026 *
00027 * This component is a common component because it's primary purpose is to
00028 * prevent code duplication in drivers. A driver which must handle a packet
00029 * FIFO uses this component rather than directly manipulating a packet FIFO.
00030 *
00031 * A FIFO is a device which has dual port memory such that one user may be
00032 * inserting data into the FIFO while another is consuming data from the FIFO.
00033 * A packet FIFO is designed for use with packet protocols such as Ethernet and
00034 * ATM. It is typically only used with devices when DMA and/or Scatter Gather
00035 * is used. It differs from a nonpacket FIFO in that it does not provide any
00036 * interrupts for thresholds of the FIFO such that it is less useful without
00037 * DMA.
00038 *
00039 * @note
00040 *
00041 * This component has the capability to generate an interrupt when an error
00042 * condition occurs. It is the user's responsibility to provide the interrupt
00043 * processing to handle the interrupt. This component provides the ability to
00044 * determine if that interrupt is active, a deadlock condition, and the ability

00045 * to reset the FIFO to clear the condition. In this condition, the device which
00046 * is using the FIFO should also be reset to prevent other problems. This error
00047 * condition could occur as a normal part of operation if the size of the FIFO
00048 * is not setup correctly. See the hardware IP specification for more details.
00049 *
00050 * <pre>
00051 * MODIFICATION HISTORY:
00052 *
00053 * Ver Who Date Changes
00054 * ----- ---- -------- ---
00055 * 2.00a ecm 12/30/02 First release
00056 * </pre>
00057 *
00058 ***/
00059 #ifndef XPACKET_FIFO_V200A_H /* prevent circular inclusions */
00060 #define XPACKET_FIFO_V200A_H /* by using protection macros */
00061
00062 /***************************** Include Files *********************************/
00063
00064 #include "xbasic_types.h"

00065 #include "xstatus.h"

00066
00067 /************************** Constant Definitions *****************************/
00068
00069 /*
00070 * These constants specify the FIFO type and are mutually exclusive
00071 */
00072 #define XPF_V200A_READ_FIFO_TYPE 0 /* a read FIFO */
00073 #define XPF_V200A_WRITE_FIFO_TYPE 1 /* a write FIFO */
00074
00075 /*
00076 * These constants define the offsets to each of the registers from the
00077 * register base address, each of the constants are a number of bytes
00078 */
00079 #define XPF_V200A_RESET_REG_OFFSET 0UL
00080 #define XPF_V200A_MODULE_INFO_REG_OFFSET 0UL
00081 #define XPF_V200A_COUNT_STATUS_REG_OFFSET 4UL
00082
00083 /*
00084 * This constant is used with the Reset Register
00085 */
00086 #define XPF_V200A_RESET_FIFO_MASK 0x0000000A
00087
00088 /*
00089 * These constants are used with the Occupancy/Vacancy Count Register. This
00090 * register also contains FIFO status
00091 */
00092 #define XPF_V200A_COUNT_MASK 0x00FFFFFF
00093 #define XPF_V200A_DEADLOCK_MASK 0x20000000
00094 #define XPF_V200A_ALMOST_EMPTY_FULL_MASK 0x40000000
00095 #define XPF_V200A_EMPTY_FULL_MASK 0x80000000
00096 #define XPF_V200A_VACANCY_SCALED_MASK 0x10000000

00097
00098 /*
00099 * This constant is used to mask the Width field
00100 */
00101 #define XPF_V200A_FIFO_WIDTH_MASK 0x0E000000
00102
00103 /*
00104 * These constants are used with the Width field
00105 */
00106 #define XPF_V200A_FIFO_WIDTH_LEGACY_TYPE 0x00000000
00107 #define XPF_V200A_FIFO_WIDTH_8BITS_TYPE 0x02000000
00108 #define XPF_V200A_FIFO_WIDTH_16BITS_TYPE 0x04000000
00109 #define XPF_V200A_FIFO_WIDTH_32BITS_TYPE 0x06000000
00110 #define XPF_V200A_FIFO_WIDTH_64BITS_TYPE 0x08000000
00111 #define XPF_V200A_FIFO_WIDTH_128BITS_TYPE 0x0A000000
00112 #define XPF_V200A_FIFO_WIDTH_256BITS_TYPE 0x0C000000
00113 #define XPF_V200A_FIFO_WIDTH_512BITS_TYPE 0x0E000000
00114
00115
00116 /**************************** Type Definitions *******************************/
00117
00118 /*
00119 * The XPacketFifo driver instance data. The driver is required to allocate a
00120 * variable of this type for every packet FIFO in the device.
00121 */
00122 typedef struct
00123 {
00124 Xuint32 RegBaseAddress; /* Base address of registers */

00125 Xuint32 IsReady; /* Device is initialized and ready */

00126 Xuint32 DataBaseAddress; /* Base address of data for FIFOs */

00127 } XPacketFifoV200a;
00128
00129 /***************** Macros (Inline Functions) Definitions *********************/
00130
00131 /***/
00132 /*
00133 *
00134 * Reset the specified packet FIFO. Resetting a FIFO will cause any data
00135 * contained in the FIFO to be lost.
00136 *
00137 * @param InstancePtr contains a pointer to the FIFO to operate on.
00138 *
00139 * @return
00140 *
00141 * None.
00142 *
00143 * @note
00144 *
00145 * Signature: void XPF_V200A_RESET(XPacketFifoV200a *InstancePtr)
00146 *
00147 **/
00148 #define XPF_V200A_RESET(InstancePtr) \

00149 XIo_Out32((InstancePtr)->RegBaseAddress + XPF_V200A_RESET_REG_OFFSET,
XPF_V200A_RESET_FIFO_MASK);
00150
00151
00152 /***/
00153 /*
00154 *
00155 * Get the occupancy count for a read packet FIFO and the vacancy count for a
00156 * write packet FIFO. These counts indicate the number of 32-bit words
00157 * contained (occupancy) in the FIFO or the number of 32-bit words available
00158 * to write (vacancy) in the FIFO.
00159 *
00160 * @param InstancePtr contains a pointer to the FIFO to operate on.
00161 *
00162 * @return
00163 *
00164 * The occupancy or vacancy count for the specified packet FIFO.
00165 *
00166 * @note
00167 *
00168 * Signature: Xuint32 XPF_V200A_GET_COUNT(XPacketFifoV200a *InstancePtr)
00169 *
00170 **/
00171 #define XPF_V200A_GET_COUNT(InstancePtr) \
00172 (XIo_In32((InstancePtr)->RegBaseAddress +
XPF_V200A_COUNT_STATUS_REG_OFFSET) & \
00173 XPF_V200A_COUNT_MASK)
00174
00175
00176 /***/
00177 /*
00178 *
00179 * Determine if the specified packet FIFO is almost empty. Almost empty is
00180 * defined for a read FIFO when there is only one data word in the FIFO.
00181 *
00182 * @param InstancePtr contains a pointer to the FIFO to operate on.
00183 *
00184 * @return
00185 *
00186 * XTRUE if the packet FIFO is almost empty, XFALSE otherwise.
00187 *
00188 * @note
00189 *
00190 * Signature: Xboolean XPF_V200A_IS_ALMOST_EMPTY(XPacketFifoV200a *InstancePtr)
00191 *
00192 **/
00193 #define XPF_V200A_IS_ALMOST_EMPTY(InstancePtr) \
00194 (XIo_In32((InstancePtr)->RegBaseAddress +
XPF_V200A_COUNT_STATUS_REG_OFFSET) & \
00195 XPF_V200A_ALMOST_EMPTY_FULL_MASK)
00196
00197
00198 /***/

00199 /*
00200 *
00201 * Determine if the specified packet FIFO is almost full. Almost full is
00202 * defined for a write FIFO when there is only one available data word in the
00203 * FIFO.
00204 *
00205 * @param InstancePtr contains a pointer to the FIFO to operate on.
00206 *
00207 * @return
00208 *
00209 * XTRUE if the packet FIFO is almost full, XFALSE otherwise.
00210 *
00211 * @note
00212 *
00213 * Signature: Xboolean XPF_V200A_IS_ALMOST_FULL(XPacketFifoV200a *InstancePtr)
00214 *
00215 **/
00216 #define XPF_V200A_IS_ALMOST_FULL(InstancePtr) \
00217 (XIo_In32((InstancePtr)->RegBaseAddress +
XPF_V200A_COUNT_STATUS_REG_OFFSET) & \
00218 XPF_V200A_ALMOST_EMPTY_FULL_MASK)
00219
00220
00221 /***/
00222 /*
00223 *
00224 * Determine if the specified packet FIFO is empty. This applies only to a
00225 * read FIFO.
00226 *
00227 * @param InstancePtr contains a pointer to the FIFO to operate on.
00228 *
00229 * @return
00230 *
00231 * XTRUE if the packet FIFO is empty, XFALSE otherwise.
00232 *
00233 * @note
00234 *
00235 * Signature: Xboolean XPF_V200A_IS_EMPTY(XPacketFifoV200a *InstancePtr)
00236 *
00237 **/
00238 #define XPF_V200A_IS_EMPTY(InstancePtr) \
00239 (XIo_In32((InstancePtr)->RegBaseAddress +
XPF_V200A_COUNT_STATUS_REG_OFFSET) & \
00240 XPF_V200A_EMPTY_FULL_MASK)
00241
00242
00243 /***/
00244 /*
00245 *
00246 * Determine if the specified packet FIFO is full. This applies only to a
00247 * write FIFO.
00248 *

00249 * @param InstancePtr contains a pointer to the FIFO to operate on.
00250 *
00251 * @return
00252 *
00253 * XTRUE if the packet FIFO is full, XFALSE otherwise.
00254 *
00255 * @note
00256 *
00257 * Signature: Xboolean XPF_V200A_IS_FULL(XPacketFifoV200a *InstancePtr)
00258 *
00259 **/
00260 #define XPF_V200A_IS_FULL(InstancePtr) \
00261 (XIo_In32((InstancePtr)->RegBaseAddress +
XPF_V200A_COUNT_STATUS_REG_OFFSET) & \
00262 XPF_V200A_EMPTY_FULL_MASK)
00263
00264
00265 /***/
00266 /*
00267 *
00268 * Determine if the specified packet FIFO is deadlocked. This condition occurs
00269 * when the FIFO is full and empty at the same time and is caused by a packet
00270 * being written to the FIFO which exceeds the total data capacity of the FIFO.
00271 * It occurs because of the mark/restore features of the packet FIFO which allow
00272 * retransmission of a packet. The software should reset the FIFO and any
devices
00273 * using the FIFO when this condition occurs.
00274 *
00275 * @param InstancePtr contains a pointer to the FIFO to operate on.
00276 *
00277 * @return
00278 *
00279 * XTRUE if the packet FIFO is deadlocked, XFALSE otherwise.
00280 *
00281 * @note
00282 *
00283 * This component has the capability to generate an interrupt when an error
00284 * condition occurs. It is the user's responsibility to provide the interrupt
00285 * processing to handle the interrupt. This function provides the ability to
00286 * determine if a deadlock condition, and the ability to reset the FIFO to
00287 * clear the condition.
00288 *
00289 * In this condition, the device which is using the FIFO should also be reset
00290 * to prevent other problems. This error condition could occur as a normal part
00291 * of operation if the size of the FIFO is not setup correctly.
00292 *
00293 * Signature: Xboolean XPF_V200A_IS_DEADLOCKED(XPacketFifoV200a *InstancePtr)
00294 *
00295 **/
00296 #define XPF_V200A_IS_DEADLOCKED(InstancePtr) \
00297 (XIo_In32((InstancePtr)->RegBaseAddress +
XPF_V200A_COUNT_STATUS_REG_OFFSET) & \
00298 XPF_V200A_DEADLOCK_MASK)

00299
00300
00301 /************************** Function Prototypes ******************************/
00302
00303 /* Standard functions */
00304
00305 XStatus XPacketFifoV200a_Initialize(XPacketFifoV200a *InstancePtr,

00306 Xuint32 RegBaseAddress,

00307 Xuint32 DataBaseAddress);

00308 XStatus XPacketFifoV200a_SelfTest(XPacketFifoV200a *InstancePtr, Xuint32

FifoType);
00309
00310 /* Data functions */
00311
00312 XStatus XPacketFifoV200a_Read(XPacketFifoV200a *InstancePtr,

00313 Xuint8 *ReadBufferPtr,

00314 Xuint32 ByteCount);

00315 XStatus XPacketFifoV200a_Write(XPacketFifoV200a *InstancePtr,

00316 Xuint8 *WriteBufferPtr,

00317 Xuint32 ByteCount);

00318
00319 #endif /* end of protection macro */
00320
00321
00322
00323

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

pci/v1_00_a/src/xpci_g.c File Reference

Detailed Description

This file contains a configuration table that specifies the configuration of PCI devices in the system.

Note:
None.

#include "xpci.h"

#include "xparameters.h"

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

ps2_ref/v1_00_a/src/xps2_g.c File
Reference

Detailed Description

This file contains a configuration table that specifies the configuration of PS/2 devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 06/18/02 First release

#include "xps2.h"

#include "xparameters.h"

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

tmrctr/v1_00_b/src/xtmrctr_l.c File
Reference

Detailed Description

This file contains low-level driver functions that can be used to access the device. The user should refer
to the hardware device specification for more details of the device operation.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00b jhl 04/24/02 First release

#include "xbasic_types.h"

#include "xtmrctr_l.h"

Generated on 29 May 2003 for Xilinx Device Drivers

Xilinx Device Drivers
Driver Summary Copyright

Main Page Data Structures File List Data Fields Globals

touchscreen_ref/v1_00_a/src/xtouchscreen_g.c
File Reference

Detailed Description

This file contains a configuration table that specifies the configuration of touchscreen devices in the system.

 MODIFICATION HISTORY:

 Ver Who Date Changes
 ----- ---- -------- ---
 1.00a ch 08/15/02 First release

#include "xtouchscreen.h"

#include "xparameters.h"

Generated on 29 May 2003 for Xilinx Device Drivers

	Software Documentation
	Xilinx Device Drivers Documentation
	Summary
	Device Driver Summary
	ATM Controller
	Ethernet 10/100 MAC
	Ethernet 10/100 MAC Lite
	External Memory Controller
	General Purpose I/O
	Gigabit Ethernet MAC
	HDLC
	Intel StrataFlash
	Inter-Integrated Circuit (IIC)
	Interrupt Controller
	OPB Arbiter
	OPB to PLB Bridge
	PCI Bridge
	PLB Arbiter
	PLB to OPB Bridge
	Rapid I/O
	Serial Peripheral Interface (SPI)
	System ACE
	Timer/Counter
	UART Lite
	UART 16450/16550
	Watchdog Timer/Timbase

	Building Block Components
	Common
	CPU/CPU_PPC405
	IPIF
	DMA
	Packet FIFO

	Xilinx Copyright Notice
	Xilinx Device Drivers File List
	Annotated Index
	Compound Member Index
	File Member Index
	Other Files
	ATM
	xatmc.h File Reference
	XAtmc struct Reference
	atmc/v1_00_c/src/xatmc.h Source File
	XAtmc_Stats struct Reference
	XAtmc_Config struct Reference
	xatmc_cfg.c File Reference
	atmc/v1_00_c/src/xatmc_i.h Source File
	xatmc_i.h File Reference
	atmc/v1_00_c/src/xatmc_l.h Source File
	xatmc_l.h File Reference
	xatmc_l.c File Reference
	xatmc.c File Reference
	xatmc_g.c File Reference

	Common
	xenv_linux.h File Reference
	xbasic_types.c File Reference
	xbasic_types.h File Reference
	common/v1_00_a/src/xstatus.h Source File
	common/v1_00_a/src/xparameters.h Source File
	xstatus.h File Reference
	xparameters.h File Reference
	xenv.h File Reference
	common/v1_00_a/src/xenv_none.h Source File
	xenv_none.h File Reference
	common/v1_00_a/src/xenv.h Source File
	common/v1_00_a/src/xenv_vxworks.h Source File
	common/v1_00_a/src/xbasic_types.h Source File
	common/v1_00_a/src/xenv_linux.h Source File
	xutil.h File Reference
	common/v1_00_a/src/xutil.h Source File
	xutil_memtest.c File Reference

	CPU/CPU_PPC405
	cpu_ppc405/v1_00_a/src/xio.h Source File
	cpu/v1_00_a/src/xio.h Source File
	xio.h File Reference
	xio.c File Reference
	xio.h File Reference
	xio.c File Reference
	xio_dcr.h File Reference
	cpu_ppc405/v1_00_a/src/xio_dcr.h Source File
	xio_dcr.c File Reference

	Ethernet 10/100 MAC
	xemac_g.c File Reference
	emac/v1_00_c/src/xemac.h Source File
	XEmac_Stats struct Reference
	XEmac_Config struct Reference
	XEmac struct Reference
	xemac.c File Reference
	xemac_l.h File Reference
	emac/v1_00_c/src/xemac_l.h Source File
	xemac_l.c File Reference
	emac/v1_00_c/src/xemac_i.h Source File
	xemac_i.h File Reference
	xemac_selftest.c File Reference
	xemac_polled.c File Reference
	xemac_intr_dma.c File Reference
	xemac_intr_fifo.c File Reference
	xemac_intr.c File Reference
	xemac_options.c File Reference
	xemac_multicast.c File Reference
	xemac_phy.c File Reference
	xemac_stats.c File Reference
	xemac.h File Reference

	Ethernat 10/100 MAC Lite
	xemaclite_l.h File Reference
	emaclite/v1_00_a/src/xemaclite_l.h Source File
	xemaclite_l.c File Reference

	External Memory Controller
	xemc.h File Reference
	XEmc struct Reference
	emc/v1_00_a/src/xemc.h Source File
	XEmc_Config struct Reference
	xemc.c File Reference
	emc/v1_00_a/src/xemc_i.h Source File
	xemc_i.h File Reference
	xemc_l.h File Reference
	emc/v1_00_a/src/xemc_l.h Source File
	xemc_selftest.c File Reference
	xenv_vxworks.h File Reference
	xemc_g.c File Reference

	HDLC
	XHdlc struct Reference
	hdlc/v1_00_a/src/xhdlc.h Source File
	xhdlc.h File Reference
	xhdlc_g.c File Reference
	XHdlc_Config struct Reference
	hdlc/v1_00_a/src/xhdlc_l.h Source File
	xhdlc_l.h File Reference
	xhdlc_l.c File Reference
	XHdlc_Stats struct Reference
	xhdlc.c File Reference
	hdlc/v1_00_a/src/xhdlc_i.h Source File
	xhdlc_i.h File Reference
	xhdlc_selftest.c File Reference
	xhdlc_options.c File Reference
	xhdlc_stats.c File Reference
	xhdlc_dmasg.c File Reference

	General Purpose I/O
	xgpio_i.h File Reference
	gpio/v1_00_a/src/xgpio.h Source File
	xgpio.h File Reference
	XGpio struct Reference
	gpio/v1_00_a/src/xgpio_l.h Source File
	xgpio_l.h File Reference
	xgpio.c File Reference
	gpio/v1_00_a/src/xgpio_i.h Source File
	xgpio_extra.c File Reference
	xgpio_selftest.c File Reference
	xgpio_g.c File Reference

	Gigabit Ethernet MAC
	xgemac.h File Reference
	xgemac_g.c File Reference
	gemac/v1_00_c/src/xgemac.h Source File
	XGemac_Stats struct Reference
	XGemac_SoftStats struct Reference
	XGemac_Config struct Reference
	XGemac struct Reference
	xgemac.c File Reference
	gemac/v1_00_c/src/xgemac_i.h Source File
	xgemac_i.h File Reference
	gemac/v1_00_c/src/xgemac_l.h Source File
	xgemac_l.h File Reference
	xgemac_selftest.c File Reference
	xgemac_polled.c File Reference
	xgemac_intr_dma.c File Reference
	xgemac_intr_fifo.c File Reference
	xgemac_intr.c File Reference
	xgemac_options.c File Reference
	xgemac_stats.c File Reference

	Intel StrataFlash
	flash/v1_00_a/src/xflash.h Source File
	xflash.h File Reference
	xflash.c File Reference
	flash/v1_00_a/src/xflash_cfi.h Source File
	flash/v1_00_a/src/xflash_geometry.h Source File
	xflash_geometry.h File Reference
	XFlashGeometry struct Reference
	xflash_geometry.c File Reference
	flash/v1_00_a/src/xflash_properties.h Source File
	xflash_properties.h File Reference
	XFlashPartID struct Reference
	XFlashProgCap struct Reference
	XFlashProperties struct Reference
	XFlashTiming struct Reference
	xflash_cfi.c File Reference
	XFlash_Config struct Reference
	XFlashTag struct Reference
	xflash_g.c File Reference
	xflash_cfi.h File Reference
	xflash_intel.h File Reference
	flash/v1_00_a/src/xflash_intel.h Source File
	xflash_intel.c File Reference
	flash/v1_00_a/src/xflash_intel_l.h Source File
	xflash_intel_l.h File Reference
	xflash_intel_l.c File Reference

	Inter-Integrated Circuit (IIC)
	xiic.h File Reference
	XIic struct Reference
	iic/v1_01_c/src/xiic.h Source File
	xiic_l.h File Reference
	iic/v1_01_c/src/xiic_l.h Source File
	xiic_l.c File Reference
	XIic_Config struct Reference
	XIicStats struct Reference
	xiic.c File Reference
	iic/v1_01_c/src/xiic_i.h Source File
	xiic_i.h File Reference
	xiic_intr.c File Reference
	xiic_master.c File Reference
	xiic_stats.c File Reference
	xiic_selftest.c File Reference
	xiic_options.c File Reference
	xiic_multi_master.c File Reference
	xiic_g.c File Reference
	xiic_slave.c File Reference

	Interrupt Controller
	xintc.h File Reference
	xintc.c File Reference
	XIntc struct Reference
	intc/v1_00_b/src/xintc.h Source File
	xintc_l.h File Reference
	intc/v1_00_b/src/xintc_l.h Source File
	xintc_l.c File Reference
	XIntc_Config struct Reference
	xintc_intr.c File Reference
	intc/v1_00_b/src/xintc_i.h Source File
	xintc_i.h File Reference
	xintc_options.c File Reference
	xintc_selftest.c File Reference
	xintc_g.c File Reference
	xintc_lg.c File Reference

	Miscellaneous
	xps2_stats.c File Reference
	XENV_TIME_STAMP struct Reference
	ps2_ref/v1_00_a/src/xps2.h Source File
	xps2.h File Reference
	xps2.c File Reference
	xps2_l.h File Reference
	ps2_ref/v1_00_a/src/xps2_l.h Source File
	xps2_l.c File Reference
	ps2_ref/v1_00_a/src/xps2_i.h Source File
	xps2_i.h File Reference
	xps2_options.c File Reference
	xps2_intr.c File Reference
	xtouchscreen.h File Reference
	touchscreen_ref/v1_00_a/src/xtouchscreen_l.h Source File
	xtouchscreen_l.h File Reference
	xtouchscreen_l.c File Reference
	touchscreen_ref/v1_00_a/src/xtouchscreen.h Source File
	xtouchscreen.c File Reference
	touchscreen_ref/v1_00_a/src/xtouchscreen_i.h Source File
	xtouchscreen_i.h File Reference
	xtouchscreen_intr.c File Reference
	channel_fifo/v1_00_a/src/xchannel_fifo_v1_00_a.h Source File
	xpci_g.c File Reference
	xps2_g.c File Reference
	xtouchscreen_g.c File Reference
	packet_fifo/v2_00_a/src/xpacket_fifo_v2_00_a.h Source File

	OPB to PLB Bridge
	XOpb2Plb struct Reference
	opb2plb/v1_00_a/src/xopb2plb.h Source File
	xopb2plb_l.h File Reference
	opb2plb/v1_00_a/src/xopb2plb_l.h Source File
	XOpb2Plb_Config struct Reference
	xopb2plb.c File Reference
	opb2plb/v1_00_a/src/xopb2plb_i.h Source File
	xopb2plb_i.h File Reference
	xopb2plb_selftest.c File Reference
	xopb2plb_g.c File Reference
	xopb2plb.h File Reference

	OPB Arbiter
	xopbarb.h File Reference
	XOpbArb struct Reference
	opbarb/v1_02_a/src/xopbarb.h Source File
	xopbarb_l.h File Reference
	opbarb/v1_02_a/src/xopbarb_l.h Source File
	XOpbArb_Config struct Reference
	xopbarb.c File Reference
	xopbarb_g.c File Reference

	PCI Bridge
	xpci_intr.c File Reference
	XPci struct Reference
	pci/v1_00_a/src/xpci.h Source File
	xpci.h File Reference
	pci/v1_00_a/src/xpci_l.h Source File
	xpci_l.h File Reference
	XPciError struct Reference
	xpci_config.c File Reference
	xpci_v3.c File Reference
	xpci_selftest.c File Reference

	PLB to OPB Bridge
	xplb2opb.h File Reference
	XPlb2Opb struct Reference
	plb2opb/v1_00_a/src/xplb2opb.h Source File
	xplb2opb_l.h File Reference
	plb2opb/v1_00_a/src/xplb2opb_l.h Source File
	XPlb2Opb_Config struct Reference
	xplb2opb.c File Reference
	plb2opb/v1_00_a/src/xplb2opb_i.h Source File
	xplb2opb_i.h File Reference
	xplb2opb_selftest.c File Reference
	xplb2opb_g.c File Reference

	PLB Arbiter
	xplbarb.h File Reference
	XPlbArb struct Reference
	plbarb/v1_01_a/src/xplbarb.h Source File
	XPlbArb_Config struct Reference
	xplbarb.c File Reference
	plbarb/v1_01_a/src/xplbarb_i.h Source File
	xplbarb_i.h File Reference
	xplbarb_l.h File Reference
	plbarb/v1_01_a/src/xplbarb_l.h Source File
	xplbarb_selftest.c File Reference
	xplbarb_g.c File Reference

	Rapid I/O
	xrapidio_l.h File Reference
	rapidio/v1_00_a/src/xrapidio_l.h Source File
	xrapidio_l.c File Reference

	Serial Peripheral Interface (SPI)
	xspi.h File Reference
	XSpi struct Reference
	spi/v1_00_b/src/xspi.h Source File
	XSpi_Stats struct Reference
	XSpi_Config struct Reference
	xspi.c File Reference
	spi/v1_00_b/src/xspi_i.h Source File
	xspi_i.h File Reference
	xspi_l.h File Reference
	spi/v1_00_b/src/xspi_l.h Source File
	xspi_selftest.c File Reference
	xspi_stats.c File Reference
	xspi_options.c File Reference
	xspi_g.c File Reference

	System ACE
	xsysace_l.h File Reference
	XSysAce struct Reference
	sysace/v1_00_a/src/xsysace.h Source File
	xsysace.h File Reference
	xsysace.c File Reference
	sysace/v1_00_a/src/xsysace_l.h Source File
	xsysace_l.c File Reference
	XSysAce_Config struct Reference
	xsysace_g.c File Reference
	XSysAce_CFParameters struct Reference
	xsysace_compactflash.c File Reference
	xsysace_jtagcfg.c File Reference
	xsysace_intr.c File Reference
	xsysace_selftest.c File Reference

	Timer/Counter
	xtmrctr.h File Reference
	xtmrctr.c File Reference
	XTmrCtr struct Reference
	tmrctr/v1_00_b/src/xtmrctr.h Source File
	xtmrctr_l.h File Reference
	tmrctr/v1_00_b/src/xtmrctr_l.h Source File
	XTmrCtr_Config struct Reference
	XTmrCtrStats struct Reference
	xtmrctr_options.c File Reference
	tmrctr/v1_00_b/src/xtmrctr_i.h Source File
	xtmrctr_i.h File Reference
	xtmrctr_stats.c File Reference
	xtmrctr_selftest.c File Reference
	xtmrctr_intr.c File Reference
	xtmrctr_g.c File Reference
	xtmrctr_l.c File Reference

	UART Lite
	xuartlite_stats.c File Reference
	XUartLite struct Reference
	uartlite/v1_00_b/src/xuartlite.h Source File
	xuartlite.h File Reference
	XUartLite_Buffer struct Reference
	XUartLite_Config struct Reference
	XUartLite_Stats struct Reference
	xuartlite.c File Reference
	uartlite/v1_00_b/src/xuartlite_i.h Source File
	xuartlite_i.h File Reference
	xuartlite_l.h File Reference
	uartlite/v1_00_b/src/xuartlite_l.h Source File
	xuartlite_l.c File Reference
	xuartlite_selftest.c File Reference
	xuartlite_intr.c File Reference
	xuartlite_g.c File Reference

	UART 16450/16550
	xuartns550_stats.c File Reference
	uartns550/v1_00_b/src/xuartns550.h Source File
	xuartns550.h File Reference
	xuartns550.c File Reference
	xuartns550_l.h File Reference
	uartns550/v1_00_b/src/xuartns550_l.h Source File
	xuartns550_l.c File Reference
	XUartNs550_Config struct Reference
	XUartNs550Format struct Reference
	XUartNs550Stats struct Reference
	XUartNs550 struct Reference
	uartns550/v1_00_b/src/xuartns550_i.h Source File
	xuartns550_i.h File Reference
	xuartns550_options.c File Reference
	xuartns550_format.c File Reference
	xuartns550_intr.c File Reference
	xuartns550_selftest.c File Reference
	xuartns550_g.c File Reference

	Watchdog Timer/Timebase
	xwdttb_i.h File Reference
	XWdtTb struct Reference
	wdttb/v1_00_b/src/xwdttb.h Source File
	xwdttb.h File Reference
	xwdttb.c File Reference
	wdttb/v1_00_b/src/xwdttb_i.h Source File
	xwdttb_l.h File Reference
	wdttb/v1_00_b/src/xwdttb_l.h Source File
	XWdtTb_Config struct Reference
	xwdttb_selftest.c File Reference
	xwdttb_g.c File Reference

