
-1-

Project Report

Of

JPEG Decoder

And

8-color Photo Viewer

Class: Embedded System Design

By Prof. Stephen Edwards (sedwards@cs.columbia.edu)

GROUP MEMBERS of GROUP 2 (in TA’s list):

<ktchiao@yahoo.com> <Steve Chiao>

<seantang.mal@gmail.com> <Sean Tang>

<steelyang@gmail.com> <Steel Yang>

-2-

1. Proposal

TITLE: “JPEG Decoder and 8-color Photo Viewer”

SUMMARY: “We will build a photo viewer which can display 640*480 photos in

baseline JPEG format or in 8-color format”

DESCRIPTION:

1.1 This JPEG decoder can download, decode and display baseline JPEG (out of 14

JPEG formats) pictures, and 8-color photo viewer can download 640*480 images in

8-color format from PC to Digilent external SRAM and display them on the 8-color

monitor..

1.2 C-code programming part I: JPEG Decoder

1.2.1 Input image: byte-by-byte input through RS232 to external SRAM and

convert from text characters to byte numbers.

1.2.2 Input defragmentation: frame/marker decoding and DQ/DH table setup.

1.2.3 VLD: Variable length decoding

1.2.4 ZZ: ZigZag scan

1.2.5 DQ: De-quantization

1.2.6 IDCT: Integer inverse discrete cosine transformation. (Optional – hardwired

IDCT module)

1.2.7 Colorspace conversion: From YCbCr to RGB colorspace

1.2.8 Reordering: Re-order the bitstream in a line-by-line fashion

1.2.9 Color display mapping: map 24-bit RGB colorspace down to 8-color display

in C

1.2.10 Output image: store decompressed 8-color image data into external

memory

1.2.11 Display image: display image data from external memory to 8-color

monitor.

1.3 C-code programming part II: 8-color Photo Viewer, from PC to 8-color monitor

through Digilent board.

1.4 VHDL programming part: we need to create a new PCORE called

video_emc_controller in VHDL format including 4 major functions:

-3-

1.4.1 Video controller: It can display the 640*480 image onto 8-color monitor, so

basically it informs video buffer to get next image data to display when

current data in its shift register has been used/shifted out, and video

controller automatically load in next image data assuming video buffer has

gotten the correct one already at the right timing.

1.4.2 Video buffer: Video buffer is the bridge for video controller to get image

data from external SRAM, so when video controller asks for data, video

buffer activates an OPB read cycle playing as an OPB master device.

When it gets the correct data back, it stores the data in its own buffer

waiting video controller to get them.

1.4.3 Mode master select: Since for external memory/SRAM being an OPB slave

device, it may either have an OPB master access from external OPB bus

entering into video_emc_controller, or have an internal OPB master access

from video buffer, mode master select is used to separate two different

master access. It’s done by an internal mode register to tell the difference.

Mode register is also mapped and saved into external SRAM in address

0xc00fffff (so it’s like a write-through in cache). In mode register, lowest 3

bits are used to indicate video display (internally) or host SRAM access

(externally), video display mode is the default mode, and we have next

lowest 3 bits as force mode to force it go into host SRAM access mode for

JPEG image downloading or JPEG image decoding.

1.4.4 External memory controller (EMC): External memory controller is an OPB

slave device for OPB master to access (read or write), so it needs to

behave as an OPB slave device, and being able to read & write SRAM in

the right timing as well..

1.5 HW/SW system integration: Correctly integrate video_emc_controller PCORE

into uBlaze system, and get correct C code running. (Professor will help this part due

to tight project schedule.)

1.6 (Optional) Add selectable photo effects (C-code programming efforts) and/or add

hardware accelerators for instruction/data intensive parts (VHDL programming efforts)

if we have extra time.

-4-

RESULTS: (MILESTONE with DEMO)

MILESTONE 1: 8-color Photo Viewer – 8-color image is downloaded from PC to

Digilent external SRAM through RS232, and display the resulting image onto 8-color

monitor.

MILESTONE 2: JPEG Decoder with pre-stored image – Decode pre-stored small

JPEG image (in BRAM), save de-compressed 8-color image into Digilent external

SRAM, and display it onto 8-color monitor.

MILESTONE 3: JPEG Decoder with input-from-PC image – First input JPEG image

from PC to Digilent external SRAM through RS232 interface, then de-compress it

and save it back to external SRAM, and then finally display it onto 8-color monitor.

-5-

2. Task breakdown

2.1 C-code programming part I: JPEG Decoder

No Name Description

T2.1.1 Input image

(1.2.1)

1. Input image byte-by-byte through RS232 to uBlaze.

2. Image in text characters is converted to image in byte number, and

saved into external SRAM on digilent board.

3. Another optional way is to make image pre-saved into external

SRAM when downloading the system code. (After receiving EOF

character or special last 2-byte pattern called MARKER in JPEG,

disable RS232-to-external-memory path & activate JPEG decoder

C-code automatically.)

T2.1.2 JPEG

decoder

C-code

porting

(1.2.2 –

1.2.8)

1. Port JPEG decoder C-code to uBlaze system so LIB, FILE I/O, &

malloc have to be modified or removed.

2. LIB – multipliers & other operations.

3. FILE I/O – fi & fo related

4. Memory mapping – Allocated for intermediate data storage.

5. Hardwired IDCT I/O (optional if extra time exists) – connect to OPB

with internal input/output registers 2*64 bytes, & special handler to

import and export block.

T2.1.3 Color

display

mapping

(1.2.9)

Map 24-bit RGB colorspace down to 8-color display in C-code.

T2.1.4 Output

image

(1.2.10)

Store decompressed 8-color image data into external memory.

T2.1.5 Display

image

(1.2.11)

Display image data from external memory to 8-color monitor. (Enable

RS232-to-external-memory path for next JPEG image file download.)

T2.1.6 VHDL

IDCT

(Optional)

Port IDCT with internal input/output registers 2*64 bytes, & special

handler to import and export block into VHDL hardwired module.

-6-

2.2 C-code programming part I: 8-color Photo Viewer

No Name Description

T2.2.1 Input image

(1.2.1)

1. Input image byte-by-byte through RS232 to uBlaze.

2. Image in text characters is converted to image in byte number, and

saved into external SRAM on digilent board.

T2.2.2 Display

image

(1.2.11)

Display image data from external memory to 8-color monitor. (Enable

RS232-to-external-memory path for next JPEG image file download.)

-7-

2.3 VHDL programming part: we need to create a new PCORE called

video_emc_controller in VHDL format

No Name Description

T2.3.1 Hardware

functional

definition

and partition

1. Itemize all functions we need: video controller to display images,

video buffer being an OPB master device as well, mode master

select (we decide not to implement an arbiter because we don’t

really need it, as long as we can switch the mode in between 2

masters), and an external SRAM controller to read and write SRAM.

2. Also we need to understand external SRAM address mapping since

it will cause bugs if we can’t properly assign the correct address (it

did happen many times). For our case, we use 0xC0000003 as our

SRAM base address, the last hex 0x’3’ can be ignored as 0x’0’

because we force byte enable all ‘1’s in our hardware. We also assign

first 480*80 words (32 bits) in SRAM as video buffer space for

video display, and all the following words in SRAM are free for host

to use for JPEG image storage or other purposes.

3. two external SRAM (256k*16) is combined into one SRAM

(256*32), so for host to use it, byte-to-word, and word-to-byte

conversion should be done properly. For video controller, it matches

its shift register width well.

T2.3.2 Video

controller

1. Video controller is to scan the 640*480 pixel screen in a RASPER

fashion. Shift register in it is 32-bit long, matching one word in SRAM.

4-bit per pixel is defined to use, first 3 MSB bits are red bit, green bit,

and blue bit. Last bit is unused in order to match address alignment

problem. So 8 pixels output per shift register is done. It also means

480*80-word video buffer is needed for the whole video screen.

2. Video controller runs in pixel_clk domain, half speed compared to

opb_clk domain, so when it signals “video buffer update” right after

signal LoadNShift, video buffer have enough time (up to around 16

opb_clk cycles) to load in the new pixel word from external SRAM.

3. Video controller needs to count the correct offset address for the next

pixel word, and that offset address is word-based, not byte-based by

default convention.

T2.3.2 Video buffer 1. Video buffer separate two clock domain worlds, one world in

pixel_clk domain to accept new pixel word load-in command from

video controller, and the other world in opb_clk domain to play as an

OPB master device to read in the new pixel word from SRAM

controller acting as OPB slave device.

-8-

2. Control signal passed from video controller is a cross-clock-domain

signal, so double-latch to make metal stable is needed before in use

in opb_clk domain for data integrity reason.

3. Video buffer needs to calculate out correct OPB read address, it

means byte-based base address adds word-based offset address

should be taken care properly in VHDL code.

T2.3.2 Mode

master

select

1. Mode select is stored in a control register in mode master select, and

also in SRAM location 0xC00FFFFF. Why do that? Because when

host to write this control register, it uses OPB bus, in order for us to

give back the correct ACK in OPB protocol, we make this control

data to save into SRAM in reality to make OPB protocol kept. Only

one word is traded off out of 256k words, which we don’t care.

2. In mode master select, we also screen the read/write request is true

or false by checking its header (as identifier), first 12 bits of R/W

address is 0xC00 or not, because in our MHS definitions for HIGH

address is much larger than 1M bytes, and to prevent OPB master

choose it but with wrong address.

3. Mode control register includes force mode because we make video

display default, when host need to access SRAM, force mode is used

to do that. Actually the mode control can be done in 1 bit, but since

we have already coded it in VHDL, we just use it.

T2.3.2 External

memory

controller

1. External memory is an OPB slave device on one side to respond to

OPB master request, and on the other side it needs to conduct SRAM

read and write correctly considering SRAM limitations.

2. We keep MEM_CEN low to let SRAM R/W quickest, but with more

power consumption. (In our case, timing is not that critical though

because our clock cycle is 20nS wide.)

3. SRAM read is done using MEM_OEN and MEM_WEN to control,

3-cycle FSM stage is used to match SRAM write to simplify logic

design, actually it can read in less than 3 cycles easily.

4. SRAM write is done using 1-cycle MEM_WEN to keep timing safe,

so 3-cycle FSM stage is used (excluding idle state).

5. Read out data is only valid for one cycle when OPB_ACK = ‘1’ to

match OPB protocol.

-9-

2.4 MISC Notes we’ve considered and resolved

Note 0 – Final result is subject to change which means it may differ from what we

state below here.

Note 1 – DI/OA/B[15:0] of external SRAM are bi-directional, so we should declare

special tri-state I/O pads for them in Xilinx Platform Studio. Actually we don’t need

to do that. Another way to work around is to reference what Xilinx IP does, they

declare three internal pins (pin_I, pin_O, & pin_T) of tristate IO pad in port list of

related PCORE module, and declare them in system.mhs, and then Platform Studio

will match them to a tristate IO pad automatically.

Note 2 – If external memory/SRAM controller (EMC) could be accessed by uBlaze

and video controller at the same time, an EMC arbiter for that is needed. But like we

stated above, actually we don’t need that, the only thing we need is a mode switch if

we don’t need video display while decoding and downloading JPEG image.

Note 3 – Write effecient C codes to help debugging. Professor demonstrated some

good tips for debugging.

Note 4 – A way to avoid EMC arbiter is to enable video controller AFTER JPEG

decoding, so we need to have a special way/procedure to disable/enable

RS232-to-external-memory path (for image file download), disable/enable

uBlaze-to-external-memory path (for JPEG decoding), and disable/enable

external-memory-to-video-display path (for video display) sequentially.

For example: (All control signals are active-high)

main_control[2:0] = { enable RS232-to-external-memory path (for download),

enable uBlaze-to-external-memory path (for decoding),

enable external-memory-to-video-display path (for display) }

main program {.

P0: (for display)

Initalize system,

Pre-loaded RGB=000 (black) to video memory in external SRAM,

 main_control[2:0] = 001

-10-

 Enable external-memory-to-video-display path (for display)

P1: (for download)

 main_control[2:0] = 001

 Enable external-memory-to-video-display path (for display)

if RS232 interrupt and main_control[2:0] = 001 and first 5-byte character pattern

is ”start” (typed in Hiper)

 main_control[2:0] = 100

 Enable RS232-to-external-memory path (for download)

procedure { download image from RS232 to external SRAM }

Put JPEG image file into Hyper,

else if 6-byte pattern “theend” (typed in Hiper) is met,

 image_byte_counter backs off 6 bytes, main_control[2:0] = 010

 Enable uBlaze-to-external-memory path (for decoding)

P2: (for decoding)

 image_byte_counter backs off 6 bytes, main_control[2:0] = 010

 Enable uBlaze-to-external-memory path (for decoding)

procedure { JPEG decoding }

if JPEG decoding is done (notified by some special handler),

 main_control[2:0] = 001

 Enable external-memory-to-video-display path (for display)

P3: (for display)

Go back to P1

} // end of main program

Comment : Arbiter turns into a switch,

switch to uBlaze if main_control[2:0] = 100 or 010

switch to Video display if main_control[2:0] = 001

-11-

3. Schedule breakdown (uncompleted)

Project schedule breakdown

(Uncompleted because actually all three of us have spent much more time than stated

below whenever we can do it remotely or on site in lab)

(Project due day has been re-scheduled to 2005/8/26 (Friday), so we did our best up to

that day.)

Date Sean Steel Steve Note

2005/8/19

(Friday)

Morning (RS)

Afternoon (OS)

Night (OS)

Morning (RS)

Afternoon (OS)

Night (OS)

Morning (RS)

Afternoon (OS)

Night (OS)

OS means on-site

in NCTU lab or

other near places.

2005/8/20

(Saturday)

Morning (OFF)

Afternoon (OFF)

Night (RS)

Morning (RS)

Afternoon (OFF)

Night (RS)

Morning (OFF)

Afternoon (OFF)

Night (RS)

RS mean

remote-site but

doing project

2005/8/21

(Sunday)

Morning (OS)

Afternoon (OS)

Night (OS)

Morning (OS)

Afternoon (OS)

Night (OS)

Morning (OS)

Afternoon (OS)

Night (OS)

Off means

unavailable at

that time

2005/8/22

(Monday)

Morning (RS)

Afternoon (OS)

Night (OS)

Morning (RS)

Afternoon (OS)

Night (OS)

Morning (RS)

Afternoon (OS)

Night (OS)

2005/8/23

(Tuesday)

Morning (RS)

Afternoon (OS)

Night (OFF)

Morning (RS)

Afternoon (OS)

Night (OS)

Morning (RS)

Afternoon (OS)

Night (OFF)

2005/8/24

(Wednesday)

Morning (OS)

Afternoon (OS)

Night (OS)

Morning (OS)

Afternoon (OS)

Night (OS)

Morning (OS)

Afternoon (OS)

Night (OS)

JPEG
Image

COM

PC Site
D

B
15

V

G
A

 p
o

rt

UART

Master
Mode
Select

Video
Buffer

Video
controller

OPB

EMC

R
S

23
2

intc

IO
P

B

D
O

P
B o

p
b

_b
ra

m
_i

fc

MicroBlaze

ILMB ilmbc
/dlmbc

On-Chip
BRAMDLMB

Off-Chip
SRAM
256kb x 16

Off-Chip
SRAM
256kb x 16Video EMC Controller

XC3S400 Spartan-3
Board

C R T

JPEG Decoder System Block Diagram
4. Block diagram of system architecture

Off-Chip SRAM Read Cycle

Mem_CEN

Mem_OEN

Mem_DQ_Out

OPB_SRAM_select

Fix Low

TAA,max=10ns
Mem_WEN High

OPB_CLK

20ns

Sl_DBUS

Off-Chip SRAM

Sl_XferAck

Mem_ABUS

OPB_ABUS

5. Timing diagram of video_emc_controller

Fix Low

High

20ns

Off-Chip SRAM

OPB_ABUS

Mem_CEN

Mem_OEN

Mem_DQ_In

OPB_SRAM_select

Mem_WEN

OPB_CLK

OPB_DBUS

Sl_XferAck

Mem_ABUS

TPWE,min=8ns

Off-Chip SRAM Write Cycle

Start-of-Line Detail

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

35 35

0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2

word 0 word1

0 1 2 3 4 5 6 7 8

Pixel_clk

Hcount

VVidBuf_count

HVidBuf_countx8

HVidBuf_count

VVidBuf_valid

HVidBuf_valid

VidBuf_Load_valid

VidBuf_Data_valid

Vid2Emc_Ena_pixel

VidBuf_Ena0

VidBuf_Ena1

VidBuf_Ena2

Vid2Emc_select

Emc2Vid_xferAck

VidBuf_Data

LoadNShift
Pixel
HBlankN

OPB_clk

1

End-of-Line Detail

138 762 763 764 765 766 767 768 769 770 771 772 773 774 775

35 514

3 636 637 638 639 640

0

word 78 word79

629 630 631 632 633 634 635 636 637

Pixel_clk

Hcount

VVidBuf_count

HVidBuf_countx8

HVidBuf_count

VVidBuf_valid

HVidBuf_valid

VidBuf_Load_valid

VidBuf_Data_valid

Vid2Emc_Ena_pixel

VidBuf_Ena0

VidBuf_Ena1

VidBuf_Ena2

Vid2Emc_select

Emc2Vid_xferAck

VidBuf_Data

LoadNShift
Pixel
HBlankN

OPB_clk

627 628 638 639621 622 623 624 625 626619 620

514 514

776 777 778 779 780 781 782 783

632 633 634 635627 628 629 630 631 641 642 643 644 645 646 647 648

79 79 79 79 8079 79 79 7978 78 78 78 78 80 80 80 80 80 80 80 81

1

