
Embedded System Design Lab 1
Stephen A. Edwards

Due August 2, 2005

Abstract

Write a C program that counts in decimal on the Digilent
Spartan-3 starter board. Learn how to compile and run a pro-
gram, program the FPGA, and use serial communication for de-
bugging.

1 Introduction

The Digilent Spartan-3 Starter Board consists of a Xilinx
Spartan-3 XC3S400 FPGA, which has roughly 400 000 raw
gates that can be user-programmed into any configuration. For
this lab, you will use a project we have provided for you, con-
sisting of the Microblaze 32-bit microprocessor, a UART, and
a soft peripheral that controls the seven-segment LEDs on the
board.

2 Hello World

First, get familar with the tools by compiling and running the
sample project supplied by Xilinx.

1. The boards have a serial port on them and the sam-
ple project includes a UART (Universal Asynchronous
Receiver Transmitter) that can be used to communicate
through a modem cable to the workstation. We will use
this for debugging since it provides a way to print things
from the C program.

Start Hyperterminal and set it to use COM1 at 9600 baud,
no parity, one stop bit.

2. Unzip the lab1 source file (on the class home page,
http://www1.cs.columbia.edu/˜sedwards/classes/2005/
emsys-summer/) in the directory
C:\edk_user_repository. It should create a
directory there named lab1.

3. Start Xilinx Platform Studio by clicking on the
system.xmp file in the directory you just unzipped.

1



4. Start the compilation process and download the program
to the board by clicking on the “download” button in
the platform studio application. It’s on the second row
of icons, roughly in the middle. You can also use the
Tools→Download menu item.

This takes a long time and generates lots of harmless mes-
sages and over a thousand temporary files, but will even-
tually compile the project into a .bit file suitable for the
FPGA on the board and finally download it.

5. If all goes well, the project will be compiled, downloaded,
and run on the board. The LEDs should glow for a while
and finally a series of things should appear in Hypertermi-
nal and the LEDs should start walking.

If something goes wrong, make sure your board is con-
nected properly (it should have a power connection from
the external power supply, a connection through a parallel
cable, and a connection through a serial cable) and pow-
ered on. An LED near the power connector lights whenever
power is applied to the board.
If you can’t get things to work, pester someone for help.

3 What is going on?
A lot. The Xilinx Platform Studio tool is assembling and com-
piling a small computer system that is then downloaded to the
FPGA. Platform Studio also compiles a small C program and
downloads it into memory on the FPGA. Finally, it runs the pro-
gram, which prints things to the serial port and blinks the LEDs.

There are two interesting tabs in Platform Studio: “System,”
which describes the hardware and peripherals, and “Applica-
tions,” which describes the software that runs on this hardware.

The demo project is centered around a single CPU, “microb-
laze 0.” The Microblaze is Xilinx’s own soft processor core
specifically designed to be placed on an FPGA. It is a 32-bit
RISC-style processor. Fortunately, the C compiler for it is good
enough so that you do not have to know Microblaze assembly
language to build an interesting project.

Under the CPU are three busses: mb opb, which is the periph-
eral bus, ilmb, which is the instruction bus, and dlmb, which is
the data bus (the Microblaze uses a Harvard architecture). Con-
nected to these busses are various bus controllers (dlmb cntlr,
ilmb cntlr), an on-chip shared instruction and data memory
block (lmb bram), a serial controller (RS232), a driver for the
row of LEDs (LEDs 8Bit), a controller for the off-chip SRAM
(SRAM 256Kx32 util bus split 0), as well as a timer and inter-
rupt controller.

The system.mhs file lists how the hardware should be as-
sembled to create the project. For example, it lists the LED and
serial connections, the Microblaze processor, the UART, and the
peripheral that controls the LEDs.

The system.mss file describes how the software should be
assembled for the system, and is less interesting than .mhs file.
It says to include the UART driver and to connect stdin and std-
out of the program to the driver.

The testApp.c file (under Applications/Project:
TestApp/Sources) contains the main() function that is
run when the system is downloaded. You will modify this for
this lab.

The data\system.ucf lists to what pins on the FPGA
internal signals should be connected. These pin numbers came
from the Digilent board documentation, which lists the role(s)
of each pin.

Finally, etc\bitgen spartan3.ut sets some options
for generating the final bitstream.

4 The Assignment
Modify the testApp.c file to count in decimal from 0 to 99 on
the LEDs. Make sure the numbers from 0–9 don’t display a
leading 0.

Show your working counter to a TA, have him sign a printout
of your solution (i.e., testApp.c), and hand that in.

Shorter, elegant, and readable solutions will be scored higher
than ones that merely work.

2


