
R

XST User Guide

"Xilinx" and the Xilinx logo shown above are registered trademarks of Xilinx, Inc. Any rights not expressly granted herein are reserved.

CoolRunner, RocketChips, Rocket IP, Spartan, StateBENCH, StateCAD, Virtex, XACT, XC2064, XC3090, XC4005, and XC5210 are
registered trademarks of Xilinx, Inc.

The shadow X shown above is a trademark of Xilinx, Inc.

ACE Controller, ACE Flash, A.K.A. Speed, Alliance Series, AllianceCORE, Bencher, ChipScope, Configurable Logic Cell, CORE Generator,
CoreLINX, Dual Block, EZTag, Fast CLK, Fast CONNECT, Fast FLASH, FastMap, Fast Zero Power, Foundation, Gigabit Speeds...and
Beyond!, HardWire, HDL Bencher, IRL, J Drive, JBits, LCA, LogiBLOX, Logic Cell, LogiCORE, LogicProfessor, MicroBlaze, MicroVia,
MultiLINX, NanoBlaze, PicoBlaze, PLUSASM, PowerGuide, PowerMaze, QPro, Real-PCI, RocketIO, SelectIO, SelectRAM, SelectRAM+,
Silicon Xpresso, Smartguide, Smart-IP, SmartSearch, SMARTswitch, System ACE, Testbench In A Minute, TrueMap, UIM, VectorMaze,
VersaBlock, VersaRing, Virtex-II Pro, Virtex-II EasyPath, Wave Table, WebFITTER, WebPACK, WebPOWERED, XABEL, XACT-
Floorplanner, XACT-Performance, XACTstep Advanced, XACTstep Foundry, XAM, XAPP, X-BLOX +, XC designated products, XChecker,
XDM, XEPLD, Xilinx Foundation Series, Xilinx XDTV, Xinfo, XSI, XtremeDSP and ZERO+ are trademarks of Xilinx, Inc.

The Programmable Logic Company is a service mark of Xilinx, Inc.

All other trademarks are the property of their respective owners.

Xilinx, Inc. does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey
any license under its patents, copyrights, or maskwork rights or any rights of others. Xilinx, Inc. reserves the right to make changes, at any
time, in order to improve reliability, function or design and to supply the best product possible. Xilinx, Inc. will not assume responsibility for
the use of any circuitry described herein other than circuitry entirely embodied in its products. Xilinx provides any design, code, or
information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature,
application, or standard, Xilinx makes no representation that such implementation is free from any claims of infringement. You are
responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any warranty whatsoever with
respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation
is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose. Xilinx, Inc. devices
and products are protected under U.S. Patents. Other U.S. and foreign patents pending. Xilinx, Inc. does not represent that devices shown
or products described herein are free from patent infringement or from any other third party right. Xilinx, Inc. assumes no obligation to
correct any errors contained herein or to advise any user of this text of any correction if such be made. Xilinx, Inc. will not assume any
liability for the accuracy or correctness of any engineering or software support or assistance provided to a user.

Xilinx products are not intended for use in life support appliances, devices, or systems. Use of a Xilinx product in such applications without
the written consent of the appropriate Xilinx officer is prohibited.

The contents of this manual are owned and copyrighted by Xilinx. Copyright 1994-2003 Xilinx, Inc. All Rights Reserved. Except as stated
herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form
or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent
of Xilinx. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and
publicity, and communications regulations and statutes.

R

XST User Guide www.xilinx.com
1-800-255-7778

http://www.xilinx.com

 The following table shows the revision history for this document.

Version Revision

06/01/00 1.0 Initial Xilinx® release.

06/15/00 1.1 Accumulated miscellaneous updates and bug fixes.

07/26/00 1.2 Accumulated miscellaneous updates and bug fixes.

08/28/00 1.3 Fine tuning of text frame and paragraph format spacings.

04/11/01 2.0 Revised formats to take advantage of FrameMaker 6.0 book features.

05/02/01 2.1 Master page changes.

07/11/01 2.2 Accumulated miscellaneous updates and bug fixes.

04/04/02 2.21 Updated trademarks page in ug000_title.fm.

06/24/02 3.0 Initial Xilinx® release of corporate-wide common template set, used for User Guides,
Tutorials, Release Notes, Manuals, and other lengthy, multiple-chapter documents
created by both CMP and ITP. See related documents for further information.

Descriptions for revisions prior to v3.0 have been abbreviated. For a full summary of revision
changes prior to v3.0, refer to v2.21 template set.

06/06/03 4.0 Accumulated miscellaneous updates and bug fixes.
 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

XST User Guide www.xilinx.com
1-800-255-7778

http://www.xilinx.com

R

Preface

About This Guide

This manual describes Xilinx® Synthesis Technology (XST) support for HDL languages,
Xilinx® devices, and constraints for the ISE software. The manual also discusses FPGA and
CPLD optimization techniques and explains how to run XST from Project Navigator
Process window and command line.

Guide Contents
This manual contains the following chapters and appendixes.

• Chapter 1, “Introduction,” provides a basic description of XST and lists supported
architectures.

• Chapter 2, “HDL Coding Techniques,” describes a variety of VHDL and Verilog
coding techniques that can be used for various digital logic circuits, such as registers,
latches, tristates, RAMs, counters, accumulators, multiplexers, decoders, and
arithmetic operations. The chapter also provides coding techniques for state machines
and black boxes.

• Chapter 3, “FPGA Optimization,” explains how constraints can be used to optimize
FPGAs and explains macro generation. The chapter also describes the Virtex™
primitives that are supported.

• Chapter 4, “CPLD Optimization,” discusses CPLD synthesis options and the
implementation details for macro generation.

• Chapter 5, “Design Constraints,” describes constraints supported for use with XST.
The chapter explains which attributes and properties can be used with FPGAs,
CPLDs, VHDL, and Verilog. The chapter also explains how to set options from the
Process Properties dialog box in Project Navigator.

• Chapter 6, “VHDL Language Support,” explains how VHDL is supported for XST.
The chapter provides details on the VHDL language, supported constructs, and
synthesis options in relationship to XST.

• Chapter 7, “Verilog Language Support,” describes XST support for Verilog constructs
and meta comments.

• Chapter 8, “Mixed Language Support,”describes how to run an XST project that
mixes Verilog and VHDL designs.

• Chapter 9, “Log File Analysis,” describes the XST log file, and explains what it
contains.

• Chapter 10, “Command Line Mode,” describes how to run XST using the command
line. The chapter describes the xst, run and set commands and their options.

• Appendix A, “XST Naming Conventions,” discusses net naming and instance naming
conventions.
XST User Guide www.xilinx.com 5
 1-800-255-7778

http://www.xilinx.com

Preface: About This Guide
R

Additional Resources
For additional information, go to http://support.xilinx.com. The following table lists
some of the resources you can access from this website. You can also directly access these
resources using the provided URLs.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Resource Description/URL

Tutorials Tutorials covering Xilinx® design flows, from design entry to
verification and debugging

http://support.xilinx.com/support/techsup/tutorials/index.htm

Answer Browser Database of Xilinx® solution records

http://support.xilinx.com/xlnx/xil_ans_browser.jsp

Application Notes Descriptions of device-specific design techniques and approaches

http://support.xilinx.com/apps/appsweb.htm

Data Sheets Pages from The Programmable Logic Data Book, which contains
device-specific information on Xilinx device characteristics,
including readback, boundary scan, configuration, length count,
and debugging

http://www.support.xilinx.com/xlnx/xweb/xil_publications_in
dex.jsp

Problem Solvers Interactive tools that allow you to troubleshoot your design issues

http://support.xilinx.com/support/troubleshoot/psolvers.htm

Tech Tips Latest news, design tips, and patch information for the Xilinx®
design environment

http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C
6 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm
http://www.support.xilinx.com/xlnx/xil_ans_browser.jsp
http://support.xilinx.com/apps/appsweb.htm
http://www.support.xilinx.com/xlnx/xweb/xil_publications_index.jsp
http://www.support.xilinx.com/support/troubleshoot/psolvers.htm
http://www.support.xilinx.com/xlnx/xil_tt_home.jsp

Conventions
R

Online Document
The following conventions are used in this document:

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text

Cross-reference link to a
location in the current file or
in another file in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the Virtex-II
Platform FPGA User Guide.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.
XST User Guide www.xilinx.com 7
 1-800-255-7778

http://www.xilinx.com

Preface: About This Guide
R

8 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Table of Contents
Preface: About This Guide
Guide Contents . 5
Additional Resources . 6
Conventions . 6

Typographical . 6
Online Document . 7

Chapter 1: Introduction
Architecture Support . 21
XST Flow . 21
What’s New . 21

HDL Language Support . 21
VHDL . 21
Verilog . 22

 Macro Inference . 22
 Design Constraints . 22

New Features . 22
Deprecated constraints . 23
Obsoleted constraints . 23

 FPGA Flow . 23
 Log File . 23

XST in Project Navigator . 23

Chapter 2: HDL Coding Techniques
Introduction . 29
Signed/Unsigned Support . 38
Registers . 39

Log File . 39
Related Constraints . 40
Flip-flop with Positive-Edge Clock . 40

VHDL Code . 40
Verilog Code . 41

Flip-flop with Negative-Edge Clock and Asynchronous Clear 41
VHDL Code . 42
Verilog Code . 42

Flip-flop with Positive-Edge Clock and Synchronous Set . 42
VHDL Code . 43
Verilog Code . 43

Flip-flop with Positive-Edge Clock and Clock Enable . 44
VHDL Code . 44
Verilog Code . 45

4-bit Register with Positive-Edge Clock, Asynchronous Set and Clock Enable 45
VHDL Code . 46
Verilog Code . 46
XST User Guide www.xilinx.com 9
 1-800-255-7778

http://www.xilinx.com

R

Latches . 46
Log File . 47
Related Constraints. 47
Latch with Positive Gate . 47
Latch with Positive Gate and Asynchronous Clear. 48

4-bit Latch with Inverted Gate and Asynchronous Preset . 50
VHDL Code . 50
Verilog Code . 50

Tristates . 51
Log File . 51
Related Constraints . 51
Description Using Combinatorial Process and Always Block 52

VHDL Code . 52
Verilog Code . 53

Description Using Concurrent Assignment . 53
VHDL Code . 53
Verilog Code . 53

Counters . 54
Log File . 54
Related Constraints . 54
4-bit Unsigned Up Counter with Asynchronous Clear . 55

VHDL Code . 55
Verilog Code . 55

4-bit Unsigned Down Counter with Synchronous Set . 56
VHDL Code . 56
Verilog Code . 57

4-bit Unsigned Up Counter with Asynchronous Load from Primary Input 57
VHDL Code . 57
Verilog Code . 58

4-bit Unsigned Up Counter with Synchronous Load with a Constant 58
VHDL Code . 59
Verilog Code . 59

4-bit Unsigned Up Counter with Asynchronous Clear and Clock Enable 60
VHDL Code . 60
Verilog Code . 61

4-bit Unsigned Up/Down counter with Asynchronous Clear 61
VHDL Code . 61
Verilog Code . 62

4-bit Signed Up Counter with Asynchronous Reset . 62
VHDL Code . 63
Verilog Code . 63

4-bit Signed Up Counter with Asynchronous Reset and Modulo Maximum 64
VHDL Code . 64
Verilog Code . 65
Related Constraints. 65

Accumulators . 65
Log File . 66
Related Constraints . 66
4-bit Unsigned Up Accumulator with Asynchronous Clear . 66

VHDL Code . 66
Verilog Code . 67
Related Constraints. 67

Shift Registers . 68
10 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Log File . 69
Related Constraints . 70
8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Serial Out 70

VHDL Code . 71
Verilog Code . 71

8-bit Shift-Left Register with Negative-Edge Clock, Clock Enable, Serial In, and Serial
Out . 72

VHDL Code . 72
Verilog Code . 73

8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Clear, Serial In, and
Serial Out . 73

VHDL Code . 73
Verilog Code . 74

8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Set, Serial In, and Serial
 Out . 74

VHDL Code . 75
Verilog Code . 75

8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Parallel Out 76
VHDL Code . 76
Verilog Code . 76

8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Parallel Load, Serial In,
and Serial Out. 77

VHDL Code . 77
Verilog Code . 78

8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Parallel Load, Serial In,
and Serial Out. 78

VHDL Code . 78
Verilog Code . 79

8-bit Shift-Left/Shift-Right Register with Positive-Edge Clock, Serial In, and Parallel Out
 . 79

VHDL Code . 80
Verilog Code . 80

Dynamic Shift Register. 81
16-bit Dynamic Shift Register with Positive-Edge Clock, Serial In and Serial Out . . 81
LOG File . 81
Related Constraints . 82
VHDL Code . 82
Verilog Code . 83

Multiplexers . 83
Log File . 86
Related Constraints . 86
4-to-1 1-bit MUX using IF Statement . 86

VHDL Code . 86
Verilog Code . 87

4-to-1 MUX Using CASE Statement . 87
VHDL Code . 88
Verilog Code . 88

4-to-1 MUX Using Tristate Buffers . 89
VHDL Code . 89
Verilog Code . 89

No 4-to-1 MUX . 89
VHDL Code . 90
Verilog Code . 90
XST User Guide www.xilinx.com 11
 1-800-255-7778

http://www.xilinx.com

R

Decoders . 91
Log File . 91
Related Constraints . 91
VHDL (One-Hot) . 91
Verilog (One-Hot) . 92
VHDL (One-Cold) . 92
Verilog (One-Cold) . 93
Decoders with Unselected Outputs . 93

VHDL (No Decoder Inference) . 94
Verilog (No Decoder Inference) . 94
VHDL Code (Decoder Inference) . 95
Verilog Code (Decoder Inference). 95

Priority Encoders . 96
Log File . 96
3-Bit 1-of-9 Priority Encoder . 96
Related Constraint . 96
VHDL . 96
Verilog . 97

Logical Shifters . 97
Log File . 98
Related Constraints . 98
Example 1 . 98

VHDL . 98
Verilog . 99

Example 2 . 99
VHDL . 99
Verilog . 100

Example 3 . 100
VHDL . 100
Verilog . 101

Arithmetic Operations . 101
Adders, Subtractors, Adders/Subtractors . 102

Log File . 102
Related Constraints. 102
Unsigned 8-bit Adder . 102
Unsigned 8-bit Adder with Carry In. 103
Unsigned 8-bit Adder with Carry Out . 104
Unsigned 8-bit Adder with Carry In and Carry Out. 105
Simple Signed 8-bit Adder . 106
Unsigned 8-bit Subtractor . 107
Unsigned 8-bit Adder/Subtractor . 108

Comparators (=, /=,<, <=, >, >=) . 109
Log File . 109
Unsigned 8-bit Greater or Equal Comparator. 109

Multipliers . 110
Large Multipliers Using Block Multipliers . 110
Registered Multiplier . 110
Multiplication with Constant . 111
Log File . 111
Related Constraints. 111
Unsigned 8x4-bit Multiplier . 111
Pipelined Multipliers . 112

Dividers . 117
12 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Log File . 117
Related Constraints. 117
Division By Constant 2 . 117

Resource Sharing . 118
Log File . 119
Related Constraint . 119
Example . 119

RAMs/ROMs . 121
Log File . 122
Related Constraints . 122
Virtex-II™/Spartan-3™ RAM Read/Write Modes . 123

Read-First Mode . 123
Write-First Mode. 124
No-Change Mode . 126

Single-Port RAM with Asynchronous Read . 128
VHDL . 129
Verilog . 129

Single-Port RAM with "False" Synchronous Read . 130
VHDL . 130
Verilog . 131
VHDL . 132
Verilog . 133

Single-Port RAM with Synchronous Read (Read Through) . 133
VHDL . 134
Verilog . 134

Single-Port RAM with Enable . 135
VHDL . 135
Verilog . 136

Dual-Port RAM with Asynchronous Read . 136
VHDL . 137
Verilog . 138

Dual-Port RAM with False Synchronous Read . 138
VHDL . 139
Verilog . 139

Dual-Port RAM with Synchronous Read (Read Through) . 140
VHDL . 140
Verilog . 141
Using More than One Clock . 141

Dual-Port RAM with One Enable Controlling Both Ports . 143
VHDL . 144
Verilog . 145

Dual-Port RAM with Enable on Each Port . 146
VHDL . 147
Verilog . 148

Dual-Port Block RAM with Different Clocks . 148
VHDL . 149
Verilog . 150

Multiple-Port RAM Descriptions. 150
VHDL . 151
Verilog . 152

Block RAM with Reset . 152
VHDL . 153
Verilog Template . 154
XST User Guide www.xilinx.com 13
 1-800-255-7778

http://www.xilinx.com

R

Initializing Block RAM . 155
VHDL . 155
Verilog . 155
Limitations . 156

ROMs Using Block RAM Resources . 156
VHDL . 156
Verilog . 158

State Machine . 160
FSM with 1 Process . 161

VHDL . 161
Verilog . 162

FSM with 2 Processes . 162
VHDL . 163
Verilog . 164

FSM with 3 Processes . 165
VHDL . 165
Verilog . 166

State Registers . 167
Next State Equations . 167
Unreachable States . 167
FSM Outputs . 167
FSM Inputs . 167
State Encoding Techniques . 168

Auto . 168
One-Hot . 168
Gray . 168
Compact . 168
Johnson . 168
Sequential . 168
User. 168

Log File . 169
RAM-based FSM Synthesis. 169

Black Box Support . 170
Log File . 170
Related Constraints . 171
VHDL . 171
Verilog . 171

Chapter 3: FPGA Optimization
Introduction . 173
Virtex™ Specific Synthesis Options . 174
Macro Generation . 175

Arithmetic Functions . 175
Loadable Functions . 175
Multiplexers . 176
Priority Encoder . 176
Decoder . 176
Shift Register . 177
RAMs . 177
ROMs . 178

Mapping Logic onto Block RAM . 179
VHDL . 180
14 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

VERILOG. 180
LOG . 181
VHDL . 181
VERILOG. 182
LOG . 182

Flip-Flop Retiming . 183
Incremental Synthesis Flow . 183

INCREMENTAL_SYNTHESIS: . 184
Example . 184

RESYNTHESIZE. 185
VHDL Flow. 185
Verilog Flow: . 185

Speed Optimization Under Area Constraint . 187

Log File Analysis. 189
Design Optimization . 189
Resource Usage . 190
Device Utilization summary. 191
Clock Information . 191
Timing Report . 191

Timing Summary . 192
Timing Detail . 193

Implementation Constraints . 193
Virtex™ Primitive Support . 193

VHDL . 195
Verilog . 196
Log File . 196
Related Constraints . 196

Cores Processing . 196
Specifying INITs and RLOCs in HDL Code . 198
PCI Flow . 200

Chapter 4: CPLD Optimization
CPLD Synthesis Options . 203

Introduction . 203
Global CPLD Synthesis Options . 203

Families. 203
List of Options . 204

Implementation Details for Macro Generation . 204
Log File Analysis. 205
Constraints . 207
Improving Results . 207

How to Obtain Better Frequency? . 207
How to Fit a Large Design? . 208

Chapter 5: Design Constraints
Introduction . 209
Setting Global Constraints and Options . 210

Synthesis Options. 210
XST User Guide www.xilinx.com 15
 1-800-255-7778

http://www.xilinx.com

R

HDL Options . 213
Xilinx® Specific Options . 214
Other Command Line Options . 216
Custom Compile File List . 216

VHDL Attribute Syntax . 216
Verilog Meta Comment Syntax . 217
XST Constraint File (XCF) . 217

XCF Syntax and Utilization . 217
Timing Constraints vs. Non-timing Constraints . 218
Limitations . 219

Old XST Constraint Syntax . 219
General Constraints . 219
HDL Constraints . 226

FPGA Constraints (non-timing) . 227
CPLD Constraints (non-timing) . 231
Timing Constraints . 234

Global Timing Constraints Support . 235
Domain Definitions. 236

XCF Timing Constraint Support . 236
Old Timing Constraint Support . 238

Constraints Summary . 238
Implementation Constraints . 249

Handling by XST . 249
Examples . 250

Example 1 . 250
Example 2 . 250
Example 3 . 250

Third Party Constraints . 251
Constraints Precedence . 254

Chapter 6: VHDL Language Support
Introduction . 255
Data Types in VHDL . 256

Overloaded Data Types . 257
Multi-dimensional Array Types . 258

Record Types . 259
Initial Values . 260

Local Reset ¼ Global Reset . 260
Objects in VHDL. 261
Operators . 261
Entity and Architecture Descriptions . 262

Entity Declaration . 262
Architecture Declaration . 262
Component Instantiation . 262

Recursive Component Instantiation . 264
Component Configuration . 265
Generic Parameter Declaration . 265

Combinatorial Circuits . 266
16 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Concurrent Signal Assignments . 266
Simple Signal Assignment . 266
Selected Signal Assignment . 267
Conditional Signal Assignment . 267
Generate Statement . 267
Combinatorial Process . 268
If...Else Statement . 270
Case Statement . 271
For...Loop Statement . 272

Sequential Circuits . 273
Sequential Process with a Sensitivity List . 273
Sequential Process without a Sensitivity List . 273
Examples of Register and Counter Descriptions . 274
Multiple Wait Statements Descriptions . 275

Functions and Procedures . 277
Assert Statement . 279
Packages . 281

STANDARD Package . 281
IEEE Packages . 281
Synopsys Packages . 282

VHDL Language Support . 283
VHDL Reserved Words . 289

Chapter 7: Verilog Language Support
Introduction . 291
Behavioral Verilog Features . 292

Variable Declaration . 292
Initial Values. 292
Arrays . 293
Multi-dimensional Arrays . 293

Data Types . 294
Legal Statements . 295
Expressions . 295
Blocks . 298
Modules . 298
Module Declaration . 298
Verilog Assignments . 299
Continuous Assignments . 299
Procedural Assignments . 299

Combinatorial Always Blocks. 299
If...Else Statement . 300
Case Statement . 300
For and Repeat Loops . 301
While Loops . 302
Sequential Always Blocks . 302
Assign and Deassign Statements . 303
Assignment Extension Past 32 Bits . 306
Tasks and Functions . 306
Blocking Versus Non-Blocking Procedural Assignments . 307

Constants, Macros, Include Files and Comments . 308
Constants . 308
XST User Guide www.xilinx.com 17
 1-800-255-7778

http://www.xilinx.com

R

Macros . 308
Include Files . 308
Comments. 309

Generate Statement . 309
Generate For . 309
Generate If... else. 310
Generate Case . 310

Structural Verilog Features . 311
Parameters . 313
Verilog Limitations in XST . 313

Case Sensitivity . 313
Blocking and Nonblocking Assignments . 314
Integer Handling . 315

Verilog Meta Comments . 315
Verilog-2001 Attributes. 316

Syntax. 317
Example 1 . 317
Example 2 . 317
Example 3 . 317
Example 4 . 317

Limitations . 317
Language Support Tables . 317
Primitives . 321
Verilog Reserved Keywords . 322
Verilog-2001 Support in XST . 323

Chapter 8: Mixed Language Support
Introduction . 325
Mixed Language Project File . 326
VHDL/Verilog Boundary Rules . 326

Instantiating a Verilog Module in a VHDL Design . 326
Instantiating a VHDL Design Unit in a Verilog Design . 327

Port Mapping . 328
Generics Support in Mixed Language Projects . 328
Library Search Order File. 329

Project Navigator . 329
Command Line . 329
Search Order Rules . 329
Examples . 330

Example 1 . 330
Example 2 . 330
Example 3 . 331
Example 4 . 331

Chapter 9: Log File Analysis
Introduction . 333
Reducing the Size of the LOG File. 334

Quiet Mode . 334
18 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Silent mode . 335
Hiding specific messages . 335

Timing Report . 336
FPGA Log File . 336
CPLD Log File . 343

Chapter 10: Command Line Mode
Introduction . 349
Launching XST. 350
Setting Up an XST Script . 351
Run Command . 351
Getting Help . 356
Set Command . 357
Elaborate Command. 358
Example 1: How to Synthesize VHDL Designs Using Command Line Mode . 358

Example 1 . 359
Script Mode . 360

Example 2: How to Synthesize Verilog Designs Using Command Line Mode 361
Example 2 . 362
Script Mode . 362

Example 3: How to Synthesize Mixed VHDL/Verilog Designs Using Command
Line Mode . 363

Script Mode . 364

Appendix A: XST Naming Conventions
Net Naming Conventions . 367
Instance Naming Conventions. 367
XST User Guide www.xilinx.com 19
 1-800-255-7778

http://www.xilinx.com

R

20 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 1

Introduction

This chapter contains the following sections.

• “Architecture Support”

• “XST Flow”

Architecture Support
The software supports the following architecture families in this release.

• Virtex™/-E/-II/-II Pro/-II Pro X

• Spartan™-II/-IIE/-3

• CoolRunner™ XPLA3/-II/-IIS

• XC9500™/XL/XV

XST Flow
XST is a Xilinx® tool that synthesizes HDL designs to create Xilinx® specific netlist files
called NGC files. The NGC file is a netlist that contains both logical design data and
constraints that takes the place of both EDIF and NCF files. This manual describes XST
support for Xilinx® devices, HDL languages and design constraints. The manual also
explains how to use various design optimization and coding techniques when creating
designs for use with XST.

What’s New
The following is a list of the major changes to XST for release 6.1i.

HDL Language Support

VHDL

• Support for Assert statements. See “Assert Statement” in Chapter 6.

• Improved complex data type (records, array of records, etc.). See “Data Types in
VHDL” in Chapter 6.

• Improved synthesis time for structural designs. See Chapter 6, “VHDL Language
Support.”

• Support of mixed language projects. See Chapter 8, “Mixed Language Support.”
XST User Guide www.xilinx.com 21
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

Verilog

• Support for generate statements. See “Generate Statement” in Chapter 7.

• Support for indexed vector part selects. See “Verilog-2001 Support in XST” in Chapter
7.

• Support for array bit and part selects. See “Verilog-2001 Support in XST” in Chapter 7.

• Support for module array instantiations. See “Verilog-2001 Support in XST” in
Chapter 7.

• Support of mixed language projects. See Chapter 8, “Mixed Language Support.”

 Macro Inference
• Counters with modulo. See “4-bit Signed Up Counter with Asynchronous Reset and

Modulo Maximum” in Chapter 2.

• Multipliers with constant (KCM). See “Multiplication with Constant” in Chapter 2,
and “Multiplier Style” in Chapter 5.

• Block RAMs with Reset. See “Block RAM with Reset” in Chapter 2.

• RAM initialization via signal declaration mechanism. See “Initializing Block RAM” in
Chapter 2.

• Finite State Machine (FSM) Processing. See “State Machine” in Chapter 2.

♦ Improved FSM recognition. See “State Machine” in Chapter 2.

♦ Support for Mealy FSMs. See “State Machine” in Chapter 2.

♦ Detection of unreachable FSM states. See “Unreachable States” in Chapter 2.

♦ FSM implementation on Block RAM via FSM Style (FSM_STYLE) constraint. See
“FSM Style” in Chapter 5.

 Design Constraints

New Features

• Cores Search Directories switch (–sd). See “Cores Search Directories” in Chapter 5.

• New value for Keep Hierarchy constraint (KEEP_HIERARCHY): soft. See “Keep
Hierarchy” in Chapter 5.

• New value for Netlist Case constraint (CASE): maintain for VHDL and mixed
language projects. See “Case” in Chapter 5.

• FSM Style constraint (FSM_STYLE). See “FSM Style” in Chapter 5.

• Signal Encoding Algorithm constraint (SIGNAL_ENCODING). See “Signal
Encoding” in Chapter 5.

• New value for Multiplier Style constraint (MULT_STYLE): kcm. See “Multiplier Style”
in Chapter 5.

• Support for mapping of logic on Block RAM (BRAM_MAP). See “Map Logic on
BRAM” in Chapter 5.

• Use Carry Chain constraint (USE_CARRY_CHAIN). See “Use Carry Chain” in
Chapter 5.

• New values for Box Type constraint (BOX_TYPE): primitive and user_black_box. See
“Box Type” in Chapter 5.
22 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

XST in Project Navigator
R

• Optimize Instantiated Primitives switch (–optimize_primitives). See “Optimize
Instantiated Primitives” in Chapter 5.

• Buffer Type constraint (BUFFER_TYPE). See “Buffer Type” in Chapter 5.

• Hide Messages environmental variable (XIL_XST_HIDEMESSAGES). See “Reducing
the Size of the LOG File” in Chapter 9.

• Library Search Order switch (–lso). See “Library Search Order” in Chapter 5.

• Improved Timing constraints support. See “Timing Constraints” in Chapter 5.

Deprecated constraints

• Quiet Mode (–quiet switch).

Obsoleted constraints

• Complex Clock Enable Extraction (COMPLEX_CLKEN).

 FPGA Flow
• Mapping of general logic on Block RAM via Map Logic on BRAM (BRAM_MAP)

constraint. See “Mapping Logic onto Block RAM” in Chapter 3.

 Log File
• Improved HDL Advisor (all such messages are referenced as "HDL Advisor").

• Improved HDL reporting. See “Log File Analysis” in Chapter 9.

• Verbosity control via Hide Messages (XIL_XST_HIDEMESSAGES) environment
variable. See “Reducing the Size of the LOG File” in Chapter 9.

XST in Project Navigator
Before you synthesize your design, you can set a variety of options for XST. The following
are the instructions to set the options and run XST from Project Navigator. All of these
options can also be set from the command line. See Chapter 5, “Design Constraints,” and
Chapter 10, “Command Line Mode” for details.
XST User Guide www.xilinx.com 23
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

1. Select your top-level design in the Source window.

2. To set the options, right-click Synthesize - XST in the Process window.
24 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

XST in Project Navigator
R

3. Select Properties to display the Process Properties dialog box.

4. Set the desired Synthesis, HDL, and Xilinx® Specific Options.

For a complete description of these options, refer to “General Constraints” in Chapter
5.
XST User Guide www.xilinx.com 25
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

5. When a design is ready to synthesize, you can invoke XST in Project Navigator. With
the top-level source file selected, double-click Synthesize - XST in the Process
window.

Note: To run XST from the command line, refer to Chapter 10, “Command Line Mode” for
details.
26 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

XST in Project Navigator
R

6. When synthesis is complete, view the results by double-clicking View Synthesis
Report. Following is a portion of a sample report.

Figure 1-1: View Synthesis Report
XST User Guide www.xilinx.com 27
 1-800-255-7778

http://www.xilinx.com

Chapter 1: Introduction
R

28 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 2

HDL Coding Techniques

This chapter contains the following sections:

• “Introduction”

• “Signed/Unsigned Support”

• “Registers”

• “Tristates”

• “Counters”

• “Accumulators”

• “Shift Registers”

• “Dynamic Shift Register”

• “Multiplexers”

• “Decoders”

• “Priority Encoders”

• “Logical Shifters”

• “Arithmetic Operations”

• “RAMs/ROMs”

• “State Machine”

• “Black Box Support”

Introduction
Designs are usually made up of combinatorial logic and macros (for example, flip-flops,
adders, subtractors, counters, FSMs, RAMs). The macros greatly improve performance of
the synthesized designs. Therefore, it is important to use some coding techniques to model
the macros so that they are optimally processed by XST.

During its run, XST first tries to recognize (infer) as many macros as possible. Then all of
these macros are passed to the Low Level Optimization step, either preserved as separate
blocks or merged with surrounded logic in order to get better optimization results. This
filtering depends on the type and size of a macro (for example, by default,
2-to-1 multiplexers are not preserved by the optimization engine). You have full control of
the processing of inferred macros through synthesis constraints.

Note: Please refer to Chapter 5, “Design Constraints,” for more details on constraints and their
utilization.

There is detailed information about the macro processing in the XST LOG file. It contains
the following:
XST User Guide www.xilinx.com 29
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

• The set of macros and associated signals, inferred by XST from the VHDL/Verilog
source on a block by block basis.

• The overall statistics of recognized macros.

Note: Some additional macro processing and recognition is done during the Advanced HDL
Synthesis step.

• The number and type of macros preserved by low level optimization.

The following log sample displays the set of recognized macros on a block by block basis.

The following log sample displays the additional macro processing done during the
Advanced HDL Synthesis step.

Synthesizing Unit <timecore>.
Related source file is timecore.vhd.
Found finite state machine <FSM_0> for signal <state>.
...
Found 7-bit subtractor for signal <fsm_sig1>.
Found 7-bit subtractor for signal <fsm_sig2>.
Found 7-bit register for signal <min>.
Found 4-bit register for signal <points_tmp>.

...
Summary:

inferred 1 Finite State Machine(s).
inferred 18 D-type flip-flop(s).
inferred 10 Adder/Subtracter(s).

Unit <timecore> synthesized.
...
Synthesizing Unit <divider>.

Related source file is divider.vhd.
Found 18-bit up counter for signal <counter>.
Found 1 1-bit 2-to-1 multiplexers.
Summary:

inferred 1 Counter(s).
inferred 1 Multiplexer(s).

Unit <divider> synthesized. ...

===
* Advanced HDL Synthesis *
===

Implementing FSM <FSM_0> on signal <current_state> on BRAM.

INFO:Xst - Data output of ROM <Mrom_tmp_one_hot> in block <decode> is
tied to register <one_hot> in block <decode>.

INFO:Xst - The register is removed and the ROM is implemented as read-
only block RAM.
...
30 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Introduction
R

The following log sample displays the overall statistics of recognized macros.

The following log sample displays the number and type of macros preserved by low level
optimization.

...
===
HDL Synthesis Report

Macro Statistics
FSMs : 1
ROMs : 4
16x7-bit ROM : 4

Registers : 3
7-bit register : 2
4-bit register : 1

Counters : 1
18-bit up counter : 1

Multiplexers : 1
2-to-1 multiplexer : 1

Adders/Subtractors : 10
7-bit adder : 4
7-bit subtractor : 6

===
...

...
===
Final Results
...
Macro Statistics
FSMs : 1
ROMs : 4
16x7-bit ROM : 4

Registers : 7
7-bit register : 2
1-bit register : 4
18-bit register : 1

Adders/Subtractors : 11
7-bit adder : 4
7-bit subtractor : 6
18-bit adder : 1

...
===
...
XST User Guide www.xilinx.com 31
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

This chapter discusses the following Macro Blocks:

• Registers

• Tristates

• Counters

• Accumulators

• Shift Registers

• Dynamic Shift Registers

• Multiplexers

• Decoders

• Priority Encoders

• Logical Shifters

• Arithmetic Operators (Adders, Subtractors, Adders/Subtractors, Comparators,
Multipliers, Dividers)

• RAMs

• State Machines

• Black Boxes

For each macro, both VHDL and Verilog examples are given. There is also a list of
constraints you can use to control the macro processing in XST.

Note: For macro implementation details please refer to Chapter 3, “FPGA Optimization” and
Chapter 4, “CPLD Optimization”.

Table 2-1 provides a list of all the examples in this chapter, as well as a list of VHDL and
Verilog synthesis templates available from the Language Templates in Project Navigator.

To access the synthesis templates from Project Navigator:

1. Select Edit → Language Templates...

2. Click the + sign for either VHDL or Verilog.

3. Click the + sign next to Synthesis Templates.
32 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Introduction
R

Table 2-1: VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates

Registers Flip-flop with Positive-Edge
Clock

Flip-flop with Negative-
Edge Clock and
Asynchronous Clear

Flip-flop with Positive-Edge
Clock and Synchronous Set

Flip-flop with Positive-Edge
Clock and Clock Enable

Latch with Positive Gate

Latch with Positive Gate
and Asynchronous Clear

Latch with Positive Gate
and Asynchronous Clear

4-bit Latch with Inverted
Gate and Asynchronous
Preset

4-bit Register with Positive-
Edge Clock, Asynchronous
Set and Clock Enable

D Flip-Flop

D Flip-flop with Asynchronous
Reset

D Flip-Flop with Synchronous
Reset

D Flip-Flop with Clock Enable

D Latch

D Latch with Reset

Tristates Description Using
Combinatorial Process and
Always Block

Description Using
Concurrent Assignment

Process Method (VHDL)
Always Method (Verilog)
Standalone Method (VHDL and
Verilog)
XST User Guide www.xilinx.com 33
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Counters 4-bit Unsigned Up Counter
with Asynchronous Clear

4-bit Unsigned Down
Counter with Synchronous
Set

4-bit Unsigned Up Counter
with Asynchronous Load
from Primary Input

4-bit Unsigned Up Counter
with Synchronous Load
with a Constant

4-bit Unsigned Up Counter
with Asynchronous Clear
and Clock Enable

4-bit Unsigned Up/Down
counter with Asynchronous
Clear

4-bit Signed Up Counter
with Asynchronous Reset

4-bit asynchronous counter with
count enable, asynchronous
reset and synchronous load

Accumulators 4-bit Unsigned Up
Accumulator with
Asynchronous Clear

None

Table 2-1: VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
34 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Introduction
R

Shift Registers 8-bit Shift-Left Register with
Positive-Edge Clock, Serial
In, and Serial Out

8-bit Shift-Left Register with
Negative-Edge Clock, Clock
Enable, Serial In, and Serial
Out

8-bit Shift-Left Register with
Positive-Edge Clock,
Asynchronous Clear, Serial
In, and Serial Out

8-bit Shift-Left Register with
Positive-Edge Clock,
Synchronous Set, Serial In,
and Serial Out

8-bit Shift-Left Register with
Positive-Edge Clock, Serial
In, and Parallel Out

8-bit Shift-Left Register with
Positive-Edge Clock,
Asynchronous Parallel
Load, Serial In, and Serial
Out

8-bit Shift-Left Register with
Positive-Edge Clock,
Synchronous Parallel Load,
Serial In, and Serial Out

8-bit Shift-Left/Shift-Right
Register with Positive-Edge
Clock, Serial In, and Parallel
Out

4-bit Loadable Serial In Serial
Out Shift Register

4-bit Serial In Parallel out Shift
Register

4-bit Serial In Serial Out Shift
Register

Table 2-1: VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
XST User Guide www.xilinx.com 35
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Multiplexers 4-to-1 1-bit MUX using IF
Statement

4-to-1 MUX Using CASE
Statement

4-to-1 MUX Using Tristate
Buffers

No 4-to-1 MUX

4-to-1 MUX Design with CASE
Statement

4-to-1 MUX Design with Tristate
Construct

Decoders VHDL (One-Hot)

Verilog (One-Hot)

VHDL (One-Cold)

Verilog (One-Cold)

1-of-8 Decoder, Synchronous
with Reset

Priority Encoders 3-Bit 1-of-9 Priority Encoder 8-to-3 encoder, Synchronous
with Reset

Logical Shifters Example 1

Example 2

Example 3

None

Dynamic Shifters 16-bit Dynamic Shift
Register with Positive-Edge
Clock, Serial In and Serial
Out

None

Table 2-1: VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
36 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Introduction
R

Arithmetic Operators Unsigned 8-bit Adder

Unsigned 8-bit Adder with
Carry In

Unsigned 8-bit Adder with
Carry Out

Unsigned 8-bit Adder with
Carry In and Carry Out

Simple Signed 8-bit Adder

Unsigned 8-bit Subtractor

Unsigned 8-bit
Adder/Subtractor

Unsigned 8-bit Greater or
Equal Comparator

Unsigned 8x4-bit Multiplier

Division By Constant 2

Resource Sharing

N-Bit Comparator, Synchronous
with Reset

Table 2-1: VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
XST User Guide www.xilinx.com 37
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Signed/Unsigned Support
When using Verilog or VHDL in XST, some macros, such as adders or counters, can be
implemented for signed and unsigned values.

For Verilog, to enable support for signed and unsigned values, you must enable
Verilog-2001. You can enable it by selecting the Verilog 2001 option under the Synthesis
Options tab in the Process Properties dialog box in Project Navigator, or by setting the
–verilog2001 command line option to yes. See the “VERILOG2001” section in the
Constraints Guide for details.

RAMs Single-Port RAM with
Asynchronous Read

Single-Port RAM with
"False" Synchronous Read

Single-Port RAM with
Synchronous Read (Read
Through)

Dual-Port RAM with
Asynchronous Read

Dual-Port RAM with False
Synchronous Read

Dual-Port RAM with
Synchronous Read (Read
Through)

Dual-Port Block RAM with
Different Clocks

Block RAM with Reset

Multiple-Port RAM
Descriptions

Single-Port Block RAM

Single-Port Distributed RAM

Dual-Port Block RAM

Dual-Port Distributed RAM

State Machines FSM with 1 Process

FSM with 2 Processes

FSM with 3 Processes

Binary State Machine

One-Hot State Machine

Black Boxes VHDL

Verilog

None

Table 2-1: VHDL and Verilog Examples and Templates

Macro Blocks Chapter Examples Language Templates
38 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Registers
R

For VHDL, depending on the operation and type of the operands, you must include
additional packages in your code. For example, in order to create an unsigned adder, you
can use the following arithmetic packages and types that operate on unsigned values:

To create a signed adder you can use arithmetic packages and types that operate on signed
values.

Please refer to the IEEE VHDL Manual for details on available types.

Registers
XST recognizes flip-flops with the following control signals:

• Asynchronous Set/Clear

• Synchronous Set/Clear

• Clock Enable

Log File
The XST log file reports the type and size of recognized flip-flops during the Macro
Recognition step.

PACKAGE TYPE

numeric_std unsigned

std_logic_arith unsigned

std_logic_unsigned std_logic_vector

PACKAGE TYPE

numeric_std signed

std_logic_arith signed

std_logic_signed std_logic_vector

...
Synthesizing Unit <flop>.

Related source file is ff_1.vhd.
Found 1-bit register for signal <q>.
Summary:

inferred 1 D-type flip-flop(s).
Unit <flop> synthesized.
...
==============================
HDL Synthesis Report

Macro Statistics
Registers : 1
1-bit register : 1

==============================
...
XST User Guide www.xilinx.com 39
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Related Constraints
Related constraints are IOB, REGISTER_DUPLICATION,
EQUIVALENT_REGISTER_REMOVAL, REGISTER_BALANCING.

Flip-flop with Positive-Edge Clock
The following figure shows a flip-flop with positive-edge clock.

The following table shows pin definitions for a flip-flop with positive edge clock.

VHDL Code

Following is the equivalent VHDL code sample for the flip-flop with a positive-edge clock.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(

C, D : in std_logic;
Q : out std_logic
);

end flop;
architecture archi of flop is
begin
process (C)
begin
if (C’event and C=’1’) then

Q <= D;
end if;

end process;
end archi;

When using VHDL, for a positive-edge clock instead of using

if (C’event and C=’1’) then

you can also use

if (rising_edge(C)) then

IO Pins Description

D Data Input

C Positive Edge Clock

Q Data Output

Q

X3715

D
FD

C

40 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Registers
R

Verilog Code

Following is the equivalent Verilog code sample for the flip-flop with a positive-edge
clock.

module flop (C, D, Q);
input C, D;
output Q;
reg Q;

always @(posedge C)
begin
Q = D;

end
endmodule

Flip-flop with Negative-Edge Clock and Asynchronous Clear
The following figure shows a flip-flop with negative-edge clock and asynchronous clear.

The following table shows pin definitions for a flip-flop with negative-edge clock and
asynchronous clear.

IO Pins Description

D Data Input

C Negative-Edge Clock

CLR Asynchronous Clear (active High)

Q Data Output

Q

X3847

D

CLR

C

FDC_1
XST User Guide www.xilinx.com 41
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL Code

Following is the equivalent VHDL code for a flip-flop with a negative-edge clock and
asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(

C, D, CLR: in std_logic;
Q : out std_logic
);

end flop;
architecture archi of flop is
begin
process (C, CLR)
begin
if (CLR = ’1’)then

Q <= ’0’;
elsif (C’event and C=’0’)then

Q <= D;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for a flip-flop with a negative-edge clock and
asynchronous clear.

module flop (C, D, CLR, Q);
input C, D, CLR;
output Q;
reg Q;

always @(negedge C or posedge CLR)
begin
if (CLR)

Q = 1’b0;
else

Q = D;
end

endmodule

Flip-flop with Positive-Edge Clock and Synchronous Set
The following figure shows a flip-flop with positive-edge clock and synchronous set.

Q

X3722

D
FDS

C

S

42 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Registers
R

The following table shows pin definitions for a flip-flop with positive-edge clock and
synchronous set.

VHDL Code

Following is the equivalent VHDL code for the flip-flop with a positive-edge clock and
synchronous set.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(

C, D, S : in std_logic;
Q : out std_logic);

end flop;
architecture archi of flop is
begin
process (C)
begin
if (C’event and C=’1’) then

if (S=’1’) then
Q <= ’1’;

else
Q <= D;
end if;

end if;
end process;

end archi;

Verilog Code

Following is the equivalent Verilog code for the flip-flop with a positive-edge clock and
synchronous set.

module flop (C, D, S, Q);
input C, D, S;
output Q;
reg Q;

always @(posedge C)
begin
if (S)

Q = 1’b1;
else

Q = D;
end

endmodule

IO Pins Description

D Data Input

C Positive-Edge Clock

S Synchronous Set (active High)

Q Data Output
XST User Guide www.xilinx.com 43
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Flip-flop with Positive-Edge Clock and Clock Enable
The following figure shows a flip-flop with positive-edge clock and clock enable.

The following table shows pin definitions for a flip-flop with positive-edge clock and clock
enable.

VHDL Code

Following is the equivalent VHDL code for the flip-flop with a positive-edge clock and
clock enable.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(

C, D, CE : in std_logic;
Q : out std_logic
);

end flop;
architecture archi of flop is
begin
process (C)
begin
if (C’event and C=’1’) then

if (CE=’1’) then
Q <= D;

end if;
end if;

end process;
end archi;

IO Pins Description

D Data Input

C Positive-Edge Clock

CE Clock Enable (active High)

Q Data Output

Q

C

FDE

X8361

D

CE
44 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Registers
R

Verilog Code

Following is the equivalent Verilog code for the flip-flop with a positive-edge clock and
clock enable.

module flop (C, D, CE, Q);
input C, D, CE;
output Q;
reg Q;

always @(posedge C)
begin
if (CE)

Q = D;
end

endmodule

4-bit Register with Positive-Edge Clock, Asynchronous Set and Clock
Enable

The following figure shows a 4-bit register with positive-edge clock, asynchronous set and
clock enable.

The following table shows pin definitions for a 4-bit register with positive-edge clock,
asynchronous set and clock enable.

IO Pins Description

D[3:0] Data Input

C Positive-Edge Clock

PRE Asynchronous Set (active High)

CE Clock Enable (active High)

Q[3:0] Data Output

X3721

FDPE

C

CE

QD

PRE
XST User Guide www.xilinx.com 45
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL Code

Following is the equivalent VHDL code for a 4-bit register with a positive-edge clock,
asynchronous set and clock enable.

library ieee;
use ieee.std_logic_1164.all;

entity flop is
port(

C, CE, PRE : in std_logic;
D : in std_logic_vector (3 downto 0);
Q : out std_logic_vector (3 downto 0)
);

end flop;

architecture archi of flop is
begin
process (C, PRE)
begin
if (PRE=’1’) then

Q <= "1111";
elsif (C’event and C=’1’)then

if (CE=’1’) then
Q <= D;

end if;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for a 4-bit register with a positive-edge clock,
asynchronous set and clock enable.

module flop (C, D, CE, PRE, Q);
input C, CE, PRE;
input [3:0] D;
output [3:0] Q;
reg [3:0] Q;

always @(posedge C or posedge PRE)
begin
if (PRE)

Q = 4’b1111;
else

if (CE)
Q = D;

end
endmodule

Latches
XST can recognize latches with the asynchronous set/clear control signals.

Latches can be described using:

• Process (VHDL) and always block (Verilog).

• Concurrent state assignment.
46 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Registers
R

Log File

The XST log file reports the type and size of recognized latches during the Macro
Recognition step.

Related Constraints

A related constraint is IOB.

Latch with Positive Gate

The following figure shows a latch with a positive gate.

The following table shows pin definitions for a latch with a positive gate.

...
Synthesizing Unit <latch>.

Related source file is latch_1.vhd.
WARNING:Xst:737 - Found 1-bit latch for signal <q>.

Summary:
inferred 1 Latch(s).

Unit <latch> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Latches : 1
1-bit latch : 1

==============================
...

IO Pins Description

D Data Input

G Positive Gate

Q Data Output

Q

X3740

D
LD

G

XST User Guide www.xilinx.com 47
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL Code

Following is the equivalent VHDL code for a latch with a positive gate.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port(

G, D : in std_logic;
Q : out std_logic
);

end latch;
architecture archi of latch is
begin
process (G, D)
begin
if (G=’1’) then

Q <= D;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for a latch with a positive gate.

module latch (G, D, Q);
input G, D;
output Q;
reg Q;

always @(G or D)
begin
if (G)

Q = D;
end

endmodule

Latch with Positive Gate and Asynchronous Clear

The following figure shows a latch with a positive gate and an asynchronous clear.

Q

X4070

D
LDC

G

CLR
48 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Registers
R

The following table shows pin definitions for a latch with a positive gate and an
asynchronous clear.

VHDL Code

Following is the equivalent VHDL code for a latch with a positive gate and an
asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port(

G, D, CLR : in std_logic;
Q : out std_logic
);

end latch;

architecture archi of latch is
begin
process (CLR, D, G)
begin
if (CLR=’1’) then

Q <= ’0’;
elsif (G=’1’) then

Q <= D;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for a latch with a positive gate and an
asynchronous clear.

module latch (G, D, CLR, Q);
input G, D, CLR;
output Q;
reg Q;

always @(G or D or CLR)
begin
if (CLR)

Q = 1’b0;
else if (G)

Q = D;
end

endmodule

IO Pins Description

D Data Input

G Positive Gate

CLR Asynchronous Clear (active High)

Q Data Output
XST User Guide www.xilinx.com 49
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

4-bit Latch with Inverted Gate and Asynchronous Preset
The following figure shows a 4-bit latch with an inverted gate and an asynchronous preset.

The following table shows pin definitions for a latch with an inverted gate and an
asynchronous preset.

VHDL Code

Following is the equivalent VHDL code for a 4-bit latch with an inverted gate and an
asynchronous preset.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port(

D : in std_logic_vector(3 downto 0);
G, PRE : in std_logic;
Q : out std_logic_vector(3 downto 0));

end latch;

architecture archi of latch is
begin
process (PRE, G)
begin
if (PRE=’1’) then

Q <= "1111";
elsif (G=’0’) then

Q <= D;
end if;

end process;
end archi;

Verilog Code

Following is the equivalent Verilog code for a 4-bit latch with an inverted gate and an
asynchronous preset.

IO Pins Description

D[3:0] Data Input

G Inverted Gate

PRE Asynchronous Preset (active High)

Q[3:0] Data Output

Q

G

LDP_1

PRE

X8376

D

50 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Tristates
R

module latch (G, D, PRE, Q);
input G, PRE;
input [3:0] D;
output [3:0] Q;
reg [3:0] Q;

always @(G or D or PRE)
begin
if (PRE)

Q = 4’b1111;
else if (~G)

Q = D;
end

endmodule

Tristates
Tristate elements can be described using the following:

• Combinatorial process (VHDL) and always block (Verilog).

• Concurrent assignment.

Log File
The XST log reports the type and size of recognized tristates during the Macro Recognition
step.

Related Constraints
There are no related constraints available.

...
Synthesizing Unit <three_st>.

Related source file is tristates_1.vhd.
Found 1-bit tristate buffer for signal <o>.
Summary:

inferred 1 Tristate(s).
Unit <three_st> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Tristates : 1

1-bit tristate buffer : 1
=============================
...
XST User Guide www.xilinx.com 51
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Description Using Combinatorial Process and Always Block
The following figure shows a tristate element using a combinatorial process and always
block.

The following table shows pin definitions for a tristate element using a combinatorial
process and always block.

VHDL Code

Following is VHDL code for a tristate element using a combinatorial process and always
block.

library ieee;
use ieee.std_logic_1164.all;

entity three_st is
port(

T : in std_logic;
I : in std_logic;
O : out std_logic
);

end three_st;

architecture archi of three_st is
begin
process (I, T)
begin
if (T=’0’) then

O <= I;
else

O <= ’Z’;
end if;

end process;
end archi;

IO Pins Description

I Data Input

T Output Enable (active Low)

O Data Output

X9543

T

I O

BUFT
52 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Tristates
R

Verilog Code

Following is Verilog code for a tristate element using a combinatorial process and always
block.

module three_st (T, I, O);
input T, I;
output O;
reg O;

always @(T or I)
begin
if (~T)

O = I;
else

O = 1’bZ;
end

endmodule

Description Using Concurrent Assignment
In the following two examples, note that comparing to 0 instead of 1 infers a BUFT
primitive instead of a BUFE macro. (The BUFE macro has an inverter on the E pin.)

VHDL Code

Following is VHDL code for a tristate element using a concurrent assignment.

library ieee;
use ieee.std_logic_1164.all;

entity three_st is
port(

T : in std_logic;
I : in std_logic;
O : out std_logic
);

end three_st;

architecture archi of three_st is
begin
O <= I when (T=’0’) else ’Z’;

end archi;

Verilog Code

Following is the Verilog code for a tristate element using a concurrent assignment.

module three_st (T, I, O);
input T, I;
output O;

assign O = (~T) ? I: 1’bZ;
endmodule
XST User Guide www.xilinx.com 53
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Counters
XST is able to recognize counters with the following control signals.

• Asynchronous Set/Clear

• Synchronous Set/Clear

• Asynchronous/Synchronous Load (signal and/or constant)

• Clock Enable

• Modes (Up, Down, Up/Down)

• Mixture of all of the above

HDL coding styles for the following control signals are equivalent to the ones described in
“Registers” in this chapter.

• Clock

• Asynchronous Set/Clear

• Synchronous Set/Clear

• Clock Enable

Moreover, XST supports both unsigned and signed counters.

Log File
The XST log file reports the type and size of recognized counters during the Macro
Recognition step.

Note: During synthesis, XST decomposes Counters on Adders and Registers if they do not contain
synchronous load signals. This is done to create additional opportunities for timing optimization.
Because of this, counters reported during the Macro Recognition step and in the overall statistics of
recognized macros may not appear in the final report. Adders/registers are reported instead.

Related Constraints
There are no related constraints available.

...
Synthesizing Unit <counter>.

Related source file is counters_1.vhd.
Found 4-bit up counter for signal <tmp>.
Summary:

inferred 1 Counter(s).
Unit <counter> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Counters : 1
4-bit up counter : 1

==============================
...
54 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Counters
R

4-bit Unsigned Up Counter with Asynchronous Clear
The following table shows pin definitions for a 4-bit unsigned up counter with an
asynchronous clear.

VHDL Code

Following is VHDL code for a 4-bit unsigned up counter with an asynchronous clear.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

C, CLR : in std_logic;
Q : out std_logic_vector(3 downto 0)
);

end counter;
architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin
if (CLR=’1’) then

tmp <= "0000";
elsif (C’event and C=’1’) then

tmp <= tmp + 1;
end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned up counter with asynchronous clear.

module counter (C, CLR, Q);
input C, CLR;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin
if (CLR)

tmp = 4’b0000;
else

tmp = tmp + 1’b1;
end

assign Q = tmp;
endmodule

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

Q[3:0] Data Output
XST User Guide www.xilinx.com 55
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

4-bit Unsigned Down Counter with Synchronous Set
The following table shows pin definitions for a 4-bit unsigned down counter with a
synchronous set.

VHDL Code

Following is the VHDL code for a 4-bit unsigned down counter with a synchronous set.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

C, S : in std_logic;
Q : out std_logic_vector(3 downto 0)
);

end counter;

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (C)
begin
if (C’event and C=’1’) then

if (S=’1’) then
tmp <= "1111";

else
tmp <= tmp - 1;

end if;
end if;

end process;
Q <= tmp;

end archi;

IO Pins Description

C Positive-Edge Clock

S Synchronous Set (active High)

Q[3:0] Data Output
56 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Counters
R

Verilog Code

Following is the Verilog code for a 4-bit unsigned down counter with synchronous set.

module counter (C, S, Q);
input C, S;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C)
begin
if (S)
tmp = 4’b1111;

else
tmp = tmp - 1’b1;

end
assign Q = tmp;

endmodule

4-bit Unsigned Up Counter with Asynchronous Load from Primary Input
The following table shows pin definitions for a 4-bit unsigned up counter with an
asynchronous load from the primary input.

VHDL Code

Following is the VHDL code for a 4-bit unsigned up counter with an asynchronous load
from the primary input.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

C, ALOAD : in std_logic;
D : in std_logic_vector(3 downto 0);
Q : out std_logic_vector(3 downto 0)
);

end counter;

IO Pins Description

C Positive-Edge Clock

ALOAD Asynchronous Load (active High)

D[3:0] Data Input

Q[3:0] Data Output
XST User Guide www.xilinx.com 57
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (C, ALOAD, D)
begin
if (ALOAD=’1’) then

tmp <= D;
elsif (C’event and C=’1’) then

tmp <= tmp + 1;
end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned up counter with an asynchronous load
from the primary input.

module counter (C, ALOAD, D, Q);
input C, ALOAD;
input [3:0] D;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge ALOAD)
begin
if (ALOAD)

tmp = D;
else

tmp = tmp + 1’b1;
end

assign Q = tmp;
endmodule

4-bit Unsigned Up Counter with Synchronous Load with a Constant
The following table shows pin definitions for a 4-bit unsigned up counter with a
synchronous load with a constant.

IO Pins Description

C Positive-Edge Clock

SLOAD Synchronous Load (active High)

Q[3:0] Data Output
58 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Counters
R

VHDL Code

Following is the VHDL code for a 4-bit unsigned up counter with a synchronous load with
a constant.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

C, SLOAD : in std_logic;
Q : out std_logic_vector(3 downto 0)
);

end counter;

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (C)
begin
if (C’event and C=’1’) then

if (SLOAD=’1’) then
tmp <= "1010";

else
tmp <= tmp + 1;

end if;
end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned up counter with a synchronous load with
a constant.

module counter (C, SLOAD, Q);
input C, SLOAD;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C)
begin
if (SLOAD)

tmp = 4’b1010;
else

tmp = tmp + 1’b1;
end

assign Q = tmp;
endmodule
XST User Guide www.xilinx.com 59
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

4-bit Unsigned Up Counter with Asynchronous Clear and Clock Enable
The following table shows pin definitions for a 4-bit unsigned up counter with an
asynchronous clear and a clock enable.

VHDL Code

Following is the VHDL code for a 4-bit unsigned up counter with an asynchronous clear
and a clock enable.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

C, CLR, CE : in std_logic;
Q : out std_logic_vector(3 downto 0)
);

end counter;

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (C, CLR)
begin
if (CLR=’1’) then

tmp <= "0000";
elsif (C’event and C=’1’) then

if (CE=’1’) then
tmp <= tmp + 1;

end if;
end if;

end process;
Q <= tmp;

end archi;

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

CE Clock Enable

Q[3:0] Data Output
60 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Counters
R

Verilog Code

Following is the Verilog code for a 4-bit unsigned up counter with an asynchronous clear
and a clock enable.

module counter (C, CLR, CE, Q);
input C, CLR, CE;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin
if (CLR)
tmp = 4’b0000;

else
if (CE)
tmp = tmp + 1’b1;

end
assign Q = tmp;

endmodule

4-bit Unsigned Up/Down counter with Asynchronous Clear
The following table shows pin definitions for a 4-bit unsigned up/down counter with an
asynchronous clear.

VHDL Code

Following is the VHDL code for a 4-bit unsigned up/down counter with an asynchronous
clear.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity counter is
port(

C, CLR, UP_DOWN : in std_logic;
Q : out std_logic_vector(3 downto 0)
);

end counter;

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

UP_DOW
N

up/down count mode selector

Q[3:0] Data Output
XST User Guide www.xilinx.com 61
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (C, CLR)
begin
if (CLR=’1’) then

tmp <= "0000";
elsif (C’event and C=’1’) then

if (UP_DOWN=’1’) then
tmp <= tmp + 1;

else
tmp <= tmp - 1;

end if;
end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned up/down counter with an asynchronous
clear.

module counter (C, CLR, UP_DOWN, Q);
input C, CLR, UP_DOWN;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin
if (CLR)

tmp = 4’b0000;
else

if (UP_DOWN)
tmp = tmp + 1’b1;

else
tmp = tmp - 1’b1;

end
assign Q = tmp;

endmodule

4-bit Signed Up Counter with Asynchronous Reset
The following table shows pin definitions for a 4-bit signed up counter with an
asynchronous reset.

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

Q[3:0] Data Output
62 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Counters
R

VHDL Code

Following is the VHDL code for a 4-bit signed up counter with an asynchronous reset.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity counter is
port(

C, CLR : in std_logic;
Q : out std_logic_vector(3 downto 0)
);

end counter;

architecture archi of counter is
signal tmp: std_logic_vector(3 downto 0);
begin
process (C, CLR)
begin
if (CLR = ’1’) then

tmp <= "0000";
elsif (C’event and C=’1’) then

tmp <= tmp + 1;
end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit signed up counter with an asynchronous reset.

module counter (C, CLR, Q);
input C, CLR;
output signed [3:0] Q;
reg signed [3:0] tmp;

always @ (posedge C or posedge CLR)
begin
if (CLR)

tmp <= "0000";
else

tmp <= tmp + 1’b1;
end
assign Q = tmp;

endmodule
XST User Guide www.xilinx.com 63
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

4-bit Signed Up Counter with Asynchronous Reset and Modulo Maximum
The following table shows pin definitions for a 4-bit signed up counter with an
asynchronous reset and a modulo maximum.

VHDL Code

Following is the VHDL code for a 4-bit signed up counter with an asynchronous reset and
a maximum using the VHDL mod function.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity counter is
generic (MAX : integer := 4);
port(
C, CLR : in std_logic;
Q : out integer range 0 to MAX-1
);

end counter;

architecture archi of counter is
signal cnt : integer range 0 to MAX-1;
begin
process (C, CLR)
begin
if (CLR=’1’) then
cnt <= 0;

elsif (rising_edge(C)) then
cnt <= (cnt + 1) mod (MAX * MAX) ;

end if;
end process;
Q <= cnt;

end archi;

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

Q[7:0] Data Output
64 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Accumulators
R

Verilog Code

Following is the Verilog code for a 4-bit signed up counter with an asynchronous reset and
a modulo maximum.

module counter (C, CLR, Q);
parameter
MAX_SQRT = 4,
MAX = (MAX_SQRT*MAX_SQRT);

input C, CLR;
output [MAX_SQRT-1:0] Q;

reg [MAX_SQRT-1:0] cnt;

always @ (posedge C or posedge CLR)
begin
if (CLR)

cnt <= 0;
else

cnt <= (cnt + 1) %MAX;
end
assign Q = cnt;

endmodule

Related Constraints

There are no related constraints available.

Accumulators
An accumulator differs from a counter in the nature of the operands of the add and
subtract operation:

• In a counter, the destination and first operand is a signal or variable and the other
operand is a constant equal to 1: A <= A + 1.

• In an accumulator, the destination and first operand is a signal or variable, and the
second operand is either:

♦ a signal or variable: A <= A + B.

♦ a constant not equal to 1: A <= A + Constant.

 An inferred accumulator can be up, down or updown. For an updown accumulator, the
accumulated data may differ between the up and down mode:

...
if updown = ’1’ then
a <= a + b;

else
a <= a - c;

...

XST can infer an accumulator with the same set of control signals available for counters.
(Refer to “Counters” in this chapter for more details.)
XST User Guide www.xilinx.com 65
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Log File
The XST log file reports the type and size of recognized accumulators during the Macro
Recognition step.

Note: During synthesis, XST decomposes Accumulators on Adders and Registers if they do not
contain synchronous load signals. This is done to create additional opportunities for timing
optimization. Because of this, Accumulators reported during the Macro Recognition step and in the
overall statistics of recognized macros may not appear in the final report. Adders/registers are
reported instead.

Related Constraints
There are no related constraints available.

4-bit Unsigned Up Accumulator with Asynchronous Clear
The following table shows pin definitions for a 4-bit unsigned up accumulator with an
asynchronous clear.

VHDL Code

Following is the VHDL code for a 4-bit unsigned up accumulator with an asynchronous
clear.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

...
Synthesizing Unit <accum>.

Related source file is accumulators_1.vhd.
Found 4-bit up accumulator for signal <tmp>.
Summary:

inferred 1 Accumulator(s).
Unit <accum> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Accumulators : 1
4-bit up accumulator : 1

==============================
...

IO Pins Description

C Positive-Edge Clock

CLR Asynchronous Clear (active High)

D[3:0] Data Input

Q[3:0] Data Output
66 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Accumulators
R

entity accum is
port(

C, CLR : in std_logic;
D : in std_logic_vector(3 downto 0);
Q : out std_logic_vector(3 downto 0)
);

end accum;

architecture archi of accum is
signal tmp : std_logic_vector(3 downto 0);
begin
process (C, CLR)
begin
if (CLR=’1’) then

tmp <= "0000";
elsif (C’event and C=’1’) then

tmp <= tmp + D;
end if;

end process;
Q <= tmp;

end archi;

Verilog Code

Following is the Verilog code for a 4-bit unsigned up accumulator with an asynchronous
clear.

module accum (C, CLR, D, Q);
input C, CLR;
input [3:0] D;
output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin
if (CLR)

tmp = 4’b0000;
else

tmp = tmp + D;
end

assign Q = tmp;
endmodule

Related Constraints

There are no related constraints available.
XST User Guide www.xilinx.com 67
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Shift Registers
In general, a shift register is characterized by the following control and data signals, which
are fully recognized by XST.

• clock

• serial input

• asynchronous set/reset

• synchronous set/reset

• synchronous/asynchronous parallel load

• clock enable

• serial or parallel output. The shift register output mode may be:

♦ serial: only the contents of the last flip-flop are accessed by the rest of the circuit

♦ parallel: the contents of one or several flip-flops, other than the last one, are
accessed

• shift modes: left, right, etc.

There are different ways to describe shift registers. For example, in VHDL you can use:

• concatenation operator

 shreg <= shreg (6 downto 0) & SI;

• "for loop" construct

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);

end loop;
shreg(0) <= SI;

• predefined shift operators; for example, sll, srl

Consult the VHDL/Verilog language reference manuals for more information.

FPGAs:

Before writing shift register behavior it is important to recall that Virtex™/-E/-II/-II Pro/
-II Pro X, and Spartan™-II/-IIE/-3 have specific hardware resources to implement shift
registers: SRL16 for Virtex™ /-E/-II/-II Pro/-II Pro X and Spartan™-II/-IIE/-3 and
SRLC16 for Virtex™-II/-II Pro/-II Pro X and Spartan-3™. Both are available with or
without a clock enable. The following figure shows the pin layout of SRL16E.

X8423

SRL16E

A2

A3

A1

A0

CLK

CE

D Q
68 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Shift Registers
R

The following figure shows the pin layout of SRLC16.

Note: Synchronous and asynchronous control signals are not available in the SLRC16x primitives.

SRL16 and SRLC16 support only LEFT shift operation for a limited number of IO signals.

• clock

• clock enable

• serial data in

• serial data out

This means that if your shift register does have, for instance, a synchronous parallel load, no
SRL16 is implemented. XST uses specific internal processing which allows it to produce
the best final results.

The XST log file reports recognized shift registers when it can be implemented using
SRL16.

Log File
The XST log file reports the type and size of recognized shift registers during the Macro
Recognition step.

X9497

CLK
Q

Q15

D

A0

A1

A2

A3

SRLC16

...
Synthesizing Unit <shift>.

Related source file is shift_registers_1.vhd.
Found 8-bit shift register for signal <tmp<7>>.
Summary:

inferred 1 Shift register(s).
Unit <shift> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Shift Registers : 1
8-bit shift register : 1

==============================
...
XST User Guide www.xilinx.com 69
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Related Constraints
A related constraint is SHREG_EXTRACT.

8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Serial Out
Note: For this example, XST infers an SRL16.

The following table shows pin definitions for an 8-bit shift-left register with a positive-
edge clock, a serial in, and a serial out.

IO Pins Description

C Positive-Edge Clock

SI Serial In

SO Serial Output
70 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Shift Registers
R

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a positive-edge clock, a
serial in and a serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI : in std_logic;
SO : out std_logic
);

end shift;

architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C)
begin
if (C’event and C=’1’) then

for i in 0 to 6 loop
tmp(i+1) <= tmp(i);

end loop;
tmp(0) <= SI;

end if;
end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a positive-edge clock, serial
in, and serial out.

module shift (C, SI, SO);
input C,SI;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin
tmp = tmp << 1;
tmp[0] = SI;

end
assign SO = tmp[7];

endmodule
XST User Guide www.xilinx.com 71
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

8-bit Shift-Left Register with Negative-Edge Clock, Clock Enable, Serial
In, and Serial Out

Note: For this example, XST infers an SRL16E_1.

The following table shows pin definitions for an 8-bit shift-left register with a negative-
edge clock, a clock enable, a serial in, and a serial out.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a negative-edge clock, a
clock enable, a serial in, and a serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI, CE : in std_logic;
SO : out std_logic
);

end shift;

architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C)
begin
if (C’event and C=’0’) then

if (CE=’1’) then
for i in 0 to 6 loop

tmp(i+1) <= tmp(i);
end loop;
tmp(0) <= SI;

end if;
end if;

end process;
SO <= tmp(7);

end archi;

IO Pins Description

C Negative-Edge Clock

SI Serial In

CE Clock Enable (active High)

SO Serial Output
72 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Shift Registers
R

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a negative-edge clock, a
clock enable, a serial in, and a serial out.

module shift (C, CE, SI, SO);
input C, SI, CE;
output SO;
reg [7:0] tmp;

always @(negedge C)
begin
if (CE)
begin
tmp = tmp << 1;
tmp[0] = SI;

end
end
assign SO = tmp[7];

endmodule

8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Clear,
Serial In, and Serial Out

Note: Because this example includes an asynchronous clear, XST does not infer an SRL16.

The following table shows pin definitions for an 8-bit shift-left register with a positive-
edge clock, an asynchronous clear, a serial in, and a serial out.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a positive-edge clock, an
asynchronous clear, a serial in, and a serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI, CLR : in std_logic;
SO : out std_logic
);

end shift;

IO Pins Description

C Positive-Edge Clock

SI Serial In

CLR Asynchronous Clear (active High)

SO Serial Output
XST User Guide www.xilinx.com 73
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C, CLR)
begin
if (CLR=’1’) then

tmp <= (others => ’0’);
elsif (C’event and C=’1’) then

tmp <= tmp(6 downto 0) & SI;
end if;

end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a positive-edge clock,
asynchronous clear, serial in, and serial out.

module shift (C, CLR, SI, SO);
input C, SI, CLR;
output SO;
reg [7:0] tmp;

always @(posedge C or posedge CLR)
begin
if (CLR)

tmp = 8’b00000000;
else

begin
tmp = {tmp[6:0], SI};

end
end
assign SO = tmp[7];

endmodule

8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Set, Serial
In, and Serial Out

Note: For this example, XST does not infer an SRL16.

The following table shows pin definitions for an 8-bit shift-left register with a positive-
edge clock, a synchronous set, a serial in, and a serial out.

IO Pins Description

C Positive-Edge Clock

SI Serial In

S Synchronous Set (active High)

SO Serial Output
74 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Shift Registers
R

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a positive-edge clock, a
synchronous set, a serial in, and a serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI, S : in std_logic;
SO : out std_logic
);

end shift;

architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C, S)
begin
if (C’event and C=’1’) then

if (S=’1’) then
tmp <= (others => ’1’);

else
tmp <= tmp(6 downto 0) & SI;

end if;
end if;

end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a positive-edge clock, a
synchronous set, a serial in, and a serial out.

module shift (C, S, SI, SO);
input C, SI, S;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin
if (S)

tmp = 8’b11111111;
else

begin
tmp = {tmp[6:0], SI};

end
end
assign SO = tmp[7];

endmodule
XST User Guide www.xilinx.com 75
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Parallel
Out

Note: For this example, XST does not infer SRL16.

The following table shows pin definitions for an 8-bit shift-left register with a positive-
edge clock, a serial in, and a parallel out.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a positive-edge clock, a
serial in, and a parallel out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI : in std_logic;
PO : out std_logic_vector(7 downto 0)
);

end shift;

architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C)
begin
if (C’event and C=’1’) then

tmp <= tmp(6 downto 0)& SI;
end if;

end process;
PO <= tmp;

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a positive-edge clock, a
serial in, and a parallel out.

module shift (C, SI, PO);
input C, SI;
output [7:0] PO;
reg [7:0] tmp;

always @(posedge C)
begin
tmp = {tmp[6:0], SI};

end
assign PO = tmp;

endmodule

IO Pins Description

C Positive-Edge Clock

SI Serial In

PO[7:0] Parallel Output
76 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Shift Registers
R

8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Parallel
Load, Serial In, and Serial Out

Note: For this example, XST does not infer SRL16.

The following table shows pin definitions for an 8-bit shift-left register with a positive-
edge clock, an asynchronous parallel load, a serial in, and a serial out.

VHDL Code

Following is VHDL code for an 8-bit shift-left register with a positive-edge clock, an
asynchronous parallel load, a serial in, and a serial out.

library ieee;
use ieee.std_logic_1164.all;
entity shift is
port(

C, SI, ALOAD : in std_logic;
D : in std_logic_vector(7 downto 0);
SO : out std_logic
);

end shift;
architecture archi of shift is
signal tmp : std_logic_vector(7 downto 0);
begin
process (C, ALOAD, D)
begin
if (ALOAD=’1’) then

tmp <= D;
elsif (C’event and C=’1’) then

tmp <= tmp(6 downto 0) & SI;
end if;

end process;
SO <= tmp(7);

end archi;

IO Pins Description

C Positive-Edge Clock

SI Serial In

ALOAD Asynchronous Parallel Load (active High)

D[7:0] Data Input

SO Serial Output
XST User Guide www.xilinx.com 77
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a positive-edge clock, an
asynchronous parallel load, a serial in, and a serial out.

module shift (C, ALOAD, SI, D, SO);
input C, SI, ALOAD;
input [7:0] D;
output SO;
reg [7:0] tmp;

always @(posedge C or posedge ALOAD)
begin
if (ALOAD)

tmp = D;
else

begin
tmp = {tmp[6:0], SI};

end
end
assign SO = tmp[7];

endmodule

8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Parallel
Load, Serial In, and Serial Out

Note: For this example, XST does not infer SRL16.

The following table shows pin definitions for an 8-bit shift-left register with a positive-
edge clock, a synchronous parallel load, a serial in and a serial out.

VHDL Code

Following is the VHDL code for an 8-bit shift-left register with a positive-edge clock,
synchronous parallel load, serial in, and serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI, SLOAD : in std_logic;
D : in std_logic_vector(7 downto 0);
SO : out std_logic
);

end shift;

IO Pins Description

C Positive-Edge Clock

SI Serial In

SLOAD Synchronous Parallel Load (active High)

D[7:0] Data Input

SO Serial Output
78 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Shift Registers
R

architecture archi of shift is
signal tmp: std_logic_vector(7 downto 0);
begin
process (C)
begin
if (C’event and C=’1’) then

if (SLOAD=’1’) then
tmp <= D;

else
tmp <= tmp(6 downto 0) & SI;

end if;
end if;

end process;
SO <= tmp(7);

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left register with a positive-edge clock, a
synchronous parallel load, a serial in, and a serial out.

module shift (C, SLOAD, SI, D, SO);
input C, SI, SLOAD;
input [7:0] D;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin
if (SLOAD)

tmp = D;
else

begin
tmp = {tmp[6:0], SI};

end
end

assign SO = tmp[7];
endmodule

8-bit Shift-Left/Shift-Right Register with Positive-Edge Clock, Serial In,
and Parallel Out

Note: For this example, XST does not infer an SRL16.

The following table shows pin definitions for an 8-bit shift-left/shift-right register with a
positive-edge clock, a serial in, and a serial out.

IO Pins Description

C Positive-Edge Clock

SI Serial In

LEFT_RIGHT Left/right shift mode selector

PO[7:0] Parallel Output
XST User Guide www.xilinx.com 79
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL Code

Following is the VHDL code for an 8-bit shift-left/shift-right register with a positive-edge
clock, a serial in, and a serial out.

library ieee;
use ieee.std_logic_1164.all;

entity shift is
port(

C, SI, LEFT_RIGHT : in std_logic;
PO : out std_logic_vector(7 downto 0)
);

end shift;

architecture archi of shift is
signal tmp : std_logic_vector(7 downto 0);
begin
process (C)
begin
if (C’event and C=’1’) then

if (LEFT_RIGHT=’0’) then
tmp <= tmp(6 downto 0) & SI;

else
tmp <= SI & tmp(7 downto 1);

end if;
end if;

end process;
PO <= tmp;

end archi;

Verilog Code

Following is the Verilog code for an 8-bit shift-left/shift-right register with a positive-edge
clock, a serial in, and a serial out.

module shift (C, SI, LEFT_RIGHT, PO);
input C, SI, LEFT_RIGHT;
output PO;
reg [7:0] tmp;

always @(posedge C)
begin
if (LEFT_RIGHT == 1’b0)

begin
tmp = {tmp[6:0], SI};

end
else

begin
tmp = {SI, tmp[6:0]};

end
end
assign PO = tmp;

endmodule
80 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Dynamic Shift Register
R

Dynamic Shift Register
XST can infer Dynamic shift registers. Once a dynamic shift register has been identified, its
characteristics are handed to the XST macro generator for optimal implementation using
SRL16x primitives available in Spartan™-II/-IIE/-3, Virtex™/-II/-II Pro/-II Pro X or
SRLC16x in Virtex™-II/-II Pro/-II Pro X and Spartan-3™.

16-bit Dynamic Shift Register with Positive-Edge Clock, Serial In and
Serial Out

The following table shows pin definitions for a dynamic register. The register can be either
serial or parallel; be left or right; have a synchronous or asynchronous clear; and have a
depth up to 16 bits.

LOG File
The recognition of dynamic shift register happens in the Advanced HDL Synthesis step.
This is why no message about a dynamic shift register is displayed during HDL synthesis
step. Instead an n-bit register and a multiplexer is inferred:

IO Pins Description

Clk Positive-Edge Clock

SI Serial In

AClr Asynchronous Clear (optional)

SClr Synchronous Clear (optional)

SLoad Synchronous Parallel Load (optional)

Data Parallel Data Input Port (optional)

ClkEn Clock Enable (optional)

LeftRight Direction selection (optional)

SerialInRight Serial Input Right for Bidirectional Shift Register
(optional)

PSO[x:0] Serial or Parallel Output

...
Synthesizing Unit <dynamic_srl>.

Related source file is dynamic_srl.vhd.
Found 1-bit 16-to-1 multiplexer for signal <Q>.
Found 16-bit register for signal <data>.
Summary:
inferred 16 D-type flip-flop(s).
inferred 1 Multiplexer(s).

Unit <dynamic_srl> synthesized.

...
XST User Guide www.xilinx.com 81
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

The notification that XST recognized a dynamic shift register is displayed only in the
"Macro Statistics" section of the "Final Report".

Related Constraints
A related constraint is SHREG_EXTRACT.

VHDL Code
Following is the VHDL code for a 16-bit dynamic shift register.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity shiftregluts is
port(

CLK : in std_logic;
DATA : in std_logic;
CE : in std_logic;
A : in std_logic_vector(3 downto 0);
Q : out std_logic
);

end shiftregluts;

architecture rtl of shiftregluts is
constant DEPTH_WIDTH : integer := 16;
type SRL_ARRAY is array (0 to DEPTH_WIDTH-1) of std_logic;

-- The type SRL_ARRAY can be array
-- (0 to DEPTH_WIDTH-1) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- or array (DEPTH_WIDTH-1 downto 0) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- (the subtype is forward (see below))

signal SRL_SIG : SRL_ARRAY;

begin
PROC_SRL16 : process (CLK)
begin
if (CLK’event and CLK = ’1’) then

if (CE = ’1’) then
SRL_SIG <= DATA & SRL_SIG(0 to DEPTH_WIDTH-2);

end if;
end if;

end process;
Q <= SRL_SIG(conv_integer(A));
end rtl;

...

Macro Statistics
Shift Registers : 1
16-bit dynamic shift register : 1

...
82 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Multiplexers
R

Verilog Code
Following is the Verilog code for a 16-bit dynamic shift register.

module dynamic_srl (Q,CE,CLK,D,A);
input CLK, D, CE;
input [3:0] A;
output Q;
reg [15:0] data;
assign Q = data[A];

always @(posedge CLK)
begin
if (CE == 1’b1)

{data[15:0]} <= {data[14:0], D};
end

endmodule

Multiplexers
XST supports different description styles for multiplexers (MUXs), such as If-Then-Else or
Case. When writing MUXs, you must pay particular attention in order to avoid common
traps. For example, if you describe a MUX using a Case statement, and you do not specify
all values of the selector, you may get latches instead of a multiplexer. Writing MUXs you
can also use “don't cares” to describe selector values.

During the Macro Inference step, XST makes a decision to infer or not infer the MUXs. For
example, if the MUX has several inputs that are the same, then XST can decide not to infer
it. If you do want to infer the MUX, you can force XST by using the design constraint called
MUX_EXTRACT.

If you use Verilog, then you must be aware that Verilog Case statements can be full or not
full, and they can also be parallel or not parallel. A Case statement is:

• FULL if all possible branches are specified.

• PARALLEL if it does not contain branches that can be executed simultaneously.
XST User Guide www.xilinx.com 83
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

The following tables gives three examples of Case statements with different characteristics.

Full and Parallel Case

module full
(sel, i1, i2, i3, i4, o1);

input [1:0] sel;
input [1:0] i1, i2, i3, i4;
output [1:0] o1;

reg [1:0] o1;

always @(sel or i1 or i2 or i3 or i4)
begin
case (sel)
2’b00: o1 = i1;
2’b01: o1 = i2;
2’b10: o1 = i3;
2’b11: o1 = i4;

endcase
end

endmodule

Not Full but Parallel

module notfull
(sel, i1, i2, i3, o1);
input [1:0] sel;
input [1:0] i1, i2, i3;
output [1:0] o1;

reg [1:0] o1;

always @(sel or i1 or i2 or i3)
begin
case (sel)
2’b00: o1 = i1;
2’b01: o1 = i2;
2’b10: o1 = i3;

endcase
end

endmodule
84 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Multiplexers
R

XST automatically determines the characteristics of the Case statements and generates
logic using multiplexers, priority encoders and latches that best implement the exact
behavior of the Case statement.

This characterization of the Case statements can be guided or modified by using the Case
Implementation Style parameter. Please refer to the Chapter 5, “Design Constraints” for
more details. Accepted values for this parameter are none, full, parallel and full-parallel.

• If none is used (the default), XST implements the exact behavior of the Case
statements.

• If full is used, XST considers that Case statements are complete and avoids latch
creation.

• If parallel is used, XST considers that the branches cannot occur in parallel and does
not use a priority encoder.

• If full-parallel is used, XST considers that Case statements are complete and that the
branches cannot occur in parallel, therefore saving latches and priority encoders.

The following table indicates the resources used to synthesize the three examples above
using the four Case Implementation Styles. The term "resources" means the functionality.
For example, if you code the Case statement neither full nor parallel with Case
Implementation Style set to none, from the functionality point of view, XST implements a
priority encoder + latch. But, it does not inevitably mean that XST infers the priority
encoder during the Macro Recognition step.

Neither Full nor Parallel

module notfull_notparallel
(sel1, sel2, i1, i2, o1);
input [1:0] sel1, sel2;
input [1:0] i1, i2;
output [1:0] o1;

reg [1:0] o1;

always @(sel1 or sel2)
begin
case (2’b00)
sel1: o1 = i1;
sel2: o1 = i2;

endcase
end

endmodule

Parameter Value
Case Implementation

Full Not Full Neither Full nor Parallel

none MUX Latch Priority Encoder + Latch

parallel MUX Latch Latch

full MUX MUX Priority Encoder

full-parallel MUX MUX MUX
XST User Guide www.xilinx.com 85
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Note: Specifying full, parallel or full-parallel may result in an implementation with a behavior that
may differ from the behavior of the initial model.

Log File
The XST log file reports the type and size of recognized MUXs during the Macro
Recognition step.

Related Constraints
Related constraints are MUX_EXTRACT and MUX_STYLE.

4-to-1 1-bit MUX using IF Statement
The following table shows pin definitions for a 4-to-1 1-bit MUX using an If statement.

VHDL Code

Following is the VHDL code for a 4-to-1 1-bit MUX using an If statement.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (

a, b, c, d : in std_logic;
s : in std_logic_vector (1 downto 0);
o : out std_logic
);

end mux;

...
Synthesizing Unit <mux>.

Related source file is multiplexers_1.vhd.
Found 1-bit 4-to-1 multiplexer for signal <o>.
Summary:

inferred 1 Multiplexer(s).
Unit <mux> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Multiplexers : 1
1-bit 4-to-1 multiplexer : 1

==============================
...

IO Pins Description

a, b, c, d Data Inputs

s[1:0] MUX selector

o Data Output
86 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Multiplexers
R

architecture archi of mux is
begin
process (a, b, c, d, s)
begin
if (s = "00") then

o <= a;
elsif (s = "01") then

o <= b;
elsif (s = "10") then

o <= c;
else

o <= d;
end if;

end process;
end archi;

Verilog Code

Following is the Verilog code for a 4-to-1 1-bit MUX using an If statement.

module mux (a, b, c, d, s, o);
input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin
if (s == 2’b00)

o = a;
else if (s == 2’b01)

o = b;
else if (s == 2’b10)

o = c;
else

o = d;
end

endmodule

4-to-1 MUX Using CASE Statement
The following table shows pin definitions for a 4-to-1 1-bit MUX using a Case statement.

IO Pins Description

a, b, c, d Data Inputs

s[1:0] MUX selector

o Data Output
XST User Guide www.xilinx.com 87
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL Code

Following is the VHDL code for a 4-to-1 1-bit MUX using a Case statement.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (

a, b, c, d : in std_logic;
s : in std_logic_vector (1 downto 0);
o : out std_logic
);

end mux;

architecture archi of mux is
begin
process (a, b, c, d, s)
begin
case s is
when "00" => o <= a;
when "01" => o <= b;
when "10" => o <= c;
when others => o <= d;

end case;
end process;

end archi;

Verilog Code

Following is the Verilog Code for a 4-to-1 1-bit MUX using a Case statement.

module mux (a, b, c, d, s, o);
input a, b, c, d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin
case (s)
2’b00 : o = a;
2’b01 : o = b;
2’b10 : o = c;
default : o = d;

endcase
end

endmodule
88 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Multiplexers
R

4-to-1 MUX Using Tristate Buffers
The following table shows pin definitions for a 4-to-1 1-bit MUX using tristate buffers.

VHDL Code

Following is the VHDL code for a 4-to-1 1-bit MUX using tristate buffers.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (

a, b, c, d : in std_logic;
s : in std_logic_vector (3 downto 0);
o : out std_logic
);

end mux;

architecture archi of mux is
begin
o <= a when (s(0)=’0’) else ’Z’;
o <= b when (s(1)=’0’) else ’Z’;
o <= c when (s(2)=’0’) else ’Z’;
o <= d when (s(3)=’0’) else ’Z’;

end archi;

Verilog Code

Following is the Verilog Code for a 4-to-1 1-bit MUX using tristate buffers.

module mux (a, b, c, d, s, o);
input a, b, c, d;
input [3:0] s;
output o;

assign o = s[3] ? a :1’bz;
assign o = s[2] ? b :1’bz;
assign o = s[1] ? c :1’bz;
assign o = s[0] ? d :1’bz;

endmodule

No 4-to-1 MUX
The following example does not generate a 4-to-1 1-bit MUX, but a 3-to-1 MUX with 1-bit
latch. The reason is that not all selector values were described in the If statement. It is
supposed that for the s=11 case, "O" keeps its old value, and therefore a memory element is
needed.

IO Pins Description

a, b, c, d Data Inputs

s[3:0] MUX Selector

o Data Output
XST User Guide www.xilinx.com 89
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

The following table shows pin definitions for a 3-to-1 1-bit MUX with a 1-bit latch.

VHDL Code

Following is the VHDL code for a 3-to-1 1-bit MUX with a 1-bit latch.

library ieee;
use ieee.std_logic_1164.all;

entity mux is
port (

a, b, c, d : in std_logic;
s : in std_logic_vector (1 downto 0);
o : out std_logic
);

end mux;

architecture archi of mux is
begin
process (a, b, c, d, s)
begin
if (s = "00") then

o <= a;
elsif (s = "01") then

o <= b;
elsif (s = "10") then

o <= c;
end if;

end process;
end archi;

Verilog Code

Following is the Verilog code for a 3-to-1 1-bit MUX with a 1-bit latch.

module mux (a, b, c, d, s, o);
input a, b, c, d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin
if (s == 2’b00)

o = a;
else if (s == 2’b01)

o = b;
else if (s == 2’b10)

o = c;
end

endmodule

IO Pins Description

a, b, c, d Data Inputs

s[1:0] Selector

o Data Output
90 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Decoders
R

Decoders
A decoder is a multiplexer whose inputs are all constant with distinct one-hot (or one-cold)
coded values. Please refer to “Multiplexers” in this chapter for more details. This section
shows two examples of 1-of-8 decoders using One-Hot and One-Cold coded values.

Log File
The XST log file reports the type and size of recognized decoders during the Macro
Recognition step.

The following table shows pin definitions for a 1-of-8 decoder.

Related Constraints
A related constraint is DECODER_EXTRACT.

VHDL (One-Hot)
Following is the VHDL code for a 1-of-8 decoder.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (

sel: in std_logic_vector (2 downto 0);
res: out std_logic_vector (7 downto 0)
);

end dec;

Synthesizing Unit <dec>.
Related source file is decoders_1.vhd.
Found 1-of-8 decoder for signal <res>.
Summary:

inferred 1 Decoder(s).
Unit <dec> synthesized.
==============================
HDL Synthesis Report

Macro Statistics
Decoders : 1
1-of-8 decoder : 1

==============================
...

IO pins Description

s[2:0] Selector

res Data Output
XST User Guide www.xilinx.com 91
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture archi of dec is
begin
res <= "00000001" when sel = "000" else

"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end archi;

Verilog (One-Hot)
Following is the Verilog code for a 1-of-8 decoder.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel or res)
begin
case (sel)
3’b000 : res = 8’b00000001;
3’b001 : res = 8’b00000010;
3’b010 : res = 8’b00000100;
3’b011 : res = 8’b00001000;
3’b100 : res = 8’b00010000;
3’b101 : res = 8’b00100000;
3’b110 : res = 8’b01000000;
default : res = 8’b10000000;

endcase
end

endmodule

VHDL (One-Cold)
Following is the VHDL code for a 1-of-8 decoder.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (

sel: in std_logic_vector (2 downto 0);
res: out std_logic_vector (7 downto 0)
);

end dec;
92 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Decoders
R

architecture archi of dec is
begin
res <= "11111110" when sel = "000" else

"11111101" when sel = "001" else
"11111011" when sel = "010" else
"11110111" when sel = "011" else
"11101111" when sel = "100" else
"11011111" when sel = "101" else
"10111111" when sel = "110" else
"01111111";

end archi;

Verilog (One-Cold)
Following is the Verilog code for a 1-of-8 decoder.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;
always @(sel)

begin
case (sel)
3’b000 : res = 8’b11111110;
3’b001 : res = 8’b11111101;
3’b010 : res = 8’b11111011;
3’b011 : res = 8’b11110111;
3’b100 : res = 8’b11101111;
3’b101 : res = 8’b11011111;
3’b110 : res = 8’b10111111;
default : res = 8’b01111111;

endcase
end

endmodule

Decoders with Unselected Outputs
In the current version, XST does not infer decoders if one or several of the decoder outputs
are not selected, except when the unused selector values are consecutive and at the end of
the code space. Following is an example:

IO pins Description

s[2:0] Selector

res Data Output
XST User Guide www.xilinx.com 93
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL (No Decoder Inference)

For the following VHDL code, XST does not infer a decoder.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (

sel: in std_logic_vector (2 downto 0);
res: out std_logic_vector (7 downto 0)
);

end dec;
architecture archi of dec is
begin
res <=
"00000001" when sel = "000" else -- unused decoder output
"XXXXXXXX" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else
"01000000" when sel = "110" else
"10000000";

end archi;

Verilog (No Decoder Inference)

For the following Verilog code, XST does not infer a decoder.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel)
begin
case (sel)
3’b000 : res = 8’b00000001; // unused decoder output
3’b001 : res = 8’bxxxxxxxx;
3’b010 : res = 8’b00000100;
3’b011 : res = 8’b00001000;
3’b100 : res = 8’b00010000;
3’b101 : res = 8’b00100000;
3’b110 : res = 8’b01000000;
default : res = 8’b10000000;

endcase
end

endmodule
94 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Decoders
R

VHDL Code (Decoder Inference)

The following VHDL code leads to the inference of a 1-of-8 decoder.

library ieee;
use ieee.std_logic_1164.all;

entity dec is
port (

sel: in std_logic_vector (2 downto 0);
res: out std_logic_vector (7 downto 0)
);

end dec;
architecture archi of dec is
begin
res <= "00000001" when sel = "000" else

"00000010" when sel = "001" else
"00000100" when sel = "010" else
"00001000" when sel = "011" else
"00010000" when sel = "100" else
"00100000" when sel = "101" else

-- 110 and 111 selector values are unused
"XXXXXXXX";

end archi;

Verilog Code (Decoder Inference)

The following Verilog code leads to the inference of a 1-of-8 decoder.

module mux (sel, res);
input [2:0] sel;
output [7:0] res;
reg [7:0] res;

always @(sel or res)
begin
case (sel)
3’b000 : res = 8’b00000001;
3’b001 : res = 8’b00000010;
3’b010 : res = 8’b00000100;
3’b011 : res = 8’b00001000;
3’b100 : res = 8’b00010000;
3’b101 : res = 8’b00100000;
// 110 and 111 selector values are unused
default : res = 8’bxxxxxxxx;

endcase
end

endmodule
XST User Guide www.xilinx.com 95
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Priority Encoders
XST can recognize a priority encoder, but in most cases XST does not infer it. To force
priority encoder inference, use the PRIORITY_EXTRACT constraint with the value force.
Xilinx® strongly suggests that you use this constraint on a signal-by-signal basis;
otherwise, the constraint may guide you towards sub-optimal results.

Log File
The XST log file reports the type and size of recognized priority encoders during the Macro
Recognition step.

3-Bit 1-of-9 Priority Encoder
Note: For this example XST may infer a priority encoder. You must use the PRIORITY_EXTRACT
constraint with a value force to force its inference.

Related Constraint
A related constraint is PRIORITY_EXTRACT.

VHDL
Following is the VHDL code for a 3-bit 1-of-9 Priority Encoder.

library ieee;
use ieee.std_logic_1164.all;

entity priority is
port (

sel : in std_logic_vector (7 downto 0);
code :out std_logic_vector (2 downto 0)
);

end priority;

...
Synthesizing Unit <priority>.

Related source file is priority_encoders_1.vhd.
Found 3-bit 1-of-9 priority encoder for signal <code>.
Summary:

inferred 3 Priority encoder(s).
Unit <priority> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Priority Encoders : 1
3-bit 1-of-9 priority encoder : 1

==============================
...
96 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Logical Shifters
R

architecture archi of priority is
begin
code <= "000" when sel(0) = ’1’ else

"001" when sel(1) = ’1’ else
"010" when sel(2) = ’1’ else
"011" when sel(3) = ’1’ else
"100" when sel(4) = ’1’ else
"101" when sel(5) = ’1’ else
"110" when sel(6) = ’1’ else
"111" when sel(7) = ’1’ else
"---";

end archi;

Verilog
Following is the Verilog code for a 3-bit 1-of-9 Priority Encoder.

module priority (sel, code);
input [7:0] sel;
output [2:0] code;
reg [2:0] code;

always @(sel)
begin
if (sel[0]) code <= 3’b000;
else if (sel[1]) code <= 3’b001;
else if (sel[2]) code <= 3’b010;
else if (sel[3]) code <= 3’b011;
else if (sel[4]) code <= 3’b100;
else if (sel[5]) code <= 3’b101;
else if (sel[6]) code <= 3’b110;
else if (sel[7]) code <= 3’b111;
else code <= 3’bxxx;

end
endmodule

Logical Shifters
Xilinx® defines a logical shifter as a combinatorial circuit with 2 inputs and 1 output:

• The first input is a data input that is shifted.

• The second input is a selector whose binary value defines the shift distance.

• The output is the result of the shift operation.

Note: All of these I/Os are mandatory; otherwise, XST does not infer a logical shifter.

 Moreover, you must adhere to the following conditions when writing your HDL code:

• Use only logical, arithmetic and rotate shift operations. Shift operations that fill
vacated positions with values from another signal are not recognized.

• For VHDL, you can only use predefined shift (sll, srl, rol, etc.) or concatenation
operations. Please refer to the IEEE VHDL language reference manual for more
information on predefined shift operations.

• Use only one type of shift operation.

• The n value in the shift operation must be incremented or decremented only by 1 for
each consequent binary value of the selector.
XST User Guide www.xilinx.com 97
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

• The n value can be only positive.

• All values of the selector must be presented.

Log File
The XST log file reports the type and size of a recognized logical shifter during the Macro
Recognition step.

Related Constraints
A related constraint is SHIFT_EXTRACT.

Example 1
The following table shows pin descriptions for a logical shifter.

VHDL

Following is the VHDL code for a logical shifter.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

...
Synthesizing Unit <lshift>.

Related source file is Logical_Shifters_1.vhd.
Found 8-bit shifter logical left for signal <so>.
Summary:

inferred 1 Combinational logic shifter(s).
Unit <lshift> synthesized.
...
==============================
HDL Synthesis Report

Macro Statistics
Logic shifters : 1
8-bit shifter logical left : 1

==============================
...

IO pins Description

D[7:0] Data Input

SEL Shift Distance Selector

SO[7:0] Data Output
98 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Logical Shifters
R

entity lshift is
port(

DI : in unsigned(7 downto 0);
SEL : in unsigned(1 downto 0);
SO : out unsigned(7 downto 0)
);

end lshift;
architecture archi of lshift is
begin
with SEL select
SO <= DI when "00",

DI sll 1 when "01",
DI sll 2 when "10",
DI sll 3 when others;

end archi;

Verilog

Following is the Verilog code for a logical shifter.

module lshift (DI, SEL, SO);
input [7:0] DI;
input [1:0] SEL;
output [7:0] SO;
reg [7:0] SO;

always @(DI or SEL)
begin
case (SEL)
2’b00 : SO <= DI;
2’b01 : SO <= DI << 1;
2’b10 : SO <= DI << 2;
default : SO <= DI << 3;

endcase
end

endmodule

Example 2
XST does not infer a logical shifter for this example, as not all of the selector values are
presented.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

IO pins Description

D[7:0] Data Input

SEL Shift Distance Selector

SO[7:0] Data Output
XST User Guide www.xilinx.com 99
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

entity lshift is
port(

DI : in unsigned(7 downto 0);
SEL : in unsigned(1 downto 0);
SO : out unsigned(7 downto 0)
);

end lshift;
architecture archi of lshift is
begin
with SEL select
SO <= DI when "00",

DI sll 1 when "01",
DI sll 2 when others;

end archi;

Verilog

Following is the Verilog code.

module lshift (DI, SEL, SO);
input [7:0] DI;
input [1:0] SEL;
output [7:0] SO;
reg [7:0] SO;

always @(DI or SEL)
begin
case (SEL)
2’b00 : SO <= DI;
2’b01 : SO <= DI << 1;
default : SO <= DI << 2;

endcase
end

endmodule

Example 3
XST does not infer a logical shifter for this example, as the value is not incremented by 1 for
each consequent binary value of the selector.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

IO pins Description

D[7:0] Data Input

SEL shift distance selector

SO[7:0] Data Output
100 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

entity lshift is
port(

DI : in unsigned(7 downto 0);
SEL : in unsigned(1 downto 0);
SO : out unsigned(7 downto 0)
);

end lshift;
architecture archi of lshift is
begin
with SEL select
SO <= DI when "00",

DI sll 1 when "01",
DI sll 3 when "10",
DI sll 2 when others;

end archi;

Verilog

Following is the Verilog code.

module lshift (DI, SEL, SO);
input [7:0] DI;
input [1:0] SEL;
output [7:0] SO;
reg [7:0] SO;

always @(DI or SEL)
begin
case (SEL)
2’b00 : SO <= DI;
2’b01 : SO <= DI << 1;
2’b10 : SO <= DI << 3;
default : SO <= DI << 2;

endcase
end

endmodule

Arithmetic Operations
XST supports the following arithmetic operations:

• Adders with:

♦ Carry In

♦ Carry Out

♦ Carry In/Out

• Subtractors

• Adders/Subtractors

• Comparators (=, /=,<, <=, >, >=)

• Multipliers

• Dividers

Adders, subtractors, comparators and multipliers are supported for signed and unsigned
operations.
XST User Guide www.xilinx.com 101
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Please refer to “Signed/Unsigned Support” in this chapter for more information on the
signed/unsigned operations support in VHDL.

Moreover, XST performs resource sharing for adders, subtractors, adders/subtractors and
multipliers.

Adders, Subtractors, Adders/Subtractors
This section provides HDL examples of adders and subtractors.

Log File

The XST log file reports the type and size of recognized adder, subtractor, and
adder/subtractor during the Macro Recognition step.

Related Constraints

There are no related constraints available.

Unsigned 8-bit Adder

This subsection contains a VHDL and Verilog description of an unsigned 8-bit adder.

The following table shows pin descriptions for an unsigned 8-bit adder.

VHDL

Following is the VHDL code for an unsigned 8-bit adder.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

...
Synthesizing Unit <adder>.

Related source file is arithmetic_operations_1.vhd.
Found 8-bit adder for signal <sum>.
Summary:

inferred 1 Adder/Subtracter(s).
Unit <adder> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Adders/Subtractors : 1
8-bit adder : 1

==============================

IO pins Description

A[7:0], B[7:0] Add Operands

SUM[7:0] Add Result
102 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

entity adder is
port(

A, B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0)
);

end adder;
architecture archi of adder is
begin
SUM <= A + B;

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit adder.

module adder(A, B, SUM);
input [7:0] A;
input [7:0] B;
output [7:0] SUM;

assign SUM = A + B;
endmodule

Unsigned 8-bit Adder with Carry In

This section contains VHDL and Verilog descriptions of an unsigned 8-bit adder with carry
in.

The following table shows pin descriptions for an unsigned 8-bit adder with carry in.

VHDL

Following is the VHDL code for an unsigned 8-bit adder with carry in.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity adder is
port(

A, B : in std_logic_vector(7 downto 0);
CI : in std_logic;
SUM : out std_logic_vector(7 downto 0));

end adder;
architecture archi of adder is
begin
SUM <= A + B + CI;

end archi;

IO pins Description

A[7:0], B[7:0] Add Operands

CI Carry In

SUM[7:0] Add Result
XST User Guide www.xilinx.com 103
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

Following is the Verilog code for an unsigned 8-bit adder with carry in.

module adder(A, B, CI, SUM);
input [7:0] A;
input [7:0] B;
input CI;
output [7:0] SUM;

assign SUM = A + B + CI;
endmodule

Unsigned 8-bit Adder with Carry Out

This section contains VHDL and Verilog descriptions of an unsigned 8-bit adder with carry
out.

If you use VHDL, then before writing a "+" operation with carry out, please examine the
arithmetic package you are going to use. For example, "std_logic_unsigned" does not allow
you to write "+" in the following form to obtain Carry Out:

Res(9-bit) = A(8-bit) + B(8-bit)

The reason is that the size of the result for "+" in this package is equal to the size of the
longest argument, that is, 8 bits.

• One solution, for the example, is to adjust the size of operands A and B to 9-bits using
concatenation.

Res <= ("0" & A) + ("0" & B);

In this case, XST recognizes that this 9-bit adder can be implemented as an 8-bit adder
with carry out.

• Another solution is to convert A and B to integers and then convert the result back to
the std_logic vector, specifying the size of the vector equal to 9.

The following table shows pin descriptions for an unsigned 8-bit adder with carry out.

VHDL

Following is the VHDL code for an unsigned 8-bit adder with carry out.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

IO pins Description

A[7:0], B[7:0] Add Operands

SUM[7:0] Add Result

CO Carry Out
104 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

entity adder is
port(

A, B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0);
CO : out std_logic
);

end adder;

architecture archi of adder is
signal tmp: std_logic_vector(8 downto 0);
begin
tmp <= conv_std_logic_vector((conv_integer(A) + conv_integer(B)),9);
SUM <= tmp(7 downto 0);
CO <= tmp(8);

end archi;

In the preceding example, two arithmetic packages are used:

• std_logic_arith. This package contains the integer to std_logic conversion function,
that is, conv_std_logic_vector.

• std_logic_unsigned. This package contains the unsigned "+" operation.

Verilog

Following is the Verilog code for an unsigned 8-bit adder with carry out.

module adder(A, B, SUM, CO);
input [7:0] A;
input [7:0] B;
output [7:0] SUM;
output CO;
wire [8:0] tmp;

assign tmp = A + B;
assign SUM = tmp [7:0];
assign CO = tmp [8];

endmodule

Unsigned 8-bit Adder with Carry In and Carry Out

The following table shows pin descriptions for an unsigned 8-bit adder with carry in and
carry out.

IO pins Description

A[7:0], B[7:0] Add Operands

CI Carry In

SUM[7:0] Add Result

CO Carry Out
XST User Guide www.xilinx.com 105
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL

Following is the VHDL code for an unsigned 8-bit adder with carry in and carry out.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity adder is
port(

A, B : in std_logic_vector(7 downto 0);
CI : in std_logic;
SUM : out std_logic_vector(7 downto 0);
CO : out std_logic
);

end adder;
architecture archi of adder is
signal tmp: std_logic_vector(8 downto 0);
begin
tmp <= conv_std_logic_vector((conv_integer(A) + conv_integer(B)

+ conv_integer(CI)),9);
SUM <= tmp(7 downto 0);
CO <= tmp(8);

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit adder with carry in and carry out.

module adder(A, B, CI, SUM, CO);
input CI;
input [7:0] A;
input [7:0] B;
output [7:0] SUM;
output CO;
wire [8:0] tmp;
assign tmp = A + B + CI;
assign SUM = tmp [7:0];
assign CO = tmp [8];

endmodule

Simple Signed 8-bit Adder

The following table shows pin descriptions for a simple signed 8-bit adder.

IO pins Description

A[7:0], B[7:0] Add Operands

SUM[7:0] Add Result
106 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

VHDL

Following is the VHDL code for a simple signed 8-bit adder.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity adder is
port(

A, B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0));

end adder;
architecture archi of adder is
begin
SUM <= A + B;

end archi;

Verilog

Following is the Verilog code for a simple signed 8-bit adder.

module adder (A,B,SUM)
input signed [7:0] A;
input signed [7:0] B;
output signed [7:0] SUM;
wire signed [7:0] SUM;

assign SUM = A + B;
endmodule

Unsigned 8-bit Subtractor

The following table shows pin descriptions for an unsigned 8-bit subtractor.

VHDL

Following is the VHDL code for an unsigned 8-bit subtractor.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity subtr is
port(

A, B : in std_logic_vector(7 downto 0);
RES : out std_logic_vector(7 downto 0)
);

end subtr;
architecture archi of subtr is
begin
RES <= A - B;

end archi;

IO pins Description

A[7:0], B[7:0] Sub Operands

RES[7:0] Sub Result
XST User Guide www.xilinx.com 107
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

Following is the Verilog code for an unsigned 8-bit subtractor.

module subtr(A, B, RES);
input [7:0] A;
input [7:0] B;
output [7:0] RES;

assign RES = A - B;
endmodule

Unsigned 8-bit Adder/Subtractor

The following table shows pin descriptions for an unsigned 8-bit adder/subtractor.

VHDL

Following is the VHDL code for an unsigned 8-bit adder/subtractor.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity addsub is
port(

A, B : in std_logic_vector(7 downto 0);
OPER : in std_logic;
RES : out std_logic_vector(7 downto 0)
);

end addsub;
architecture archi of addsub is
begin
RES <= A + B when OPER=’0’
else A - B;

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit adder/subtractor.

module addsub(A, B, OPER, RES);
input OPER;
input [7:0] A;
input [7:0] B;
output [7:0] RES;
reg [7:0] RES;

IO pins Description

A[7:0], B[7:0] Add/Sub Operands

OPER Add/Sub Select

SUM[7:0] Add/Sub Result
108 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

always @(A or B or OPER)
begin
if (OPER==1’b0)

RES = A + B;
else

RES = A - B;
end

endmodule

Comparators (=, /=,<, <=, >, >=)
This section contains a VHDL and Verilog description for an unsigned 8-bit greater or
equal comparator.

Log File

The XST log file reports the type and size of recognized comparators during the Macro
Recognition step.

Unsigned 8-bit Greater or Equal Comparator

The following table shows pin descriptions for a comparator.

...
Synthesizing Unit <compar>.

Related source file is comparators_1.vhd.
Found 8-bit comparator greatequal for signal <$n0000> created at

line 10.
Summary:

inferred 1 Comparator(s).
Unit <compar> synthesized.

=============================
HDL Synthesis Report

Macro Statistics
Comparators : 1
8-bit comparator greatequal : 1

==============================
...

IO pins Description

A[7:0], B[7:0] Comparison Operands

CMP Comparison Result
XST User Guide www.xilinx.com 109
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL

Following is the VHDL code for an unsigned 8-bit greater or equal comparator.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity compar is
port(

A, B : in std_logic_vector(7 downto 0);
CMP : out std_logic
);

end compar;
architecture archi of compar is
begin
CMP <= ’1’ when A >= B else ’0’;

end archi;

Verilog

Following is the Verilog code for an unsigned 8-bit greater or equal comparator.

module compar(A, B, CMP);
input [7:0] A;
input [7:0] B;
output CMP;

assign CMP = A >= B ? 1’b1 : 1’b0;
endmodule

Multipliers
When implementing a multiplier, the size of the resulting signal is equal to the sum of 2
operand lengths. If you multiply A (8-bit signal) by B (4-bit signal), then the size of the
result must be declared as a 12-bit signal.

Large Multipliers Using Block Multipliers

XST can generate large multipliers using an 18x18 bit block multiplier available in
Virtex™-II/-II Pro/-II Pro X. For multipliers larger than this, XST can generate larger
multipliers using multiple 18x18 bit block multipliers.

Registered Multiplier

For Virtex™-II/-II Pro/-II Pro X, in instances where a multiplier would have a registered
output, XST infers a unique registered multiplier. This registered multiplier is 18x18 bits.

Under the following conditions, a registered multiplier is not used, and a multiplier +
register is used instead.

• Output from the multiplier goes to any component other than the register.

• The MULT_STYLE constraint is set to lut.

• The multiplier is asynchronous.

• The multiplier has control signals other than synchronous reset or clock enable.

• The multiplier does not fit in a single 18x18 bit block multiplier.
110 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

The following pins are optional for a registered multiplier.

• clock enable port

• synchronous and asynchronous reset, and load ports

Multiplication with Constant

When one of the arguments is a constant, XST can create an efficient dedicated
implementation called a multiplier with constant or KCM. Please note that in the current
release, XST does not infer a KCM automatically for such multipliers. A KCM must be
implemented via the MULT_STYLE constraint.

Limitations:

If the either of the arguments is larger than 29 bits, XST does not use KCM implementation,
even if it is specified with the MULT_STYLE constraint.

Log File

The XST log file reports the type and size of recognized multipliers during the Macro
Recognition step.

Related Constraints

A related constraint is MULT_STYLE.

Unsigned 8x4-bit Multiplier

The following table shows pin descriptions for an unsigned 8x4-bit multiplier.

...
Synthesizing Unit <mult>.

Related source file is multipliers_1.vhd.
Found 8x4-bit multiplier for signal <res>.
Summary:

inferred 1 Multiplier(s).
Unit <mult> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Multipliers : 1
8x4-bit multiplier : 1

==============================
...

IO pins Description

A[7:0], B[3:0] MULT Operands

RES[7:0] MULT Result
XST User Guide www.xilinx.com 111
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL

Following is the VHDL code for an unsigned 8x4-bit multiplier.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mult is
port(

A : in std_logic_vector(7 downto 0);
B : in std_logic_vector(3 downto 0);
RES : out std_logic_vector(11 downto 0)
);

end mult;
architecture archi of mult is
begin
RES <= A * B;

end archi;

Verilog

Following is the Verilog code for an unsigned 8x4-bit multiplier.

module compar(A, B, RES);
input [7:0] A;
input [3:0] B;
output [11:0] RES;

assign RES = A * B;
endmodule

Pipelined Multipliers

To increase the speed of designs with large multipliers, XST is capable of inferring
pipelined multipliers. By interspersing registers between the stages of large multipliers,
pipelining can significantly increase the overall frequency of your design. The effect of
pipelining is similar to flip-flop retiming which is described in “Flip-Flop Retiming” in
Chapter 3.

To insert pipeline stages, describe the necessary registers in your HDL code and place them
after any multipliers, then set the MULT_STYLE constraint to pipe_lut.

When XST detects valid registers for pipelining and MULT_STYLE is set to pipe_lut, XST
uses the maximum number of available registers to reach the maximum multiplier speed.
XST automatically calculates the maximum number of registers for each multiplier to get
the best frequency.

If you have not specified sufficient register stages, and MULT_STYLE is coded directly on
a signal, XST guides you via the HDL Advisor to specify the optimum number of register
stages. XST does this during the Advanced HDL Synthesis step. If the number of registers
placed after the multiplier exceeds the maximum required, and shift register extraction is
activated, then XST implements the unused stages as shift registers.

Limitations:

• XST cannot pipeline hardware Multipliers.

• XST cannot pipeline multipliers if registers contain asynch/synch set/reset signals.
112 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

Log File

.

VHDL

Use the following templates to implement pipelined multipliers in VHDL.

The following VHDL template shows the multiplication operation placed outside the
process block and the pipeline stages represented as single registers.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mult is
generic(

A_port_size : integer := 18;
B_port_size : integer := 18
);

port(
clk : in std_logic;
A : in unsigned (A_port_size-1 downto 0);
B : in unsigned (B_port_size-1 downto 0);
MULT : out unsigned ((A_port_size+B_port_size-1) downto 0)
);

end mult;

==
* HDL Synthesis *
==

Synthesizing Unit <my_mult>.
Related source file is pipe_mult_1.vhd.
Found 36-bit register for signal <MULT>.
Found 18-bit register for signal <a_in>.
Found 18-bit register for signal <b_in>.
Found 18x18-bit multiplier for signal <mult_res>.
Found 36-bit register for signal <pipe_1>.
Summary:

inferred 108 D-type flip-flop(s).
inferred 1 Multiplier(s).

Unit <my_mult> synthesized.
...
==
* Advanced HDL Synthesis *
==

Found pipelined multiplier on the signal <mult_res> with 1 pipeline
level(s).
INFO:Xst - HDL ADVISOR - You can improve the performance of this
multiplier by adding 3 register level(s).
XST User Guide www.xilinx.com 113
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture beh of mult is
signal a_in, b_in : unsigned (A_port_size-1 downto 0);
signal mult_res : unsigned ((A_port_size+B_port_size-1) downto 0);
signal pipe_1,

pipe_2,
pipe_3 : unsigned ((A_port_size+B_port_size-1) downto 0);

begin
mult_res <= a_in * b_in;
process (clk)
begin
if (clk’event and clk=’1’) then

a_in <= A; b_in <= B;
pipe_1 <= mult_res;
pipe_2 <= pipe_1;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end if;
end process;

end beh;

The following VHDL template shows the multiplication operation placed inside the
process block and the pipeline stages represented as single registers.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mult is
generic(

A_port_size: integer := 18;
B_port_size: integer := 18
);

port(
clk : in std_logic;
A : in unsigned (A_port_size-1 downto 0);
B : in unsigned (B_port_size-1 downto 0);
MULT : out unsigned ((A_port_size+B_port_size-1) downto 0)
);

end mult;

architecture beh of mult is
signal a_in, b_in : unsigned (A_port_size-1 downto 0);
signal mult_res : unsigned ((A_port_size+B_port_size-1) downto 0);
signal pipe_2,

pipe_3 : unsigned ((A_port_size+B_port_size-1) downto 0);

begin
process (clk)
begin

if (clk’event and clk=’1’) then
a_in <= A; b_in <= B;
mult_res <= a_in * b_in;
pipe_2 <= mult_res;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end if;
end process;

end beh;
114 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

The following VHDL template shows the multiplication operation placed outside the
process block and the pipeline stages represented as shift registers.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity mult is
generic(

A_port_size: integer := 18;
B_port_size: integer := 18
);

port(
clk : in std_logic;
A : in unsigned (A_port_size-1 downto 0);
B : in unsigned (B_port_size-1 downto 0);
MULT : out unsigned ((A_port_size+B_port_size-1) downto 0)
);

end mult;

architecture beh of mult is
signal a_in, b_in : unsigned (A_port_size-1 downto 0);
signal mult_res : unsigned ((A_port_size+B_port_size-1) downto 0);

type pipe_reg_type is array (2 downto 0) of unsigned
((A_port_size+B_port_size-1) downto 0);

signal pipe_regs : pipe_reg_type;

begin
mult_res <= a_in * b_in;
process (clk)
begin
if (clk’event and clk=’1’) then

a_in <= A; b_in <= B;
pipe_regs <= mult_res & pipe_regs(2 downto 1);
MULT <= pipe_regs(0);

end if;
end process;

end beh;

Verilog

Use the following templates to implement pipelined multipliers in Verilog.

The following Verilog template shows the multiplication operation placed outside the
always block and the pipeline stages represented as single registers.

module mult(clk, A, B, MULT);
input clk;
input [17:0] A;
input [17:0] B;
output [35:0] MULT;

reg [35:0] MULT;
reg [17:0] a_in, b_in;
wire [35:0] mult_res;
reg [35:0] pipe_1, pipe_2, pipe_3;

assign mult_res = a_in * b_in;
XST User Guide www.xilinx.com 115
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

always @(posedge clk)
begin
a_in <= A; b_in <= B;
pipe_1 <= mult_res;
pipe_2 <= pipe_1;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end
endmodule

The following Verilog template shows the multiplication operation placed inside the
process block and the pipeline stages are represented as single registers.

module mult(clk, A, B, MULT);
input clk;
input [17:0] A;
input [17:0] B;
output [35:0] MULT;

reg [35:0] MULT;
reg [17:0] a_in, b_in;
reg [35:0] mult_res;
reg [35:0] pipe_2, pipe_3;

always @(posedge clk)
begin
a_in <= A; b_in <= B;
mult_res <= a_in * b_in;
pipe_2 <= mult_res;
pipe_3 <= pipe_2;
MULT <= pipe_3;

end
endmodule

The following Verilog template shows the multiplication operation placed outside the
always block and the pipeline stages represented as shift registers.

module mult3(clk, A, B, MULT);
input clk;
input [17:0] A;
input [17:0] B;
output [35:0] MULT;

reg [35:0] MULT;

reg [17:0] a_in, b_in;
wire [35:0] mult_res;
reg [35:0] pipe_regs [3:0];

assign mult_res = a_in * b_in;

always @(posedge clk)
begin
a_in <= A; b_in <= B;
{pipe_regs[3],pipe_regs[2],pipe_regs[1],pipe_regs[0]} <=

{MULT, pipe_regs[3],pipe_regs[2],pipe_regs[1]};
end

end module
116 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

Dividers
Dividers are only supported when the divisor is a constant and is a power of 2. In that case,
the operator is implemented as a shifter; otherwise, XST issues an error message.

Log File

When you implement a divider with a constant with the power of 2, XST does not issue
any message during the Macro Recognition step. In case your divider does not correspond
to the case supported by XST, the following error message displays:

Related Constraints

There are no related constraints available.

Division By Constant 2

This section contains VHDL and Verilog descriptions of a Division By Constant 2 divider.

The following table shows pin descriptions for a Division By Constant 2 divider.

VHDL

Following is the VHDL code for a Division By Constant 2 divider.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity divider is
port(

DI : in unsigned(7 downto 0);
DO : out unsigned(7 downto 0)
);

end divider;
architecture archi of divider is
begin
DO <= DI / 2;

end archi;

...
ERROR:Xst:719 - file1.vhd (Line 172).
Operator is not supported yet : ’DIVIDE’
...

IO pins Description

DI[7:0] Division Operands

DO[7:0] Division Result
XST User Guide www.xilinx.com 117
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

Following is the Verilog code for a Division By Constant 2 divider.

module divider(DI, DO);
input [7:0] DI;
output [7:0] DO;

assign DO = DI / 2;
endmodule

Resource Sharing
The goal of resource sharing (also known as folding) is to minimize the number of
operators and the subsequent logic in the synthesized design. This optimization is based
on the principle that two similar arithmetic resources may be implemented as one single
arithmetic operator if they are never used at the same time. XST performs both resource
sharing and, if required, reduces the number of multiplexers that are created in the process.

XST supports resource sharing for adders, subtractors, adders/subtractors and
multipliers.

If the optimization goal is SPEED, then the disabling of resource sharing may lead to better
results. XST advises you to try to deactivate resource sharing at the Advance HDL
Synthesis step in order to improve clock frequency.
118 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Arithmetic Operations
R

Log File

The XST log file reports the type and size of recognized arithmetic blocks and multiplexers
during the Macro Recognition step.

Related Constraint

The related constraint is RESOURCE_SHARING.

Example

For the following VHDL/Verilog example, XST gives the following solution.

...
Synthesizing Unit <addsub>.

Related source file is resource_sharing_1.vhd.
Found 8-bit addsub for signal <res>.
Found 8 1-bit 2-to-1 multiplexers.
Summary:

inferred 1 Adder/Subtracter(s).
inferred 8 Multiplexer(s).

Unit <addsub> synthesized.

==============================
HDL Synthesis Report

Macro Statistics
Multiplexers : 1
2-to-1 multiplexer : 1

Adders/Subtractors : 1
8-bit addsub : 1

==============================
...
===
* Advanced HDL Synthesis *
===

INFO:Xst - HDL ADVISOR - Resource sharing has identified that some
arithmetic operations in this design can share the same physical
resources for reduced device utilization. For improved clock
frequency you may try to disable resource sharing.
...

X8984

B

C

A

+/- RES

OPER

OPER
XST User Guide www.xilinx.com 119
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

The following table shows pin descriptions for the example.

VHDL

Following is the VHDL example for resource sharing.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity addsub is
port(

A, B, C : in std_logic_vector(7 downto 0);
OPER : in std_logic;
RES : out std_logic_vector(7 downto 0)
);

end addsub;
architecture archi of addsub is
begin
RES <= A + B when OPER=’0’ else A - C;

end archi;

Verilog

Following is the Verilog code for resource sharing.

module addsub(A, B, C, OPER, RES);
input OPER;
input [7:0] A;
input [7:0] B;
input [7:0] C;
output [7:0] RES;

reg [7:0] RES;

always @(A or B or C or OPER)
begin
if (OPER==1’b0)

RES = A + B;
else

RES = A - C;
end

endmodule

IO pins Description

A[7:0], B[7:0], C[7:0] Operands

OPER Operation Selector

RES[7:0] Data Output
120 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

RAMs/ROMs
If you do not want to instantiate RAM primitives to keep your HDL code technology
independent, XST offers an automatic RAM recognition capability. XST can infer
distributed as well as Block RAM. It covers the following characteristics, offered by these
RAM types.

• Synchronous write

• Write enable

• RAM enable

• Asynchronous or synchronous read

• Reset of the data output latches

• Data output reset

• Single, dual or multiple-port read

• Single-port write

 The type of inferred RAM depends on its description.

• RAM descriptions with an asynchronous read generate a distributed RAM macro.

• RAM descriptions with a synchronous read generate a Block RAM macro. In some
cases, a Block RAM macro can actually be implemented with Distributed RAM. The
decision on the actual RAM implementation is done by the macro generator.

Following is the list of VHDL/Verilog templates that are described below.

• Virtex-II RAM Read/Write modes

♦ Read-First Mode

♦ Write-First Mode

♦ No-Change Mode

• Single-Port RAM with Asynchronous Read

• Single-Port RAM with "False" Synchronous Read

• Single-Port RAM with Synchronous Read (Read Through)

• Single-Port RAM with Enable

• Dual-Port RAM with Asynchronous Read

• Dual-Port RAM with False Synchronous Read

• Dual-Port RAM with Synchronous Read (Read Through)

• Dual-Port RAM with One Enable Controlling Both Ports

• Dual-Port RAM with Enable Controlling Each Port

• Dual-Port RAM with Different Clocks

• Multiple-Port RAM Descriptions

• Block RAM with Reset

• Initializing Block RAM

• ROMs Using Block RAM Resources

If a given template can be implemented using Block and Distributed RAM, XST
implements BLOCK ones. You can use the RAM_STYLE constraint to control RAM
implementation and select a desirable RAM type. Please refer to Chapter 5, “Design
Constraints” for more details.
XST User Guide www.xilinx.com 121
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Please note that the following features specifically available with Block RAM are not yet
supported.

• Dual write port

• Parity bits

• Different aspect ratios on each port

Please refer to Chapter 3, “FPGA Optimization” for more details on RAM implementation.

Note: Note that XST can implement State Machines (see “State Machine”) and map general logic
(see “Mapping Logic onto Block RAM” in Chapter 3) on Block RAMs.

Log File
The XST log file reports the type and size of recognized RAM as well as complete
information on its I/O ports during the Macro Recognition step.

Related Constraints
Related constraints are RAM_EXTRACT, RAM_STYLE, ROM_EXTRACT and
ROM_STYLE.

...
Synthesizing Unit <raminfr>.

Related source file is rams_1.vhd.
Found 128-bit single-port distributed RAM for signal <ram>.
--
aspect ratio	32-word x 4-bit	
clock	connected to signal <clk>	rise
write enable	connected to signal <we>	high
address	connected to signal <a>	
data in	connected to signal <di>	
data out	connected to signal <do>	
ram_style	Auto	

INFO:Xst - For optimized device usage and improved timings, you
may take advantage of available block RAM resources by
registering the read address.

Summary:
inferred 1 RAM(s).

Unit <raminfr> synthesized.

====================================
HDL Synthesis Report

Macro Statistics
RAMs : 1
128-bit single-port distributed RAM : 1

===================================
...
122 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

Virtex-II™/Spartan-3™ RAM Read/Write Modes
Block RAM resources available in Virtex™-II/-II Pro/-II Pro X and Spartan-3™ offer
different read/write synchronization modes. This section provides coding examples for all
three modes that are available: write-first, read-first, and no-change.

The following examples describe a simple single-port block RAM. You can deduce
descriptions of dual-port block RAMs from these examples. Dual-port block RAMs can be
configured with a different read/write mode on each port. Inference supports this
capability.

The following table summarizes support for read/write modes according to the targeted
family and how XST handles it.

Read-First Mode

The following templates show a single-port RAM in read-first mode.

VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

Family
 Inferred
Modes

Behavior

Spartan-3™
Virtex-II™,
Virtex-II Pro,
Virtex-II Pro X

write-first,
read-first,
no-change

• Macro inference and generation

• Attach adequate
WRITE_MODE,
WRITE_MODE_A,
WRITE_MODE_B constraints to
generated block RAMs in NCF

Virtex™,
Virtex-E,
Spartan-II
Spartan-IIE

write-first • Macro inference and generation

• No constraint to attach on
generated block RAMs

CPLD none RAM inference completely disabled
XST User Guide www.xilinx.com 123
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if clk’event and clk = ’1’ then

if en = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
end if;

do <= RAM(conv_integer(addr));
end if;

end if;
end process;

end syn;

Verilog

module raminfr (clk, en, we, addr, di, do);
input clk;
input we;
input en;
input [4:0] addr;
input [3:0] di;
output [3:0] do;
reg [3:0] RAM [31:0];
reg [3:0] do;

always @(posedge clk)
begin
if (en)
begin
if (we)

RAM[addr] <= di;
do <= RAM[addr];

end
end

endmodule

Write-First Mode

The following templates show a single-port RAM in write-first mode.

VHDL

The following template shows the recommended configuration coded in VHDL.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0));

end raminfr;
124 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if clk’event and clk = ’1’ then

if en = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM(conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

The following templates show an alternate configuration of a single-port RAM in
write-first mode with a registered read address coded in VHDL.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_addr : std_logic_vector(4 downto 0);

begin
process (clk)
begin

if clk’event and clk = ’1’ then
if en = ’1’ then

if we = ’1’ then
mem(conv_integer(addr)) <= di;

end if;
read_addr <= addr;

end if;
end if;

end process;
do <= ram(conv_integer(read_addr));

end syn;
XST User Guide www.xilinx.com 125
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

The following template shows the recommended configuration coded in Verilog.

module raminfr (clk, we, en, addr, di, do);
input clk;
input we;
input en;
input [4:0] addr;
input [3:0] di;
output [3:0] do;
reg [3:0] RAM [31:0];
reg [4:0] read_addr;

always @(posedge clk)
begin
if (en)
begin
if (we)

RAM[addr] <= di;
read_addr <= addr;

end
end
assign do = RAM[read_addr];

endmodule

No-Change Mode

The following templates show a single-port RAM in no-change mode.

VHDL

The following template shows the recommended configuration coded in VHDL.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;
126 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
begin
process (clk)
begin
if clk’event and clk = ’1’ then

if en = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
else

do <= RAM(conv_integer(addr));
end if;

end if;
end if;

end process;
end syn;

The following templates show an alternate configuration of a single-port RAM in
no-change mode with a registered read address coded in VHDL.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_addr : std_logic_vector(4 downto 0);

begin
process (clk)
begin
if clk’event and clk = ’1’ then

if en = ’1’ then
if we = ’1’ then

RAM(conv_integer(addr)) <= di;
else

read_addr <= addr;
end if;

end if;
end if;

end process;
do <= RAM(read_addr);

end syn;
XST User Guide www.xilinx.com 127
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

The following template shows the recommended configuration coded in Verilog.

module raminfr (clk, we, en, addr, di, do);
input clk;
input we;
input en;
input [4:0] addr;
input [3:0] di;
output [3:0] do;
reg [3:0] RAM [31:0];
reg [3:0] do;

always @(posedge clk)
begin

if (en)
begin
if (we)

RAM[addr] <= di;
else

do <= RAM[addr];
end

end
endmodule

Single-Port RAM with Asynchronous Read
The following descriptions are directly mappable onto distributed RAM only.

The following table shows pin descriptions for a single-port RAM with asynchronous read.

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

a Read/Write Address

di Data Input

do Data Output

X8976

Distributed
RAM

DO

WE

DI

A

CLK
128 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

VHDL

Following is the VHDL code for a single-port RAM with asynchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
end if;

end process;
do <= RAM(conv_integer(a));

end syn;

Verilog

Following is the Verilog code for a single-port RAM with asynchronous read.

module raminfr (clk, we, a, di, do);
input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];

always @(posedge clk)
begin
if (we)

ram[a] <= di;
end

assign do = ram[a];
endmodule
XST User Guide www.xilinx.com 129
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Single-Port RAM with "False" Synchronous Read
The following descriptions do not implement true synchronous read access as defined by
the Virtex™ block RAM specification, where the read address is registered. They are only
mappable onto Distributed RAM with an additional buffer on the data output, as shown
below.

The following table shows pin descriptions for a single-port RAM with “false”
synchronous read.

VHDL

Following is the VHDL code for a single-port RAM with “false” synchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

a Read/Write Address

di Data Input

do Data Output

X8977

Distributed
RAM

DO

WE

DI

A

CLK

D

130 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
do <= RAM(conv_integer(a));

end if;
end process;

end syn;

Verilog

Following is the Verilog code for a single-port RAM with “false” synchronous read.

module raminfr (clk, we, a, di, do);
input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [3:0] do;

always @(posedge clk) begin
if (we)

ram[a] <= di;
do <= ram[a];

end
endmodule

The following descriptions, featuring an additional reset of the RAM output, are also only
mappable onto Distributed RAM with an additional resetable buffer on the data output as
shown in the following figure:

X8978

Distributed
RAM

DO

WE

DI

A

CLK

D

RST
XST User Guide www.xilinx.com 131
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

The following table shows pin descriptions for a single-port RAM with “false”
synchronous read and reset on the output.

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
rst : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
if (rst = ’1’) then

do <= (others => ’0’);
else

do <= RAM(conv_integer(a));
end if;

end if;
end process;

end syn;

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

rst Synchronous Output Reset (active High)

a Read/Write Address

di Data Input

do Data Output
132 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

Verilog

Following is the Verilog code.

module raminfr (clk, we, rst, a, di, do);
input clk;
input we;
input rst;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [3:0] do;

always @(posedge clk) begin
if (we)

ram[a] <= di;
if (rst)

do <= 4’b0;
else

do <= ram[a];
end

endmodule

Single-Port RAM with Synchronous Read (Read Through)
The following description implements a true synchronous read. A true synchronous read
is the synchronization mechanism available in Virtex™ block RAMs, where the read
address is registered on the RAM clock edge. Such descriptions are directly mappable onto
Block RAM, as shown below. (The same descriptions can also be mapped onto Distributed
RAM).

The following table shows pin descriptions for a single-port RAM with synchronous read
(read through).

IO pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

a Read/Write Address

di Data Input

do Data Output

X8979

Block
RAM

DO

WE

DI

A

CLK
XST User Guide www.xilinx.com 133
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL

Following is the VHDL code for a single-port RAM with synchronous read (read through).

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;
architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(4 downto 0);

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
read_a <= a;

end if;
end process;
do <= RAM(conv_integer(read_a));

end syn;

Verilog

Following is the Verilog code for a single-port RAM with synchronous read (read through).

module raminfr (clk, we, a, di, do);
input clk;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [4:0] read_a;

always @(posedge clk) begin
if (we)

ram[a] <= di;
read_a <= a;

end
assign do = ram[read_a];

endmodule
134 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

Single-Port RAM with Enable
The following description implements a single-port RAM with a global enable.

The following table shows pin descriptions for a single-port RAM with enable.

VHDL

Following is the VHDL code for a single-port block RAM with enable.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
en : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end raminfr;

IO pins Description

clk Positive-Edge Clock

en Global Enable

we Synchronous Write Enable (Active High)

a Read/Write Address

di Data Input

do Data Output

X9478

EN

DOA

WE

DI

CLK

Block
RAM
XST User Guide www.xilinx.com 135
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(4 downto 0);

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (en = ‘1’) then
if (we = '1') then

RAM(conv_integer(a)) <= di;
end if;
read_a <= a;

end if;
end if;

end process;
do <= RAM(conv_integer(read_a));

end syn;

Verilog

Following is the Verilog code for a single-port block RAM with enable.

module raminfr (clk, en, we, a, di, do);
input clk;
input en;
input we;
input [4:0] a;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [4:0] read_a;

always @(posedge clk) begin
if (en)

begin
if (we)

ram[a] <= di;
read_a <= a;

end
end
assign do = ram[read_a];

endmodule

Dual-Port RAM with Asynchronous Read
The following example shows where the two output ports are used. It is directly mappable
onto Distributed RAM only.

X8980

Distributed
RAM DPO

SPO
WE

DPRA

DI

A

CLK
136 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

The following table shows pin descriptions for a dual-port RAM with asynchronous read.

VHDL

Following is the VHDL code for a dual-port RAM with asynchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
dpra : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
spo : out std_logic_vector(3 downto 0);
dpo : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
end if;

end process;
spo <= RAM(conv_integer(a));
dpo <= RAM(conv_integer(dpra));

end syn;

IO pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port
XST User Guide www.xilinx.com 137
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

Following is the Verilog code for a dual-port RAM with asynchronous read.

module raminfr (clk, we, a, dpra, di, spo, dpo);
input clk;
input we;
input [4:0] a;
input [4:0] dpra;
input [3:0] di;
output [3:0] spo;
output [3:0] dpo;
reg [3:0] ram [31:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end
assign spo = ram[a];
assign dpo = ram[dpra];

endmodule

Dual-Port RAM with False Synchronous Read
The following description is mapped onto Distributed RAM with additional registers on
the data outputs. Please note that this template does not describe dual-port block RAM.

The following table shows pin descriptions for a dual-port RAM with false synchronous
read.

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port

X8981

Distributed
RAM

WE

DPRA

DI

A

CLK

CLK

CLK

SPOD

DPOD
138 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

VHDL

Following is the VHDL code for a dual-port RAM with false synchronous read.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
dpra : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
spo : out std_logic_vector(3 downto 0);
dpo : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0)

of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then
if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
spo <= RAM(conv_integer(a));
dpo <= RAM(conv_integer(dpra));

end if;
end process;

end syn;

Verilog

Following is the Verilog code for a dual-port RAM with false synchronous read.

module raminfr (clk, we, a, dpra, di, spo, dpo);
input clk;
input we;
input [4:0] a;
input [4:0] dpra;
input [3:0] di;
output [3:0] spo;
output [3:0] dpo;
reg [3:0] ram [31:0];
reg [3:0] spo;
reg [3:0] dpo;

always @(posedge clk) begin
if (we)

ram[a] <= di;
spo = ram[a];
dpo = ram[dpra];

end
endmodule
XST User Guide www.xilinx.com 139
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Dual-Port RAM with Synchronous Read (Read Through)
The following descriptions are directly mappable onto Block RAM, as shown in the following
figure. (They may also be implemented with Distributed RAM.).

The following table shows pin descriptions for a dual-port RAM with synchronous read
(read through).

VHDL

Following is the VHDL code for a dual-port RAM with synchronous read (read through).

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(4 downto 0);
dpra : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
spo : out std_logic_vector(3 downto 0);
dpo : out std_logic_vector(3 downto 0)
);

end raminfr;

IO Pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input

spo Primary Output Port

dpo Dual Output Port

X8982

Block
RAM DPO

SPO
WE

DPRA

DI

A

CLK
140 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_a : std_logic_vector(4 downto 0);
signal read_dpra : std_logic_vector(4 downto 0);

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(a)) <= di;

end if;
read_a <= a;
read_dpra <= dpra;

end if;
end process;
spo <= RAM(conv_integer(read_a));
dpo <= RAM(conv_integer(read_dpra));

end syn;

Verilog

Following is the Verilog code for a dual-port RAM with synchronous read (read through).

module raminfr (clk, we, a, dpra, di, spo, dpo);
input clk;
input we;
input [4:0] a;
input [4:0] dpra;
input [3:0] di;
output [3:0] spo;
output [3:0] dpo;
reg [3:0] ram [31:0];
reg [4:0] read_a;
reg [4:0] read_dpra;

always @(posedge clk) begin
if (we)

ram[a] <= di;
read_a <= a;
read_dpra <= dpra;

end
assign spo = ram[read_a];
assign dpo = ram[read_dpra];

endmodule

Using More than One Clock

The two RAM ports may be synchronized on distinct clocks, as shown in the following
description. In this case, only a Block RAM implementation is applicable.

The following table shows pin descriptions for a dual-port RAM with synchronous read
(read through) and two clocks.

IO pins Description

clk1 Positive-Edge Write/Primary Read Clock

clk2 Positive-Edge Dual Read Clock
XST User Guide www.xilinx.com 141
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

VHDL

Following is the VHDL code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk1 : in std_logic;
clk2 : in std_logic;
we : in std_logic;
add1 : in std_logic_vector(4 downto 0);
add2 : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do1 : out std_logic_vector(3 downto 0);
do2 : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_add1 : std_logic_vector(4 downto 0);
signal read_add2 : std_logic_vector(4 downto 0);

begin
process (clk1)
begin
if (clk1’event and clk1 = ’1’) then

if (we = ’1’) then
RAM(conv_integer(add1)) <= di;

end if;
read_add1 <= add1;

end if;
end process;
do1 <= RAM(conv_integer(read_add1));

process (clk2)
begin
if (clk2’event and clk2 = ’1’) then

read_add2 <= add2;
end if;

end process;
do2 <= RAM(conv_integer(read_add2));

end syn;

we Synchronous Write Enable (Active High)

add1 Write/Primary Read Address

add2 Dual Read Address

di Data Input

do1 Primary Output Port

do2 Dual Output Port

IO pins Description
142 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

Verilog

Following is the Verilog code.

module raminfr (clk, en, we, addra, addrb, di, doa, dob);
input clk;
input en;
input we;
input [4:0] addra;
input [4:0] addrb;
input [3:0] di;
output [3:0] doa;
output [3:0] dob;
reg [3:0] ram [31:0];
reg [4:0] read_addra;
reg [4:0] read_addrb;

always @(posedge clk) begin
if (en)

begin
if (we)

ram[addra] <= di;
read_addra <= addra;
read_addrb <= addrb;

end
end
assign doa = ram[read_addra];
assign dob = ram[read_addrb];

endmodule

Dual-Port RAM with One Enable Controlling Both Ports
The following descriptions are directly mappable onto Block RAM, as shown in the following
figure.

X9477

ADDRB

DOB

DOA

ADDRA

EN

WB

DI

CLK

Block
RAM
XST User Guide www.xilinx.com 143
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

The following table shows pin descriptions for a dual-port RAM with one enable
controlling both ports.

VHDL

Following is the VHDL code for a dual-port RAM with one global enable controlling both
ports.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
en : in std_logic;
we : in std_logic;
addra : in std_logic_vector(4 downto 0);
addrb : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
doa : out std_logic_vector(3 downto 0);
dob : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_addra : std_logic_vector(4 downto 0);
signal read_addrb : std_logic_vector(4 downto 0);

IO Pins Description

clk Positive-Edge Clock

en Primary Global Enable (active High)

we Primary Synchronous Write Enable (active
High)

addra Write Address/Primary Read Address

addrb Dual Read Address

di Primary Data Input

doa Primary Output Port

dob Dual Output Port
144 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (en = ’1’) then
if (we = ’1’) then

RAM(conv_integer(addra)) <= di;
end if;
read_addra <= addra;
read_addrb <= addrb;

end if;
end if;

end process;
doa <= RAM(conv_integer(read_addra));
dob <= RAM(conv_integer(read_addrb));

end syn;

Verilog

Following is the Verilog code for a dual-port RAM with one global enable controlling both
ports.

module raminfr (clk, en, we, addra, addrb, di, doa, dob);
input clk;
input en;
input we;
input [4:0] addra;
input [4:0] addrb;
input [3:0] di;
output [3:0] doa;
output [3:0] dob;

reg [3:0] ram [31:0];
reg [4:0] read_addra;
reg [4:0] read_addrb;

always @(posedge clk)
begin
if (ena)

begin
if (wea)

ram[addra] <= di;
read_aaddra <= addra;
read_aaddrb <= addrb;

end
end
assign doa = ram[read_addra];
assign dob = ram[read_addrb];

endmodule
XST User Guide www.xilinx.com 145
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Dual-Port RAM with Enable on Each Port
The following descriptions are directly mappable onto Block RAM, as shown in the following
figure.

The following table shows pin descriptions for a dual-port RAM with enable on each port.

IO Pins Description

clk Positive-Edge Clock

ena Primary Global Enable (Active High)

enb Dual Global Enable (Active High)

wea Primary Synchronous Write Enable (Active
High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

doa Primary Output Port

dob Dual Output Port

X9476

ADDRB

DOB

DOAADDRA

ENA

ENB

DIA

WEA

CLK

Block
RAM
146 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

VHDL

Following is the VHDL code for a dual-port RAM with enable on each port.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clka : in std_logic;
clkb : in std_logic;
wea : in std_logic;
addra : in std_logic_vector(4 downto 0);
addrb : in std_logic_vector(4 downto 0);
dia : in std_logic_vector(3 downto 0);
doa : out std_logic_vector(3 downto 0);
dob : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_addra : std_logic_vector(4 downto 0);
signal read_addrb : std_logic_vector(4 downto 0);

begin
process (clka)
begin
if (clka’event and clka = ’1’) then

if (wea = ’1’) then
RAM(conv_integer(addra)) <= dia;

end if;
read_addra <= addra;

end if;
end process;

process (clkb)
begin
if (clkb’event and clkb = ’1’) then

read_addrb <= addrb;
end if;

end process;

doa <= RAM(conv_integer(read_addra));
dob <= RAM(conv_integer(read_addrb));

end syn;
XST User Guide www.xilinx.com 147
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

Following is the Verilog code for a dual-port RAM with enable on each port.

module raminfr (clka, clkb, wea, addra, addrb, dia, doa, dob);
input clka;
input clkb;
input wea;
input [4:0] addra;
input [4:0] addrb;
input [3:0] dia;
output [3:0] doa;
output [3:0] dob;
reg [3:0] RAM [31:0];
reg [4:0] addr_rega;
reg [4:0] addr_regb;

always @(posedge clka)
begin
if (wea == 1’b1)

RAM[addra] <= dia;
addr_rega <= addra;

end

always @(posedge clkb)
begin
addr_regb <= addrb;

end

assign doa = RAM[addr_rega];
assign dob = RAM[addr_regb];

endmodule

Dual-Port Block RAM with Different Clocks
The following example shows where the two clocks are used.

X9799

DIA

WEA

DOA

DOB

ADDRA

ADDRB

CLKA

CLKB

BLOCK RAM
148 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

The following table shows pin descriptions for a dual-port RAM with different clocks.

VHDL

Following is the VHDL code for a dual-port RAM with different clocks.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity raminfr is
port (

clka : in std_logic;
clkb : in std_logic;
wea : in std_logic;
addra : in std_logic_vector(4 downto 0);
addrb : in std_logic_vector(4 downto 0);
dia : in std_logic_vector(3 downto 0);
doa : out std_logic_vector(3 downto 0);
dob : out std_logic_vector(3 downto 0)
);

end raminfr;

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;
signal read_addra : std_logic_vector(4 downto 0);
signal read_addrb : std_logic_vector(4 downto 0);

begin
process (clka)
begin
if (clka’event and clka = ’1’) then

if (wea = ’1’) then
RAM(conv_integer(addra)) <= dia;

end if;
read_addra <= addra;

end if;
end process;

IO Pins Description

clka Positive-Edge Clock

clkb Positive-Edge Clock

wea Primary Synchronous Write Enable (Active
High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

doa Primary Output Port

dob Dual Output Port
XST User Guide www.xilinx.com 149
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

process (clkb)
begin
if (clkb’event and clkb = ’1’) then

read_addrb <= addrb;
end if;

process;
doa <= RAM(read_addra);
dob <= RAM(read_addrb);

end syn;

Verilog

Following is the Verilog code for a dual-port RAM with different clocks.

module raminfr (clka, clkb, wea, addra, addrb, dia, doa, dob);
input clka;
input clkb;
input wea;
input [4:0] addra;
input [4:0] addrb;
input [3:0] dia;
output [3:0] doa;
output [3:0] dob;

reg [3:0] RAM [31:0];
reg [4:0] read_addra;
reg [4:0] read_addrb;

always @(posedge clka)
begin
if (wea == 1’b1)

RAM[addra] <= dia;
addr_rega <= addra;

end

always @(posedge clkb)
begin
addr_regb <= addrb;

end

assign doa = RAM[addr_rega];
assign dob = RAM[addr_regb];

endmodule

Multiple-Port RAM Descriptions
XST can identify RAM descriptions with two or more read ports that access the RAM
contents at addresses different from the write address. However, there can only be one
150 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

write port. XST implements the following descriptions by replicating the RAM contents for
each output port, as shown:

The following table shows pin descriptions for a multiple-port RAM.

VHDL

Following is the VHDL code for a multiple-port RAM.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity raminfr is
port (

clk : in std_logic;
we : in std_logic;
wa : in std_logic_vector(4 downto 0);
ra1 : in std_logic_vector(4 downto 0);
ra2 : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do1 : out std_logic_vector(3 downto 0);
do2 : out std_logic_vector(3 downto 0)
);

end raminfr;

IO pins Description

clk Positive-Edge Clock

we Synchronous Write Enable (Active High)

wa Write Address

ra1 Read Address of the First RAM

ra2 Read Address of the Second RAM

di Data Input

do1 First RAM Output Port

do2 Second RAM Output Port

X8983

RAM 1

DO1DPO

SPO
WE

DI

WA A

RA1 DPRA

CLK

RAM 2

DO2DPO

SPO
WE

DI

WA A

RA2 DPRA

CLK
XST User Guide www.xilinx.com 151
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture syn of raminfr is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal RAM : ram_type;

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (we = ’1’) then
RAM(conv_integer(wa)) <= di;

end if;
end if;

end process;
do1 <= RAM(conv_integer(ra1));
do2 <= RAM(conv_integer(ra2));

end syn;

Verilog

Following is the Verilog code for a multiple-port RAM.

module raminfr (clk, we, wa, ra1, ra2, di, do1, do2);
input clk;
input we;
input [4:0] wa;
input [4:0] ra1;
input [4:0] ra2;
input [3:0] di;
output [3:0] do1;
output [3:0] do2;
reg [3:0] ram [31:0];

always @(posedge clk)
begin
if (we)

ram[wa] <= di;
end

assign do1 = ram[ra1];
assign do2 = ram[ra2];

endmodule

Block RAM with Reset
XST supports block RAM with reset on the data outputs, as offered with Virtex™,
Virtex-II™ and related block RAM resources. Optionally, you can include a synchronously
controlled initialization of the RAM data outputs.

Block RAM with the following synchronization modes can have resetable data ports.

• Read-First Block RAM with Reset

• Write-First Block RAM with Reset

• No-Change Block RAM with Reset

• Registered ROM with Reset

• Supported Dual-Port Templates

Note: Because XST does not support block RAMs with dual-write in a dual-read block RAM
description, both data outputs may be reset, but the various read-write synchronizations are only
allowed for the primary data output. The dual output may only be used in read-first mode.
152 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

The following example shows a Read-First Block RAM with reset.

The following table shows pin descriptions for a block RAM with reset.

VHDL

Following is the VHDL code for a read-first RAM with reset.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity ramrst is
port (

clk : in std_logic;
en : in std_logic;
we : in std_logic;
rst : in std_logic;
addr : in std_logic_vector(4 downto 0);
di : in std_logic_vector(3 downto 0);
do : out std_logic_vector(3 downto 0)
);

end ramrst;

IO pins Description

clk Positive-Edge Clock

en Global Enable

we Write Enable (active High)

addr Read/Write Address

rst Reset for data output

di Data Input

do RAM Output Port

X10019

EN

DOADDR

WE

DI

CLK

RST

Block RAM
with Reset
XST User Guide www.xilinx.com 153
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

architecture syn of ramrst is
type ram_type is array (31 downto 0) of std_logic_vector (3 downto 0);
signal ram : ram_type;

begin
process (clk)
begin
if clk’event and clk = ’1’ then

if en = ’1’ then -- optional enable
if we = ’1’ then -- write enable

ram(conv_integer(addr)) <= di;
end if;
if rst = ’1’ then -- optional reset

do <= (others => ’0’);
else

do <= ram(conv_integer(addr)) ;
end if;

end if;
end if;

end process;
end syn;

Verilog Template

Following is the Verilog code for a read-first RAM with reset.

module raminfr (clk, en, we, rst, addr, di, do);
input clk;
input en;
input we;
input rst;
input [4:0] addr;
input [3:0] di;
output [3:0] do;
reg [3:0] ram [31:0];
reg [3:0] do;

always @(posedge clk)
begin
if en // optional enable

begin
if we // write enable

ram(addr) <= di;
if rst // optional reset

do <= reset_value;
else

do <= ram(addr);
end

end
end module
154 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

Initializing Block RAM

VHDL

Block RAM initial contents can be specified by initialization of the signal describing the
memory array in your VHDL code as in the following example:

...
type ram_type is array (0 to 63) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=
(
X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",
X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",
X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D"
);

...
process (clk)
begin
if rising_edge(clk) then

if we = ’1’ then
RAM(conv_integer(a)) <= di;

end if;
ra <= a;

end if;
end process;
...
do <= RAM(conv_integer(ra));

The RAM initial contents can be specified in hexadecimal, as in the previous example, or in
binary as shown in the following example:

...
type ram_type is array (0 to SIZE-1) of std_logic_vector(15 downto 0);
signal RAM : ram_type :=
(
"0111100100000101",
"0000010110111101",
"1100001101010000",
...
"0000100101110011"
);

...

Verilog

XST does not support block RAM initialization in Verilog.
XST User Guide www.xilinx.com 155
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Limitations

• Initialization is only valid for block RAM resources. If you attempt to initialize
distributed RAM, XST ignores the initialization, and issues a warning message.

• Initialization is only valid for single-port RAM. If you attempt to initialize multiple-
port RAM, XST ignores the initialization, and issues a warning message.

• Initialization of inferred RAMs from RTL code is not supported via INIT constraints.
Use of INIT constraints is only supported if RAM primitives are directly instantiated
from the UNISIM library.

ROMs Using Block RAM Resources
XST can use block RAM resources to implement ROMs with synchronous outputs or
address inputs. These ROMs are implement as single-port block RAMs. The use of block
RAM resources to implement ROMs is controlled by the ROM_STYLE constraint. Please
see Chapter 5, “Design Constraints” for details about the ROM_SYTLE attribute. Please see
Chapter 3, “FPGA Optimization” for details on ROM implementation.

Here is a list of VHDL/Verilog templates described below.

• ROM with registered output

• ROM with registered address

The following table shows pin descriptions for a registered ROM.

VHDL

Following is the recommended VHDL code for a ROM with registered output.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rominfr is
port (

clk : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
data : out std_logic_vector(3 downto 0)
);

end rominfr;

IO Pins Description

clk Positive-Edge Clock

en Synchronous Enable (active High)

addr Read Address

data Data Output
156 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

architecture syn of rominfr is
type rom_type is array (31 downto 0) of std_logic_vector (3 downto 0);
constant ROM : rom_type :=

("0001","0010","0011","0100","0101","0110","0111","1000","1001","1010"
,"1011","1100","1101","1110","1111","0001","0010","0011","0100","0101"
,"0110","0111","1000","1001","1010","1011","1100","1101","1110","1111"
);
begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (en = ’1’) then
data <= ROM(conv_integer(addr);

end if;
end if;

end process;
end syn;

Following is alternate VHDL code for a ROM with registered output.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rominfr is
port (

clk : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
data : out std_logic_vector(3 downto 0)
);

end rominfr;
architecture syn of rominfr is
type rom_type is array (31 downto 0) of std_logic_vector (3 downto 0);
constant ROM : rom_type :=

("0001","0010","0011","0100","0101","0110","0111","1000","1001","1010"
,"1011","1100","1101","1110","1111","0001","0010","0011","0100","0101"
,"0110","0111","1000","1001","1010","1011","1100","1101","1110","1111"
);
signal rdata : std_logic_vector(3 downto 0);

begin
rdata <= ROM(conv_integer(addr);

process (clk)
begin
if (clk’event and clk = ’1’) then

if (en = ’1’) then
data <= rdata;

end if;
end if;

end process;
end syn;
XST User Guide www.xilinx.com 157
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Following is VHDL code for a ROM with registered address.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rominfr is
port (

clk : in std_logic;
en : in std_logic;
addr : in std_logic_vector(4 downto 0);
data : out std_logic_vector(3 downto 0)
);

end rominfr;
architecture syn of rominfr is
type rom_type is array (31 downto 0) of std_logic_vector (3 downto 0);
constant ROM : rom_type :=

("0001","0010","0011","0100","0101","0110","0111","1000","1001","1010"
,"1011","1100","1101","1110","1111","0001","0010","0011","0100","0101"
,"0110","0111","1000","1001","1010","1011","1100","1101","1110","1111
);
signal raddr : std_logic_vector(4 downto 0);

begin
process (clk)
begin
if (clk’event and clk = ’1’) then

if (en = ’1’) then
raddr <= addr;

end if;
end if;

end process;
data <= ROM(conv_integer(raddr);

end syn;

Verilog

Following is Verilog code for a ROM with registered output.

module rominfr (clk, en, addr, data);
input clk;
input en;
input [4:0] addr;
output [3:0] data;
158 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

RAMs/ROMs
R

always @(posedge clk) begin
if (en)

case(addr)
4’b0000: data = 4’b0010;
4’b0001: data = 4’b0010;
4’b0010: data = 4’b1110;
4’b0011: data = 4’b0010;
4’b0100: data = 4’b0100;
4’b0101: data = 4’b1010;
4’b0110: data = 4’b1100;
4’b0111: data = 4’b0000;
4’b1000: data = 4’b1010;
4’b1001: data = 4’b0010;
4’b1010: data = 4’b1110;
4’b1011: data = 4’b0010;
4’b1100: data = 4’b0100;
4’b1101: data = 4’b1010;
4’b1110: data = 4’b1100;
4’b1111: data = 4’b0000;
default: data = 4’bXXXX;

endcase
end

endmodule

Following is Verilog code for a ROM with registered address.

module rominfr (clk, en, addr, data);
input clk;
input en;
input [4:0] addr;
output [3:0] data;
reg [4:0] raddr;
always @(posedge clk) begin
if (en)

raddr = addr;
end
always @(raddr) begin
if (en)

case(raddr)
4’b0000: data = 4’b0010;
4’b0001: data = 4’b0010;
4’b0010: data = 4’b1110;
4’b0011: data = 4’b0010;
4’b0100: data = 4’b0100;
4’b0101: data = 4’b1010;
4’b0110: data = 4’b1100;
4’b0111: data = 4’b0000;
4’b1000: data = 4’b1010;
4’b1001: data = 4’b0010;
4’b1010: data = 4’b1110;
4’b1011: data = 4’b0010;
4’b1100: data = 4’b0100;
4’b1101: data = 4’b1010;

4’b1110: data = 4’b1100;
4’b1111: data = 4’b0000;
default: data = 4’bXXXX;

endcase
end

endmodule
XST User Guide www.xilinx.com 159
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

State Machine
XST proposes a large set of templates to describe Finite State Machines (FSMs). By default,
XST tries to distinguish FSMs from VHDL/Verilog code, and apply several state encoding
techniques (it can re-encode the user’s initial encoding) to get better performance or less
area. However, you can disable FSM extraction by using the FSM_EXTRACT design
constraint.

Please note that XST can handle only synchronous state machines.

There are many ways to describe FSMs. A traditional FSM representation incorporates
Mealy and Moore machines, as in the following figure. Please note that XST supports both
of these models:

For HDL, process (VHDL) and always blocks (Verilog) are the most suitable ways for
describing FSMs. (For description convenience Xilinx® uses "process" to refer to both:
VHDL processes and Verilog always blocks.)

You may have several processes (1, 2 or 3) in your description, depending upon how you
consider and decompose the different parts of the preceding model. Following is an
example of the Moore Machine with Asynchronous Reset, “RESET”.

• 4 states: s1, s2, s3, s4

• 5 transitions

• 1 input: "x1"

• 1 output: "outp"

This model is represented by the following bubble diagram:

X8993

Next
State

Function

Output
Function

State
Register

RESET

Outputs

Inputs
CLOCK

Only for Mealy Machine

S1

S2 S3

S4

RESET

x1 x1

outp='1' outp='0'

outp='1'
160 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

State Machine
R

FSM with 1 Process
Please note, in this example output signal "outp" is a register.

VHDL

Following is the VHDL code for an FSM with a single process.

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm is
port (

clk, reset, x1 : IN std_logic;
outp : OUT std_logic
);

end entity;

architecture beh1 of fsm is
type state_type is (s1,s2,s3,s4);
signal state: state_type;

begin
process (clk, reset)
begin
if (reset =’1’) then

state <= s1;
outp <= ’1’;

elsif (clk=’1’ and clk’event) then
case state is
when s1 =>

if x1=’1’ then
state <= s2;

else
state <= s3;

end if;
outp <= ’1’;

when s2 => state <= s4; outp <= ’1’;
when s3 => state <= s4; outp <= ’0’;
when s4 => state <= s1; outp <= ’0’;

end case;
end if;

end process;
end beh1;
XST User Guide www.xilinx.com 161
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

Verilog

Following is the Verilog code for an FSM with a single process.

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;

reg [1:0] state;
parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

always@(posedge clk or posedge reset)
begin
if (reset)

begin
state = s1; outp = 1’b1;

end
else
begin
case (state)
s1: begin

if (x1 == 1’b1)
state = s2;

else
state = s3;

outp = 1’b1;
end

s2: begin
state = s4; outp = 1’b1;

end
s3: begin

state = s4; outp = 1’b0;
end

s4: begin
state = s1; outp = 1’b0;

end
endcase

end
end

endmodule

FSM with 2 Processes
To eliminate a register from the "outputs", you can remove all assignments “outp <=…”
from the Clock synchronization section.
162 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

State Machine
R

 This can be done by introducing two processes as shown in the following figure.

VHDL

Following is VHDL code for an FSM with two processes.

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm is
port (

clk, reset, x1 : IN std_logic;
outp : OUT std_logic
);

end entity;
architecture beh1 of fsm is
type state_type is (s1,s2,s3,s4);
signal state: state_type;

begin
process1: process (clk, reset)
begin
if (reset =’1’) then

state <=s1;
elsif (clk=’1’ and clk’Event) then

case state is
when s1 =>

if x1=’1’ then
state <= s2;

else
state <= s3;

end if;
when s2 => state <= s4;
when s3 => state <= s4;
when s4 => state <= s1;

end case;
end if;

end process process1;

X8986
PROCESS 1 PROCESS 2

Next
State

Function

Output
Function

State
Register

RESET

Outputs

Inputs
CLOCK

Only for Mealy Machine
XST User Guide www.xilinx.com 163
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

process2 : process (state)
begin
case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
end process process2;
end beh1;

Verilog

Following is the Verilog code for an FSM with two processes.

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;
parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

always @(posedge clk or posedge reset)
begin
if (reset)

state = s1;
else

begin
case (state)
s1: if (x1 == 1’b1)

state = s2;
else
state = s3;

s2: state = s4;
s3: state = s4;
s4: state = s1;

endcase
end

end

always @(state)
begin
case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule
164 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

State Machine
R

FSM with 3 Processes
You can also separate the NEXT State function from the state register:

Separating the NEXT State function from the state register provides the following
description:

VHDL

Following is the VHDL code for an FSM with three processes.

library IEEE;
use IEEE.std_logic_1164.all;

entity fsm is
port (

clk, reset, x1 : IN std_logic;
outp : OUT std_logic
);

end entity;

architecture beh1 of fsm is
type state_type is (s1,s2,s3,s4);
signal state, next_state: state_type;

begin

process1: process (clk, reset)
begin

if (reset =’1’) then
state <= s1;

elsif (clk = ’1’ and clk’Event) then
state <= next_state;

end if;
end process process1;

X8987
PROCESS 1 PROCESS 3PROCESS 2

Next
State

Function

Output
Function

State
Register

RESET

Outputs

Inputs
CLOCK

Only for Mealy Machine
XST User Guide www.xilinx.com 165
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

process2 : process (state, x1)
begin
case state is
when s1 =>
if x1=’1’ then

next_state <= s2;
else

next_state <= s3;
end if;

when s2 => next_state <= s4;
when s3 => next_state <= s4;
when s4 => next_state <= s1;

end case;
end process process2;
process3 : process (state)
begin
case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
end process process3;

end beh1;

Verilog

Following is the Verilog code for an FSM with three processes.

module fsm (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;
reg [1:0] next_state;
parameter s1 = 2’b00; parameter s2 = 2’b01;
parameter s3 = 2’b10; parameter s4 = 2’b11;

always @(posedge clk or posedge reset)
begin
if (reset)

state = s1;
else

state = next_state;
end

always @(state or x1)
begin

case (state)
s1:

if (x1 == 1’b1)
next_state = s2;

else
next_state = s3;

s2: next_state = s4;
s3: next_state = s4;
s4: next_state = s1;

endcase
end
166 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

State Machine
R

always @(state)
begin
case (state)
s1: outp = 1’b1;
s2: outp = 1’b1;
s3: outp = 1’b0;
s4: outp = 1’b0;

endcase
end

endmodule

State Registers
State registers must be initialized with an asynchronous or synchronous signal. XST does
not support FSM without initialization signals. Please refer to “Registers” in this chapter
for templates on how to write Asynchronous and Synchronous initialization signals.

In VHDL, the type of a state register can be a different type: integer, bit_vector,
std_logic_vector, for example. But it is common and convenient to define an enumerated
type containing all possible state values and to declare your state register with that type.

In Verilog, the type of state register can be an integer or a set of defined parameters. In the
following Verilog examples the state assignments could have been made like this:

parameter [3:0]
s1 = 4’b0001,
s2 = 4’b0010,
s3 = 4’b0100,
s4 = 4’b1000;

reg [3:0] state;

These parameters can be modified to represent different state encoding schemes.

Next State Equations
Next state equations can be described directly in the sequential process or in a distinct
combinational process. The simplest template is based on a Case statement. If using a
separate combinational process, its sensitivity list should contain the state signal and all
FSM inputs.

Unreachable States
XST can detect unreachable states in an FSM. It lists them in the log file in the HDL
Synthesis step.

FSM Outputs
Non-registered outputs are described either in the combinational process or in concurrent
assignments. Registered outputs must be assigned within the sequential process.

FSM Inputs
Registered inputs are described using internal signals, which are assigned in the sequential
process.
XST User Guide www.xilinx.com 167
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

State Encoding Techniques
XST supports the following state encoding techniques.

• Auto

• One-Hot

• Gray

• Compact

• Johnson

• Sequential

• User

Auto

In this mode, XST tries to select the best suited encoding algorithm for each FSM.

One-Hot

One-hot encoding is the default encoding scheme. Its principle is to associate one code bit
and also one flip-flop to each state. At a given clock cycle during operation, one and only
one state variable is asserted. Only two state variables toggle during a transition between
two states. One-hot encoding is very appropriate with most FPGA targets where a large
number of flip-flops are available. It is also a good alternative when trying to optimize
speed or to reduce power dissipation.

Gray

Gray encoding guarantees that only one state variable switches between two consecutive
states. It is appropriate for controllers exhibiting long paths without branching. In
addition, this coding technique minimizes hazards and glitches. Very good results can be
obtained when implementing the state register with T flip-flops.

Compact

Compact encoding consists of minimizing the number of state variables and flip-flops.
This technique is based on hypercube immersion. Compact encoding is appropriate when
trying to optimize area.

Johnson

Like Gray, Johnson encoding shows benefits with state machines containing long paths
with no branching.

Sequential

Sequential encoding consists of identifying long paths and applying successive radix two
codes to the states on these paths. Next state equations are minimized.

User

In this mode, XST uses original encoding, specified in the HDL file. For example, if you use
enumerated types for a state register, then in addition you can use the
ENUM_ENCODING constraint to assign a specific binary value to each state. Please refer
to Chapter 5, “Design Constraints” for more details.
168 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

State Machine
R

Log File
The XST log file reports the full information of recognized FSM during the Macro
Recognition step. Moreover, if you allow XST to choose the best encoding algorithm for
your FSMs, it reports the one it chose for each FSM.

RAM-based FSM Synthesis
Large FSMs can be made more compact and faster by implementing them in the block
RAM resources provided in Virtex™ and later technologies. You can direct XST to use
block RAM resources for FSMs by using the FSM_STYLE constraint. Values for
FSM_STYLE are lut, and bram. The lut option is the default and it causes XST to map the
FSM using LUTs. The bram option directs XST to map the FSM onto block RAM.

In Project Navigator, invoke this constraint by choosing either LUT or Bram from the drop
down list to the right of FSM Style under the HDL Options tab of the Process Properties
dialog box. From the command line, use the –fsm_style command line switch. You can also
use the FSM_STYLE constraint in your HDL code. See the Constraints Guide for more
information.

...
Synthesizing Unit <fsm>.

Related source file is state_machines_1.vhd.
Found finite state machine <FSM_0> for signal <state>.

States	4
Transitions	5
Inputs	1
Outputs	1
Reset type	asynchronous
Encoding	automatic
State register	D flip-flops
--

...
Summary:

inferred 1 Finite State Machine(s).
...
Unit <fsm> synthesized.

===
HDL Synthesis Report

Macro Statistics
FSMs : 1
Registers : 1
1-bit register : 1

==
...
Optimizing FSM <FSM_0> with One-Hot encoding and D flip-flops. ...
...
XST User Guide www.xilinx.com 169
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

If it cannot implement a state machine on block RAM, XST:

• generates a warning message with the reason for the warning in the Advanced HDL
Synthesis Step of the log file.

• automatically implements the state machine using LUTs.

For example, if FSM has a asynchronous reset, it cannot be implemented using block RAM.
In this case XST informs the user:

Black Box Support
Your design may contain EDIF or NGC files generated by synthesis tools, schematic
editors or any other design entry mechanism. These modules must be instantiated in your
code to be connected to the rest of your design. You can do this in XST by using black box
instantiation in the VHDL/Verilog code. The netlist is propagated to the final
top-level netlist without being processed by XST. Moreover, XST allows you to attach
specific constraints to these black box instantiations, which are passed to the NGC file.

In addition, you may have a design block for which you have an RTL model, as well as
your own implementation of this block in the form of an EDIF netlist. The RTL model is
only valid for simulation purposes, but by using the BOX_TYPE constraint you can direct
XST to skip synthesis of this RTL code and create a black box. The EDIF netlist is linked to
the synthesized design during NGDBuild. Please see “General Constraints” in Chapter 5
for more information. Also see the Constraints Guide for details.

Note: Remember that once you make a design a black box, each instance of that design is a black
box. While you can attach constraints to the instance, XST ignores any constraint attached to the
original design.

Log File
From the flow point of view, the recognition of black boxes in XST is done before the macro
inference process. Therefore the LOG file differs from the one generated for other macros.

...
==
* Advanced HDL Synthesis *
==

WARNING:Xst - Unable to fit FSM <FSM_0> in BRAM (reset is
asynchronous).
Selecting encoding for FSM_0 ...
Optimizing FSM <FSM_0> on signal <current_state> with one-hot
encoding.
...

...
Analyzing Entity <black_b> (Architecture <archi>).

WARNING:Xst:766 - black_box_1.vhd (Line 15). Generating a Black Box
for component <my_block>.
Entity <black_b> analyzed. Unit <black_b> generated
....
170 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Black Box Support
R

Related Constraints
XST has a BOX_TYPE constraint that can be applied to black boxes. However, it was
introduced essentially for Virtex™ Primitive instantiation in XST. Please read “Virtex™
Primitive Support” in Chapter 3 in before using this constraint.

VHDL
Following is the VHDL code for a black box.

library ieee;
use ieee.std_logic_1164.all;

entity black_b is
port(

DI_1, DI_2 : in std_logic;
DOUT : out std_logic
);

end black_b;

architecture archi of black_b is
component my_block
port (

I1 : in std_logic;
I2 : in std_logic;
O : out std_logic
);

end component;

begin
inst: my_block port map (

I1=>DI_1,
I2=>DI_2,
O=>DOUT
);

end archi;

Verilog
Following is the Verilog code for a black box.

module my_block (in1, in2, dout);
input in1, in2;
output dout;

endmodule

module black_b (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;
my_block inst (

.in1(DI_1),

.in2(DI_2),

.dout(DOUT)
);

endmodule

Note: Please refer to the VHDL/Verilog language reference manuals for more information on
component instantiation.
XST User Guide www.xilinx.com 171
 1-800-255-7778

http://www.xilinx.com

Chapter 2: HDL Coding Techniques
R

172 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 3

FPGA Optimization

This chapter contains the following sections:

• “Introduction”

• “Virtex™ Specific Synthesis Options”

• “Macro Generation”

• “Mapping Logic onto Block RAM”

• “Flip-Flop Retiming”

• “Incremental Synthesis Flow”

• “Speed Optimization Under Area Constraint”

• “Log File Analysis”

• “Implementation Constraints”

• “Virtex™ Primitive Support”

• “Cores Processing”

• “Specifying INITs and RLOCs in HDL Code”

• “PCI Flow”

Introduction
XST performs the following steps during FPGA synthesis and optimization:

• Mapping and optimization on an entity/module by entity/module basis.

• Global optimization on the complete design.

The output of this process is an NGC file.
XST User Guide www.xilinx.com 173
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

This chapter describes the following:

• Constraints that can be applied to tune the synthesis and optimization process.

• Macro generation.

• Information in the log file.

• Timing model used during the synthesis and optimization process.

• Constraints available for timing-driven synthesis.

• Information on the generated NGC file.

• Information on support for primitives.

Virtex™ Specific Synthesis Options
XST supports a set of options that allows the tuning of the synthesis process according to
the user constraints. This section lists the options that relate to the FPGA-specific
optimization of the synthesis process. For details about each option, see “FPGA
Constraints (non-timing)” in Chapter 5.

Following is a list of FPGA options.

• BUFGCE

• Buffer Type

• Clock Buffer Type

• Decoder Extraction

• FSM Style

• Global Optimization Goal

• Incremental Synthesis

• Keep Hierarchy

• Logical Shifter Extraction

• Map Logic on BRAM

• Max Fanout

• Move First Stage

• Move Last Stage

• Multiplier Style

• Mux Style

• Number of Clock Buffers

• Optimize Instantiated Primitives

• Pack I/O Registers into IOBs

• Priority Encoder Extraction

• RAM Style

• Register Balancing

• Register Duplication

• Resynthesize

• Shift Register Extraction

• Signal Encoding
174 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Macro Generation
R

• Slice Packing

• Use Carry Chain

• Write Timing Constraints

• XOR Collapsing

Macro Generation
The Virtex™ Macro Generator module provides the XST HDL Flow with a catalog of
functions. These functions are identified by the inference engine from the HDL
description; their characteristics are handed to the Macro Generator for optimal
implementation. The set of inferred functions ranges in complexity from simple arithmetic
operators such as adders, accumulators, counters and multiplexers to more complex
building blocks such as multipliers, shift registers and memories.

Inferred functions are optimized to deliver the highest levels of performance and efficiency
for Virtex™ architectures and then integrated into the rest of the design. In addition, the
generated functions are optimized through their borders depending on the design context.

This section categorizes, by function, all available macros and briefly describes technology
resources used in the building and optimization phase.

Macro Generation can be controlled through attributes. These attributes are listed in each
subsection. For general information on attributes see Chapter 5, “Design Constraints”.

XST uses dedicated carry chain logic to implement many macros. In some situations carry
chain logic may lead to sub-optimal optimization results. Use the USE_CARRY_CHAIN
constraint to direct XST to deactivate this feature. Please refer to Chapter 5, “Design
Constraints” for more information.

Arithmetic Functions
For Arithmetic functions, XST provides the following elements:

• Adders, Subtracters and Adder/Subtracters

• Cascadable Binary Counters

• Accumulators

• Incrementers, Decrementers and Incrementer/Decrementers

• Signed and Unsigned Multipliers

XST uses fast carry logic (MUXCY) to provide fast arithmetic carry capability for high-
speed arithmetic functions. The sum logic formed from two XOR gates is implemented
using LUTs and the dedicated carry-XORs (XORCY). In addition, XST benefits from a
dedicated carry-ANDs (MULTAND) resource for high-speed multiplier implementation.

Loadable Functions
For Loadable functions XST provides the following elements.

• Loadable Up, Down and Up/Down Binary Counters

• Loadable Up, Down and Up/Down Accumulators

XST can provide synchronously loadable, cascadable binary counters and accumulators
inferred in the HDL flow. Fast carry logic is used to cascade the different stages of the
XST User Guide www.xilinx.com 175
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

macros. Synchronous loading and count functions are packed in the same LUT primitive
for optimal implementation.

For Up/Down counters and accumulators, XST uses the dedicated carry-ANDs to
improve the performance.

Multiplexers
For multiplexers, the Macro Generator provides the following two architectures.

• MUXFx based multiplexers

• Dedicated Carry-MUXs based multiplexers

For Virtex-E™, MUXFx based multiplexers are generated by using the optimal tree
structure of MUXF5, MUXF6 primitives, which allows compact implementation of large
inferred multiplexers. For example, XST can implement an 8:1 multiplexer in a single CLB.
In some cases dedicated carry-MUXs are generated; these can provide more efficient
implementations, especially for very large multiplexers.

For Virtex-II™, Virtex-II Pro™ and Virtex-II Pro X™, XST can implement a 16:1 multiplexer
in a single CLB using a MUXF7 primitive, and it can implement a 32:1 multiplexer across
two CLBs using a MUXF8.

To have better control of the implementation of the inferred multiplexer, XST offers a way
to select the generation of either the MUXF5/MUXF6 or Dedicated Carry-MUXs
architectures. The attribute MUX_STYLE specifies that an inferred multiplexer be
implemented on a MUXFx based architecture if the value is MUXF, or a Dedicated Carry-
MUXs based architecture if the value is MUXCY.

You can apply this attribute to either a signal that defines the multiplexer or the instance
name of the multiplexer. This attribute can also be global.

The attribute MUX_EXTRACT with, respectively, the value no or force can be used to
disable or force the inference of the multiplexer.

Priority Encoder
The if/elsif structure described in the “Priority Encoders” in Chapter 2 is implemented
with a 1-of-n priority encoder.

XST uses the MUXCY primitive to chain the conditions of the priority encoder, which
results in its high-speed implementation.

You can enable/disable priority encoder inference using the PRIORITY_EXTRACT
constraint.

Generally, XST does not infer and so does not generate a large number of priority encoders.
Therefore, Xilinx® recommends that you use the PRIORITY_EXTRACT constraint with the
force option if you would like to use priority encoders.

Decoder
A decoder is a demultiplexer whose inputs are all constant with distinct one-hot (or one-
cold) coded values. An n-bit or 1-of-m decoder is mainly characterized by an m-bit data
output and an n-bit selection input, such that n**(2-1) < m <= n**2.
176 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Macro Generation
R

Once XST has inferred the decoder, the implementation uses the MUXF5 or MUXCY
primitive depending on the size of the decoder.

You can enable/disable decoder inference using the DECODER_EXTRACT property.

Shift Register
Two types of shift register are built by XST:

• Serial shift register with single output.

• Parallel shift register with multiple outputs.

The length of the shift register can vary from 1 bit to 16 bits as determined from the
following formula:

Width = (8*A3)+(4*A2)+(2*A1)+A0+1

If A3, A2, A1 and A0 are all zeros (0000), the shift register is one-bit long. If they are all ones
(1111), it is 16-bits long.

For serial shift register SRL16, flip-flops are chained to the appropriate width.

For a parallel shift register, each output provides a width of a given shift register. For each
width a serial shift register is built, it drives one output, and the input of the next shift
register.

You can enable/disable shift register inference using the SHREG_EXTRACT constraint.

RAMs
Two types of RAM are available in the inference and generation stages: Distributed and
Block RAMs.

• If the RAM is asynchronous READ, Distributed RAM is inferred and generated.

• If the RAM is synchronous READ, Block RAM is inferred. In this case, XST can
implement Block RAM or Distributed RAM. The default is Block RAM.

In Virtex™, Virtex-E™, Virtex-II™, Virtex-II Pro™, Virtex-II Pro X™, Spartan-II™,
Spartan-IIE™ and Spartan-3™, XST uses the following primitives.

• RAM16X1S and RAM32X1S for Single-Port Synchronous Distributed RAM

• RAM16X1D primitives for Dual-Port Synchronous Distributed RAM

In Virtex-II™, Virtex-II Pro™, Virtex-II Pro X™ and Spartan-3™, XST uses the following
primitives.

• For Single-Port Synchronous Distributed RAM:

♦ For Distributed Single-Port RAM with positive clock edge:

RAM16X1S, RAM16X2S, RAM16X4S, RAM16X8S,
RAM32X1S, RAM32X2S, RAM32X4S, RAM32X8S,
RAM64X1S,RAM64X2S, RAM128X1S,

♦ For Distributed Single-Port RAM with negative clock edge:

RAM16X1S_1, RAM16X2S_1, RAM16X4S_1, RAM16X8S_1,
RAM32X1S_1, RAM32X2S_1, RAM32X4S_1, RAM32X8S_1,
RAM64X1S_1,RAM64X2S_1, RAM128X1S_1,
XST User Guide www.xilinx.com 177
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

• For Dual-Port Synchronous Distributed RAM:

♦ For Distributed Dual-Port RAM with positive clock edge:

RAM16X1D, RAM32X1D, RAM64X1D

♦ For Distributed Dual-Port RAM with negative clock edge:

RAM16X1D_1, RAM32X1D_1, RAM64X1D_1

For Block RAM XST uses:

• RAMB4_Sn primitives for Single-Port Synchronous Block RAM

• RAMB4_Sm_Sn primitives for Dual-Port Synchronous Block RAM

In order to have better control of the implementation of the inferred RAM, XST offers a
way to control RAM inference, and to select the generation of Distributed RAM or Block
RAMs (if possible).

The RAM_STYLE attribute specifies that an inferred RAM be generated using:

• Block RAM if the value is block.

• Distributed RAM if the value is distributed.

You can apply the RAM_STYLE attribute either to a signal that defines the RAM or the
instance name of the RAM. This attribute can also be global.

If the RAM resources are limited, XST can generate additional RAMs using registers. To do
this use the RAM_EXTRACT attribute with the value set to no.

ROMs
A ROM can be inferred when all assigned contexts in a Case or If...else statement are
constants. Macro inference only considers ROMs of at least 16 words with no width
restriction. For example, the following HDL equation can be implemented with a ROM of
16 words of 4 bits.

data = if address = 0000 then 0010
if address = 0001 then 1100
if address = 0010 then 1011
...
if address = 1111 then 0001

A ROM can also be inferred from an array composed entirely of constants, as in the
following HDL example.

type ROM_TYPE is array(15 downto 0)of std_logic_vector(3 downto 0);
constant ROM : rom_type := ("0010", "1100", "1011", ..., "0001");
...
data <= ROM(conv_integer(address));

The ROM_EXTRACT attribute can be used to disable the inference of ROMs. Use the value
yes to enable ROM inference, and no to disable ROM inference. The default is yes.

Two types of ROM are available in the inference and generation stages: Distributed ROM
and Block ROM.

• Distributed ROMs are generated by using the optimal tree structure of LUT, MUXF5,
MUXF6, MUXF7 and MUXF8 primitives which allows compact implementation of
large inferred ROMs.
178 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Mapping Logic onto Block RAM
R

• Block ROMs are generated by using block RAM resources. When a synchronous ROM
is identified, it can be inferred either as a distributed ROM plus a register, or it can be
inferred using block RAM resources.

The ROM_STYLE attribute specifies what kind of synchronous ROM that XST infers as
follows.

• If set to block, and the ROM fits entirely on a single block of RAM, XST infers the ROM
using block RAM resources.

• If set to distributed, XST infers a distributed ROM plus register.

• If set to auto, XST determines the most efficient method to use and infers the ROM
accordingly. Auto is the default.

You can apply ROM_STYLE as a VHDL attribute or a Verilog meta comment to an
individual signal, or to the entity/module of the ROM. This attribute can also be applied
globally from the Process Properties dialog box in Project Navigator, or from the command
line.

Mapping Logic onto Block RAM
If there are unused Block RAM resources and your design does not fit into your target
device, you can place some of your design logic into Block RAM. To do this, the you must
decide what part of the HDL design is to be placed in Block RAM and put this part of the
RTL description in a separate hierarchical block. Attach a BRAM_MAP constraint to this
separate block either directly in HDL code or via the XCF file.

Please note that in the current release XST cannot automatically decide what logic could be
placed in Block RAM.

When placing logic into a separate block it must satisfy the following criteria.

• All outputs must be registered.

• The block may contain only one level of registers, which are output registers.

• All output registers must have the same control signals.

• The output registers must have a Synchronous Reset signal.

• The block cannot contain multisources or tristate busses.

• The KEEP attribute is not allowed on intermediate signals.

XST attempts to map the logic onto Block RAM during the Advanced Synthesis step. If any
of the listed requirements are not satisfied, XST does not map the logic onto Block RAM,
and generates a warning message with the reason for the warning. If the logic cannot be
placed in a single Block RAM primitive, XST spreads it over several Block RAMs.

The following example places two 8-bit adders in a single Block RAM primitive:
XST User Guide www.xilinx.com 179
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

VHDL
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity logic_bram is
port (

clk, rst : in std_logic;
A, B, C, D : in unsigned (7 downto 0);
RES1, RES2 : out unsigned (7 downto 0)
);

attribute bram_map: string;
attribute bram_map of logic_bram: entity is "yes";

end logic_bram;

architecture beh of logic_bram is
begin
 process (clk)
 begin
 if (clk’event and clk=’1’) then

if (rst=’1’) then
RES1<="00000000"; RES2<="00000000";

else
RES1<=A+B;
RES2<=C+D;

end if;
end if;

end process;
end beh;

VERILOG
module vlogic_bram (clk, rst, A, B, C, D, RES1, RES2);
input clk, rst;
input [7:0] A, B, C, D;
output [7:0] RES1, RES2;

reg [7:0] RES1, RES2;

// synthesis attribute bram_map of vlogic_bram is yes

always @(posedge clk)
begin

if (rst)
RES1 = 8’b0000000;

else
RES1 = A+B;

end

always @(posedge clk)
begin
if (rst)

RES2 = 8’b0000000;
else

RES2 = C+D;
end

endmodule
180 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Mapping Logic onto Block RAM
R

LOG
.

In the following example, an asynchronous reset is used instead of a synchronous one and
so, the logic is not mapped onto Block RAM:

VHDL
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity no_logic_bram is
port (

clk, rst : in std_logic;
A, B, C, D : in unsigned (7 downto 0);
RES1, RES2 : out unsigned (7 downto 0)
);

attribute bram_map: string;
attribute bram_map of no_logic_bram: entity is "yes";

end no_logic_bram;

...
==
* HDL Synthesis *
==

Synthesizing Unit <logic_bram>.
Related source file is

C:/Users/DOC/Granite/HDL_Coding_Techniques/ise/../bram_map_1.vhd.
Found 8-bit register for signal <RES1>.
Found 8-bit register for signal <RES2>.
Found 8-bit adder for signal <$n0002> created at line 25.
Found 8-bit adder for signal <$n0003> created at line 26.
Summary:

inferred 16 D-type flip-flop(s).
inferred 2 Adder/Subtracter(s).

Unit <logic_bram> synthesized.
...
===
* Advanced HDL Synthesis *
===
Entity <logic_bram> mapped on BRAM.
...

Device utilization summary:

Selected Device : 2v40cs144-6

Number of bonded IOBs: 17 out of 88 19%
Number of BRAMs: 1 out of 2 50%
Number of GCLKs: 1 out of 16 6%
...
XST User Guide www.xilinx.com 181
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

architecture beh of no_logic_bram is
begin
process (clk, rst)
begin
if (rst=’1’) then

RES1<="00000000"; RES2<="00000000";
elsif (CLK’event and clk='1') then

RES1<=A+B;
RES2<=C+D;

end if;
end process;

end beh;

VERILOG
module no_vlogic_bram (clk, rst, A, B, C, D, RES1, RES2);
input clk, rst;
input [7:0] A, B, C, D;
output [7:0] RES1, RES2;

reg [7:0] RES1, RES2;

// synthesis attribute bram_map of no_vlogic_bram is yes

always @(posedge clk or posedge rst)
begin
if (rst)

RES1 = 8'b0000000;
else

RES1 = A+B;
end

always @(posedge clk or posedge rst)
begin
if (rst)

RES2 = 8'b0000000;
else

RES2 = C+D;
end

endmodule

LOG
.

...
===
* Advanced HDL Synthesis *
===

INFO:Xst - Unable to map block <no_logic_bram> on BRAM.
Output FF <RES1> must have a synchronous reset.

...
182 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Flip-Flop Retiming
R

Flip-Flop Retiming
Flip-flop Retiming is a technique that consists of moving flip-flops and latches across logic
for the purpose of improving timing, and so increasing clock frequency. Flip-flop retiming
can be either forward or backward. Forward retiming moves a set of flip-flops that are the
input of a LUT to a single flip-flop at its output. Backward retiming moves a flip-flop that
is at the output of a LUT to a set of flip-flops at its input. Flip-flop retiming can significantly
increase the number of flip-flops in the design, and it may remove some flip-flops.
Nevertheless, the behavior of the designs remains the same. Only timing delays are
modified.

Flip-flop Retiming is part of global optimization, and it respects the same constraints as all
the other optimization techniques. Retiming is an iterative process, therefore a flip-flop
that is the result of a retiming can be moved again in the same direction (forward or
backward) if it results in better timing. The only limit for the retiming is when the timing
constraints are satisfied, or if no more improvements in timing can be obtained.

For each flip-flop moved, a message is printed specifying the original and new flip-flop
names, and if it is a forward or backward retiming.

Note the following limitations.

• Flip-flop retiming is not applied to flip-flops that have the IOB=TRUE property.

• Flip-flops are not moved forward if the flip-flop or the output signal has the KEEP
property.

• Flip-flops are not moved backward if the input signal has the KEEP property.

• Instantiated flip-flops are not moved.

• Flip-flops with both a set and a reset are not moved.

Flip-flop retiming can be controlled by applying the REGISTER_BALANCING,
MOVE_FIRST_STAGE, and MOVE_LAST_STAGE constraints.

Incremental Synthesis Flow
The main goal of Incremental Synthesis flow is to reduce the overall time that the designer
spends in completing a project. This can be achieved by allowing you to re-synthesize only
the modified portions of the design instead of the entire design. We may consider two main
categories of incremental synthesis:

• Block Level: The synthesis tool re-synthesizes the entire block if at least one
modification was made inside this block.

• Gate or LUT Level: The synthesis tool tries to identify the exact changes made in the
design and generates the final netlist with minimal changes.

XST supports block level incremental synthesis with some limitations.

Incremental Synthesis is implemented using two constraints:
INCREMENTAL_SYNTHESIS, and RESYNTHESIZE.
XST User Guide www.xilinx.com 183
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

INCREMENTAL_SYNTHESIS:
Use the INCREMENTAL_SYNTHESIS constraint to control the decomposition of the
design on several groups.

• If this constraint is applied to a specific block, this block with all its descendents are
considered as one group, until the next INCREMENTAL_SYNTHESIS constraint is
found. During synthesis, XST generates a single NGC file for the group.

• In the current release, you cannot apply the INCREMENTAL_SYNTHESIS constraint
to a block that is instantiated multiple times. If this occurs, XST issues the following
error:

ERROR:Xst:1344 - Cannot support incremental synthesis on block my_sub
instantiate several times.

• If a a single block is changed then the entire group is resynthesized and a new NGC
file(s) is generated.

• Please note that starting from the 5.2i release the INCREMENTAL_SYNTHESIS
switch is NO LONGER accessible via the “Xilinx Specific Options” tab from Synthesis
Process Properties dialog box. This directive is only available via VHDL attributes or
Verilog meta comments, or via an XST constraint file.

Example

Figure 3-1 shows how blocks are grouped by use of the INCREMENTAL_SYNTHESIS
constraint. Consider the following:

• LEVA, LEVA_1, LEVA_2, my_add, my_sub as one group.

• LEVB, my_and, my_or and my_sub as another group.

• TOP is considered separately as a single group.

Figure 3-1: Grouping through Incremental Synthesis

TOP

my_sub

LEVA
incremental_synthesis=true

LEVA_1

my_add

LEVA_2 my_and my_or

LEVB
incremental_synthesis=true

X9858
184 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Incremental Synthesis Flow
R

RESYNTHESIZE

VHDL Flow

For VHDL, XST is able to automatically recognize what blocks were changed and to
resynthesize only changed ones. This detection is done at the file level. This means that if
a VHDL file contains two blocks, both blocks are considered modified. If these two blocks
belong to the same group then there is no impact on the overall synthesis time. If the
VHDL file contains two blocks that belong to different groups, both groups are considered
changed and so are resynthesized. Xilinx® recommends that you only keep different
blocks in the a single VHDL file if they belong to the same group.

Use the RESYNTHESIZE constraint to force resynthesis of the blocks that were not
changed.

Note: In the current release, XST runs HDL synthesis on the entire design. However, during low
level optimization XST re-optimizes modified blocks only.

Verilog Flow:

For Verilog, XST cannot automatically identify when blocks have been modified. The
RESYNTHESIZE constraint is a workaround for this limitation.

In this example, XST generates three NGC files as shown in the following log file segment:.

If you made changes to "LEVA_1" block, XST automatically resynthesize s the entire group,
including LEVA, LEVA_1, LEVA_2, my_add, my_sub as shown in the following log file
segment.

Note: If this were a Verilog flow, XST would not be able to automatically detect this change and the
RESYNTHESIZE constraint would have to be applied to the modified block.

...
==
*
* Final Report
*
==

Final Results
Top Level Output File Name : c:\users\incr_synt\new.ngc
Output File Name : c:\users\incr_synt\leva.ngc
Output File Name : c:\users\incr_synt\levb.ngc

==
...
XST User Guide www.xilinx.com 185
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

If you make no changes to the design XST, during Low Level synthesis, reports that all
blocks are up to date and the previously generated NGC files are kept unchanged as
shown in the following log file segment.

If you changed one timing constraint, then XST cannot detect this modification. To force
XST to resynthesize the required blocks, use the RESYNTHESIZE constraint. For example,
if "LEVA" must be resynthesized, then apply the RESYNTHESIZE constraint to this block.

...
==
*
* Low Level Synthesis
*
==

Final Results
Incremental synthesis Unit <my_and> is up to date ...
Incremental synthesis Unit <my_and> is up to date ...
Incremental synthesis Unit <my_and> is up to date ...
Incremental synthesis Unit <my_and> is up to date ...

Optimizing unit <my_sub> ...
Optimizing unit <my_add> ...
Optimizing unit <leva_1> ...
Optimizing unit <leva_2> ...
Optimizing unit <leva> ...

==
...

...
==
*
* Low Level Synthesis
*
==

Incremental synthesis: Unit <my_and> is up to date ...
Incremental synthesis: Unit <my_or> is up to date ...
Incremental synthesis: Unit <my_sub> is up to date ...
Incremental synthesis: Unit <my_add> is up to date ...
Incremental synthesis: Unit <levb> is up to date ...
Incremental synthesis: Unit <leva_1> is up to date ...
Incremental synthesis: Unit <leva_2> is up to date ...
Incremental synthesis: Unit <leva> is up to date ...
Incremental synthesis: Unit <top> is up to date ...

==
...
186 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Speed Optimization Under Area Constraint
R

All blocks included in the <leva> group are re-optimized and new NGC file are generated
as shown in the following log file segment.

If you have:

• previously run XST in non-incremental mode and then switched to incremental mode

or

• the decomposition of the design was changed

you must delete all previously generated NGC files before continuing. Otherwise XST
issues an error.

If in the previous example, adding "incremental_synthesis=true" to the block LEVA_1, XST
gives the following error:

ERROR:Xst:624 - Could not find instance <inst_leva_1> of cell <leva_1>
in <leva>

The problem most likely occurred because the design was previously run in
non-incremental synthesis mode. To fix the problem, remove the existing NGC files from
the project directory.

Speed Optimization Under Area Constraint
Starting from the 5.1i release, XST performs timing optimization under area constraint.
This option, "Slice Utilization Ratio," is available under the XST Synthesis Options in the
Process Properties dialog box in Project Navigator. By default this constraint is set to 100%
of selected device size.

This constraint has influence at low level synthesis only (it does not control the inference
process). If this constraint is specified, XST makes an area estimation, and if the specified
constraint is met, XST continues timing optimization trying not to exceed the constraint. If
the size of the design is more than requested, then XST tries to reduce the area first and if
the area constraint is met, then starts timing optimization. In the following example the

...
==
*
* Low Level Synthesis
*
==

Incremental synthesis: Unit <my_and> is up to date ...
Incremental synthesis: Unit <my_or> is up to date ...
Incremental synthesis: Unit <levb> is up to date ...
Incremental synthesis: Unit <top> is up to date ...
...
Optimizing unit <my_sub> ...
Optimizing unit <my_add> ...
Optimizing unit <leva_1> ...
Optimizing unit <leva_2> ...
Optimizing unit <leva> ...

==
...
XST User Guide www.xilinx.com 187
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

area constraint was specified as 100% and initial estimation shows that in fact it occupies
102% of the selected device. XST starts optimization and reaches 95%.

If the area constraint cannot be met, then XST ignores it during timing optimization and
runs low level synthesis in order to reach the best frequency. In the following example, the
target area constraint is set to 70%. XST was not able to satisfy it and so gives the
corresponding warning message.

Note: "(+5)" stands for the max margin of the area constraint. This means that if the area constraint
is not met, but the difference between the requested area and obtained area during area optimization
is less or equal then 5%, then XST runs timing optimization taking into account the achieved area, not
exceeding it.

...
==
*
* Low Level Synthesis
*
==

Found area constraint ratio of 100 (+ 5) on block tge,
actual ratio is 102.
Optimizing block <tge> to meet ratio 100 (+ 5) of 1536 slices :
Area constraint is met for block <tge>, final ratio is 95.

==
...

...
==
*
* Low Level Synthesis
*
==

Found area constraint ratio of 70 (+ 5) on block fpga_hm, actual
ratio is 64.
Optimizing block <fpga_hm> to meet ratio 70 (+ 5) of 1536 slices :
WARNING:Xst - Area constraint could not be met for block <tge>, final
ratio is 94
...

==
...
188 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Log File Analysis
R

In the following example the area was specified as 55%. XST achieved only 60%. But taking
into account that the difference between requested and achieved area is not more than 5%,
XST considers that area constraint was met...

SLICE_UTILIZATION_RATIO constraint can be attached to a specific block of a design
Please refer to the Constraint Guide for more information.

Log File Analysis
The XST log file related to FPGA optimization contains the following sections.

• Design optimization

• Resource usage report

• Timing report

Design Optimization
During design optimization, XST reports the following.

• Potential removal of equivalent flip-flops

Two flip-flops (latches) are equivalent when they have the same data and control pins.

• Register replication

Register replication is performed either for timing performance improvement or for
satisfying MAX_FANOUT constraints. Register replication can be turned off using the
REGISTER_DUPLICATION constraint.

...
==
*
* Low Level Synthesis
*
==

Found area constraint ratio of 55 (+ 5) on block fpga_hm, actual
ratio is 64.
Optimizing block <fpga_hm> to meet ratio 55 (+ 5) of 1536 slices :
Area constraint is met for block <fpga_hm>, final ratio is 60.

==
...
XST User Guide www.xilinx.com 189
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

Following is a portion of the log file.

Starting low level synthesis ...
Optimizing unit <down4cnt> ...
Optimizing unit <doc_readwrite> ...
...
Optimizing unit <doc> ...
Building and optimizing final netlist ...
Register doc_readwrite_state_D2 equivalent to doc_readwrite_cnt_ld has
been removed
Register I_cci_i2c_wr_l equivalent to wr_l has been removed
Register doc_reset_I_reset_out has been replicated 2 time(s)
Register wr_l has been replicated 2 time(s)

Resource Usage
In the Final Report, the Cell Usage section reports the count of all the primitives used in the
design. These primitives are classified in the following groups:

• BELS

This group contains all the logical cells that are basic elements of the Virtex™
technology, for example, LUTs, MUXCY, MUXF5, MUXF6, MUXF7, MUXF8.

• Flip-flops and Latches

This group contains all the flip-flops and latches that are primitives of the Virtex™
technology, for example, FDR, FDRE, LD.

• RAMS

This group contains all the RAMs.

• SHIFTERS

This group contains all the shift registers that use the Virtex™ primitives. They are
SRL16, SRL16_1, SRL16E, SRL16E_1, and SRLC*.

• Tristates

This group contains all the tristate primitives, namely the BUFT.

• Clock Buffers

This group contains all the clock buffers, namely BUFG, BUFGP, BUFGDLL.

• IO Buffers

This group contains all the standard I/O buffers, except the clock buffer, namely IBUF,
OBUF, IOBUF, OBUFT, IBUF_GTL ...

• LOGICAL

This group contains all the logical cells primitives that are not basic elements, namely
AND2, OR2, ...

• OTHER

This group contains all the cells that have not been classified in the previous groups.
190 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Log File Analysis
R

The following section is an example of an XST report for cell usage:

==
...
Cell Usage :
BELS : 70
LUT2 : 34
LUT3 : 3
LUT4 : 34
FlipFlops/Latches : 9
FDC : 8
FDP : 1
Clock Buffers : 1
BUFGP : 1
IO Buffers : 24
IBUF : 16
OBUF : 8
==

Device Utilization summary
Where XST estimates the number of slices, gives the number of flip-flops, IOBs, BRAMS,
etc. This report is very close to the one produced by MAP.

Clock Information
A short table gives information about the number of clocks in the design, how each clock is
buffered and how many loads it has.

Timing Report
At the end of the synthesis, XST reports the timing information for the design. The report
shows the information for all four possible domains of a netlist: "register to register", "input
to register", "register to outpad" and "inpad to outpad".

The following is an example of a timing report section in the XST log:

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
clk | BUFGP | 9 |
-----------------------------------+------------------------+-------+

Timing Summary:

Speed Grade: -6

Minimum period: 7.523ns (Maximum Frequency: 132.926MHz)
Minimum input arrival time before clock: 8.945ns
Maximum output required time after clock: 14.220ns
Maximum combinational path delay: 10.889ns
XST User Guide www.xilinx.com 191
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

Timing Detail:

All values displayed in nanoseconds (ns)

--

Timing constraint: Default period analysis for Clock ’clk’
Delay: 7.523ns (Levels of Logic = 2)

Source: sdstate_FFD1
Destination: sdstate_FFD2
Source Clock: clk rising
Destination Clock: clk rising

Data Path: sdstate_FFD1 to sdstate_FFD2
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-------------------------------------- ------------
FDC:C->Q 15 1.372 2.970 state_FFD1 (state_FFD1)
LUT3:I1->O 1 0.738 1.26 LUT_54 (N39)
LUT3:I1->O 1 0.738 0.000 I_next_state_2 (N39)
FDC:D 0.440 state_FFD2

 --
Total 7.523ns (3.288ns logic, 4.235ns route)

(43.7% logic, 56.3% route)
Gate Net

Cell:in->out fanout Delay Delay Logical Name
-- ------------
FDC:C->Q 15 1.372 2.970 I_state_2
begin scope: ’block1’
LUT3:I1->O 1 0.738 1.265 LUT_54
end scope: ’block1’
LUT3:I0->O 1 0.738 0.000 I_next_state_2
FDC:D 0.440 I_state_2
--
Total 7.523ns

Timing Summary

The Timing Summary section gives a summary of the timing paths for all 4 domains:

• The path from any clock to any clock in the design:

Minimum period: 7.523ns (Maximum Frequency: 132.926MHz)

• The maximum path from all primary inputs to the sequential elements:

Minimum input arrival time before clock: 8.945ns

• The maximum path from the sequential elements to all primary outputs:

Maximum output required time before clock: 14.220ns

• The maximum path from inputs to outputs:

Maximum combinational path delay: 10.899ns

If there is no path in the domain concerned "No path found" is then printed instead of the
value.
192 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Implementation Constraints
R

Timing Detail

The Timing Detail section describes the most critical path in detail for each region:

The start point and end point of the path, the maximum delay of this path, and the slack.
The start and end points can be: Clock (with the phase: rising/falling) or Port:

Path from Clock ’sysclk’ rising to Clock ’sysclk’ rising : 7.523ns
(Slack: -7.523ns)

The detailed path shows the cell type, the input and output of this gate, the fanout at the
output, the gate delay, the net delay estimated and the name of the instance. When entering
a hierarchical block, begin scope is printed, and similarly end scope is printed when
exiting a block.

The preceding report corresponds to the following schematic:

Implementation Constraints
XST writes all implementation constraints generated from HDL or constraint file attributes
(LOC, ...) into the output NGC file.

KEEP properties are generated by the buffer insertion process (for maximum fanout
control or for optimization purposes).

Virtex™ Primitive Support
XST allows you to instantiate Virtex™ primitives directly in your VHDL/Verilog code.
Virtex™ primitives such as MUXCY_L, LUT4_L, CLKDLL, RAMB4_S1_S16,
IBUFG_PCI33_5, and NAND3b2 can be manually inserted in your HDL design through
instantiation. These primitives are not by default optimized by XST and are available in the
final NGC file. Use the Optimize Instantiated Primitives synthesis option to optimize
instantiated primitives and obtain better results. Timing information is available for most
of the primitives, allowing XST to perform efficient timing-driven optimization.

Some of these primitives can be generated through attributes.

• CLOCK_BUFFER can be assigned to the primary input to force the use of BUFGDLL,
IBUFG or BUFGP.

X9554

C Q

D

I1 O

LUT3

I1 O

LUT3

state_FFD1 LUT_54 I_next_state_2

1.372ns

0.440ns

2.970ns 0.738ns 1.265ns 0.738ns 0.000ns
XST User Guide www.xilinx.com 193
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

• IOSTANDARD can be used to assign an I/O standard to an I/O primitive, for
example:

// synthesis attribute IOSTANDARD of in1 is PCI33_5

assigns PCI33_5 I/O standard to the I/O port.

The primitive support is based on the notion of the black box. Refer to the “Black Box
Support” in Chapter 2 for the basics of the black box support.

There is a significant difference between black box and primitive support. Assume you
have a design with a submodule called MUXF5. In general, the MUXF5 can be your own
functional block or a Virtex™ primitive. So, to avoid confusion about how XST interprets
this module, use a special constraint, called BOX_TYPE. This attribute must be attached to
the component declaration of MUXF5.

If the BOX_TYPE attribute:

• is attached to the MUXF5 with a value of:

♦ primitive, or black_box, XST tries to interpret this module as a Virtex™ primitive
and use its parameters, for instance, in critical path estimation.

♦ user_black_box, XST processes it as a regular user black box. If the name of the
user black box is the same as that of a Virtex™ primitive, XST renames it to a
unique name and generates a warning message with the reason for the warning.
For example, MUX5 could be renamed to MUX51 as in the following log sample:.

• is not attached to the MUXF5. Then XST processes this block as a user hierarchical
block. If the name of the user black box is the same as that of a Virtex™ primitive, XST
renames it to a unique name and then generates a warning message with the reason
for the warning.

To simplify the instantiation process, XST comes with VHDL and Verilog Virtex™ libraries.
These libraries contain the complete set of Virtex™ primitives declarations with a
BOX_TYPE constraint attached to each component. If you use:

• VHDL—You must declare library "unisim" with its package "vcomponents" in your
source code.

library unisim;
use unisim.vcomponents.all;

The source code of this package can be found in the
vhdl\src\unisims_vcomp.vhd file of the XST installation.

• Verilog— Starting in release 6.1i, the "unisim" library is already precompiled and XST
automatically links it with your design.

...
==
* Low Level Synthesis *
==

WARNING:Xst:79 - Model ’muxf5’ has different characteristics in
destination library
WARNING:Xst:80 - Model name has been changed to ’muxf51’
...
194 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Virtex™ Primitive Support
R

Some primitives, like LUT1, allow you to use an INIT during instantiation. There are two
ways to pass an INIT to the final netlist.

• Attach an INIT attribute to the instantiated primitive.

• Pass the INIT via the generics mechanism in VHDL, or the parameters mechanism in
Verilog. Xilinx® recommends this method, as it allows you to use the same code for
synthesis and simulation.

VHDL
Following is the VHDL code for passing an INIT value via the INIT constraint.

library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity lut2_attribute is
port(

I0,I1 : in std_logic;
O : out std_logic
);

end lut2_attribute;

architecture beh of lut2_attribute is
attribute INIT: string;
attribute INIT of inst: label is "1";
begin
inst: LUT2 port map (I0=>I0,I1=>I1,O=>O);

end beh;

Following is the VHDL code for passing an INIT value via the generics mechanism.

library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity lut2_generics is
port(

I0,I1 : in std_logic;
O : out std_logic
);

end lut2_generics;

architecture beh of lut2_generics is
begin
inst: LUT2 generic map (INIT=>"1")
port map (I0=>I0,I1=>I1,O=>O);

end beh;
XST User Guide www.xilinx.com 195
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

Verilog
Following is the Verilog code for passing an INIT value via the INIT constraint:

module vlut2_attribute (I0,I1,O);
input I0,I1;
output O;
LUT2 inst (.I0(I0), .I1(I1), .O(O));

// synthesis attribute INIT of inst is "2"

endmodule

Following is the Verilog code for passing an INIT value via the parameters mechanism.

module vlut2_parameter (I0,I1,O);
input I0,I1;
output O;

LUT2 #(4’h2) inst (.I0(I0), .I1(I1), .O(O));

endmodule

Log File
XST does not issue any message concerning instantiation of Virtex™ primitives during
HDL synthesis because the BOX_TYPE attribute with its value, primitive, is attached to
each primitive in the UNISIM library. Please note that if you instantiate a block (non
primitive) in your design and:

• the block has no contents (no logic description)

or

• the block has a logic description, but you attach a BOX_TYPE constraint to it with a
value of user_black_box

then XST issues a warning message as in the following log file sample:

Related Constraints
Related constraints are BOX_TYPE and the various PAR constraints that can be passed
from HDL to NGC without processing.

Cores Processing
If a design contains cores, represented by an EDIF or an NGC file, XST can automatically
read them for timing estimation and area utilization control. The Read Cores option in the
Synthesis Options in the Process Properties dialog box in Project Navigator allows you to
enable or disable this feature. By default, XST reads cores. In the following VHDL example,

...
Analyzing Entity <black_b> (Architecture <archi>).
WARNING : (VHDL_0103). c:\jm\des.vhd (Line 23).
Generating a Black Box for component <my_block>.
Entity <black_b> analyzed. Unit <black_b> generated.
...
196 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Cores Processing
R

the block "my_add" is an adder, which is represented as a black box in the design whose
netlist was generated by CORE Generator™.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity read_cores is
port(

A, B : in std_logic_vector (7 downto 0);
a1, b1 : in std_logic;
SUM : out std_logic_vector (7 downto 0);
res : out std_logic
);

end read_cores;

architecture beh of read_cores is
component my_add
port (

A, B : in std_logic_vector (7 downto 0);
S : out std_logic_vector (7 downto 0));

end component;

begin
res <= a1 and b1;
inst: my_add port map (A => A, B => B, S => SUM);

end beh;

If Read Cores is disabled, XST estimates Maximum Combinational Path Delay as 6.639ns
(critical path goes through a simple AND function) and an area of one slice.

If Read Cores is enabled then XST displays the following messages during Low Level
Synthesis.

Estimation of Maximum Combinational Path Delay is 8.281ns with an area of five slices.
Please note that by default, XST reads EDIF/NGC cores from the current (project)
directory. If the cores are not in the project directory, you must use the Cores Search
Directories synthesis option to specify which directory the cores are in.

...
===
*
* Low Level Synthesis
*
===

Launcher: Executing edif2ngd -noa "my_add.edn" "my_add.ngo"
INFO:NgdBuild - Release 6.1i - edif2ngd G.21
INFO:NgdBuild - Copyright (c) 1995-2003 Xilinx, Inc. All rights
reserved.
Writing the design to "my_add.ngo"...
Loading core <my_add> for timing and area information for instance
<inst>.

===
...
XST User Guide www.xilinx.com 197
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

Specifying INITs and RLOCs in HDL Code
Using the UNISIM library allows you to directly instantiate LUT components in your HDL
code. To specify a function that a particular LUT must execute, apply an INIT constraint to
the instance of the LUT. If you want to place an instantiated LUT or register in a particular
slice of the chip, then attach an RLOC constraint to the same instance.

It is not always convenient to calculate INIT functions and different methods that can be
used to achieve this. Instead, you can describe the function that you want to map onto a
single LUT in your VHDL or Verilog code in a separate block. Attaching a LUT_MAP
constraint (XST is able to automatically recognize the XC_MAP constraint supported by
Synplicity) to this block indicates to XST that this block must be mapped on a single LUT.
XST automatically calculates the INIT value for the LUT and preserves this LUT during
optimization. In the following VHDL example, the "top" block contains the instantiation of
two AND gates, described in "and_one" and "and_two" blocks. XST generates two LUT2s
and does not merge them. Please refer to the LUT_MAP constraint description in the
Constraints Guide for details.

library ieee;
use ieee.std_logic_1164.all;
entity and_one is
port (

A, B : in std_logic;
REZ : out std_logic
);

attribute LUT_MAP: string;
attribute LUT_MAP of and_one: entity is "yes";

end and_one;
architecture beh of and_one is
begin
REZ <= A and B;

end beh;

library ieee;
use ieee.std_logic_1164.all;
entity and_two is
port(

A, B : in std_logic;
REZ : out std_logic
);

attribute LUT_MAP: string;
attribute LUT_MAP of and_two: entity is "yes";

end and_two;
architecture beh of and_two is
begin
REZ <= A or B;

end beh;

library ieee;
use ieee.std_logic_1164.all;
entity top is
port(

A,B,C : in std_logic;
REZ : out std_logic
);

end top;
198 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Specifying INITs and RLOCs in HDL Code
R

architecture beh of top is

component and_one
port(

A, B : in std_logic;
REZ : out std_logic);

end component;

component and_two
port(

A, B : in std_logic;
REZ : out std_logic
);

end component;

signal tmp: std_logic;
begin
inst_and_one: and_one port map (A => A, B => B, REZ => tmp);
inst_and_two: and_two port map (A => tmp, B => C, REZ => REZ);

end beh;

If a function cannot be mapped on a single LUT, XST issues an Error and interrupts the
synthesis process. If you would like to define an INIT value for a flip-flop, described at RTL
level, you can assign its initial value in the signal declaration stage. This value is not
ignored during synthesis and is propagated to the final netlist as an INIT constraint
attached to the flip-flop. This feature is supported for registers only. It is not supported for
RAM descriptions. In the following VHDL example, a 4-bit register is inferred for signal
"tmp". An INIT value equal "1011" is attached to the inferred register and propagated to the
final netlist.

library ieee;
use ieee.std_logic_1164.all;

entity test is
port (

CLK : in std_logic;
DO : out std_logic_vector(3 downto 0)
);

end test;

architecture beh of test is signal
tmp: std_logic_vector(3 downto 0):="1011";
begin
process (CLK)
begin
if (clk’event and clk=’1’) then

tmp <= DI;
end if;

end process;
DO <= tmp;

end beh;
XST User Guide www.xilinx.com 199
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

To infer a register in the previous example, and place it in a specific location of a chip,
attach an RLOC constraint to the "tmp" signal as in the following VHDL example. XST
propagates it to the final netlist. Please note that this feature is supported for registers only,
not for inferred RAMs.

library ieee;
use ieee.std_logic_1164.all;

entity test is
port (

CLK : in std_logic;
DI : in std_logic_vector(3 downto 0);
DO : out std_logic_vector(3 downto 0)
);

end test;

architecture beh of test is
signal tmp: std_logic_vector(3 downto 0):="1011";

attribute RLOC: string;
attribute RLOC of tmp: signal is "X3Y0 X2Y0 X1Y0 X0Y0";

begin
process (CLK)
begin
if (clk’event and clk=’1’) then

tmp <= DI;
end if;

end process;
DO <= tmp;

end beh;

PCI Flow
To successfully use PCI flow with XST (i.e. to satisfy all placement constraints and meet
timing requirements) set the following options.

• For VHDL designs, ensure that the names in the generated netlist are all in uppercase.
Please note that by default, the case for VHDL synthesis flow is lower. Specify the case
by selecting the Case option under the Synthesis Options tab in the Process Properties
dialog box within Project Navigator.

• For Verilog designs, ensure that Case is set to maintain, which is a default value.
Specify Case as described above.

• Preserve the hierarchy of the design. Specify the Keep Hierarchy setting by selecting
the Keep Hierarchy option under the Synthesis Options tab in the Process Properties
dialog box within Project Navigator.

• Preserve equivalent flip-flops, which XST removes by default. Specify the Equivalent
Register Removal setting by selecting the Equivalent Register Removal option under
the Xilinx® Specific Options tab in the Process Properties dialog box within Project
Navigator.
200 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

PCI Flow
R

• Prevent logic and flip-flop replication caused by high fanout flip-flop set/reset
signals. Do this by:

♦ Setting a high maximum fanout value for the entire design via the Max Fanout
menu in the Synthesis Options tab in the Process Properties dialog box within
Project Navigator.

or

♦ Setting a high maximum fanout value for the initialization signal connected to the
RST port of PCI core by using the MAX_FANOUT attribute (for example:
max_fanout=2048).

• Prevent XST from automatically reading PCI cores for timing and area estimation. In
reading PCI cores, XST may perform some logic optimization in the user’s part of the
design that does not allow the design to meet timing requirements or might even lead
to errors during MAP. Disable Read Cores by unchecking the Read Cores option
under the Synthesis Options tab in the Process Properties dialog box in Project
Navigator.

Note: By default, XST reads cores for timing and area estimation.
XST User Guide www.xilinx.com 201
 1-800-255-7778

http://www.xilinx.com

Chapter 3: FPGA Optimization
R

202 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 4

CPLD Optimization

This chapter contains the following sections.

• “CPLD Synthesis Options”

• “Implementation Details for Macro Generation”

• “Log File Analysis”

• “Constraints”

• “Improving Results”

CPLD Synthesis Options
This section describes the CPLD-supported families and their specific options.

Introduction
XST performs device specific synthesis for CoolRunner™ XPLA3/-II/-IIS and
XC9500™/XL/XV families, and generates an NGC file ready for the CPLD fitter.

The general flow of XST for CPLD synthesis is the following:

1. HDL synthesis of VHDL/Verilog designs

2. Macro inference

3. Module optimization

4. NGC file generation

Global CPLD Synthesis Options
This section describes supported CPLD families and lists the XST options related only to
CPLD synthesis that can only be set from the Process Properties dialog box in Project
Navigator.

Families

Five families are supported by XST for CPLD synthesis:

• CoolRunner XPLA3™

• CoolRunner™ -II /-IIS

• XC9500™

• XC9500XL™

• XC9500XV™
XST User Guide www.xilinx.com 203
 1-800-255-7778

http://www.xilinx.com

Chapter 4: CPLD Optimization
R

The synthesis for the CoolRunner™, XC9500XL™, and XC9500XV™ families includes
clock enable processing; you can allow or invalidate the clock enable signal (when
invalidating, it is replaced by equivalent logic). Also, the selection of the macros which use
the clock enable (counters, for instance) depends on the family type. A counter with clock
enable is accepted for the CoolRunner™, XC9500XL™ and XC9500XV™ families, but
rejected (replaced by equivalent logic) for XC9500™ devices.

List of Options

Following is a list of CPLD synthesis options that you can set from the Process Properties
dialog box in Project Navigator. For details about each option, refer to “CPLD Constraints
(non-timing)” in Chapter 5.

• Keep Hierarchy

• Macro Preserve

• XOR Preserve

• Equivalent Register Removal

• Clock Enable

• WYSIWYG

• No Reduce

Implementation Details for Macro Generation
XST processes the following macros:

• adders

• subtractors

• add/sub

• multipliers

• comparators

• multiplexers

• counters

• logical shifters

• registers (flip-flops and latches)

• XORs

The macro generation is decided by the Macro Preserve option, which can take two values:

yes — macro generation is allowed.

no — macro generation is inhibited.

The general macro generation flow is the following:

1. HDL infers macros and submits them to the low-level synthesizer.

2. Low-level synthesizer accepts or rejects the macros depending on the resources
required for the macro implementations.

An accepted macro is generated by an internal macro generator. A rejected macro is
replaced by equivalent logic generated by the HDL synthesizer. A rejected macro may be
decomposed by the HDL synthesizer into component blocks so that one component may
be a new macro requiring fewer resources than the initial one, and another smaller macro
204 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Log File Analysis
R

may be accepted by XST. For instance, a flip-flop macro with clock enable (CE) cannot be
accepted when mapping onto the XC9500™. In this case the HDL synthesizer submits two
new macros:

• a flip-flop macro without clock enable signal.

• a MUX macro implementing the clock enable function.

A generated macro is optimized separately and then merged with surrounded logic
because the optimization process gives better results for larger components.

Log File Analysis
XST messages related to CPLD synthesis are located after the following message:

===
* Low Level Synthesis *
===

The log file produced by XST contains:

• Tracing of progressive unit optimizations:

 Optimizing unit unit_name ...

• Information, warnings or fatal messages related to unit optimization:

♦ When equation shaping is applied (XC9500™ devices only):

Collapsing ...

♦ Removing equivalent flip-flops:

Register ff1 equivalent to ff2 has been removed

♦ User constraints fulfilled by XST:

implementation constraint: constraint_name[=value]: signal_name

• Final results statistics:

Final Results

Top Level Output file name : file_name

Output format : ngc

Optimization goal : {area | speed}

Target Technology : {9500 | 9500xl | 9500xv | xpla3 | xbr | cr2s}

Keep Hierarchy : {yes | soft | no}

Macro Preserve : {yes | no}

XOR Preserve : {yes | no}

Design Statistics

NGC Instances: nb_of_instances

I/Os: nb_of_io_ports
XST User Guide www.xilinx.com 205
 1-800-255-7778

http://www.xilinx.com

Chapter 4: CPLD Optimization
R

Macro Statistics

FSMs: nb_of_FSMs

Registers: nb_of_registers

Tristates: nb_of_tristates

Comparators: nb_of_comparators

n-bit comparator {equal | not equal | greater| less | greatequal
| lessequal}:

nb_of_n_bit_comparators

Multiplexers: nb_of_multiplexers

n-bit m-to-1 multiplexer :

nb_of_n_bit_m_to_1_multiplexers

Adders/Subtractors: nb_of_adds_subs

n-bit adder: nb_of_n_bit_adds

n-bit subtractor: nb_of_n_bit_subs

Multipliers: nb_of_multipliers

Logic Shifters: nb_of_logic_shifters

Counters: nb_of_counters

n-bit {up | down | updown} counter:

nb_of_n_bit_counters

XORs: nb_of_xors

Cell Usage :

BELS: nb_of_bels

AND...: nb_of_and...

OR...: nb_of_or...

INV: nb_of_inv

XOR2: nb_of_xor2

GND: nb_of_gnd

VCC: nb_of_vcc

FlipFlops/Latches: nb_of_ff_latch

FD...: nb_of_fd...

LD...: nb_of_ld...

Tri-States: nb_of_tristates

BUFE: nb_of_bufe

BUFT: nb_of_buft

IO Buffers: nb_of_iobuffers

IBUF: nb_of_ibuf

OBUF: nb_of_obuf

IOBUF: nb_of_iobuf

OBUFE: nb_of_obufe

OBUFT: nb_of_obuft

Others: nb_of_others
206 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Constraints
R

Constraints
The constraints (attributes) specified in the HDL design or in the constraint files are written
by XST into the NGC file as signal properties.

Improving Results
XST produces optimized netlists for the CPLD fitter, which fits them in specified devices
and creates the download programmable files. The CPLD low-level optimization of XST
consists of logic minimization, subfunction collapsing, logic factorization, and logic
decomposition. The result of the optimization process is an NGC netlist corresponding to
Boolean equations, which are reassembled by the CPLD fitter to fit the best of the macrocell
capacities. A special XST optimization process, known as equation shaping, is applied for
XC9500™/XL/XV devices when the following options are selected:

• Keep Hierarchy: no

• Optimization Effort: 2

• Macro Preserve: no

The equation shaping processing also includes a critical path optimization algorithm,
which tries to reduce the number of levels of critical paths.

The CPLD fitter multi-level optimization is still recommended because of the special
optimizations done by the fitter (D to T flip-flop conversion, De Morgan Boolean
expression selection).

How to Obtain Better Frequency?
The frequency depends on the number of logic levels (logic depth). In order to reduce the
number of levels, the following options are recommended.

• Optimization Effort: 2 — this value implies the calling of the collapsing algorithm,
which tries to reduce the number of levels without increasing the complexity beyond
certain limits.

• Optimization Goal: speed — the priority is the reduction of number of levels.

The following tries, in this order, may give successively better results for frequency:

Try 1: Select only optimization effort 2 and speed optimization. The other options have
default values:

• Optimization effort: 2

• Optimization Goal: speed

Try 2: Flatten the user hierarchy. In this case the optimization process has a global view of
the design, and the depth reduction may be better:

• Optimization effort: 1 or 2

• Optimization Goal: speed

• Keep Hierarchy: no
XST User Guide www.xilinx.com 207
 1-800-255-7778

http://www.xilinx.com

Chapter 4: CPLD Optimization
R

Try 3: Merge the macros with surrounded logic. The design flattening is increased:

• Optimization effort: 1

• Optimization Goal: speed

• Keep Hierarchy: no

• Macro Preserve no

Try 4: Apply the equation shaping algorithm. Options to be selected:

• Optimization effort: 2

• Macro Preserve: no

• Keep Hierarchy: no

The CPU time increases from Try 1 to Try 4.

Obtaining the best frequency depends on the CPLD fitter optimization. Xilinx®
recommends running the multi-level optimization of the CPLD fitter with different values
for the –pterms options, starting with 20 and finishing with 50 with a step of 5. Statistically
the value 30 gives the best results for frequency.

How to Fit a Large Design?
If a design does not fit in the selected device, exceeding the number of device macrocells or
device P-Term capacity, you must select an area optimization for XST. Statistically, the best
area results are obtained with the following options:

• Optimization effort: 1 or 2

• Optimization Goal: area

• Default values for other options

Another option that you can try is "–wysiwyg yes". This option may be useful when the
design cannot be simplified by the optimization process and the complexity (in number of
P-Terms) is near the device capacity. It may be that the optimization process, trying to
reduce the number of levels, creates larger equations, therefore increasing the number of
P-Terms and so preventing the design from fitting. By validating this option, the number of
P-Terms is not increased, and the design fitting may be successful.
208 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 5

Design Constraints

This chapter describes constraints, options, and attributes supported for use with XST.

This chapter contains the following sections.

• “Introduction”

• “Setting Global Constraints and Options”

• “VHDL Attribute Syntax”

• “Verilog Meta Comment Syntax”

• “XST Constraint File (XCF)”

• “Old XST Constraint Syntax”

• “General Constraints”

• “HDL Constraints”

• “FPGA Constraints (non-timing)”

• “CPLD Constraints (non-timing)”

• “Timing Constraints”

• “Constraints Summary”

• “Implementation Constraints”

• “Third Party Constraints”

• “Constraints Precedence”

Introduction
Constraints are essential to help you meet your design goals or obtain the best
implementation of your circuit. Constraints are available in XST to control various aspects
of the synthesis process itself, as well as placement and routing. Synthesis algorithms and
heuristics have been tuned to automatically provide optimal results in most situations. In
some cases, however, synthesis may fail to initially achieve optimal results; some of the
available constraints allow you to explore different synthesis alternatives to meet your
specific needs.
XST User Guide www.xilinx.com 209
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

The following mechanisms are available to specify constraints.

• Options provide global control on most synthesis aspects. They can be set either from
within the Process Properties dialog box in Project Navigator or from the command
line.

• VHDL attributes can be directly inserted into your VHDL code and attached to
individual elements of the design to control both synthesis, and placement and
routing.

• Constraints can be added as Verilog meta comments in your Verilog code.

• Constraints can be specified in a separate constraint file.

Typically, global synthesis settings are defined within the Process Properties dialog box in
Project Navigator or with command line arguments, while VHDL attributes or Verilog
meta comments can be inserted in your source code to specify different choices for
individual parts of the design. Note that the local specification of a constraint overrides its
global setting. Similarly, if a constraint is set both on a node (or an instance) and on the
enclosing design unit, the former takes precedence for the considered node (or instance).

Setting Global Constraints and Options
This section explains how to set global constraints and options from the Process Properties
dialog box within Project Navigator.

For a description of each constraint that applies generally — that is, to FPGAs, CPLDs,
VHDL, and Verilog — refer to the Constraints Guide.

Note: Except for the Value fields with check boxes, there is a pull-down arrow or browse button in
each Value field. However, you cannot see the arrow until you click in the Value field.

Synthesis Options
To specify the HDL synthesis options from Project Navigator:

1. Select a source file from the Source file window.

2. Right-click on Synthesize - XST in the Process window.

3. Select Properties.

4. When the Process Properties dialog box displays, click the Synthesis Options tab.
210 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Setting Global Constraints and Options
R

Depending on the device family you have selected (FPGA or CPLD), one of two dialog
boxes displays:

Figure 5-1: Synthesis Options (FPGA)

Figure 5-2: Synthesis Options (CPLD)
XST User Guide www.xilinx.com 211
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

Following is a list of the Synthesis Options that can be selected from the dialog boxes.

• Optimization Goal

• Optimization Effort

• Synthesis Constraint File

• Library Search Order

• Use Synthesis Constraints File

• Keep Hierarchy*

• Global Optimization Goal

• Generate RTL Schematic

• Read Cores*

• Cores Search Directories*

• Write Timing Constraints

• Cross Clock Analysis*

• Hierarchy Separator*

• Bus Delimiter*

• Slice Utilization Ratio*

• Case*

• HDL Library Mapping File (.INI File)*

• Work Directory*

• Verilog 2001

• Verilog Include Directories (Verilog Only)*

• Custom Compile File List*

• Other Command Line Options*

* To view these options, go the Edit drop down menu, click Preferences, click the
Processes tab, and set the Property Display Level to Advanced.
212 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Setting Global Constraints and Options
R

HDL Options
With the Process Properties dialog box displayed for the Synthesize - XST process, select
the HDL Option tab. For FPGA device families the following dialog box displays.

Following is a list of all HDL Options that can be set within the HDL Options tab of the
Process Properties dialog box for FPGA devices:

• FSM Encoding Algorithm

• Case Implementation Style

• FSM Style*

• RAM Extraction

• RAM Style

• ROM Extraction

• ROM Style

• Mux Extraction

• Mux Style

• Decoder Extraction

• Priority Encoder Extraction

• Shift Register Extraction

• Logical Shifter Extraction

• XOR Collapsing

• Resource Sharing

• Multiplier Style

* To view this option, go the Edit drop down menu, click Preferences, click the
Processes tab, and set the Property Display Level to Advanced.

Figure 5-3: HDL Options Tab (FPGAs)
XST User Guide www.xilinx.com 213
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

For CPLD device families the following dialog box displays.

Following is a list of all HDL Options that can be set within the HDL Options tab of the
Process Properties dialog box for CPLD devices:

• FSM Encoding Algorithm

• Case Implementation Style

• Mux Extraction

• Resource Sharing

Xilinx® Specific Options
From the Process Properties dialog box for the Synthesize process, select the Xilinx®
Specific Options tab to display the options.

For FPGA device families, the following dialog box displays:

Figure 5-4: HDL Options Tab (CPLDs)

Figure 5-5: Xilinx® Specific Options (FPGAs)
214 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Setting Global Constraints and Options
R

Following is the list of the Xilinx® Specific Options for FPGAs:

• Add I/O Buffers

• Max Fanout

• Number of Clock Buffers*

• Register Duplication

• Equivalent Register Removal

• Register Balancing

• Move Last Stage

• Move First Stage

• Pack I/O Registers into IOBs

• Slice Packing

• Optimize Instantiated Primitives

* To view this option, go the Edit drop down menu, click Preferences, click the
Processes tab, and set the Property Display Level to Advanced.

For CPLD device families the following dialog box displays.

Following is a list of the Xilinx® Specific Options:

• Add I/O Buffers

• Equivalent Register Removal

• Clock Enable

• Macro Preserve

• XOR Preserve

• WYSIWYG

Figure 5-6: Xilinx® Specific Options (CPLDs)
XST User Guide www.xilinx.com 215
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

Other Command Line Options
Any XST command line option can be set via the Other Command Line Options property
in the Process Properties dialog box. This is an advanced property. Use the syntax
described in Chapter 10, “Command Line Mode.” Separate multiple options with a space.

While the Other Command Line Options property is intended for XST options not listed in
the Process Properties dialog box, if an option already listed as a dialog box property is
entered, precedence is given to the option entered here. Illegal or unrecognized options
cause XST to stop processing and generate a message like the following one.

ERROR:Xst:1363 - Option "–verilog2002" is not available for command
run.

Custom Compile File List
By using the Custom Compile File List property, you can change the order in which source
files are processed by XST. With this property, you select a user-defined compile list file
that XST uses to determine the order in which it processes libraries and design files.
Otherwise, XST uses an automatically generated list.

This user-defined file must list all design files and their libraries in the order in which they
are to be compiled, from top to bottom. Type each file/library pair on its own line, with a
semicolon separating the library from the file. The format is as follows:

library_name;file_name

[library_name;file_name]

...

Following is an example:

work;stopwatch.vhd

work;statmach.vhd

...

Note: This property is not connected to the Custom Compile File List property in the
SimulationProperties dialog box, which means that a different compile list file is used for synthesis
than for simulation.

VHDL Attribute Syntax
You can describe constraints with VHDL attributes in your VHDL code. Before it can be
used, an attribute must be declared with the following syntax.

attribute AttributeName : Type ;

Example:

attribute RLOC : string ;

The attribute type defines the type of the attribute value. The only allowed type for XST is
string. An attribute can be declared in an entity or architecture. If declared in the entity, it
is visible both in the entity and the architecture body. If the attribute is declared in the
architecture, it cannot be used in the entity declaration. Once declared a VHDL attribute
can be specified as follows:

attribute AttributeName of ObjectList : ObjectType is AttributeValue ;
216 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Verilog Meta Comment Syntax
R

Examples:

attribute RLOC of u123 : label is R11C1.S0 ;

attribute bufg of my_signal : signal is sr;

The object list is a comma separated list of identifiers. Accepted object types are entity,
component, label, signal, variable and type.

Verilog Meta Comment Syntax
Constraints can be specified as follows in Verilog code:

 // synthesis attribute AttributeName [of] ObjectName [is]
AttributeValue

 Example:

// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HU_SET u1 MY_SET
// synthesis attribute bufg of my_clock is “clk”;

Note: The parallel_case, full_case, translate_on and translate_off directives follow a different
syntax described in “Verilog Meta Comments” in Chapter 7.

XST Constraint File (XCF)
Starting in the 5.1i release, XST supports a new UCF style syntax to define synthesis and
timing constraints. Xilinx® strongly suggests that you use the new syntax style for your
new designs. Xilinx® continues to support the old constraint syntax without any further
enhancements in the current release of XST, but will eventually drop support. The old
constraints syntax is no longer documented in this guide. Please refer to “Old XST
Constraint Syntax” in release 5.1i of the XST User Guide, available on the Xilinx Support
web site, for details on using the old constraint style.

Hereafter, this document refers to the new syntax style as the Xilinx® Constraint File (XCF)
format. The XCF must have an extension of .xcf. XST uses this extension to determine if the
syntax is related to the new or old style. Please note that if the extension is not .xcf, XST
interprets it as the old constraint style.

You can specify the constraint file in ISE, by going to the Synthesis - XST Process
Properties, clicking the Synthesis Options tab, enabling the Use Synthesis Constraints File
option by clicking the check box, clicking the value field for the Synthesis Constraints File
option, and typing the constraint file name. You can also browse for an existing file to use
by clicking the box to the right of the value field. Also, to quickly enable/disable the use of
a constraint file by XST, you can check or uncheck the "Use Synthesis Constraint File"
option in this same menu. By selecting this option, you invoke the –iuc command line
switch.

To specify the constraint file in command line mode, use the –uc switch with the run
command. See Chapter 10, “Command Line Mode” for details on the run command and
running XST from the command line.

XCF Syntax and Utilization
The syntax enables you to specify a specific constraint for the entire device (globally) or for
specific modules in your design. The syntax is basically the same as the old UCF syntax for
applying constraints to nets or instances, but with an extension to the syntax to allow
constraints to be applied to specific levels of hierarchy. You can use the keyword MODEL
XST User Guide www.xilinx.com 217
 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com
http://support.xilinx.com

Chapter 5: Design Constraints
R

to define the entity/module that the constraint is applied to. If a constraint is applied to an
entity/module, the constraint is applied to each instance of the entity/module.

In general, users should define constraints within the ISE process properties dialog box (or
the XST run script, if running on the command line), then use the XCF file to specify
exceptions to these general constraints. The constraints specified in the XCF file are applied
ONLY to the module listed, and not to any submodules below it.

To apply a constraint to the entire entity/module use the following syntax:

MODEL entityname constraintname = constraintvalue;

Examples:

MODEL top mux_extract = false;
MODEL my_design max_fanout = 256;

Note: If the entity my_design is instantiated several times in the design, the max_fanout=256
constraint is applied to each instance of my_design.

To apply constraints to specific instances or signals within an entity/module, use the INST
or NET keywords:

BEGIN MODEL entityname
INST instancename constraintname = constraintvalue ;
NET signalname constraintname = constraintvalue ;

END;

Examples:

BEGIN MODEL crc32
INST stopwatch opt_mode = area ;
INST U2 ram_style = block ;
NET myclock clock_buffer = true ;
NET data_in iob = true ;

END;

See “Constraints Summary” for the complete list of synthesis constraints that you can
apply for XST.

Timing Constraints vs. Non-timing Constraints

From a UCF syntax point of view, all constraints supported by XST can be divided into two
groups: timing constraints, and non-timing constraints.

For all non-timing constraints, use the MODEL or BEGIN MODEL... END; constructs. This
is true for pure XST constraints such as FSM_EXTRACT or RAM_STYLE, as well as for
implementation non-timing constraints, such as RLOC or KEEP.

For timing constraints, such as PERIOD, OFFSET, TNM_NET, TIMEGRP, TIG, FROM-TO
etc., use native UCF syntax, which includes the use of wildcards and hierarchical names.
Do not use these constraints inside the BEGIN MODEL... END construct, otherwise XST
issues an error.

IMPORTANT: If you specify timing constraints in the XCF file, Xilinx® strongly suggests
that you use '/' character as a hierarchy separator instead of '_'. Please refer to “Hierarchy
Separator” for details on its usage.
218 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Old XST Constraint Syntax
R

Limitations

XCF syntax has the following limitations.

• Nested model statements are not supported in the current release.

• Instance or signal names listed between the BEGIN MODEL statement and the END
statement are only the ones visible inside the entity. Hierarchical instance or signal
names are not supported.

• Wildcards in instance and signal names are not supported, except in timing
constraints.

• Not all timing constraints are supported in the current release. Refer to the Constraints
Guide for more information.

• Timing constraints that were supported in the old constraint format
(ALLCLOCKNETS, PERIOD, OFFSET_IN_BEFORE, OFFSET_OUT_AFTER,
INPAD_TO_OUTPAD, MAX_DEALY, etc.) are not supported in XCF. See “Timing
Constraints” for more information.

Old XST Constraint Syntax
Xilinx® continues to support the old constraint syntax without any further enhancements
in the current release of XST, but will eventually drop support. The old constraints syntax
is no longer documented in this guide. Please refer to “Old XST Constraint Syntax” in
release 5.1i of the XST User Guide, available on the Xilinx Support web site, for details on
using the old constraint style.

General Constraints
This section lists various constraints that you can use with XST. These constraints apply to
FPGAs, CPLDs, VHDL, and Verilog. You can set some of these options under the Synthesis
Options tab of the Process Properties dialog box in Project Navigator. See “Constraints
Summary” for a complete list of constraints supported by XST.

• Add I/O Buffers

Add IO Buffers, (–iobuf) enables or disables IO buffer insertion. Allowed values are
yes, no. By default, buffer insertion is enabled.

XST automatically inserts Input/Output Buffers into the design. You can manually
instantiate I/O Buffers for some or all the I/Os, and XST will insert I/O Buffers only
for the remaining I/Os. If you do not want XST to insert any I/O Buffers, set this
option to no. This option is useful to synthesize a part of a design to be instantiated
later on.

When the yes value is selected, IBUF and OBUF primitives are generated.
IBUF/OBUF primitives are connected to I/O ports of the top-level module. When XST
is called to synthesize an internal module which will be instantiated later in a larger
design, you must select no for this option. If I/O buffers are added to a design, this
design cannot be used as a submodule of another design.

Define this option globally with the –iobuf command line option of the run command.
Following is the basic syntax:

–iobuf {yes|no}

The default is yes.
XST User Guide www.xilinx.com 219
 1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com

Chapter 5: Design Constraints
R

In Project Navigator, specify –iobuf globally with the Add IO Buffers option in the
Xilinx Specific Options tab of the Process Properties dialog box.

• Box Type

The Box Type (BOX_TYPE) constraint instructs XST not to synthesize the behavior of a
model, and to use some predefined set of characteristics for that model’s behavior. See
“BOX_TYPE” in the Constraints Guide for details.

• Bus Delimiter

The Bus Delimiter (–bus_delimiter) command line option defines the format used to
write the signal vectors in the result netlist. The available possibilities are <>, [], {}, ().
The default is <>.

Define this option globally with the –bus_delimiter command line option of the run
command. Following is the basic syntax:

-bus_delimiter {<>|[]|{}|()}

The default is <>.

In Project Navigator, set –bus_delimiter globally with the Bus Delimiter option in the
Synthesis Options tab of the Process Properties dialog box in the Project Navigator.

• Case

The Case command line option (–case) determines if instance and net names are
written in the final netlist using all lower or upper case letters or if the case is
maintained from the source. Note that the case can be maintained for either Verilog or
VHDL synthesis flow.

Define this option globally with the –case command line option of the run command.
Following is the basic syntax:

-case {upper|lower|maintain}

The default is maintain.

In Project Navigator, specify –case globally with the Case option in the Synthesis
Options tab of the Process Properties dialog box.

• Case Implementation Style

The Case Implementation Style option (–vlgcase) command line option instructs XST
how to interpret Verilog Case statements. It has three possible values: full, parallel and
full-parallel.

♦ If the option is not specified, then XST implements the exact behavior of the case
statements.

♦ If full is used, XST assumes that the case statements are complete and avoids latch
creation.

♦ If parallel is used, XST assumes that the branches cannot occur in parallel and does
not use a priority encoder.

♦ If full-parallel is used, XST assumes that the case statements are complete and that
the branches cannot occur in parallel, therefore saving latches and priority
encoders.

See “Multiplexers” in Chapter 2 of this manual, and see “FULL_CASE”
and “PARALLEL_CASE” in the Constraints Guide for details
220 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

General Constraints
R

Define this option globally with the –vlgcase command line option of the run
command.

-vlgcase {full|parallel|full-parallel}

By default, there is no value.

In Project Navigator specify –vlgcase globally with the Case Implementation Style
option in the Synthesis Options tab of the Process Properties dialog box. Allowed
values are Full, Parallel, and Full-Parallel, By default, the value is blank.

• Full Case (Verilog)

The FULL_CASE directive is used to indicate that all possible selector values have
been expressed in a case, casex or casez statement. The directive prevents XST from
creating additional hardware for those conditions not expressed. See “Multiplexers” in
Chapter 2 of this manual, and “FULL_CASE” in the Constraints Guide for details.

• Generate RTL Schematic

The Generate RTL Schematic (–rtlview) command line option enables XST to generate
a netlist file, representing an RTL structure of the design. This netlist can be viewed by
RTL Viewer (ECS). This option has three possible values: yes, no and only. When the
only value is specified, XST stops the synthesis process just after the RTL view is
generated. The file containing the RTL view has an NGR file extension.

Generate RTL Schematic is defined globally with the –rtlview command line option of
the run command. Following is the basic syntax:

-rtlview {yes|no|only}

♦ From the command, line the default is no.

♦ From Project Navigator, the default is yes.

In Project Navigator, specify –rtlview globally with the Generate RTL Schematic
option in the Synthesis Options tab of the Process Properties dialog box.

• Hierarchy Separator

The Hierarchy Separator (–hierarchy_separator) command line option defines the
hierarchy separator character that is used in name generation when the design
hierarchy is flattened.

There are two supported characters '_' and '/'. The default is '_'.

If a design contains a sub-block with instance INST1, and this sub-block contains a net,
called TMP_NET, then the hierarchy is flattened and the hierarchy separator character
is '_'. The name of TMP_NET becomes INST1_TMP_NET. If the hierarchy separator
character is '/', then the name of the net will be 'INST1/TMP_NET'. Using '/' as a
hierarchy separator is very useful in the design debugging process because this
separator makes it much easier to identify a name if it is hierarchical.

Define this option globally with the –hierarchy_separator command line option of the
run command. Following is the basic syntax:

-hierarchy_separator {_|/}

The default is _.

In Project Navigator, specify –hierarchy_separator globally with the Hierarchy
Separator option in the Synthesis Options tab of the Process Properties dialog box in
the Project Navigator.
XST User Guide www.xilinx.com 221
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

• Iostandard

Use the IOSTANDARD constraint to assign an I/O standard to an I/O primitive. See
“IOSTANDARD” in the Constraints Guide for details.

• Keep

The KEEP constraint is an advanced mapping constraint. When a design is mapped,
some nets may be absorbed into logic blocks. When a net is absorbed into a block, it
can no longer be seen in the physical design database. This may happen, for example,
if the components connected to each side of a net are mapped into the same logic block.
The net may then be absorbed into the block containing the components. KEEP
prevents this from happening. See “KEEP” in the Constraints Guide for details.

• Library Search Order

The Library Search Order (–lso) command line option is related to the use of mixed
language (VHDL/Verilog) projects support. It allows you to specify the order in which
various library files are used. It can be invoked by specifying the file containing the
search order in the value field to the right of Library Search option under the Synthesis
Options tab in the Process Properties dialog box in Project Navigator, or with the
–lso command line option. See the “Library Search Order File” in Chapter 8 for details.

• LOC

The LOC constraint defines where a design element can be placed within an
FPGA/CPLD. See “LOC” in the Constraints Guide for details.

• Optimization Effort

The Optimization Effort (OPT_LEVEL) constraint defines the synthesis optimization
effort level. See “OPT_LEVEL” in the Constraints Guide for details.

• Optimization Goal

The Optimization Goal (OPT_MODE) constraint defines the synthesis optimization
strategy. Available strategies can be speed or area. See “OPT_MODE” in the Constraints
Guide for details.

• Parallel Case (Verilog)

The PARALLEL_CASE directive is used to force a case statement to be synthesized as
a parallel multiplexer and prevents the case statement from being transformed into a
prioritized if/elsif cascade. See “Multiplexers” in Chapter 2 of this guide. Also see
“PARALLEL_CASE” in the Constraints Guide for details.

• RLOC

The RLOC constraint is a basic mapping and placement constraint. This constraint
groups logic elements into discrete sets and allows you to define the location of any
element within the set relative to other elements in the set, regardless of eventual
placement in the overall design. See “RLOC” in the Constraints Guide for details.

• Synthesis Constraint File

The Synthesis Constraint File (–uc) command line option creates a synthesis
constraints file for XST. It replaces the old option, called ATTRIBFILE, which is
obsolete in this release. The XCF must have an extension of .xcf. XST uses this
extension to determine if the syntax is related to the new or old style. If the extension
is not .xcf, XST will interpret it as the old constraint style.

Please refer to “XST Constraint File (XCF)” and “Old XST Constraint Syntax” for
details on using the new and old constraint styles.
222 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

General Constraints
R

Specify a file name with the –uc command line option of the run command. Following
is the basic syntax:

–uc filename

In Project Navigator, specify a synthesis file with the Use Synthesis Constraints File
option in the Synthesis Options tab of the Process Properties dialog box.

• Translate Off/Translate On (Verilog/VHDL)

The Translate Off (TRANSLATE_OFF) and Translate On (TRANSLATE_ON)
directives can be used to instruct XST to ignore portions of your VHDL or Verilog code
that are not relevant for synthesis; for example, simulation code. The
TRANSLATE_OFF directive marks the beginning of the section to be ignored, and the
TRANSLATE_ON directive instructs XST to resume synthesis from that point. See
“TRANSLATE_OFF and TRANSLATE_ON” in the Constraints Guide for details.

• Use Synthesis Constraints File

The Use Synthesis Constraints File (–iuc) command line option allows you to ignore
the constraint file during synthesis.

Define this option globally with the –iuc command line option of the run command.
Following is the basic syntax:

-iuc {yes|no}

The default is no.

In Project Navigator, specify –iuc globally by selecting the Use Synthesis Constraints
File option under the Synthesis Options tab in the Process Properties dialog box.

• Verilog Include Directories (Verilog Only)

Use the Verilog Include Directories option (–vlgincdir) to enter discrete paths to your
Verilog Include Directories.

Define this option globally with the –vlgincdir command line option of the run
command. Allowed values are names of directories.

-vlgincdir directory_path [directory_path]

There is no default.

In Project Navigator, specify this option with the Verilog Include Directories option of
the Synthesis Options tab in the Process Properties dialog box. Allowed values are
names of directories. There is no default.

• Verilog 2001

The Verilog 2001(–verilog2001) command line option enables or disables interpreted
Verilog source code as the Verilog 2001 standard. By default Verilog source code is
interpreted as the Verilog 2001 standard.

Define this option globally with the –verilog2001 command line option of the run
command. Following is the basic syntax:

-verilog2001 {yes|no}

The default is yes.

In Project Navigator, set –verilog2001 globally with the Verilog 2001 option in the
Synthesis Options tab of the Process Properties dialog box.
XST User Guide www.xilinx.com 223
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

• HDL Library Mapping File (.INI File)

Use the HDL Library Mapping File command (–xsthdpini) to define the library
mapping.

In the 4.li version of XST, HDL library management was significantly enhanced by the
introduction of a library mapping file and two new parameters: XSTHDPINI and
XSTHDPDIR. The library mapping file contains the library name and the directory in
which this library is compiled. XST maintains two library mapping files:

♦ The “pre-installed” file, which is installed during the Xilinx software installation.

♦ The “user” file, which users may define for their own projects.

The “pre-installed” (default) INI file is named “xhdp.ini,” and is located in
%XILINX%\vhdl\xst. These files contain information about the locations of the
standard VHDL and UNISIM libraries. These should not be modified, but the syntax
can be used for user library mapping. This file appears as follows:

-- Default lib mapping for XST

std=$XILINX/vhdl/xst/std

ieee=$XILINX/vhdl/xst/unisim

unisim=$XILINX/vhdl/xst/unisim

aim=$XILINX/vhdl/xst/aim

pls=$XILINX/vhdl/xst/pls

You may use this file format to define where each of your own libraries must be placed.
By default, all compiled VHDL flies will be stored in the “xst” sub-directory of the ISE
project directory. You may place your custom INI file anywhere on a disk by:

♦ Selecting the “VHDL INI File” menu in the “Synthesis Options” tab of the
Synthesis process properties in Project Navigator.

or

♦ Setting up the –xsthdpini parameter, using the following command in
stand-alone mode:

set -xsthdpini <file_name>

You can give this library mapping file any name you wish, but it is best to keep the .ini
classification. The format is:

library_name=path_to_compiled_directory

Note: (Use “--” for comments.)

Sample text for my.ini”:

work1=H:\Users\conf\my_lib\work1

work2=C:\mylib\work2
224 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

General Constraints
R

• Work Directory

The Work Directory (–XSTHDPDIR) parameter defines the location in which VHDL-
compiled files must be placed if the location is not defined by library mapping files.
You can access this switch by:

♦ Selecting the “VHDL Working Directory” menu in the “Synthesis Options” tab of
the Synthesis process properties in Project Navigator

or

♦ Using the following command in stand-alone mode:

set -xsthdpdir <file_name>

Example:

Suppose three different users are working on the same project. They must share one
standard, pre-compiled company, “shlib.” This library contains specific macro blocks
for their project. Each user also maintains a local work library, but User 3 places it
outside the project directory (i.e., in c:\temp). Users 1 and 2 will share another library
(“lib12”) between them, but not with User 3. The settings required for the three users
are as follows:

User 1:

Mapping file:

schlib=z:\sharedlibs\shlib

lib12=z:\userlibs\lib12

User 2:

Mapping file:

schlib=z:\sharedlibs\shlib

lib12=z:\userlibs\lib12

User 3:

Mapping file:

schlib=z:\sharedlibs\shlib

User 3 will also set:

XSTHDPDIR = c:\temp

Define this parameter globally with the set –xsthdpdir command line option before
running the run command. Following is the basic syntax:

set -xsthdpdir directory

The command can accept a single path only. You must specify the directory you want
to use. There is no default.

In Project Navigator, specify –xsthdpdir globally with the VHDL Work Directory option of
the Synthesis Options tab in the Process Properties dialog box.
XST User Guide www.xilinx.com 225
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

HDL Constraints
This section describes encoding and extraction constraints. Most of the constraints can be
set globally in the HDL Options tab of the Process Properties dialog box in Project
Navigator. The only constraints that cannot be set in this dialog box are Enumerated
Encoding and Signal Encoding. The constraints described in this section apply to FPGAs,
CPLDs, VHDL, and Verilog.

• Automatic FSM Extraction

The Automatic FSM Extraction (FSM_EXTRACT) constraint enables or disables finite
state machine extraction and specific synthesis optimizations. This option must be
enabled in order to set values for the FSM Encoding Algorithm and FSM Flip-Flop
Type. See “FSM_EXTRACT” in the Constraints Guide for details.

• Enumerated Encoding (VHDL)

The Enumerated Encoding (ENUM_ENCODING) constraint can be used to apply a
specific encoding to a VHDL enumerated type. See “ENUM_ENCODING” in the
Constraints Guide for details.

• Equivalent Register Removal

The Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL) constraint
enables or disables removal of equivalent registers, described at the RTL Level. By
default XST does not remove equivalent flip-flops if they are instantiated from a
Xilinx® primitive library. To allow optimization of instantiated flip-flops and other
primitives, use the OPTIMIZE_PRIMITIVES constraint. See
“EQUIVALENT_REGISTER_REMOVAL” in the Constraints Guide for details.

• FSM Encoding Algorithm

The FSM Encoding Algorithm (FSM_ENCODING) constraint selects the finite state
machine coding technique to be used. The Automatic FSM Extraction option must be
enabled in order to select a value for the FSM Encoding Algorithm. See
“FSM_ENCODING” in the Constraints Guide for details.

• Mux Extraction

The Mux Extract (MUX_EXTRACT) constraint enables or disables multiplexer macro
inference. For each identified multiplexer description, based on some internal decision
rules, XST actually creates a macro or optimizes it with the rest of the logic. See
“MUX_EXTRACT” in the Constraints Guide for details.

• Register Power Up

XST does not automatically figure out and enforce register power-up values. You must
explicitly specify them if needed with the Register Power Up (REGISTER_POWERUP)
constraint. See “REGISTER_POWERUP” in the Constraints Guide for details.

• Resource Sharing

The Resource Sharing (RESOURCE_SHARING) constraint enables or disables
resource sharing of arithmetic operators. See the “RESOURCE_SHARING” section in
the Constraints Guide for details.

• Signal Encoding

The Signal Encoding (SIGNAL_ENCODING) constraint can be used to apply a specific
encoding to signals. See “SIGNAL_ENCODING” in the Constraints Guide for details.
226 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

FPGA Constraints (non-timing)
R

FPGA Constraints (non-timing)
This section describes FPGA HDL options. These options apply only to FPGAs—not
CPLDs.

• Buffer Type

Buffer Type (BUFFER_TYPE) is a new name for the CLOCK_BUFFER constraint. Since
CLOCK_BUFFER will become obsolete in future releases, Xilinx strongly suggest that
you use this new name. This constraint selects the type of buffer to be inserted. See
“BUFFER_TYPE” in the Constraints Guide for details.

• BUFGCE

The BUFGCE constraint implements BUFGMUX functionality by inferring a
BUFGMUX primitive. This operation reduces the wiring: clock and clock enable
signals are driven to n sequential components by a single wire. See “BUFGCE” in the
Constraints Guide for details.

• Clock Buffer Type

The Clock Buffer Type (CLOCK_BUFFER) constraint selects the type of clock buffer to
be inserted on the clock port. In the current release, this constraint has been renamed
BUFFER_TYPE. Since CLOCK_BUFFER will become obsolete in future releases, Xilinx
strongly suggest that you use this new name. See “BUFFER_TYPE” in the Constraints
Guide for details.

• Cores Search Directories

The Cores Search Directories command line switch (–sd) tells XST to look for cores in
directories other than the default one (by default XST searches for cores in the
directory specified in the –ifn switch).

Define this option globally with the –sd command line option of the run command.
Allowed values are names of directories.

-sd directory_path [directory_path]

There is no default.

In Project Navigator, specify this option with the Cores Search Directories option of the
Synthesis Options tab in the Process Properties dialog box. Allowed values are names
of directories. There is no default.

• Decoder Extraction

The Decoder Extraction (DECODER_EXTRACT) constraint enables or disables
decoder macro inference. See“DECODER_EXTRACT” in the Constraints Guide for
details.

• FSM Style

The FSM Style constraint can be used to make large FSMs more compact and faster by
implementing them in the block RAM resources provided in Virtex™ and later
technologies. You can direct XST to use block RAM resources rather than LUTs (the
default) to implement FSMs by using the FSM_STYLE design constraint. See
“FSM_STYLE” in the Constraints Guide for details.

• Resynthesize

The RESYNTHESIZE constraint is related to Incremental Synthesis Flow. It forces or
prevents resynthesis of groups created via the INCREMENTAL_SYNTHESIS
constraint. See “RESYNTHESIZE” and “INCREMENTAL_SYNTHESIS” in the
Constraints Guide for details.
XST User Guide www.xilinx.com 227
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

• Incremental Synthesis

The Incremental Synthesis (INCREMENTAL_SYNTHESIS) constraint controls the
decomposition of a design into several subgroups. This can be applied on a VHDL
entity or Verilog module so that XST generates a single and separate NGC file for it and
its descendents. See the “Incremental Synthesis Flow” section in this guide, as well as
“INCREMENTAL_SYNTHESIS” in the Constraints Guide for details.

Note: The INCREMENTAL_SYNTHESIS switch is not accessible via the Synthesize - XST
Process Properties dialog box. This directive is only available via VHDL attributes or Verilog
meta comments, or via an XST constraint file.

• Keep Hierarchy

XST may automatically flatten the design to get better results by optimizing
entity/module boundaries. You can use the Keep Hierarchy (KEEP_HIERARCHY)
constraint to preserve the hierarchy of your design. In addition, this constraint may be
propagated to the NGC file as an implementation constraint depending on its value.

See “KEEP_HIERARCHY” in the Constraints Guide for details.

• Logical Shifter Extraction

The Logical Shifter Extraction (SHIFT_EXTRACT) constraint enables or disables
logical shifter macro inference. See “SHIFT_EXTRACT” in the Constraints Guide for
details.

• Map Logic on BRAM

The Map Logic on BRAM (BRAM_MAP) constraint is used to map an entire
hierarchical block on the block RAM resources available in Virtex™ and later
technologies. See “Mapping Logic onto Block RAM” in Chapter 3, and also
“BRAM_MAP” in the Constraints Guide for details.

• Max Fanout

The Max Fanout (MAX_FANOUT) constraint limits the fanout of nets or signals. See
“MAX_FANOUT” in the Constraints Guide for details.

• Move Last Stage

The Move Last Stage (MOVE_LAST_STAGE) constraint controls the retiming of
registers with paths going to primary outputs. See “MOVE_LAST_STAGE” in the
Constraints Guide for details.

• Move First Stage

The Move First Stage (MOVE_FIRST_STAGE) constraint controls the retiming of
registers with paths coming from primary inputs. See “MOVE_FIRST_STAGE” in the
Constraints Guide for details.

• Multiplier Style

The Multiplier Style (MULT_STYLE) constraint controls the way the macro generator
implements the multiplier macros. Allowed values are auto, block, lut, pipe_lut and kcm.
The default is auto, meaning that XST looks for the best implementation for each
considered macro. The pipe_lut option is for pipeline multipliers. The implementation
style can be manually forced to use block multiplier or LUT resources available in the
Spartan-3™, Virtex-II™, Virtex-II Pro™, and Virtex-II Pro X™ devices. See
“MULT_STYLE” in the Constraints Guide for details.
228 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

FPGA Constraints (non-timing)
R

• Mux Style

The Mux Style (MUX_STYLE) constraint controls the way the macrogenerator
implements the multiplexer macros. See “MUX_STYLE” in the Constraints Guide for
details.

• Number of Clock Buffers

The Number of Clock Buffers (–bufg) constraint controls the maximum number of
BUFGs created by XST. The constraint value is an integer and is equal to 4 by default.

Define this option globally with the -bufg command line option of the run command.
Following is the basic syntax:

-bufg integer

The constraint value is an integer and is equal to 4 by default for Virtex™, Virtex-E™,
Spartan-II™, Spartan-IIE™. The defaults for selected architectures are: 8 for
Spartan-3™ and 16 for Virtex-II™ and Virtex-II Pro™. The number of BUFGs cannot
exceed the maximum number of BUFGs for the target part.

In Project Navigator, specify –bufg globally by selecting the Number of Clock Buffers
option under the Xilinx Specific Options tab in the Process Properties dialog box.

• Optimize Instantiated Primitives

By default, XST does not optimize instantiated primitives in HDL code. The Optimize
Instantiated Primitives (OPTIMIZE_PRIMITIVES) constraint is used to deactivate the
default. See “OPTIMIZE_PRIMITIVES” in the Constraints Guide for details.

• Pack I/O Registers into IOBs

The Pack I/O Registers into IOBs (IOB) constraint packs flip-flops in the I/Os to
improve input/output path timing. See “IOB” in the Constraints Guide for details.

• Priority Encoder Extraction

The Priority Encoder Extraction (PRIORITY_EXTRACT) constraint enables or disables
priority encoder macro inference. See “PRIORITY_EXTRACT” in the Constraints Guide
for details.

• RAM Extraction

The RAM Extraction (RAM_EXTRACT) constraint enables or disables RAM macro
inference. See “RAM_EXTRACT” in the Constraints Guide for details.

• RAM Style

The RAM Style (RAM_STYLE) constraint controls whether the macrogenerator
implements the inferred RAM macros as block or distributed RAM. See
“RAM_STYLE” in the Constraints Guide for details.

• Register Balancing

The Register Balancing (REGISTER_BALANCING) constraint enables flip-flop
retiming. See “REGISTER_BALANCING” in the Constraints Guide for details.

• Register Duplication

The Register Duplication (REGISTER_DUPLICATION) constraint enables or disables
register replication. See “REGISTER_DUPLICATION” in the Constraints Guide for
details.

• ROM Extraction

The ROM Extraction (ROM_EXTRACT) constraint enables or disables ROM macro
inference. See “ROM_EXTRACT” in the Constraints Guide for details.
XST User Guide www.xilinx.com 229
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

• ROM Style

ROM Style (ROM_STYLE) controls the way the macrogenerator implements the
inferred ROM macros. The implementation style can be manually forced to use block
ROM or distributed ROM resources available in the Virtex™ and Spartan™-II/3
series. See “ROM_STYLE” in the Constraints Guide for details.

• Shift Register Extraction

The Shift Register Extraction (SHREG_EXTRACT) constraint enables or disables shift
register macro inference. See “SHREG_EXTRACT” in the Constraints Guide for details.

• Slice Packing

The Slice Packing (–slice_packing) option enables the XST internal packer. The packer
attempts to pack critical LUT-to-LUT connections within a slice or a CLB. This exploits
the fast feedback connections among the LUTs in a CLB.

Define this option globally with the –slice_packing command line option of the run
command. Following is the basic syntax:

-slice_packing {yes|no}

The default is yes.

In Project Navigator, set –slice_packing globally with the Slice Packing option in the
Xilinx Specific Options tab in the Process Properties dialog box.

• Uselowskewlines

The USELOWSKEWLINES constraint is a basic routing constraint. From a Synthesis
point of view it prevents XST from using dedicated clock resources and logic
replication, based on the value of the MAX_FANOUT constraint. It specifies the use of
low skew routing resources for any net. See “USELOWSKEWLINES” in the Constraints
Guide for details.

• XOR Collapsing

The XOR Collapsing (XOR_COLLAPSE) constraint controls whether cascaded XORs
should be collapsed into a single XOR. See “XOR_COLLAPSE” in the Constraints Guide
for details.

• Slice Utilization Ratio

The Slice Utilization Ratio (SLICE_UTILIZATION_RATIO) constraint defines the area
size that XST must not exceed during timing optimization. If the constraint cannot be
met, XST makes timing optimization regardless.

This constraint can be specified by selecting the Slice Utilization Ratio option under
the Synthesis Options tab in the Process Properties dialog box within Project
Navigator, or with the –slice_utilization_ratio command line option. See
“SLICE_UTILIZATION_RATIO” in the Constraints Guide for details.

• Slice Utilization Ratio Delta

The Slice Utilization Ratio Delta (SLICE_UTILIZATION_RATIO_MAXMARGIN)
constraint is closely related to the SLICE_UTILIZATION_RATIO constraint. It defines
the tolerance margin for the SLICE_UTILIZATION_RATIO constraint. If the ratio is
within the margin set, the constraint is met and timing optimization can continue. For
details, see “Speed Optimization Under Area Constraint” in Chapter 3, and also see
“SLICE_UTILIZATION_RATIO_MAXMARGIN” in the Constraints Guide.
230 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

CPLD Constraints (non-timing)
R

• Map Entity on a Single LUT

The Map Entity on a Single LUT (LUT_MAP) constraint forces XST to map a single
block into a single LUT. If a described function on an RTL level description does not fit
in a single LUT, XST issues an error message. See the “LUT_MAP” section in the
Constraints Guide for details.

• Read Cores

The Read Cores (–read_cores) command line option enables or disables XST to read
EDIF or NGC core files for timing estimation and device utilization control. Please
refer to “Cores Processing” in Chapter 3 for more information.

Define this option globally with the –read_cores command line option of the run
command. Following is the basic syntax:

-read_cores {yes|no|optimize}

The default is yes.

In Project Navigator, set –read_cores globally with the Read Cores option in the
Synthesis Options tab of the Process Properties dialog box.

• Use Carry Chain

XST uses carry chain resources to implement certain macros, but there are situations
where you can get better results by avoiding the use of carry chain. The Use Carry
Chain (USE_CARRY_CHAIN) constraint can deactivate carry chain use for macro
generation. See “USE_CARRY_CHAIN” in the Constraints Guide for details.

CPLD Constraints (non-timing)
This section lists options that only apply to CPLDs—not FPGAs.

• Clock Enable

The Clock Enable (–pld_ce) constraint specifies how sequential logic should be
implemented when it contains a clock enable, either using the specific device resources
available for that or generating equivalent logic.

This option allows you to specify the way the clock enable function will be
implemented if presented in the design. Two values are available:

♦ yes (check box is checked): the synthesizer implements the use of the Clock Enable
signal of the device

♦ no (check box is not checked): the Clock enable function will be implemented
through equivalent logic

Keeping or not keeping the clock enable signal depends on the design logic.
Sometimes, when the clock enable is the result of a Boolean expression, saying no with
this option may improve the fitting result because the input data of the flip-flop is
simplified when it is merged with the clock enable expression.

Define this constraint globally with the –pld_ce command line option of the run
command. Following is the basic syntax:

-pld_ce {YES|NO}

The default is yes.

In Project Navigator, specify PLD_CE globally with the Clock Enable option in the
Xilinx Specific Options tab of the Process Properties dialog box within the Project
Navigator.
XST User Guide www.xilinx.com 231
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

• Data Gate

The CoolRunner™-II/-IIS DataGate (DATA_GATE) feature provides direct means of
reducing power consumption in your design. Each I/O pin input signal passes
through a latch that can block the propagation of incident transitions during periods
when such transitions are not of interest to your CPLD design. Input transitions that
do not affect the CPLD design function still consume power, if not latched, as they are
routed among the CPLD's Function Blocks. By asserting the DataGate control I/O pin
on the device, selected I/O pin inputs become latched, thereby eliminating the power
dissipation associated with external transitions on those pins. See the “DATA_GATE”
in the Constraints Guide for details

• Keep Hierarchy

This option is related to the hierarchical blocks (VHDL entities, Verilog modules)
specified in the HDL design and does not concern the macros inferred by the HDL
synthesizer. The Keep Hierarchy (KEEP_HIERARCHY) constraint enables or disables
hierarchical flattening of user-defined design units, and controls whether it is passed
on as an implementation constraint. See “KEEP_HIERARCHY” in the Constraints
Guide for details.

• Macro Preserve

The Macro Preserve (–pld_mp) option is useful for making the macro handling
independent of design hierarchy processing. This allows you to merge all hierarchical
blocks in the top module, while still keeping the macros as hierarchical modules. You
can also keep the design hierarchy except for the macros, which are merged with the
surrounded logic. Merging the macros sometimes gives better results for design
fitting. Two values are available for this option:

♦ yes (check box is checked): macros are preserved and generated by Macro+.

♦ no (check box is not checked): macros are rejected and generated by HDL
synthesizer

Depending on the Flatten Hierarchy value, a rejected macro becomes a hierarchical
block (Flatten Hierarchy=no) or is merged in the design logic (Flatten Hierarchy=yes).
Very small macros (2-bit adders, 4-bit multiplexers) are always merged, independent
of the Macro Preserve or Flatten Hierarchy options.

Define this option globally with the –pld_mp command line option of the run
command. Following is the basic syntax:

-pld_mp {yes|no}

The default is yes.

In Project Navigator, specify –pld_mp globally with the Macro Preserve option in the
Xilinx Specific Options tab of the Process Properties dialog box.

• No Reduce

The No Reduce (NOREDUCE) constraint prevents minimization of redundant logic
terms that are typically included in a design to avoid logic hazards or race conditions.
This constraint also identifies the output node of a combinatorial feedback loop to
ensure correct mapping. See “NOREDUCE” in the Constraints Guide for details.
232 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

CPLD Constraints (non-timing)
R

• WYSIWYG

The goal of the WYSIWYG option is to have a netlist as much as possible reflect the
user specification. That is, all the nodes declared in the HDL design are preserved.

If WYSIWYG mode is enabled (yes), then XST preserves all the user internal signals
(nodes), creates SOURCE_NODE constraints in the NGC file for all these nodes, and
skips design optimization (collapse, factorization); only boolean equation
minimization is performed.

Define globally with the –wysiwyg command line option of the run command.
Following is the basic syntax:

-wysiwyg {yes|no}

The default is no.

The constraint can only be defined globally with the WYSIWYG option in the Xilinx®
Specific Option tab in the Process Properties dialog box within Project Navigator.

• XOR Preserve

The XOR Preserve (–pld_xp) constraint enables or disables hierarchical flattening of
XOR macros. Allowed values are yes (check box is checked) and no (check box is not
checked). By default, XOR macros are preserved (check box is checked).

The XORs inferred by HDL synthesis are also considered as macro blocks in the CPLD
flow, but they are processed separately to give more flexibility for the use of device
macrocells XOR gates. Therefore, you can decide to flatten its design (Flatten
Hierarchy yes, Macro Preserve no) but you want to preserve the XORs. Preserving
XORs has a great impact on reducing design complexity. Two values are available for
this option:

♦ yes—XOR macros are preserved

♦ no—XOR macros are merged with surrounded logic

Preserving the XORs, generally, gives better results, that is, the number of PTerms is
lower. The no value is useful to obtain completely flat netlists. Sometimes, applying
the global optimization on a completely flat design improves the design fitting.

You obtain a completely flattened design when selecting the following options:

♦ Flatten Hierarchy—yes

♦ Macro Preserve—no

♦ XOR Preserve—no

The no value for this option does not guarantee the elimination of the XOR operator
from the EDIF netlist. During the netlist generation, the netlist mapper tries to
recognize and infer XOR gates in order to decrease the logic complexity. This process is
independent of the XOR preservation done by HDL synthesis and is guided only by
the goal of complexity reduction.

Define this constraint globally with the –pld_mp command line option of the run
command. Following is the basic syntax:

-pld_mp {yes|no}

The default is yes.

In Project Navigator, specify –pld_mp globally with the Macro Preserve option in the
Xilinx Specific Options tab of the Process Properties dialog box within the Project
Navigator.
XST User Guide www.xilinx.com 233
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

Timing Constraints
Timing constraints supported by XST can be applied either via the –glob_opt command
line switch, which is the same as selecting Global Optimization Goal from the Synthesis
Options tab of the Process Properties menu in Project Navigator, or via the constraints file.

• Using the –glob_opt/Global Optimization Goal method allows you to apply the five
global timing constraints (ALLCLOCKNETS, OFFSET_IN_BEFORE,
OFFSET_OUT_AFTER, INPAD_TO_OUTPAD and MAX_DELAY). These constraints
are applied globally to the entire design. You cannot specify a value for these
constraints as XST optimizes them for the best performance. Note that these
constraints are overridden by constraints specified in the constraints file.

• Using the constraint file method you can use one of two formats.

♦ XCF timing constraint syntax, which XST supports starting in release 5.1i. Using
the XCF syntax, XST supports constraints such as TNM_NET, TIMEGRP,
PERIOD, TIG, FROM-TO etc., including wildcards and hierarchical names.

♦ Old XST timing constraints, which include ALLCLOCKNETS, PERIOD,
OFFSET_IN_BEFORE, OFFSET_OUT_AFTER, INPAD_TO_OUTPAD and
MAX_DELAY. Please note that these constraints are supported in the current
release, as they have been in the past, without any further enhancements. Xilinx®
strongly suggests that you use the newer XCF syntax constraint style for new
devices. If you choose to continue with the old constraint style, please refer to
"Old Timing Constraint Support" in release 5.1i of the XST User's Guide available
on the Xilinx support website.

Note: Timing constraints are only written to the NGC file when the Write Timing Constraints
property is checked yes in the Process Properties dialog box in Project Navigator, or the
–write_timing_constraints option is specified when using the command line. By default, they are
not written to the NGC file.

Independent of the way timing constraints are specified, there are three additional options
that affect timing constraint processing:

• Cross Clock Analysis

The Cross Clock Analysis command (–cross_clock_analysis) allows inter-clock domain
analysis during timing optimization. By default (no), XST does not perform this
analysis.

Define this option globally with the –cross_clock_analysis command line option of the
run command. Following is the basic syntax:

–cross_clock_analysis {yes|no}

The default is no.

In Project Navigator, specify this option globally with the Cross Clock Analysis option
in the Synthesis Options tab of the Process Properties dialog box.
234 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com

Timing Constraints
R

• Write Timing Constraints

The Write Timing Constraints option (–write_timing_constraints) in one of your status
reports enables or disables propagation of timing constraints to the NGC file that are
specified in HDL code. These timing constraints in the NCG file will be used during
place and route, as well as synthesis optimization.

Define Write Timing Constraints globally with the –write_timing_constraints
command line option of the run command. Following is the basic syntax.

-write_timing_constraints {yes|no}

The default is no — not to write timing constraints to the NGC file.

In Project Navigator, specify this option globally with the Write Timing Constraints
option in the Synthesis Options tab of the Process Properties dialog box.

• Clock Signal

If a clock signal goes through combinatorial logic before being connected to the clock
input of a flip-flop, XST cannot identify what input pin is the real clock pin. The
CLOCK_SIGNAL constraint allows you to define the clock pin. See
“CLOCK_SIGNAL” in the Constraints Guide for details.

Global Timing Constraints Support
XST supports the following global timing constraints.

• Global Optimization Goal

XST can optimize different regions (register to register, inpad to register, register to
outpad, and inpad to outpad) of the design depending on the global optimization goal.
Please refer to “Incremental Synthesis Flow” in Chapter 3 for a detailed description of
supported timing constraints. The Global Optimization Goal (–glob_opt) command
line option selects the global optimization goal.

Note: You cannot specify a value for Global Optimization Goal/–glob_opt. XST optimizes the
entire design for the best performance.

The following constraints can be applied by using the Global Optimization Goal
option.

♦ ALLCLOCKNETS: optimizes the period of the entire design.

♦ OFFSET_IN_BEFORE: optimizes the maximum delay from input pad to clock,
either for a specific clock or for an entire design.

♦ OFFSET_OUT_AFTER: optimizes the maximum delay from clock to output pad,
either for a specific clock or for an entire design.

♦ INPAD_TO_OUTPAD: optimizes the maximum delay from input pad to output
pad throughout an entire design.

♦ MAX_DELAY: incorporates all previously mentioned constraints.

These constraints affect the entire design and only apply if no timing constraints are
specified via the constraint file.

Define this option globally with the -glob_opt command line option of the run
command. Following is the basic syntax:

-glob_opt {allclocknets|offset_in_before|offset_out_after
|inpad_to_outpad |max_delay}
XST User Guide www.xilinx.com 235
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

You can specify –glob_opt globally with the Global Optimization Goal option in the
Synthesis Options tab of the Process Properties dialog box within the Project
Navigator.

Domain Definitions

The possible domains are illustrated in the following schematic.

• ALLCLOCKNETS (register to register): identifies by default, all paths from register to
register on the same clock for all clocks in a design. To take into account inter-clock
domain delays, the command line switch –cross_clock_analysis must be set to yes.

• OFFSET_IN_BEFORE (inpad to register): identifies all paths from all primary input
ports to either all sequential elements or the sequential elements driven by the given
clock signal name.

• OFFSET_OUT_AFTER (register to outpad): is similar to the previous constraint, but
sets the constraint from the sequential elements to all primary output ports.

• INPAD_TO_OUTPAD (inpad to outpad): sets a maximum combinational path
constraint.

• MAX_DELAY: identifies all paths defined by the following timing constraints:
ALLCLOCKNETS, OFFSET_IN_BEFORE, OFFSET_OUT_AFTER,
INPAD_TO_OUTPAD.

XCF Timing Constraint Support
IMPORTANT: If you specify timing constraints in the XCF file, Xilinx® strongly suggests
that you use '/' character as a hierarchy separator instead of '_'. Please refer to
“HIERARCHY_SEPARATOR” of the Constraints Guide for details on its usage.

IMPORTANT: If all or part of a specified timing constraint is not supported by XST, then
XST generates a warning about this and ignores the unsupported timing constraint or
unsupported part of it in the Timing Optimization step. If the “Write Timing Constraints"
option is set to yes, XST propagates the entire constraint to the final netlist, even if it was
ignored at the Timing Optimization step.

X8991

CLK CLK

QD QDIPAD OPAD

OPAD

IPAD

Inpad_to_Outpad
IPAD

Logic
Circuitry

Logic
Circuitry

Logic
Circuitry

Offset_in_Before AllClockNets/Period Offset_out_After
236 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Timing Constraints
R

The following timing constraints are supported in the XST Constraints File (XCF).

• Period

PERIOD is a basic timing constraint and synthesis constraint. A clock period
specification checks timing between all synchronous elements within the clock domain
as defined in the destination element group. The group may contain paths that pass
between clock domains if the clocks are defined as a function of one or the other.

See “PERIOD” in the Constraints Guide for details.

XCF Syntax:

NET netname PERIOD = value [{HIGH | LOW} value];

• Offset

OFFSET is a basic timing constraint. It specifies the timing relationship between an
external clock and its associated data-in or data-out pin. OFFSET is used only for pad-
related signals, and cannot be used to extend the arrival time specification method to
the internal signals in a design.

OFFSET allows you to:

♦ Calculate whether a setup time is being violated at a flip-flop whose data and
clock inputs are derived from external nets.

♦ Specify the delay of an external output net derived from the Q output of an
internal flip-flop being clocked from an external device pin.

See “OFFSET” in the Constraints Guide for details.

XCF Syntax:

OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRP group_name];

• From-To

FROM-TO defines a timing constraint between two groups. A group can be user-defined
or predefined (FFS, PADS, RAMS). See “FROM-TO” in the Constraints Guide for details.

Example:

XCF Syntax:

TIMESPEC TSname = FROM group1 TO group2 value;

• TNM

TNM is a basic grouping constraint. Use TNM (Timing Name) to identify the elements
that make up a group which you can then use in a timing specification. TNM tags
specific FFS, RAMs, LATCHES, PADS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
HSIOS, and MULTS as members of a group to simplify the application of timing
specifications to the group.

The RISING and FALLING keywords may also be used with TNMs. See “TNM” in the
Constraints Guide for details.

XCF Syntax:

{NET | PIN} net_or_pin_name TNM = [predefined_group:] identifier;

• TNM Net

TNM_NET is essentially equivalent to TNM on a net except for input pad nets. (Special
rules apply when using TNM_NET with the PERIOD constraint for Virtex™,
Virtex-E™, Virtex-II™, Virtex-II Pro™, Virtex-II Pro X™, or Spartan-3™ DLL/DCMs.
XST User Guide www.xilinx.com 237
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

See the “PERIOD Specifications on CLKDLLs and DCMs” subsection of “PERIOD” in
the Constraints Guide.)

A TNM_NET is a property that you normally use in conjunction with an HDL design
to tag a specific net. All downstream synchronous elements and pads tagged with the
TNM_NET identifier are considered a group. See “TNM_NET” in the Constraints Guide
for details.

XCF Syntax:

NET netname TNM_NET = [predefined_group:] identifier;

• TIMEGRP

TIMEGRP is a basic grouping constraint. In addition to naming groups using the TNM
identifier, you can also define groups in terms of other groups. You can create a group
that is a combination of existing groups by defining a TIMEGRP constraint.

You can place TIMEGRP constraints in a constraints file (XCF or NCF). You can use
TIMEGRP attributes to create groups using the following methods.

♦ Combining multiple groups into one

♦ Defining flip-flop subgroups by clock sense

See “TIMEGRP” in the Constraints Guide for details.

XCF Syntax:

TIMEGRP newgroup = existing_grp1 existing_grp2 [existing_grp3 ...];

• TIG

The TIG constraint causes all paths going through a specific net to be ignored for
timing analyses and optimization purposes. This constraint can be applied to the name
of the signal affected. See “TIG” in the Constraints Guide for details.

XCF Syntax:

NET net_name TIG;

Old Timing Constraint Support
In the past, XST supported limited private timing constraints. Xilinx continues to support
the old constraint syntax without any further enhancements for this release of XST, but will
eventually drop support. Please refer to “Old Timing Constraint Support” in release 5.1i of
the XST User Guide for details on using the old constraint style. Xilinx® strongly suggests
that you use the newer XCF syntax constraint style for new devices.

Constraints Summary
Table 5-1 summarizes all available XST-specific non-timing related options, with allowed
values for each, the type of objects they can be applied to, and usage restrictions. Default
values are indicated in bold.
238 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Constraints Summary
R

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology

XST Constraints

box_type primitive,
black_box,
user_black_-
box

model,
inst(in model)

no primitive,
black_box,
user_black_-
box

VHDL:
component,

entity

Verilog:

label,
module

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™ XPLA3

buffer_type bufgdll,
ibufg, bufgp,
ibuf, none

net (in model) no bufgdll,
ibufg, bufgp,
ibuf, none

signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

bufgce yes, no,
true, false

net (in model) no yes, no primary clock
signal

Virtex™-II/II Pro/
II Pro X

bram_map yes, no,
true, false

model yes yes, no VHDL:
entity

Verilog:
module

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro XE

clock_buffer bufgdll,
ibufg, bufgp,
ibuf, none

net (in model) no bufgdll,
ibufg, bufgp,
ibuf, none

signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

clock_signal yes, no,
true, false

primary clock
signal,
net (in model)

no yes, no primary clock
signal

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

decoder-
_extract

yes, no
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

enum-
_encoding

string
containing
space-
separated
binary codes

net (in model) no string
containing
space-
separated
binary codes

type (in
VHDL only)

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

equivalent-

_register-
_removal

yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS
XST User Guide www.xilinx.com 239
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

fsm_encod-
ing

auto, one-hot,
compact,
sequential,
gray, johnson,
user

model,
net (in model)

yes auto, one-hot,
compact,
sequential,
gray, johnson,
user

 entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

fsm_extract yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

fsm_style lut, bram model,
net (in model)

yes lut, bram entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

full_case na na no no value case
statement

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

incremental-
_synthesis

yes, no,
true, false

model no yes, no entity Spartan™-II/IIE/3,
Virtex™ II/II Pro/
II Pro X/E

iob true, false,
auto

net(in model),
inst(in model)

no true, false,
auto

signal,
instance

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

iostandard string: See
Constraints
Guide for
details

net(in model),
inst(in model)

no string: See
Constraints
Guide for
details

signal,
instance

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X, XC9500™,
CoolRunner™
XPLA3/II /IIS

keep yes, no
true, false

net (in model) no yes, no signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

keep-
_hierarchy

yes, no,
true, false,
soft

model yes yes, no, soft entity Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X, XC9500™,
CoolRunner™
XPLA3/II/IIS

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
240 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Constraints Summary
R

loc string net(in model),
inst(in model)

no string signal
(primary IO),
instance

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

lut_map yes, no,
true, false

model no yes, no entity.
architecture

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

max_fanout integer model,
net (in model)

yes integer entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

move_first-
_stage

yes, no,
true, false

model,
primary clock
signal,
net (in model)

yes yes, no entity,
primary clock
signal

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

move_last-
_stage

yes, no,
true, false

model,
primary clock
signal,
net (in model)

yes yes, no entity,
primary clock
signal

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

mult_style auto, block,
lut, pipe_lut,
kcm

model,
net (in model)

yes auto, block,
lut, pipe_lut

entity, signal Spartan-3™,
Virtex™-II/II Pro /
II Pro X

mux_extract yes, no, force,
true, false

model,
net (in model)

yes yes, no, force entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

mux_style auto, muxf,
muxcy

model,
net (in model)

yes auto, muxf,
muxcy

entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

noreduce yes, no
true, false

net (in model) no yes, no signal XC9500™,
CoolRunner™
XPLA3/II/IIS

optimize-
_primitives

yes, no
true, false

model,
instance
(in model)

no yes, no VHDL:
entity,
instance

Verilog:
module,
instance

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
XST User Guide www.xilinx.com 241
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

opt_level 1, 2 model yes 1, 2 entity Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

opt_mode speed, area model yes speed, area entity Spartan™-II/IIE/3,
Virtex/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

parallel_case na na no no value case
statement

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

priority-
_extract

yes, no, force,
true, false

model,
net (in model)

yes yes, no, force entity, signal Spartan™-II/IIE/3,
Virtex/II/II Pro/
II Pro X/E

ram_extract yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex/II/II Pro/
II Pro X/E

ram_style auto, block,
distributed

model,
net (in model)

yes auto, block,
distributed

entity, signal Spartan™-II/IIE/3,
Virtex/II/II Pro/
II Pro X/E

register-
_balancing

yes, no,
forward,
backward,
true, false

model,
net(in model),
inst(in model)

yes yes, no,
forward,
backward

entity, signal,
FF instance
name,
primary clock
signal

Spartan™-II/IIE/3,
Virtex/II/II Pro/
II Pro X/E

register-
_duplication

yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex/II/II Pro/
II Pro X/E

register-
_powerup

string net (in model) no string type (in
VHDL only)

XC9500™,
CoolRunner™
XPLA3/II/IIS

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
242 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Constraints Summary
R

resource-
_sharing

yes, no
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

resynthesize yes, no,
true, false

model no yes, no entity Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

rom_extract yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

rom_style auto, block,
distributed

model,
net (in model)

yes auto, block,
distributed

entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

shift_extract yes, no
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

shreg_extract yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

signal-
_encoding

auto, one-hot,
user

model,
net (in model)

yes auto, one-hot,
user

entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

slice-
_utilization-
_ratio

integer
(range 0-100)

model yes integer
(range 0-100)

entity Spartan™-II/IIE/3,
Virtex™ II/II Pro/
II Pro X/E

slice-
_utilization-
_ratio-
_maxmargin

integer
(range 0-100)

model yes integer
(range 0-100)

entity Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

translate_off na na no no value local,
no target

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
XST User Guide www.xilinx.com 243
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

translate_on na na no no value local,
no target

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

use_carry-
_chain

yes, no,
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

Uselowskew-
lines

yes, true net (in model) no yes signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

xor_collapse yes, no
true, false

model,
net (in model)

yes yes, no entity, signal Spartan™-II/IIE,3
Virtex™/II/II Pro/
II Pro X/E

XST Command Line Only Options

bufg na na yes integer na XC9500™,
CoolRunner™
XPLA3/II/IIS

bus_delimiter na na yes < >, [], { },
()

na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

case na na yes upper,
lower,
maintain

na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

hierarchy-
_separator

na na yes _ , /
(default is _)

na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

iobuf na na yes yes, no na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
244 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Constraints Summary
R

iuc na na yes yes, no na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

lso na na yes file_name na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

pld_ce na na yes yes, no na XC9500™,
CoolRunner™
XPLA3/II/IIS

pld_mp na na yes yes, no na XC9500™,
CoolRunner™
XPLA3/II/IIS

pld_xp na na yes yes, no na XC9500™,
CoolRunner™
XPLA3/II/IIS

read_cores na na yes yes, no,
optimize

na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

sd na na yes directory_path na Spartan™-II/IIE/3,
Virtex™/II/II Pro/E

slice_packing na na yes yes, no na XC9500™,
CoolRunner™
XPLA3/II/IIS

uc na na yes file_name.xcf
file_name.cst

na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

verilog2001 na na yes yes, no na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
XST User Guide www.xilinx.com 245
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

vlgcase na na yes full, parallel,
full-parallel

na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

vlgincdir na na yes dir_path na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

vlgpath na na yes dir_path na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

wysiwyg na na yes yes, no na XC9500™,
CoolRunner™
XPLA3/II/IIS

xsthdpdir directory_path na yes directory_path na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

xsthdpini file_name na yes file_name na Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™
XPLA3/II/IIS

Table 5-1: XST-Specific Non-timing Options

Constraint
Name

XCF
Constraint

Syntax
Value

XCF
Constraint

Syntax
Target

Cmd
Line

Command
Line

/
Old XST

Constraint
Syntax
Value

Command
Line

/
Old XST

Constraint
Syntax
Target

Technology
246 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Constraints Summary
R

The following table shows the timing constraints supported by XST that you can invoke
only from the command line, or the Process Properties dialog box in Project Navigator.

The following table shows the timing constraints supported by XST that you can invoke
only through the Xilinx® Constraint File (XCF).

Table 5-2: XST Timing Constraints Supported Only by Command Line/Process Properties Dialog Box

Option
Process Property

(ProjNav)
Values Technology

glob_opt Global
Optimization Goal

allclocknets
inpad_to_outpad
offset_in_before
offset_out_after
max_delay

Spartan™-II/IIE/3, Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™ XPLA3/II/IIS

cross_clock_analysis Cross Clock
Analysis

yes, no Spartan™-II/IIE/3, Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™ XPLA3/II/IIS

write_timing_constraints Write Timing
Constraints

yes, no Spartan™-II/IIE/3, Virtex™/II/II Pro/
II Pro X/E, XC9500™,
CoolRunner™ XPLA3/II/IIS

Table 5-3: XST Timing Constraints Supported Only in XCF

Name Value Target Technology

period See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

offset See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

timespec See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

tsidentifier See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

tmn See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

tnm_net See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E
XST User Guide www.xilinx.com 247
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

The following table shows the timing constraints supported by XST that you can invoke
only through the old XST constraint interface.

*Also Supported in XCF format.

timegrp See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

tig See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

from ... to ... See the
Constraints
Guide for
details.

See the
Constraints
Guide for
details.

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

Table 5-3: XST Timing Constraints Supported Only in XCF

Name Value Target Technology

Table 5-4: XST Timing Constraints Only Supported by Old XST Syntax

Name Value Target Technology

allclocknets real [ns|ps|µs] top entity/module Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

period real [ns|ps|µs|ms|
MHz|GHz|kHZ]

primary clock signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

offset_in_before integer [ns|ps|µs] top entity/module, primary
clock signal

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

offset_out_after integer [ns|ps|µs] top entity/module, primary
clock signal

Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

inpad_to_outpad integer [ns|ps|µs] top entity/module Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

max_delay real [ns|ps|µs|ms|
MHz|GHz|kHZ]

top entity/module Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

duty_cycle integer % primary clock signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E

tig* string signal Spartan™-II/IIE/3,
Virtex™/II/II Pro/
II Pro X/E
248 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Implementation Constraints
R

Implementation Constraints
This section explains how XST handles implementation constraints. See the Constraints
Guide for details on the implementation constraints supported by XST.

Handling by XST
Implementation constraints control placement and routing. They are not directly useful to
XST, and are simply propagated and made available to the implementation tools. When
the –write_timing_constraints switch is set to yes, the constraints are written in the output
NGC file (Note: TIG is propagated regardless of the setting). In addition, the object that an
implementation constraint is attached to is preserved.

A binary equivalent of the implementation constraints is written to the NGC file, but since
it is a binary file, you cannot edit the implementation constraints there. Alternatively, you
can code implementation constraints in the XCF file according to one of the following
syntaxes.

To apply a constraint to an entire entity, use one of the following two XCF syntaxes (please
refer to the “Old XST Constraint Syntax” section for more information on the old syntax):

MODEL EntityName PropertyName;
MODEL EntityName PropertyName=PropertyValue;

To apply a constraint to specific instances, nets or pins within an entity, use one of the two
following syntaxes:

BEGIN MODEL EntityName
{NET|INST|PIN}{NetName|InstName|SigName} PropertyName;

END;

BEGIN MODEL EntityName
{NET|INST|PIN}{NetName|InstName|SigName} PropertyName=Propertyvalue;

END;

When written in VHDL code, they should be specified as follows:

attribute PropertyName of {NetName|InstName|PinName} : {signal|label}
is "PropertyValue";

In a Verilog description, they should be written as follows:

// synthesis attribute PropertyName of {NetName|InstName|PinName} is
"PropertyValue";
XST User Guide www.xilinx.com 249
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

Examples
Following are three examples.

Example 1

When targeting an FPGA device, use the RLOC constraint to indicate the placement of a
design element on the FPGA die relative to other elements. Assuming an SRL16 instance of
name srl1 to be placed at location R9C0.S0, you may specify the following in your Verilog
code:

// synthesis attribute RLOC of srl1 : "R9C0.S0";

You may specify the same attribute in the XCF file with the following lines:

BEGIN MODEL ENTNAME
INST sr11 RLOC=R9C0.SO;

END;

The binary equivalent of the following line is written to the output NGC file:

INST srl1 RLOC=R9C0.S0;

Example 2

The NOREDUCE constraint, available with CPLDs, prevents the optimization of the
boolean equation generating a given signal. Assuming a local signal is assigned the
arbitrary function below, and a NOREDUCE constraint attached to the signal s:

signal s : std_logic;
attribute NOREDUCE : boolean;
attribute NOREDUCE of s : signal is “true”;
...
s <= a or (a and b);

You may specify the same attribute in the XCF file with the following lines:

BEGIN MODEL ENTNAME
NET s NOREDUCE;
NET s KEEP;

END;

The following statements are written to the NGC file:

NET s NOREDUCE;
NET s KEEP;

Example 3

The PWR_MODE constraint, available when targeting CPLD families, controls the power
consumption characteristics of macrocells. The following VHDL statement specifies that
the function generating signal s should be optimized for low power consumption.

attribute PWR_MODE : string;
attribute PWR_MODE of s : signal is "LOW";

You may specify the same attribute in the XCF file with the following lines:

MODEL ENTNAME
NET s PWR_MODE=LOW;
NET s KEEP;

END;
250 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Third Party Constraints
R

The following statement is written to the NGC file by XST:

NET s PWR_MODE=LOW;
NET s KEEP;

If the attribute applies to an instance (for example, IOB, DRIVE, IOSTANDARD) and if the
instance is not available (not instantiated) in the HDL source, then the HDL attribute can
be applied to the signal on which XST infers the instance.

Third Party Constraints
This section describes constraints of third-party synthesis vendors that are supported by
XST. For each of the constraints, Table 5-5 gives the XST equivalent and indicates when
automatic conversion is available. For information on what these constraints actually do,
please refer to the corresponding vendor documentation. Note that “NA” stands for “Not
Available”.

Table 5-5: Third Party Constraints

Name Vendor XST Equivalent
Available
For

black_box Synplicity box_type VHDL/
Verilog

black_box_pad_pin Synplicity NA NA

black_box_tri_pins Synplicity NA NA

cell_list Synopsys NA NA

clock_list Synopsys NA NA

Enum Synopsys NA NA

full_case Synplicity/

Synopsys

full_case Verilog

ispad Synplicity NA NA

map_to_module Synopsys NA NA

net_name Synopsys NA NA

parallel_case Synplicity

Synopsys

parallel_case Verilog

return_port_name Synopsys NA NA

resource_sharing directives Synopsys resource_sharing
directives

VHDL/
Verilog

set_dont_touch_network Synopsys not required NA

set_dont_touch Synopsys not required NA

set_dont_use_cel_name Synopsys not required NA

set_prefer Synopsys NA NA

state_vector Synopsys NA NA
XST User Guide www.xilinx.com 251
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

syn_allow_retiming Synplicity register_balancing VHDL/
Verilog

syn_black_box Synplicity box_type VHDL/
Verilog

syn_direct_enable Synplicity NA NA

syn_edif_bit_format Synplicity NA NA

syn_edif_scalar_format Synplicity NA NA

syn_encoding Synplicity fsm_encoding VHDL/
Verilog

syn_enum_encoding Synplicity enum_encoding VHDL

syn_hier Synplicity keep_hierarchy VHDL/
Verilog

syn_isclock Synplicity NA NA

syn_keep Synplicity keep* VHDL/
Verilog

syn_maxfan Synplicity max_fanout VHDL/
Verilog

syn_netlist_hierarchy Synplicity keep_hierarchy VHDL/
Verilog

syn_noarrayports Synplicity NA NA

syn_noclockbuf Synplicity clock_buffer VHDL/
Verilog

syn_noprune Synplicity NA NA

syn_pipeline Synplicity Register Balancing VHDL/
Verilog

syn_probe Synplicity NA NA

syn_ramstyle Synplicity NA NA

syn_reference_clock Synplicity NA NA

syn_romstyle Synplicity NA NA

syn_sharing Synplicity resource_sharing VHDL/
Verilog

syn_state_machine Synplicity fsm_extract VHDL/
Verilog

syn_tco <n> Synplicity NA NA

syn_tpd <n> Synplicity NA NA

Table 5-5: Third Party Constraints

Name Vendor XST Equivalent
Available
For
252 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Third Party Constraints
R

syn_tristate Synplicity NA NA

syn_tristatetomux Synplicity NA NA

syn_tsu <n> Synplicity NA NA

syn_useenables Synplicity NA NA

syn_useioff Synplicity iob VHDL/
Verilog

translate_off/translate_on Synplicity/
Synopsys

translate_off/
translate_on

VHDL/
Verilog

xc_alias Synplicity NA NA

xc_clockbuftype Synplicity clock_buffer VHDL/
Verilog

xc_fast Synplicity fast VHDL/
Verilog

xc_fast_auto Synplicity fast VHDL/
Verilog

xc_global_buffers Synplicity bufg VHDL/
Verilog

xc_ioff Synplicity iob VHDL/
Verilog

xc_isgsr Synplicity NA NA

xc_loc Synplicity loc VHDL/
Verilog

xc_map Synplicity lut_map VHDL/
Verilog

xc_ncf_auto_relax Synplicity NA NA

xc_nodelay Synplicity nodelay VHDL/
Verilog

xc_padtype Synplicity iostandard VHDL/
Verilog

xc_props Synplicity NA NA

xc_pullup Synplicity pullup VHDL/
Verilog

xc_rloc Synplicity rloc VHDL/
Verilog

Table 5-5: Third Party Constraints

Name Vendor XST Equivalent
Available
For
XST User Guide www.xilinx.com 253
 1-800-255-7778

http://www.xilinx.com

Chapter 5: Design Constraints
R

* You must use the KEEP constraint instead of SIGNAL_PRESERVE.

Verilog example:

module testkeep (in1, in2, out1);
input in1;
input in2;
output out1;

wire aux1;
wire aux2;

// synthesis attribute keep of aux1 is "true"
// synthesis attribute keep of aux2 is "true"

assign aux1 = in1;
assign aux2 = in2;
assign out1 = aux1 & aux2;

endmodule

The KEEP constraint can also be applied through the separate synthesis constraint file:

XCF Example Syntax:

BEGIN MODEL testkeep
NET aux1 KEEP=true;

END;

Example of Old Syntax:

attribute keep of aux1 : signal is "true";

These are the only two ways of preserving a signal/net in an HDL design and
preventing optimization on the signal or net during synthesis.

Constraints Precedence
Priority depends on the file in which the constraint appears. A constraint in a file accessed
later in the design flow overrides a constraint in a file accessed earlier in the design flow.
Priority is as follows (first listed is the highest priority, last listed is the lowest).

1. Synthesis Constraint File

2. HDL file

3. Command Line/Process Properties dialog box in Project Navigator

xc_fast Synplicity fast VHDL/
Verilog

xc_slow Synplicity NONE NA

Table 5-5: Third Party Constraints

Name Vendor XST Equivalent
Available
For
254 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 6

VHDL Language Support

This chapter explains how VHDL is supported for XST. The chapter provides details on the
VHDL language, supported constructs, and synthesis options in relationship to XST. The
sections in this chapter are as follows:

• “Introduction”

• “Data Types in VHDL”

• “Record Types”

• “Initial Values”

• “Objects in VHDL”

• “Operators”

• “Entity and Architecture Descriptions”

• “Combinatorial Circuits”

• “Sequential Circuits”

• “Functions and Procedures”

• “Assert Statement”

• “Packages”

• “VHDL Language Support”

• “VHDL Reserved Words”

For a complete specification of the VHDL hardware description language, refer to the IEEE
VHDL Language Reference Manual.

For a detailed description of supported design constraints, refer to Chapter 5, “Design
Constraints.” For a description of VHDL attribute syntax, see the “VHDL Attribute
Syntax” in Chapter 5.

Introduction
VHDL is a hardware description language that offers a broad set of constructs for
describing even the most complicated logic in a compact fashion. The VHDL language is
designed to fill a number of requirements throughout the design process:

• Allows the description of the structure of a system — how it is decomposed into
subsystems, and how those subsystems are interconnected.

• Allows the specification of the function of a system using familiar programming
language forms.
XST User Guide www.xilinx.com 255
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

• Allows the design of a system to be simulated prior to being implemented and
manufactured. This feature allows you to test for correctness without the delay and
expense of hardware prototyping.

• Provides a mechanism for easily producing a detailed, device-dependent version of a
design to be synthesized from a more abstract specification. This feature allows you to
concentrate on more strategic design decisions, and reduce the overall time to market
for the design.

Data Types in VHDL
XST accepts the following VHDL basic types:

• Enumerated Types:

♦ BIT (’0’,’1’)

♦ BOOLEAN (false, true)

♦ REAL ($-. to $+.)

♦ STD_LOGIC (’U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’) where:

’U’ means uninitialized

’X’ means unknown

’0’ means low

’1’ means high

’Z’ means high impedance

’W’ means weak unknown

’L’ means weak low

’H’ means weak high

’-’ means don’t care

For XST synthesis, the ’0’ and ’L’ values are treated identically, as are ’1’ and ’H’.
The ’X’, and ’-’ values are treated as don’t care. The ’U’ and ’W’ values are not
accepted by XST. The ’Z’ value is treated as high impedance.

♦ User defined enumerated type:

type COLOR is (RED,GREEN,YELLOW);

• Bit Vector Types:

♦ BIT_VECTOR

♦ STD_LOGIC_VECTOR

Unconstrained types (types whose length is not defined) are not accepted.

• Integer Type: INTEGER

The following types are VHDL predefined types.

• BIT

• BOOLEAN

• BIT_VECTOR

• INTEGER

• REAL
256 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Data Types in VHDL
R

 The following types are declared in the STD_LOGIC_1164 IEEE package.

• STD_LOGIC

• STD_LOGIC_VECTOR

This package is compiled in the IEEE library. In order to use one of these types, the
following two lines must be added to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

Overloaded Data Types
The following basic types can be overloaded.

• Enumerated Types:

♦ STD_ULOGIC: contains the same nine values as the STD_LOGIC type, but does
not contain predefined resolution functions

♦ X01: subtype of STD_ULOGIC containing the ’X’, ’0’ and ’1’ values

♦ X01Z: subtype of STD_ULOGIC containing the ’X’, ’0’, ’1’ and ’Z’ values

♦ UX01: subtype of STD_ULOGIC containing the ’U’, ’X’, ’0’ and ’1’ values

♦ UX01Z: subtype of STD_ULOGIC containing the ’U’, ’X’, ’0’,’1’ and ’Z’ values

• Bit Vector Types:

♦ STD_ULOGIC_VECTOR

♦ UNSIGNED

♦ SIGNED

Unconstrained types (types whose length is not defined) are not accepted.

• Integer Types:

♦ NATURAL

♦ POSITIVE

Any integer type within a user-defined range. As an example, "type MSB is range 8 to
15;" means any integer greater than 7 or less than 16.

The types NATURAL and POSITIVE are VHDL predefined types.

The types STD_ULOGIC (and subtypes X01, X01Z, UX01, UX01Z), STD_LOGIC,
STD_ULOGIC_VECTOR and STD_LOGIC_VECTOR are declared in the
STD_LOGIC_1164 IEEE package. This package is compiled in the library IEEE. In order to
use one of these types, the following two lines must be added to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

The types UNSIGNED and SIGNED (defined as an array of STD_LOGIC) are declared in
the STD_LOGIC_ARITH IEEE package. This package is compiled in the library IEEE. In
order to use these types, the following two lines must be added to the VHDL specification:

library IEEE;
use IEEE.STD_LOGIC_ARITH.all;
XST User Guide www.xilinx.com 257
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Multi-dimensional Array Types
XST supports multi-dimensional array types of up to three dimensions. Arrays can be
signals, constants, or VHDL variables. You can do assignments and arithmetic operations
with arrays. You can also pass multi-dimensional arrays to functions, and use them in
instantiations.

The array must be fully constrained in all dimensions. An example is shown below:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

You can also declare an array as a matrix, as in the following example:

subtype TAB13 is array (7 downto 0,4 downto 0)
of STD_LOGIC_VECTOR (8 downto 0);

The following examples demonstrate the various uses of multi-dimensional array signals
and variables in assignments.

Consider the declarations:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;

signal WORD_A : WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CST_A : TAB03 := (
(“0000000”,“0000001”,”0000010”,”0000011”,”0000100”)
(“0010000”,“0010001”,”0010010”,”0100011”,”0010100”)
(“0100000”,“0100001”,”0100010”,”0100011”,”0100100”);

A multi-dimensional array signal or variable can be completely used:

TAB_A <= TAB_B;
TAB_C <= TAB_D;
TAB_C <= CNST_A;

Just an index of one array can be specified:

TAB_A (5) <= WORD_A;
TAB_C (1) <= TAB_A;

Just indexes of the maximum number of dimensions can be specified:

TAB_A (5) (0) <= '1';
TAB_C (2) (5) (0) <= '0'

Just a slice of the first array can be specified:

TAB_A (4 downto 1) <= TAB_B (3 downto 0);

Just an index of a higher level array and a slice of a lower level array can be specified:

TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1);
TAB_D (0) (4) (2 downto 0) <= CNST_A (5 downto 3)

Now add the following declaration:

subtype MATRIX15 is array(4 downto 0, 2 downto 0)
of STD_LOGIC_VECTOR (7 downto 0);
258 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Record Types
R

A multi-dimensional array signal or variable can be completely used:

MATRIX15 <= CNST_A;

Just an index of one row of the array can be specified:

MATRIX15 (5) <= TAB_A;

Just indexes of the maximum number of dimensions can be specified:

MATRIX15 (5,0) (0) <= ’1’;

Just a slice of one row can be specified:

MATRIX15 (4,4 downto 1) <= TAB_B (3 downto 0);

Note also that the indices may be variable.

Record Types
XST supports record types. An example of a record is shown below.

type REC1 is record
field1: std_logic;
field2: std_logic_vector (3 downto 0)

end record;

• Record types can contain other record types.

• Constants can be record types.

• Record types cannot contain attributes.

• XST supports aggregate assignments to record signals.
XST User Guide www.xilinx.com 259
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Initial Values
In VHDL, you can initialize registers when you declare them.

The value:

• Must be a constant.

• Cannot depend on earlier initial values.

• Cannot be a function or task call.

• Can be a parameter value propagated to a register.

When you give a register an initial value in a declaration, XST sets this value on the output
of the register at global reset, or at power up. A value assigned this way is carried in the
NGC file as an INIT attribute on the register, and is independent of any local reset.

Example:

signal arb_onebit : std_logic := ’0’;
signal arb_priority : std_logic_vector(3 downto 0) := ’1011’

You can also assign a set/reset (initial) value to a register via your behavioral VHDL code.
Do this by assigning a value to a register when the register’s reset line goes to the
appropriate value as in the following example.

Example:

process (clk, rst)
begin
if rst=’1’ then

arb_onebit <= ’0’;
end if;

end process;

When you set the initial value of a variable in the behavioral code, it is implemented in the
design as a flip-flop whose output can be controlled by a local reset; as such it is carried in
the NGC file as an FDP or FDC flip-flop.

Local Reset ≠ Global Reset
Note that local reset is independent of global reset. Registers controlled by a local reset may
be set to a different value than ones whose value is only reset at global reset (power up). In
the following example, the register arb_onebit is set to ‘0’ at global reset, but a pulse on the
local reset (rst) can change its value to ‘1’.

Example:

entity top is
Port (

clk, rst : in std_logic;
a_in : in std_logic;
dout : out std_logic
);

end top;
260 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Objects in VHDL
R

architecture Behavioral of top is
signal arb_onebit : std_logic := ’1’;

begin
process (clk, rst)
begin
if rst=’1’ then

arb_onebit <= ’0’;
elsif (clk’event and clk=’1’) then

arb_onebit <= a_in;
end if;

end process;

dout <= arb_onebit;
end Behavioral;

This sets the initial value on the register’s output to ‘1’ at initial power up, but since this is
dependent upon a local reset, the value changes to ‘0’ whenever the local set/reset is
activated.

Objects in VHDL
VHDL objects include signals, variables, and constants.

Signals can be declared in an architecture declarative part and used anywhere within the
architecture. Signals can also be declared in a block and used within that block. Signals can
be assigned by the assignment operator "<=".

Example:

signal sig1 : std_logic;
sig1 <= ’1’;

Variables are declared in a process or a subprogram, and used within that process or that
subprogram. Variables can be assigned by the assignment operator ":=”.

Example:

variable var1 : std_logic_vector (7 downto 0);
var1 := "01010011";

Constants can be declared in any declarative region, and can be used within that region.
Their value cannot be changed once declared.

Example:

signal sig1 : std_logic_vector (5 downto 0);
constant init0 : std_logic_vector (5 downto 0) := "010111";
sig1 <= init0;

Operators
Supported operators are listed in Table 6-7. This section provides an example of how to use
each shift operator.

Example: sll (Shift Left Logical)

A(4 downto 0) sll 2 <= A(2 downto 0) & “00”);

Example: srl (Shift Right Logical)

A(4 downto 0) srl 2 <= “00” & A(4 downto 2);
XST User Guide www.xilinx.com 261
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Example: sla (Shift Left Arithmetic)

A(4 downto 0) sla 2 <= A(2 downto 0) & A(0) & A(0);

Example: sra (Shift Right Arithmetic)

A(4 downto 0) sra 2 <= A(4) & A(4) & A(4 downto 2);

Example: rol (Rotate Left)

A(4 downto 0) rol 2 <= A(2 downto 0) & A(4 downto 3);

Example: ror (Rotate Right)

A(4 downto 0) ror 2 <= A(1 downto 0) & A(4 downto 2);

Entity and Architecture Descriptions
A circuit description consists of two parts: the interface (defining the I/O ports) and the
body. In VHDL, the entity corresponds to the interface and the architecture describes the
behavior.

Entity Declaration
The I/O ports of the circuit are declared in the entity. Each port has a name, a mode (in, out,
inout or buffer) and a type (ports A, B, C, D, E in the Example 6-1).

Note that types of ports must be constrained, and not more than one-dimensional array
types are accepted as ports.

Architecture Declaration
Internal signals may be declared in the architecture. Each internal signal has a name and a
type (signal T in Example 6-1).

Example 6-1 Entity and Architecture Declaration

Library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (

A,B,C : in std_logic;
D,E : out std_logic
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal T : std_logic;

begin
...
end ARCHI;

Component Instantiation
Structural descriptions assemble several blocks and allow the introduction of hierarchy in
a design. The basic concepts of hardware structure are the component, the port and the
262 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Entity and Architecture Descriptions
R

signal. The component is the building or basic block. A port is a component I/O connector.
A signal corresponds to a wire between components.

In VHDL, a component is represented by a design entity. This is actually a composite
consisting of an entity declaration and an architecture body. The entity declaration
provides the "external" view of the component; it describes what can be seen from the
outside, including the component ports. The architecture body provides an "internal"
view; it describes the behavior or the structure of the component.

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring inside an
architecture of another component. Each component instantiation statement is labeled
with an identifier. Besides naming a component declared in a local component declaration,
a component instantiation statement contains an association list (the parenthesized list
following the reserved word port map) that specifies which actual signals or ports are
associated with which local ports of the component declaration.

Note: XST supports unconstrained vectors in component declarations.

Example 6-2 gives the structural description of a half adder composed of four nand2
components.

Example 6-2 Structural Description of a Half Adder

entity NAND2 is
port (

A,B : in BIT;
Y : out BIT
);

end NAND2;

architecture ARCHI of NAND2 is
begin
Y <= A nand B;

end ARCHI;

entity HALFADDER is
port (

X,Y : in BIT;
C,S : out BIT
);

end HALFADDER;

architecture ARCHI of HALFADDER is
component NAND2
port (

A,B : in BIT;
Y : out BIT
);

end component;

for all : NAND2 use entity work.NAND2(ARCHI);
signal S1, S2, S3 : BIT;
begin
NANDA : NAND2 port map (X,Y,S3);
NANDB : NAND2 port map (X,S3,S1);
NANDC : NAND2 port map (S3,Y,S2);
NANDD : NAND2 port map (S1,S2,S);
C <= S3;

end ARCHI;
XST User Guide www.xilinx.com 263
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

The synthesized top level netlist is shown in the following figure.

Recursive Component Instantiation

XST supports recursive component instantiation (please note that direct instantiation is not
supported for recursivity). Example 6-3 shows a 4-bit shift register description:

Example 6-3 4-bit shift register with Recursive Component Instantiation

library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity single_stage is
generic (sh_st: integer:=4);
port (

CLK : in std_logic;
DI : in std_logic;
DO : out std_logic
);

end entity single_stage;

architecture recursive of single_stage is
component single_stage
generic (sh_st: integer);
port (

CLK : in std_logic;
DI : in std_logic;
DO : out std_logic
);

end component;

signal tmp : std_logic;

Figure 6-1: Synthesized Top Level Netlist

A

B

YNANDA

A

B

YNANDD

A

B

YNANDC

A

B

YNANDB

S3

S2

S1

Y

X

C

S

X8952
264 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Entity and Architecture Descriptions
R

begin
GEN_FD_LAST: if sh_st=1 generate
inst_fd: FD port map (D=>DI, C=>CLK, Q=>DO);

end generate;
GEN_FD_INTERM: if sh_st /= 1 generate
inst_fd: FD port map (D=>DI, C=>CLK, Q=>tmp);
inst_sstage: single_stage generic map (sh_st => sh_st-1)

port map (DI=>tmp, CLK=>CLK, DO=>DO);
end generate;

end recursive;

Component Configuration
Associating an entity/architecture pair to a component instance provides the means of
linking components with the appropriate model (entity/architecture pair). XST supports
component configuration in the declarative part of the architecture:

for instantiation_list: component_name use
LibName.entity_Name(Architecture_Name);

Example 6-2, Structural Description of a Half Adder, shows how to use a configuration
clause for component instantiation. The example contains the following “for all”
statement:

for all : NAND2 use entity work.NAND2(ARCHI);

This statement indicates that all NAND2 components use the entity NAND2 and
Architecture ARCHI.

Note: When the configuration clause is missing for a component instantiation, XST links the
component to the entity with the same name (and same interface) and the selected architecture to
the most recently compiled architecture. If no entity/architecture is found, a black box is generated
during synthesis.

Generic Parameter Declaration
Generic parameters may be declared in the entity declaration part. XST supports all types
for generics including integer, boolean, string, real, std_logic_vector, etc. An example of
using generic parameters would be setting the width of the design. In VHDL, describing
circuits with generic ports has the advantage that the same component can be repeatedly
instantiated with different values of generic ports as shown in Example 6-4.

Example 6-4 Generic Instantiation of Components

Library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic (width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0)
);

end addern;
XST User Guide www.xilinx.com 265
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

architecture bhv of addern is
begin
Y <= A + B;

end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity top is
port (

X, Y, Z : in std_logic_vector (12 downto 0);
A, B : in std_logic_vector (4 downto 0);
S :out std_logic_vector (16 downto 0)
);

end top;

architecture bhv of top is
component addern
generic (width : integer := 8);
port (

A,B : in std_logic_vector (width-1 downto 0);
Y : out std_logic_vector (width-1 downto 0)
);

end component;

for all : addern use entity work.addern(bhv);
signal C1 : std_logic_vector (12 downto 0);
signal C2, C3 : std_logic_vector (16 downto 0);
begin
U1 : addern generic map (n=>13), port map (X,Y,C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map (n=>17), port map (C2,C3,S);

end bhv;

Combinatorial Circuits
The following subsections describe how XST uses various VHDL constructs for
combinatorial circuits.

Concurrent Signal Assignments
Combinatorial logic may be described using concurrent signal assignments, which can be
defined within the body of the architecture. VHDL offers three types of concurrent signal
assignments: simple, selected and conditional. You can describe as many concurrent
statements as needed; the order of concurrent signal definition in the architecture is
irrelevant.

A concurrent assignment is made of two parts: left hand side, and right hand side. The
assignment changes when any signal in the right part changes. In this case, the result is
assigned to the signal on the left part.

Simple Signal Assignment
The following example shows a simple assignment.

T <= A and B;
266 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Combinatorial Circuits
R

Selected Signal Assignment
The following example shows a selected signal assignment.

Example 6-5 MUX Description Using Selected Signal Assignment

library IEEE;
use IEEE.std_logic_1164.all;

entity select_bhv is
generic (width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
selector : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0)
);

end select_bhv;
architecture bhv of select_bhv is
begin
with selector select
T <= a when "00",

b when "01",
c when "10",
d when others;

end bhv;

Conditional Signal Assignment
The following example shows a conditional signal assignment.

Example 6-6 MUX Description Using Conditional Signal Assignment

entity when_ent is
generic (width: integer := 8);
port (

a, b, c, d : in std_logic_vector (width-1 downto 0);
selector : in std_logic_vector (1 downto 0);
T : out std_logic_vector (width-1 downto 0)
);

end when_ent;
architecture bhv of when_ent is
begin
T <= a when selector = "00" else

b when selector ="01" else
c when selector ="10" else
d;

end bhv;

Generate Statement
Repetitive structures are declared with the "generate" VHDL statement. For this purpose,
"for I in 1 to N generate" means that the bit slice description is repeated N times. As an
example, Example 6-7 gives a description of an 8-bit adder by declaring the bit slice
structure.
XST User Guide www.xilinx.com 267
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

 Example 6-7 8 Bit Adder Described with a "for...generate" Statement

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (0 to 7);
CIN : in BIT;
SUM : out BIT_VECTOR (0 to 7);
COUT : out BIT
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal C : BIT_VECTOR (0 to 8);
begin
C(0) <= CIN;
COUT <= C(8);
LOOP_ADD : for I in 0 to 7 generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end ARCHI;

The "if condition generate" statement is supported for static (non-dynamic) conditions.
Example 6-8 shows such an example. It is a generic N-bit adder with a width ranging
between 4 and 32.

Example 6-8 N Bit Adder Described with an "if...generate" and a "for… generate"
Statement

entity EXAMPLE is
generic (N : INTEGER := 8);
port (

A,B : in BIT_VECTOR (N downto 0);
CIN : in BIT;
SUM : out BIT_VECTOR (N downto 0);
COUT : out BIT
);

end EXAMPLE;
architecture ARCHI of EXAMPLE is
signal C : BIT_VECTOR (N+1 downto 0);
begin
L1: if (N>=4 and N<=32) generate
C(0) <= CIN;
COUT <= C(N+1);
LOOP_ADD : for I in 0 to N generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I+1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));

end generate;
end generate;

end ARCHI;

Combinatorial Process
A process assigns values to signals differently than when using concurrent signal
assignments. The value assignments are made in a sequential mode. The latest
assignments may cancel previous ones. See Example 6-9. First the signal S is assigned to 0,
but later on (for (A and B) =1), the value for S is changed to 1.
268 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Combinatorial Circuits
R

Example 6-9 Assignments in a Process

entity EXAMPLE is
port (

A, B : in BIT;
S : out BIT
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (A, B)
begin
S <= ’0’ ;
if ((A and B) = ’1’) then

S <= ’1’ ;
end if;

end process;
end ARCHI;

A process is called combinatorial when its inferred hardware does not involve any
memory elements. Said differently, when all assigned signals in a process are always
explicitly assigned in all paths of the process statements, then the process in combinatorial.

A combinatorial process has a sensitivity list appearing within parentheses after the word
"process". A process is activated if an event (value change) appears on one of the sensitivity
list signals. For a combinatorial process, this sensitivity list must contain all signals which
appear in conditions (if, case, etc.), and any signal appearing on the right hand side of an
assignment.

If one or more signals are missing from the sensitivity list, XST generates a warning for the
missing signals and adds them to the sensitivity list. In this case, the result of the synthesis
may be different from the initial design specification.

A process may contain local variables. The variables are handled in a similar manner as
signals (but are not, of course, outputs to the design).

In Example 6-10, a variable named AUX is declared in the declarative part of the process
and is assigned to a value (with ":=") in the statement part of the process. Examples 6-10
and 6-11 are two examples of a VHDL design using combinatorial processes.

Example 6-10 Combinatorial Process

library ASYL;
use ASYL.ARITH.all;

entity ADDSUB is
port (

A,B : in BIT_VECTOR (3 downto 0);
ADD_SUB : in BIT;
S : out BIT_VECTOR (3 downto 0)
);

end ADDSUB;
XST User Guide www.xilinx.com 269
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

architecture ARCHI of ADDSUB is
begin
process (A, B, ADD_SUB)
variable AUX : BIT_VECTOR (3 downto 0);

begin
if ADD_SUB = ’1’ then

AUX := A + B ;
else

AUX := A - B ;
end if;
S <= AUX;

end process;
end ARCHI;

Example 6-11 Combinatorial Process

entity EXAMPLE is
port (

A, B : in BIT;
S : out BIT
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (A,B)
variable X, Y : BIT;

begin
X := A and B;
Y := B and A;
if X = Y then
S <= ’1’ ;

end if;
end process;

end ARCHI;

Note: In combinatorial processes, if a signal is not explicitly assigned in all branches of "if" or "case"
statements, XST generates a latch to hold the last value. To avoid latch creation, ensure that all
assigned signals in a combinatorial process are always explicitly assigned in all paths of the process
statements.

 Different statements can be used in a process:

• Variable and signal assignment

• If statement

• Case statement

• For...Loop statement

• Function and procedure call

The following sections provide examples of each of these statements.

If...Else Statement
If...else statements use true/false conditions to execute statements. If the expression
evaluates to true, the first statement is executed. If the expression evaluates to false (or x or
z), the else statement is executed. A block of multiple statements may be executed using
begin and end keywords. If ... else statements may be nested. Example 6-12 shows the use
of an If...else statement.
270 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Combinatorial Circuits
R

Example 6-12 MUX Description Using If...Else Statement

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));

end mux4;

architecture behavior of mux4 is
begin
process (a, b, c, d, sel1, sel2)
begin
if (sel1 = ’1’) then

if (sel2 = ’1’) then
outmux <= a;

else
outmux <= b;

end if;
else

if (sel2 = ’1’) then
outmux <= c;

else
outmux <= d;

end if;
end if;

end process;
end behavior;

Case Statement
Case statements perform a comparison to an expression to evaluate one of a number of
parallel branches. The case statement evaluates the branches in the order they are written;
the first branch that evaluates to true is executed. If none of the branches match, the default
branch is executed. Example 6-13 shows the use of a Case statement.

Example 6-13 MUX Description Using the Case Statement

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (

a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0)
);

end mux4;
XST User Guide www.xilinx.com 271
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

architecture behavior of mux4 is
begin
process (a, b, c, d, sel)
begin
case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement must be complete

end case;
end process;

end behavior;

For...Loop Statement
The "for" statement is supported for:

• Constant bounds

• Stop test condition using operators <, <=, > or >=

• Next step computation falling in one of the following specifications:

♦ var = var + step

♦ var = var - step

(where var is the loop variable and step is a constant value).

• Next and Exit statements are supported

Example 6-14 shows the use of a For...loop statement.

Example 6-14 For...Loop Description

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity countzeros is
port (

a : in std_logic_vector (7 downto 0);
Count : out std_logic_vector (2 downto 0)
);

end mux4;

architecture behavior of mux4 is
signal Count_Aux: std_logic_vector (2 downto 0);
begin
process (a)
begin
Count_Aux <= "000";
for i in a’range loop
if (a[i] = ’0’) then

Count_Aux <= Count_Aux + 1; -- operator "+" defined
-- in std_logic_unsigned

end if;
end loop;
Count <= Count_Aux;

end process;
end behavior;
272 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Sequential Circuits
R

Sequential Circuits
Sequential circuits can be described using sequential processes. The following two types of
descriptions are allowed by XST:

• sequential processes with a sensitivity list

• sequential processes without a sensitivity list

Sequential Process with a Sensitivity List
A process is sequential when it is not a combinatorial process. In other words, a process is
sequential when some assigned signals are not explicitly assigned in all paths of the
statements. In this case, the hardware generated has an internal state or memory (flip-flops
or latches).

Example 6-15 provides a template for describing sequential circuits. Also refer to the
chapter describing macro inference for additional details (registers, counters, etc.).

Example 6-15 Sequential Process with Asynchronous, Synchronous Parts

process (CLK, RST) ...
begin
if RST = <’0’ | ’1’> then
-- an asynchronous part may appear here
-- optional part
.......

elsif <CLK'EVENT | not CLK’STABLE>
and CLK = <'0' | '1'> then
-- synchronous part
-- sequential statements may appear here

end if;
end process;

Note: Asynchronous signals must be declared in the sensitivity list. Otherwise, XST generates a
warning and adds them to the sensitivity list. In this case, the behavior of the synthesis result may be
different from the initial specification.

Sequential Process without a Sensitivity List
Sequential processes without a sensitivity list must contain a "wait" statement. The "wait"
statement must be the first statement of the process. The condition in the "wait" statement
must be a condition on the clock signal. Several "wait" statements in the same process are
accepted, but a set of specific conditions must be respected. See “Multiple Wait Statements
Descriptions” for details. An asynchronous part cannot be specified within processes
without a sensitivity list.

Example 6-16 shows the skeleton of such a process. The clock condition may be a falling or
a rising edge.

Example 6-16 Sequential Process Without a Sensitivity List

process ...
begin
wait until <CLK'EVENT | not CLK’ STABLE> and CLK = <'0' | '1'>;
... -- a synchronous part may be specified here.

end process;

Note that XST does not support clock and clock enable descriptions within the same wait
statement. Instead, code these descriptions as in Example 6-17.
XST User Guide www.xilinx.com 273
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Example 6-17 Clock and Clock Enable

Not supported:

wait until CLOCK’event and CLOCK = ’0’ and ENABLE = ’1’ ;

Supported:

wait until CLOCK’event and CLOCK = ’0’ ;
if ENABLE = ’1’ then ...

Examples of Register and Counter Descriptions
Example 6-18 describes an 8-bit register using a process with a sensitivity list. Example
6-19 describes the same example using a process without a sensitivity list containing a
"wait" statement.

Example 6-18 8 bit Register Description Using a Process with a Sensitivity List

entity EXAMPLE is
port (

DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0)
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (CLK)
begin
if CLK’EVENT and CLK = ’1’ then

DO <= DI ;
end if;

end process;
end ARCHI;

Example 6-19 8 bit Register Description Using a Process without a Sensitivity List

entity EXAMPLE is
port (

DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
DO : out BIT_VECTOR (7 downto 0)
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process begin
wait until CLK’EVENT and CLK = ’1’;
DO <= DI;

end process;
end ARCHI;
274 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Sequential Circuits
R

Example 6-20 describes an 8-bit register with a clock signal and an asynchronous reset
signal.

Example 6-20 8 bit Register Description Using a Process with a Sensitivity List

entity EXAMPLE is
port (

DI : in BIT_VECTOR (7 downto 0);
CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0)
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (CLK, RST)
begin
if RST = ’1’ then

DO <= "00000000";
elsif CLK’EVENT and CLK = ’1’ then

DO <= DI ;
end if;

end process;
end ARCHI;

Example 6-21 8 bit Counter Description Using a Process with a Sensitivity List

library ASYL;
use ASYL.PKG_ARITH.all;

entity EXAMPLE is
port (

CLK : in BIT;
RST : in BIT;
DO : out BIT_VECTOR (7 downto 0)
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (CLK, RST)
variable COUNT : BIT_VECTOR (7 downto 0);

begin
if RST = ’1’ then

COUNT := "00000000";
elsif CLK’EVENT and CLK = ’1’ then

COUNT := COUNT + "00000001";
end if;
DO <= COUNT;

end process;
end ARCHI;

Multiple Wait Statements Descriptions
Sequential circuits can be described with multiple wait statements in a process. When
using XST, several rules must be respected to use multiple wait statements. These rules are
as follows:
XST User Guide www.xilinx.com 275
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

• The process must only contain one loop statement.

• The first statement in the loop must be a wait statement.

• After each wait statement, a next or exit statement must be defined.

• The condition in the wait statements must be the same for each wait statement.

• This condition must use only one signal — the clock signal.

• This condition must have the following form:

"wait [on clock_signal] until [(clock_signal’EVENT |
not clock_signal’STABLE) and] clock_signal = {’0’ | ’1’};"

Example 6-22 uses multiple wait statements. This example describes a sequential circuit
performing four different operations in sequence. The design cycle is delimited by two
successive rising edges of the clock signal. A synchronous reset is defined providing a way
to restart the sequence of operations at the beginning. The sequence of operations consists
of assigning each of the four inputs: DATA1, DATA2, DATA3 and DATA4 to the output
RESULT.

Example 6-22 Sequential Circuit Using Multiple Wait Statements

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity EXAMPLE is
port (

DATA1, DATA2, DATA3, DATA4 : in STD_LOGIC_VECTOR (3 downto 0);
RESULT : out STD_LOGIC_VECTOR (3 downto 0);
CLK : in STD_LOGIC;
RST : in STD_LOGIC
);

end EXAMPLE;

architecture ARCH of EXAMPLE is
begin
process begin
SEQ_LOOP : loop
wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA1;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA2;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA3;

wait until CLK’EVENT and CLK = ’1’;
exit SEQ_LOOP when RST = ’1’;
RESULT <= DATA4;

end loop;
end process;

end ARCH;
276 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Functions and Procedures
R

Functions and Procedures
The declaration of a function or a procedure provides a mechanism for handling blocks
used multiple times in a design. Functions and procedures can be declared in the
declarative part of an entity, in an architecture or in packages. The heading part contains
the parameters: input parameters for functions and input, output and inout parameters for
procedures. These parameters can be unconstrained. This means that they are not
constrained to a given bound. The content is similar to the combinatorial process content.

Resolution functions are not supported except the one defined in the IEEE std_logic_1164
package.

Example 6-23 shows a function declared within a package. The "ADD" function declared
here is a single bit adder. This function is called 4 times with the proper parameters in the
architecture to create a 4-bit adder. The same example described using a procedure is
shown in Example 6-24.

Example 6-23 Function Declaration and Function Call

package PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR;

end PKG;

package body PKG is
function ADD (A,B, CIN : BIT)
return BIT_VECTOR is
variable S, COUT : BIT;
variable RESULT : BIT_VECTOR (1 downto 0);

begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT & S;
return RESULT;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);
begin
S0 <= ADD (A(0), B(0), CIN);
S1 <= ADD (A(1), B(1), S0(1));
S2 <= ADD (A(2), B(2), S1(1));
S3 <= ADD (A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end ARCHI;
XST User Guide www.xilinx.com 277
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Example 6-24 Procedure Declaration and Procedure Call

package PKG is
procedure ADD (

A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)
);

end PKG;
package body PKG is
procedure ADD (

A,B, CIN : in BIT;
C : out BIT_VECTOR (1 downto 0)
) is

variable S, COUT : BIT;
begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT & S;

end ADD;
end PKG;

use work.PKG.all;

entity EXAMPLE is
port (

A,B : in BIT_VECTOR (3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR (3 downto 0);
COUT : out BIT
);

end EXAMPLE;

architecture ARCHI of EXAMPLE is
begin
process (A,B,CIN)
variable S0, S1, S2, S3 : BIT_VECTOR (1 downto 0);

begin
ADD (A(0), B(0), CIN, S0);
ADD (A(1), B(1), S0(1), S1);
ADD (A(2), B(2), S1(1), S2);
ADD (A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);

end process;
end ARCHI;

XST supports recursive functions as well. Example 6-25 represents n! function.

Example 6-25 Recursive Function

function my_func(x : integer) return integer is
begin
if x = 1 then

return x;
else

return (x*my_func(x-1));
end if;

end function my_func;
278 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Assert Statement
R

Assert Statement
XST supports the use of the Assert statement. By using the Assert statement, designers can
detect undesirable conditions in their VHDL designs such as bad values for generics,
constants and generate conditions, or bad values for parameters in called functions. For
any failed condition in an Assert statement, XST, according to the severity level, generates
a warning message with the reason for the warming, or rejects the design and generates an
error message and the reason for the rejection.

Note: XST supports the Assert statement only with static condition.

The following example contains a block, SINGE_SRL, that describes a shift register. The
size of the shift register depends on the SRL_WIDTH generic value. The Assert statement
ensures that the implementation of a single shift register does not exceed the size of a
single SRL.

Since the size of the SRL is 16 bit, and XST implements the last stage of the shift register
using a flip-flop in a slice, then the maximum size of the shift register cannot exceed 17 bits.
The SINGE_SRL block is instantiated twice in the entity named TOP, the first time with
SRL_WIDTH equal to 13, and the second time with SRL_WIDTH equal to 18:

library ieee;
use ieee.std_logic_1164.all;

entity SINGE_SRL is
generic (SRL_WIDTH : integer := 16);
port (

clk : in std_logic;
inp : in std_logic;
outp : out std_logic
);

end SINGE_SRL;

architecture beh of SINGE_SRL is
signal shift_reg : std_logic_vector (SRL_WIDTH-1 downto 0);

begin

assert SRL_WIDTH <= 17
report "The size of Shift Register exceeds the size of a single SRL"
severity FAILURE;

process (clk)
begin
if (clk’event and clk = ’1’) then

shift_reg <= shift_reg (SRL_WIDTH-1 downto 1) & inp;
end if;

end process;
outp <= shift_reg(SRL_WIDTH-1);

end beh;
XST User Guide www.xilinx.com 279
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

library ieee;
use ieee.std_logic_1164.all;

entity TOP is
port (

clk : in std_logic;
inp1, inp2 : in std_logic;
outp1, outp2 : out std_logic
);

end TOP;

architecture beh of TOP is
component SINGE_SRL is
generic (SRL_WIDTH : integer := 16);
port(

clk : in std_logic;
inp : in std_logic;
outp : out std_logic
);

end component;
begin
inst1: SINGE_SRL generic map (SRL_WIDTH => 13)
port map(

clk => clk,
inp => inp1,
outp => outp1
);

inst2: SINGE_SRL generic map (SRL_WIDTH => 18)
port map(

clk => clk,
inp => inp2,
outp => outp2
);

end beh;

Running this example through XST results in the following error message generated by the
Assert statement.

...
===
* HDL Analysis *
===
Analyzing Entity <top> (Architecture <beh>).
Entity <top> analyzed. Unit <top> generated.

Analyzing generic Entity <singe_srl> (Architecture <beh>).
SRL_WIDTH = 13

Entity <singe_srl> analyzed. Unit <singe_srl> generated.

Analyzing generic Entity <singe_srl> (Architecture <beh>).
SRL_WIDTH = 18

ERROR:Xst - assert_1.vhd line 15: FAILURE: The size of Shift Register
exceeds the size of a single SRL
...
280 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Packages
R

Packages
VHDL models may be defined using packages. Packages contain type and subtype
declarations, constant definitions, function and procedure definitions, and component
declarations.

This mechanism provides the ability to change parameters and constants of the design (for
example, constant values, function definitions). Packages may contain two declarative
parts: package declaration and body declaration. The body declaration includes the
description of function bodies declared in the package declaration.

XST provides full support for packages. To use a given package, the following lines must
be included at the beginning of the VHDL design:

library lib_pack;
-- lib_pack is the name of the library specified
-- where the package has been compiled (work by default)
use lib_pack.pack_name.all;
-- pack_name is the name of the defined package.

XST also supports predefined packages; these packages are pre-compiled and can be
included in VHDL designs. These packages are intended for use during synthesis, but may
also used for simulation.

STANDARD Package
The Standard package contains basic types (bit, bit_vector, and integer). The STANDARD
package is included by default.

IEEE Packages
 The following IEEE packages are supported.

• std_logic_1164: defines types std_logic, std_ulogic, std_logic_vector,
std_ulogic_vector, and conversion functions based on these types.

• numeric_bit: supports types unsigned, signed vectors based on type bit, and all
overloaded arithmetic operators on these types. It also defines conversion and
extended functions for these types.

• numeric_std: supports types unsigned, signed vectors based on type std_logic. This
package is equivalent to std_logic_arith.

• math_real: supports the following.

♦ Real number constants as shown in the following table:

Constant Value Constant Value

math_e e math_log_of_2 ln2

math_1_over_e 1/e math_log_of_10 ln10

math_pi math_log2_of_e log2e

math_2_pi math_log10_of_e log10e

math_1_over_pi math_sqrt_2

math_pi_over_2 math_1_oversqrt_2

π

2π

1 π⁄ 2

π 2⁄ 1 2⁄
XST User Guide www.xilinx.com 281
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

♦ Real number functions as shown in the following table:

♦ The procedure uniform, which generates successive values between 0.0 and 1.0.

Note: Functions and procedures in the math_real package, as well as the real type, are for
calculations only. They are not supported for synthesis in XST.

Example:

library ieee;
use IEEE.std_logic_signed.all;
signal a, b, c : std_logic_vector (5 downto 0);
c <= a + b;
-- this operator "+" is defined in package std_logic_signed.
-- Operands are converted to signed vectors, and function "+"
-- defined in package std_logic_arith is called with signed
-- operands.

Synopsys Packages
The following Synopsys packages are supported in the IEEE library.

• std_logic_arith: supports types unsigned, signed vectors, and all overloaded
arithmetic operators on these types. It also defines conversion and extended functions
for these types.

• std_logic_unsigned: defines arithmetic operators on std_ulogic_vector and considers
them as unsigned operators.

• std_logic_signed: defines arithmetic operators on std_logic_vector and considers
them as signed operators.

• std_logic_misc: defines supplemental types, subtypes, constants, and functions for the
std_logic_1164 package (and_reduce, or_reduce, ...).

math_pi_over_3 math_sqrt_pi

math_pi_over_4 math_deg_to_rad

math_3_pi_over_2 math_rad_to_deg

ceil(x) realmax(x,y
)

exp(x) cos(x) cosh(x)

floor(x) realmin(x,y
)

log(x) tan(x) tanh(x)

round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)

trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)

sign(x) “**”(n,y) log(x,y) arctan(y,x) arctanh(x)

“mod”(x,y) “**”(x,y) sin(x) sinh(x)

Constant Value Constant Value

π 3⁄ π

π 4⁄ 2π 360⁄

3π 2⁄ 360 2π⁄
282 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

VHDL Language Support
R

VHDL Language Support
The following tables indicate which VHDL constructs are supported in XST. For more
information about these constructs, refer to the sections following the tables.

Table 6-1: Design Entities and Configurations

Entity Header

Generics Supported

(integer type only)

Ports Supported

(no unconstrained
ports)

Entity Declarative Part Supported

Entity Statement Part Unsupported

Architecture Bodies

Architecture Declarative Part Supported

Architecture Statement Part Supported

Configuration Declarations

Block Configuration Supported

Component Configuration Supported

Subprograms

Functions Supported

Procedures Supported
XST User Guide www.xilinx.com 283
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Packages

STANDARD Type TIME is not
supported

TEXTIO Unsupported

STD_LOGIC_1164 Supported

STD_LOGIC_ARITH Supported

STD_LOGIC_SIGNED Supported

STD_LOGIC_UNSIGNED Supported

STD_LOGIC_MISC Supported

NUMERIC_BIT Supported

NUMERIC_EXTRA Supported

NUMERIC_SIGNED Supported

NUMERIC_UNSIGNED Supported

NUMERIC_STD Supported

MATH_REAL Supported

ASYL.ARITH Supported

ASYL.SL_ARITH Supported

ASYL.PKG_RTL Supported

ASYL.ASYL1164 Supported

Enumeration Types

BOOLEAN, BIT Supported

STD_ULOGIC,

STD_LOGIC

Supported

XO1, UX01, XO1Z, UX01Z Supported

Character Supported

Integer Types

INTEGER Supported

POSITIVE Supported

NATURAL Supported

Physical Types

TIME Ignored

REAL Supported (only in
functions for constant
calculations)

Table 6-1: Design Entities and Configurations
284 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

VHDL Language Support
R

Composite

BIT_VECTOR Supported

STD_ULOGIC_VECTOR Supported

STD_LOGIC_VECTOR Supported

UNSIGNED Supported

SIGNED Supported

Record Supported

Access Unsupported

File Unsupported

Table 6-2: Mode

In, Out, Inout Supported

Buffer Supported

Linkage Unsupported

Table 6-3: Declarations

Type Supported for enumerated types, types with positive
range having constant bounds, bit vector types, and
multi-dimensional arrays

Subtype Supported

Table 6-1: Design Entities and Configurations
XST User Guide www.xilinx.com 285
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Table 6-4: Objects

Constant Declaration Supported (deferred constants are not
supported)

Signal Declaration Supported (“register” or “bus” type
signals are not supported)

Variable Declaration Supported

File Declaration Unsupported

Alias Declaration Supported

Attribute Declaration Supported for some attributes, otherwise
skipped (see Chapter 5, “Design
Constraints”)

Component Declaration Supported

Table 6-5: Specifications

Attribute Only supported for some predefined
attributes: HIGH, LOW, LEFT, RIGHT,
RANGE, REVERSE_RANGE, LENGTH, POS,
ASCENDING, EVENT, LAST_VALUE.

Otherwise, ignored.

Configuration Supported only with the “all” clause for
instances list. If no clause is added, XST looks
for the entity/architecture compiled in the
default library.

Disconnection Unsupported

Table 6-6: Names

Simple Names Supported

Selected Names Supported

Indexed Names Supported

Slice Names Supported (including dynamic ranges)
286 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

VHDL Language Support
R

Note: XST does not allow underscores as the first character of signal names (for example,
_DATA_1).

Table 6-7: Expressions

Operators

Logical Operators:

and, or, nand, nor, xor, xnor,
not

Supported

Relational Operators:

=, /=, <, <=, >, >=

Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/,rem Supported if the right operand is a
constant power of 2

mod Supported

Shift Operators:

sll, srl, sla, sra, rol, ror

Supported

abs Supported

** Only supported if the left operand is 2

Sign: +, - Supported

Operands

Abstract Literals Only integer literals are supported

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Supported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined
attributes

Types Conversions Supported

Allocators Unsupported

Static Expressions Supported
XST User Guide www.xilinx.com 287
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

Table 6-8: Supported VHDL Statements

Wait Statement

Wait on sensitivity_list
until Boolean_expression.
See “Sequential Circuits”
for details.

Supported with one signal in the
sensitivity list and in the Boolean
expression. In case of multiple wait
statements, the sensitivity list and the
Boolean expression must be the same for
each wait statement.

Wait for time_expression...
See “Sequential Circuits”
for details.

Unsupported

Assertion Statement Supported (only for static conditions)

Signal Assignment

Statement

Supported (delay is ignored)

Variable Assignment

Statement

Supported

Procedure Call Statement Supported

If Statement Supported

Case Statement Supported

Loop Statement

“for ... loop ... end loop” Supported for constant bounds only

“while ... loop ... end loop” Supported

“loop ... end loop” Only supported in the particular case of
multiple wait statements

Next Statement Supported

Exit Statement Supported

Return Statement Supported

Null Statement Supported
288 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

VHDL Reserved Words
R

VHDL Reserved Words
The following table shows the VHDL reserved words.

Concurrent
Statement

Process Statement Supported

Concurrent Procedure
Call

Supported

Concurrent Assertion
Statement

Ignored

Concurrent Signal

Assignment Statement

Supported (no “after” clause, no
“transport” or “guarded” options, no
waveforms)

Component Instantiation
Statement

Supported

“For ... Generate” Statement supported for constant
bounds only

“If ... Generate” Statement supported for static condition
only

Table 6-8: Supported VHDL Statements

abs configuration impure null rem type

access constant in of report unaffected

after disconnect inertial on return units

alias downto inout open rol until

all else is or ror use

and elsif label others select variable

architectur
e

end library out severity wait

array entity linkage package signal when

assert exit literal port shared while

attribute file loop postponed sla with

begin for map procedure sll xnor

block function mod process sra xor

body generate nand pure srl

buffer generic new range subtype

bus group next record then

case guarded nor register to

component if not reject transport
XST User Guide www.xilinx.com 289
 1-800-255-7778

http://www.xilinx.com

Chapter 6: VHDL Language Support
R

290 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 7

Verilog Language Support

This chapter contains the following sections.

• “Introduction”

• “Behavioral Verilog Features”

• “Structural Verilog Features”

• “Parameters”

• “Verilog Limitations in XST”

• “Verilog Meta Comments”

• “Verilog-2001 Attributes”

• “Language Support Tables”

• “Primitives”

• “Verilog Reserved Keywords”

• “Verilog-2001 Support in XST”

For detailed information about Verilog design constraints and options, refer to Chapter 5,
“Design Constraints”. For information about the Verilog attribute syntax, see “Verilog
Meta Comment Syntax” in Chapter 5.

For information on setting Verilog options in the Process window of Project Navigator,
refer to “General Constraints” in Chapter 5.

Introduction
Complex circuits are commonly designed using a top down methodology. Various
specification levels are required at each stage of the design process. As an example, at the
architectural level, a specification may correspond to a block diagram or an Algorithmic
State Machine (ASM) chart. A block or ASM stage corresponds to a register transfer block
(for example register, adder, counter, multiplexer, glue logic, finite state machine) where
the connections are N-bit wires. Use of an HDL language like Verilog allows expressing
notations such as ASM charts and circuit diagrams in a computer language. Verilog
provides both behavioral and structural language structures which allow expressing
design objects at high and low levels of abstraction. Designing hardware with a language
like Verilog allows usage of software concepts such as parallel processing and object-
oriented programming. Verilog has a syntax similar to C and Pascal, and is supported by
XST as IEEE 1364.

The Verilog support in XST provides an efficient way to describe both the global circuit and
each block according to the most efficient "style.” Synthesis is then performed with the best
synthesis flow for each block. Synthesis in this context is the compilation of high-level
behavioral and structural Verilog HDL statements into a flattened gate-level netlist, which
XST User Guide www.xilinx.com 291
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

can then be used to custom program a programmable logic device such as the Virtex™
FPGA family. Different synthesis methods are used for arithmetic blocks, glue logic, and
finite state machines.

This manual assumes that you are familiar with the basic notions of Verilog. Please refer to
the IEEE Verilog HDL Reference Manual for a complete specification.

Behavioral Verilog Features
This section contains descriptions of the behavioral features of Verilog.

Variable Declaration
Variables in Verilog may be declared as integers or real. These declarations are intended
only for use in test code. Verilog provides data types such as reg and wire for actual
hardware description.

The difference between reg and wire is whether the variable is given its value in a
procedural block (reg) or in a continuous assignment (wire) Verilog code. Both reg and
wire have a default width being one bit wide (scalar). To specify an N-bit width (vectors)
for a declared reg or wire, the left and right bit positions are defined in square brackets
separated by a colon. In Verilog-2001, both reg and wire data types can be signed or
unsigned.

Example:

reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

where arb_request[31] is the MSB and arb_request[0] is the LSB.

Initial Values

In Verilog-2001, you can initialize registers when you declare them.

The value:

• Must be a constant.

• Cannot depend on earlier initial values.

• Cannot be a function or task call.

• Can be a parameter value propagated to the register.

When you give a register an initial value in a declaration, XST sets this value on the output
of the register at global reset, or at power up. A value assigned this way is carried in the
NGC file as an INIT attribute on the register, and is independent of any local reset.

Example:

reg arb_onebit = 1’b0;
reg [3:0] arb_priority = 4’b1011;

You can also assign an set/reset (initial) value to a register via your behavioral Verilog
code. Do this by assigning a value to a register when the register’s reset line goes to the
appropriate value as in the following example.
292 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Example:

always @(posedge clk)
begin

if (rst)
arb_onebit <= 1’b0;

end
end

When you set the initial value of a variable in the behavioral code, it is implemented in the
design as a flip-flop whose output can be controlled by a local reset; as such it is carried in
the NGC file as an FDP or FDC flip-flop.

Local Reset ≠ Global Reset

Note that local reset is independent of global reset. Registers controlled by a local reset may
be set to a different value than ones whose value is only reset at global reset (power up). In
the following example, the register, arb_onebit, is set to ‘0’ at global reset, but a pulse on the
local reset (rst) can change it’s value to ‘1’.

Example:

module mult(clk, rst, A_IN, B_OUT);
input clk,rst,A_IN;
output B_OUT;

reg arb_onebit = 1’b0;

always @(posedge clk or posedge rst)
begin
if (rst)
arb_onebit <= 1’b1;

else
arb_onebit <= A_IN;

end
end

B_OUT <= arb_onebit;
endmodule

This sets the set/reset value on the register’s output at initial power up, but since this is
dependent upon a local reset, the value changes whenever the local set/reset is activated.

Arrays

Verilog allows arrays of reg and wires to be defined as in the following two examples:

reg [3:0] mem_array [31:0];

The above describes an array of 32 elements each, 4 bits wide which can be assigned via
behavioral Verilog code.

wire [7:0] mem_array [63:0];

The above describes an array of 64 elements each 8 bits wide which can only be assigned
via structural Verilog code.

Multi-dimensional Arrays

XST supports multi-dimensional array types of up to three dimensions. Multi-dimensional
arrays can be any net or any variable data type. You can code assignments and arithmetic
operations with arrays, but you cannot select more than one element of an array at one
XST User Guide www.xilinx.com 293
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

time. You cannot pass multi-dimensional arrays to system tasks or functions, or regular
tasks or functions.

Examples

The following describes an array of 256 x 16 wire elements each 8 bits wide, which can only
be assigned via structural Verilog code.

wire [7:0] array2 [0:255][0:15];

The following describes an array of 256 x 8 register elements, each 64 bits wide, which can
be assigned via behavioral Verilog code.

reg [63:0] regarray2 [255:0][7:0];

The following is a three dimensional array. It can be described as an array of 15 arrays of
256 x 16 wire elements, each 8 bits wide, which can be assigned via structural Verilog code.

wire [7:0] array3 [0:15][0:255][0:15];

Data Types
The Verilog representation of the bit data type contains the following four values:

• 0: logic zero

• 1: logic one

• x: unknown logic value

• z: high impedance

XST includes support for the following Verilog data types:

• Net: wire, tri, triand/wand, trior/wor

• Registers: reg, integer

• Supply nets: supply0, supply1

• Constants: parameter

• Multi-Dimensional Arrays (Memories)

Net and registers can be either single bit (scalar) or multiple bit (vectors).

The following example gives some examples of Verilog data types (as found in the
declaration section of a Verilog module).

Example 7-1 Basic Data Types

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3’b001; // 3 bit constant
parameter component = "TMS380C16"; // string
294 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Legal Statements
The following are statements that are legal in behavioral Verilog.

Variable and signal assignment:

• Variable = expression

• if (condition) statement

• if (condition) statement else statement

• case (expression)

expression: statement

 …

default: statement

endcase

• for (variable = expression; condition; variable = variable + expression) statement

• while (condition) statement

• forever statement

• functions and tasks

Note: All variables are declared as integer or reg. A variable cannot be declared as a wire.

Expressions
An expression involves constants and variables with arithmetic (+, -, *,**, /,%), logical (&,
&&, |, ||, ^, ~,~^, ^~, <<, >>,<<<,>>>), relational (<, ==, ===, <=, >=,!=,!==, >), and
conditional (?) operators. The logical operators are further divided as bit-wise versus
logical depending on whether it is applied to an expression involving several bits or a
single bit. The following table lists the expressions supported by XST.

Table 7-1: Expressions

Concatenation {} Supported

Replication {{}} Supported

Arithmetic

+, -, *,** Supported

/ Supported only if second
operand is a power of 2

Modulus % Supported only if second
operand is a power of 2

Addition + Supported

Subtraction - Supported

Multiplication * Supported
XST User Guide www.xilinx.com 295
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Power ** Supported

• Both operands must be
constants with the second
operand being non-
negative.

• If the first operand is a 2,
then the second operand
may be a variable.

• XST does not support the
real data type. Any
combination of operands
that results in a real type
causes an error.

• The values X (unknown)
and Z (high impedance)
are not allowed.

Division / Supported

XST generates incorrect logic
for the division operator
between signed and
unsigned constants.
Example: -1235/3’b111

Remainder % Supported

Relational >, <, >=, <= Supported

Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Case Equality === Supported

Case Inequality !== Supported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Table 7-1: Expressions
296 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

The following table lists the results of evaluating expressions using the more frequently
used operators supported by XST.

Note: The (===) and (!==) are special comparison operators useful in simulations to check if a
variable is assigned a value of (x) or (z). They are treated as (==) or (!=) in synthesis.

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift Signed >>> Supported

Left Shift Signed <<< Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or, ‘,’ Supported

Table 7-2: Results of Evaluating Expressions

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b

0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x

Table 7-1: Expressions
XST User Guide www.xilinx.com 297
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Blocks
Block statements are used to group statements together. XST only supports sequential
blocks. Within these blocks, the statements are executed in the order listed. Parallel blocks
are not supported by XST. Block statements are designated by begin and end keywords,
and are discussed within examples later in this chapter.

Modules
In Verilog a design component is represented by a module. The connections between
components are specified within module instantiation statements. Such a statement
specifies an instance of a module. Each module instantiation statement must be given a
name (instance name). In addition to the name, a module instantiation statement contains
an association list that specifies which actual nets or ports are associated with which local
ports (formals) of the module declaration.

All procedural statements occur in blocks that are defined inside modules. There are two
kinds of procedural blocks: the initial block and the always block. Within each block,
Verilog uses a begin and end to enclose the statements. Since initial blocks are ignored
during synthesis, only always blocks are discussed. Always blocks usually take the
following format:

always
begin
statement
…...

end

where each statement is a procedural assignment line terminated by a semicolon.

Module Declaration
In the module declaration, the I/O ports of the circuit are declared. Each port has a name
and a mode (in, out, and inout) as shown in the example below.

module EXAMPLE (A, B, C, D, E);
input A, B, C;
output D;
 inout E;
wire D, E;
...
assign E = oe ? A : 1’bz;
assign D = B & E;
...

endmodule

The input and output ports defined in the module declaration called EXAMPLE are the
basic input and output I/O signals for the design. The inout port in Verilog is analogous to
a bi-directional I/O pin on the device with the data flow for output versus input being
controlled by the enable signal to the tristate buffer. The preceding example describes E as
a tristate buffer with a high-true output enable signal. If oe = 1, the value of signal A is
output on the pin represented by E. If oe = 0, then the buffer is in high impedance (Z) and
any input value driven on the pin E (from the external logic) is brought into the device and
fed to the signal represented by D.
298 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Verilog Assignments
There are two forms of assignment statements in the Verilog language:

• Continuous Assignments

• Procedural Assignments

Continuous Assignments
Continuous assignments are used to model combinatorial logic in a concise way. Both
explicit and implicit continuous assignments are supported. Explicit continuous
assignments are introduced by the assign keyword after the net has been separately
declared. Implicit continuous assignments combine declaration and assignment.

Note: Delays and strengths given to a continuous assignment are ignored by XST.

Example of an explicit continuous assignment:

wire par_eq_1;
…...
assign par_eq_1 = select ? b : a;

Example of an implicit continuous assignment:

wire temp_hold = a | b;

Note: Continuous assignments are only allowed on wire and tri data types.

Procedural Assignments
Procedural assignments are used to assign values to variables declared as regs and are
introduced by always blocks, tasks, and functions. Procedural assignments are usually
used to model registers and FSMs.

XST includes support for combinatorial functions, combinatorial and sequential tasks, and
combinatorial and sequential always blocks.

Combinatorial Always Blocks

Combinatorial logic can be modeled efficiently using two forms of time control, the # and
@ Verilog time control statements. The # time control is ignored for synthesis and hence
this section describes modeling combinatorial logic with the @ statement.

A combinatorial always block has a sensitivity list appearing within parentheses after the
word "always @". An always block is activated if an event (value change or edge) appears
on one of the sensitivity list signals. This sensitivity list can contain any signal that appears
in conditions (If, Case, for example), and any signal appearing on the right hand side of an
assignment. By substituting a * without parentheses, for a list of signals, the always block
is activated for an event in any of the always block’s signals as described above.

Note: In combinatorial processes, if a signal is not explicitly assigned in all branches of "If" or "Case"
statements, XST generates a latch to hold the last value. To avoid latch creation, be sure that all
assigned signals in a combinatorial process are always explicitly assigned in all paths of the process
statements.
XST User Guide www.xilinx.com 299
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Different statements can be used in a process:

• Variable and signal assignment

• If... else statement

• Case statement

• For and while loop statement

• Function and task call

The following sections provide examples of each of these statements.

If...Else Statement

If... else statements use true/false conditions to execute statements. If the expression
evaluates to true, the first statement is executed. If the expression evaluates to false (or x or
z), the else statement is executed. A block of multiple statements may be executed using
begin and end keywords. If...else statements may be nested. The following example shows
how a MUX can be described using an If...else statement.

Example 7-2 MUX Description Using If... Else Statement

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin
if (sel[1])

if (sel[0])
outmux = d;

else
outmux = c;

else
if (sel[0])

outmux = b;
else

outmux = a;
end

endmodule

Case Statement

Case statements perform a comparison to an expression to evaluate one of a number of
parallel branches. The Case statement evaluates the branches in the order they are written.
The first branch that evaluates to true is executed. If none of the branches match, the
default branch is executed.

Note: Do not use unsized integers in case statements. Always size integers to a specific number of
bits, or results can be unpredictable.

Casez treats all z values in any bit position of the branch alternative as a don’t care.

Casex treats all x and z values in any bit position of the branch alternative as a don’t care.

The question mark (?) can be used as a “don’t care” in any of the preceding case statements.
The following example shows how a MUX can be described using a Case statement.
300 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Example 7-3 MUX Description Using Case Statement

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin
case (sel)
2’b00: outmux = a;
2’b01: outmux = b;
2’b10: outmux = c;
default: outmux = d;

endcase
end

endmodule

The preceding Case statement evaluates the values of the input sel in priority order. To
avoid priority processing, it is recommended that you use a parallel-case Verilog meta
comment which ensures parallel evaluation of the sel inputs as in the following.

Example:

always @(sel or a or b or c or d) //synthesis parallel_case

For and Repeat Loops

When using always blocks, repetitive or bit slice structures can also be described using the
"for" statement or the "repeat" statement.

The "for" statement is supported for:

• Constant bounds

• Stop test condition using operators <, <=, > or >=

• Next step computation falling in one of the following specifications:

♦ var = var + step

♦ var = var - step

(where var is the loop variable and step is a constant value).

The repeat statement is only supported for constant values.

The following example shows the use of a For Loop.

Example 7-4 For Loop Description

module countzeros (a, Count);
input [7:0] a;
output [2:0] Count;
reg [2:0] Count;
reg [2:0] Count_Aux;
integer i;
XST User Guide www.xilinx.com 301
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

always @(a)
begin
Count_Aux = 3’b0;

for (i = 0; i < 8; i = i+1)
begin
if (!a[i])

Count_Aux = Count_Aux+1;
end

Count = Count_Aux;
end

endmodule

While Loops

When using always blocks, use the "while" statement to execute repetitive procedures. A
"while" loop executes other statements until its test expression becomes false. It is not
executed if the test expression is initially false.

• The test expression is any valid Verilog expression.

• To prevent endless loops, use the "–iteration_limit" switch.

• The disable statement is not supported.

The following example shows the use of a While Loop.

Example 7-5 While Loop Description

parameter P = 4;
always @(ID_complete)
begin : UNIDENTIFIED
integer i;
reg found;
unidentified = 0;
i = 0;
found = 0;
while (!found && (i < P))
begin
found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;

end
end

Sequential Always Blocks

Sequential circuit description is based on always blocks with a sensitivity list.

The sensitivity list contains a maximum of three edge-triggered events: the clock signal
event (which is mandatory), possibly a reset signal event, and a set signal event. One, and
only one "If...else" statement is accepted in such an always block.

An asynchronous part may appear before the synchronous part in the first and the second
branch of the "If...else" statement. Signals assigned in the asynchronous part must be
assigned to the constant values ’0’, ’1’, ’X’ or ’Z’ or any vector composed of these values.

These same signals must also be assigned in the synchronous part (that is, the last branch
of the "if-else" statement). The clock signal condition is the condition of the last branch of
the "if-else" statement. The following example gives the description of an 8-bit register.
302 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Example 7-6 8 Bit Register Using an Always Block

module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO = DI ;

endmodule

The following example gives the description of an 8-bit register with a clock signal and an
asynchronous reset signal.

Example 7-7 8 Bit Register with Asynchronous Reset (high-true) Using an Always Block

module EXAMPLE (DI, CLK, RST, DO);
input [7:0] DI;
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO = 8’b00000000;
else

DO = DI;
endmodule

The following example describes an 8-bit counter.

Example 7-8 8 Bit Counter with Asynchronous Reset (low-true) Using an Always Block

module seq2 (CLK, RST, DO);
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO = 8’b00000000;
else

DO = DO + 8’b00000001;
endmodule

Assign and Deassign Statements

Assign and deassign statements are supported within simple templates.

The following is an example of the general template for assign / deassign statements:

module assig (RST, SELECT, STATE, CLOCK, DATA_IN);
input RST;
input SELECT;
input CLOCK;
input [0:3] DATA_IN;
output [0:3] STATE;

reg [0:3] STATE;
XST User Guide www.xilinx.com 303
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

always @ (RST)
if(RST)

begin
assign STATE = 4’b0;

end
else

begin
deassign STATE;

end

always @ (posedge CLOCK)
begin
STATE = DATA_IN;

end
endmodule

The main limitations on support of the assign/deassign statement in XST are as follows:

• For a given signal, there must be only one assign/deassign statement. For example,
XST rejects the following design:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;

reg STATE;

always @ (RST) // block b1
if(RST)

assign STATE = 1’b0;
else

deassign STATE;

always @ (SET) // block b1
if(SET)

assign STATE = 1’b1;
else

deassign STATE;

always @ (posedge CLOCK) // block b2
begin
STATE = DATA_IN;

end
endmodule
304 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

• The assign / deassign statement must be performed in the same always block through
an if /else statement. For example, XST rejects the following design:

module dflop (RST, SET, STATE, CLOCK, DATA_IN);
input RST;
input SET;
input CLOCK;
input DATA_IN;
output STATE;

reg STATE;

always @ (RST or SET) // block b1
case ({RST,SET})
2’b00: assign STATE = 1’b0;
2’b01: assign STATE = 1’b0;
2’b10: assign STATE = 1’b1;
2’b11: deassign STATE;

endcase

always @ (posedge CLOCK) // block b2
begin
STATE = DATA_IN;

end
endmodule

• You cannot assign a bit/part select of a signal through an assign / deassign statement.
For example, XST rejects the following design:

module assig (RST, SELECT, STATE, CLOCK,DATA_IN);
input RST;
input SELECT;
input CLOCK;
input [0:7] DATA_IN;
output [0:7] STATE;

reg [0:7] STATE;

always @ (RST) // block b1
if(RST)

begin
assign STATE[0:7] = 8’b0;

end
else

begin
deassign STATE[0:7];

end

always @ (posedge CLOCK) // block b2
begin
if (SELECT)

STATE [0:3]= DATA_IN[0:3];
else

STATE [4:7]= DATA_IN[4:7];
end
XST User Guide www.xilinx.com 305
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Assignment Extension Past 32 Bits

If the expression on the left-hand side of an assignment is wider than the expression on the
right-hand side, the left-hand side is padded to the left according to the following rules.

• If the right-hand expression is signed, the left-hand expression is padded with the
sign bit (0 for positive, 1 for negative, z for high impedance or x for unknown).

• If the right-hand expression is unsigned, the left-hand expression is padded with ‘0’s.

• For unsized x or z constants only the following rule applies. If the value of the right-
hand expression’s left-most bit is z (high impedance) or x (unknown), regardless of
whether the right-hand expression is signed or unsigned, the left-hand expression is
padded with that value (z or x, respectively).

Note: The above rules follow the Verilog-2001 standard, and are not backward compatible with
Verilog-1995.

Tasks and Functions

The declaration of a function or task is intended for handling blocks used multiple times in
a design. They must be declared and used in a module. The heading part contains the
parameters: input parameters (only) for functions and input/output/inout parameters for
tasks. The return value of a function can be declared either signed or unsigned. The content
is similar to the combinatorial always block content. Recursive function and task calls are
not supported.

Example 7-9 shows a function declared within a module. The ADD function declared is a
single-bit adder. This function is called 4 times with the proper parameters in the
architecture to create a 4-bit adder. The same example, described with a task, is shown in
Example 7-10.

Example 7-9 Function Declaration and Function Call

module comb15 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;
function signed [1:0] ADD;
input A, B, CIN;
reg S, COUT;
begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
ADD = {COUT, S};

end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},

COUT = S3[1];
endmodule
306 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Example 7-10 Task Declaration and Task Enable

module EXAMPLE (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;

begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin
ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];

end
endmodule

Blocking Versus Non-Blocking Procedural Assignments

The # and @ time control statements delay execution of the statement following them until
the specified event is evaluated as true. Use of blocking and non-blocking procedural
assignments have time control built into their respective assignment statement.

The # delay is ignored for synthesis.

The syntax for a blocking procedural assignment is shown in the following example:

reg a;
a = #10 (b | c);

or

if (in1) out = 1’b0;
else out = in2;

As the name implies, these types of assignments block the current process from continuing
to execute additional statements at the same time. These should mainly be used in
simulation.

Non-blocking assignments, on the other hand, evaluate the expression when the statement
executes, but allow other statements in the same process to execute as well at the same
time. The variable change only occurs after the specified delay.
XST User Guide www.xilinx.com 307
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

The syntax for a non-blocking procedural assignment is as follows:

variable <= @(posedge_or_negedge_bit) expression;

The following shows an example of how to use a non-blocking procedural assignment.

if (in1) out <= 1’b1;
else out <= in2;

Constants, Macros, Include Files and Comments
This section discusses constants, macros, include files, and comments.

Constants

By default, constants in Verilog are assumed to be decimal integers. They can be specified
explicitly in binary, octal, decimal or hexadecimal by prefacing them with the appropriate
syntax. For example, 4’b1010, 4’o12, 4’d10 and 4’ha all represent the same value.

Macros

Verilog provides a way to define macros as shown in the following example.

`define TESTEQ1 4’b1101

Later in the design code a reference to the defined macro is made as follows.

 if (request == `TESTEQ1)

This is shown in the following example.

`define myzero 0
assign mysig = `myzero;

Verilog provides the ‘ifdef and ‘endif constructs to determine whether a macro is defined
or not. These constructs are used to define conditional compilation. If the macro called out
by the ‘ifdef command has been defined, that code is compiled. If not, the code following
the ‘else command is compiled. The ‘else is not required, but the ‘endif must complete the
conditional statement. The ‘ifdef and ‘endif constructs are shown in the following
example.

`ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
`else
module if_MYVAR_is_not_declared;
...
endmodule
`endif

Include Files

Verilog allows separating source code into more than one file. To use the code contained in
another file, the current file has the following syntax:

 `include "path/file-name-to-be-included"

Note: The path can be relative or absolute.
308 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Behavioral Verilog Features
R

Multiple ‘include statements are allowed in a single Verilog file. This is a great feature to
make code modular and manageable in a team design environment where different files
describe different modules of the design.

If files are referenced by an ‘include statement, they must not be manually added to the
project. For example, at the top of a Verilog file you might see this:

‘timescale 1ns/1ps
‘include "modules.v"
...

If the specified file (in this case, modules.v) has been added to an ISE project and is
specified with an ‘include, conflicts occur and an error message displays:

ERROR:Xst:1068 - fifo.v, line 2. Duplicate declarations of
module’RAMB4_S8_S8’

Comments

 There are two forms of comments in Verilog similar to the two forms found in a language
like C++.

• // Allows definition of a one-line comment.

• /* You can define a multi-line comment by enclosing it as illustrated by this
sentence */

Generate Statement
Generate is a construct that allows you to dynamically create Verilog code from conditional
statements. This allows you to create repetitive structures or structures that are only
appropriate under certain conditions. Structures that are likely to be created via a generate
statement are:

• primitive or module instances

• initial or always procedural blocks

• continuous assignments

• net and variable declarations

• parameter redefinitions

• task or function definitions

XST supports the following types of generate statements:

• generate for

• generate if

• generate case

Generate For

Use a generate for loop to create one or more instances that can be placed inside a module.
Use the generate for loop the same way you would a normal Verilog for loop with the
following limitations.

• The index for a generate for loop must have a genvar variable.

• The assignments in the for loop control must refer to the genvar variable.

• The contents of the for loop must be enclosed by begin and end statements, and the
begin statement must be named with a unique qualifier.
XST User Guide www.xilinx.com 309
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

The following is an example of an 8-bit adder using a generate for loop.

generate
genvar i;

for (i=0; i<=7; i=i+1)
begin : for_name
adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i],

ci[i], sum_for[8*i+7 : 8*i], c0_or[i+1]);
end

endgenerate

Generate If... else

A generate if statement can be used inside a generate block to conditionally control what
objects get generated.

The following is an example of a generate If... else statement. The generate controls what
type of multiplier is instantiated. Please note that the contents of each branch of the if... else
statement must be enclosed by begin and end statements, and the begin statement must
be named with a unique qualifier.

generate
if (IF_WIDTH < 10)
begin : if_name
adder # (IF_WIDTH) u1 (a, b, sum_if);

end
else
begin : else_name
subtractor # (IF_WIDTH) u2 (a, b, sum_if);

end
endgenerate

Generate Case

A generate case statement can be used inside a generate block to conditionally control
what objects get generated. Use a generate case statement when there are several
conditions to be tested to determine what the generated code would be. Please note that
each test statement in a generate case statement must be enclosed by begin and end
statements, and the begin statement must be named with a unique qualifier.

The following is an example of a generate case statement. The generate controls what type
of adder is instantiated.

generate
case (WIDTH)
1:
begin : case1_name
adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);

end
2:
begin : case2_name
adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);

end
default:
begin : d_case_name
adder x3 (a, b, ci, sum_case, c0_case);

end
endcase

endgenerate
310 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Structural Verilog Features
R

Structural Verilog Features
Structural Verilog descriptions assemble several blocks of code and allow the introduction
of hierarchy in a design. The basic concepts of hardware structure are the module, the port
and the signal. The component is the building or basic block. A port is a component I/O
connector. A signal corresponds to a wire between components.

In Verilog, a component is represented by a design module. The module declaration
provides the "external" view of the component; it describes what can be seen from the
outside, including the component ports. The module body provides an "internal" view; it
describes the behavior or the structure of the component.

The connections between components are specified within component instantiation
statements. These statements specify an instance of a component occurring within another
component or the circuit. Each component instantiation statement is labeled with an
identifier. Besides naming a component declared in a local component declaration, a
component instantiation statement contains an association list (the parenthesized list) that
specifies which actual signals or ports are associated with which local ports of the
component declaration.

The Verilog language provides a large set of built-in logic gates which can be instantiated
to build larger logic circuits. The set of logical functions described by the built-in gates
includes AND, OR, XOR, NAND, NOR and NOT.

Here is an example of building a basic XOR function of two single bit inputs a and b.

module build_xor (a, b, c);
input a, b;
output c;
wire c, a_not, b_not;
not a_inv (a_not, a);
not b_inv (b_not, b);
and a1 (x, a_not, b);
and a2 (y, b_not, a);
or out (c, x, y);

endmodule

Each instance of the built-in modules has a unique instantiation name such as a_inv, b_inv,
out. The wiring up of the gates describes an XOR gate in structural Verilog.

Example 7-11 gives the structural description of a half adder composed of four, 2 input
nand modules.

Example 7-11 Structural Description of a Half Adder

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;
nand NANDA (S3, X, Y);
nand NANDB (S1, X, S3);
nand NANDC (S2, S3, Y);
nand NANDD (S, S1, S2);
assign C = S3;

endmodule
XST User Guide www.xilinx.com 311
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

The structural features of Verilog HDL also allow you to design circuits by instantiating
pre-defined primitives such as gates, registers and Xilinx® specific primitives like
CLKDLL and BUFGs. These primitives are other than those included in the Verilog
language. These pre-defined primitives are supplied with the XST Verilog libraries
(unisim_comp.v).

Example 7-12 Structural Instantiation of Register and BUFG

module foo (sysclk, in, reset,out);
input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;

FDC register (sysclk, reset, in, out); //position based referencing
BUFG clk (.O(sysclk_out), .I(sysclk)); //name based referencing
….

endmodule

The unisim_comp.v library file supplied with XST, includes the definitions for FDC and
BUFG.

module FDC (C, CLR, D, Q);
input C;
input CLR;
input D;
output Q;

endmodule

// synthesis attribute BOX_TYPE of FDC is "BLACK_BOX"

module BUFG (O, I);
output O;
input I;

endmodule

// synthesis attribute BOX_TYPE of BUFG is "BLACK_BOX"

Figure 7-1: Synthesized Top Level Netlist

A

B

YNANDA

A

B

YNANDD

A

B

YNANDC

A

B

YNANDB

S3

S2

S1

Y

X

C

S

X8952
312 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Parameters
R

Parameters
Verilog modules support defining constants known as parameters which can be passed to
module instances to define circuits of arbitrary widths. Parameters form the basis of
creating and using parameterized blocks in a design to achieve hierarchy and stimulate
modular design techniques. The following is an example of the use of parameters. Null
string parameters are not supported.

Example 7-13 Using Parameters

module lpm_reg (out, in, en, reset, clk);
parameter SIZE = 1;
input in, en, reset, clk;
output out;
wire [SIZE-1 : 0] in;
reg [SIZE-1 : 0] out;

always @(posedge clk or negedge reset)
begin
if (!reset)

out <= ’b0;
else

if (en)
out <= in;

else
out <= out; //redundant assignment

end
endmodule
module top (); //portlist left blank intentionally
...
wire [7:0] sys_in, sys_out;
wire sys_en, sys_reset, sysclk;
lpm_reg #8 buf_373 (sys_out, sys_in, sys_en, sys_reset, sysclk);
...

endmodule

Instantiation of the module lpm_reg with a instantiation width of 8 causes the instance
buf_373 to be 8 bits wide.

Verilog Limitations in XST
This section describes Verilog limitations in XST support for case sensitivity, and blocking
and nonblocking assignments.

Case Sensitivity
XST supports case sensitivity as follows:

• Designs can use case equivalent names for I/O ports, nets, regs and memories.

• Equivalent names are renamed using a postfix ("rnm<Index>").

• A rename construct is generated in the NGC file.

• Designs can use Verilog identifiers that differ only in case. XST renames them using a
postfix as with equivalent names.
XST User Guide www.xilinx.com 313
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Following is an example.

module upperlower4 (input1, INPUT1, output1, output2);
input input1;
input INPUT1;

For the above example, INPUT1 is renamed to INPUT1_rnm0.

The following restrictions apply for Verilog within XST:

• Designs using equivalent names (named blocks, tasks, and functions) are rejected.

Example:

...
always @(clk)
begin: fir_main5
reg [4:0] fir_main5_w1;
reg [4:0] fir_main5_W1;

This code generates the following error message:

ERROR:Xst:863 - "design.v", line 6: Name conflict
(<fir_main5/fir_main5_w1> and <fir_main5/fir_main5_W1>)

• Designs using case equivalent module names are also rejected.

Example:

module UPPERLOWER10 (...);
...
module upperlower10 (...);
...

This example generates the following error message:

ERROR:Xst:909 - Module name conflict (UPPERLOWER10 and upperlower10).

Blocking and Nonblocking Assignments
XST rejects Verilog designs if a given signal is assigned through both blocking and
nonblocking assignments as in the following example.

always @(in1)
begin
if (in2)

out1 = in1;
else

out1 <= in2;
end

If a variable is assigned in both a blocking and nonblocking assignment, the following
error message is generated:

ERROR:Xst:880 - "design.v", line n: Cannot mix blocking and non blocking
assignments on signal <out1>.

There are also restrictions when mixing blocking and nonblocking assignments on bits and
slices.
314 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Verilog Meta Comments
R

The following example is rejected even if there is no real mixing of blocking and non
blocking assignments:

if (in2)
begin
out1[0] = 1’b0;
out1[1] <= in1;

end
else

begin
out1[0] = in2;
out1[1] <= 1’b1;

end

Errors are checked at the signal level, not at the bit level.

If there is more than a single blocking/non blocking error, only the first one is reported.

In some cases, the line number for the error might be incorrect (as there might be multiple
lines where the signal has been assigned).

Integer Handling
There are several cases where XST handles integers differently from other synthesis tools,
and so they must be coded in a particular way.

In Case statements, do not use unsized integers in case item expressions, as this causes
unpredictable results. In the following example, the case item expression “4” is an unsized
integer that causes unpredictable results. To avoid problems, size the “4” to 3 bits as shown
below.

reg [2:0] condition1;

always @(condition1)
begin
case(condition1)
4 : data_out = 2; // < will generate bad logic
3’d4 : data_out = 2; // < will work

endcase
end

In concatenations, do not use unsized integers, as this causes unpredictable results. If you
must use an expression that results in an unsized integer, assign the expression to a
temporary signal, and use the temporary signal in the concatenation as shown below.

reg [31:0] temp;
assign temp = 4’b1111 % 2;
assign dout = {12/3,temp,din};

Verilog Meta Comments
XST supports meta comments in Verilog. Meta comments are comments that are
understood by the Verilog parser.
XST User Guide www.xilinx.com 315
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Meta comments can be used as follows:

• Set constraints on individual objects (for example, module, instance, net).

• Set directives on synthesis:

♦ parallel_case and full_case directives.

♦ translate_on translate_off directives.

♦ all tool specific directives (for example, syn_sharing), refer to Chapter 5, “Design
Constraints” for details.

Meta comments can be written using the C-style (/* ... */) or the Verilog style (// ...) for
comments. C-style comments can be multiple line. Verilog style comments end at the end
of the line.

XST supports the following:

• Both C-style and Verilog style meta comments

• translate_on translate_off directives

// synthesis translate_on
// synthesis translate_off

• parallel_case, full_case directives

// synthesis parallel_case full_case
// synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

The general syntax is:

// synthesis attribute AttributeName [of] ObjectName [is] AttributeValue

Examples:

// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HUSET u1 MY_SET
// synthesis attribute fsm_extract of State2 is "yes"
// synthesis attribute fsm_encoding of State2 is "gray"

For a full list of constraints, refer to Chapter 5, “Design Constraints.”

Verilog-2001 Attributes
XST supports Verilog-2001 attribute statements. Attributes are comments that are used to
pass specific information to software tools such as synthesis tools. Verilog-2001 attributes
can be specified anywhere for operators or signals within module declarations and
instantiations, and signal declarations.

Note: Other attribute declarations may be supported by the compiler, but are ignored by XST.

Attributes can be used to:

• Set constraints on individual objects (for example, module, instance, net).

• Set FULL_CASE, PARALLEL_CASE and FULLPARALLEL_CASE synthesis
directives.
316 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Language Support Tables
R

Syntax
Attributes must be bounded by the characters (* and *), and are written using the
following syntax:

(* attribute_name = attribute_value *)

Where:

• The attribute must precede the signal, module or instance declaration it refers to.

• The attribute_value must be a string; no integer or scalar values are allowed.

• The attribute_value must be between quotes.

• The default value is 1. (* attribute_name *) is the same as
(* attribute_name = "1" *).

Example 1

(* clock_buffer = "IBUFG" *) input CLK;

Example 2

(* INIT = "0000" *) reg [3:0] d_out;

Example 3

always@(current_state or reset)
begin (* parallel_case *) (* full_case *)
case (current_state)
...

Example 4

(* mult_style = "pipe_lut" *) MULT my_mult (a, b, c);

Limitations
Verilog-2001 attributes are not supported for the following.

• signal declarations

• statements

• port connections

• expression operators

Language Support Tables
The following tables indicate which Verilog constructs are supported in XST. Previous
sections in this chapter describe these constructs and their use within XST.

Note: XST does not allow underscores as the first character of signal names (for
example, _DATA_1).
XST User Guide www.xilinx.com 317
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Table 7-3: Constants

Integer Constants Supported

Real Constants Supported

Strings Constants Unsupported

Table 7-4: Data Types

Nets

net type

wire Supported

tri Supported

supply0,
supply1

Supported

wand, wor,
triand, trior

Supported

tri0, tri1,
trireg

Unsupported

drive
strength

Ignored

Registers

reg Supported

integer Supported

real Unsupported

realtime Unsupported

Vectors

net Supported

reg Supported

vectored Supported

scalared Supported

Multi-
Dimensional
Arrays
(<= 3
dimensions)

Supported

Parameters Supported

Named Events Unsupported
318 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Language Support Tables
R

Table 7-5: Continuous Assignments

Drive Strength Ignored

Delay Ignored

Table 7-6: Procedural Assignments

Blocking Assignments Supported

Non-Blocking Assignments Supported

Continuous Procedural
Assignments

assign Supported with
limitations See
“Assign and
Deassign
Statements”

deassign

force Unsupported

release Unsupported

if Statement if, if else Supported

case Statement case, casex,
casez

Supported

forever Statement Unsupported

repeat Statement Supported (repeat
value must be
constant)

while Statement Supported

for Statement Supported
(bounds must be
static)

fork/join Statement Unsupported

Timing Control on Procedural
Assignments

delay (#) Ignored

event (@) Unsupported

wait Unsupported

named events Unsupported

Sequential Blocks Supported

Parallel Blocks Unsupported

Specify Blocks Ignored
XST User Guide www.xilinx.com 319
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

initial Statement Supported

always Statement Supported

task Supported
(Recursion
Unsupported)

functions Supported
(Recursion
Unsupported)

disable Statement Unsupported

Table 7-7: System Tasks and Functions

System Tasks Ignored

System Functions Unsupported

Table 7-8: Design Hierarchy

Module definition Supported

Macromodule definition Unsupported

Hierarchical names Unsupported

defparam Supported

Array of instances Supported

Table 7-9: Compiler Directives

‘celldefine ‘endcelldefine Ignored

‘default_nettype Supported

‘define Supported

‘undef, ‘indef, ‘elsif, Supported

‘ifdef ‘else ‘endif Supported

‘include Supported

‘resetall Ignored

‘timescale Ignored

‘unconnected_drive

‘nounconnected_drive

Ignored

Table 7-6: Procedural Assignments
320 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Primitives
R

Primitives
XST supports certain gate level primitives. The supported syntax is as follows:

gate_type instance_name (output, inputs, ...);

The following example shows Gate Level Primitive Instantiations.

and U1 (out, in1, in2);
bufif1 U2 (triout, data, trienable);

The following table shows which primitives are supported.

‘uselib Unsupported

‘file, ‘line Supported

Table 7-9: Compiler Directives

Table 7-10: Primitives

Gate Level
Primitives

and nand nor or xnor xor Supported

buf not Supported

bufif0 bufif1 notif0 notif1 Supported

pulldown pullup Unsupported

drive strength Ignored

delay Ignored

array of primitives Supported

Switch Level
Primitives

cmos nmos pmos rcmos rnmos
rpmos

Unsupported

rtran rtranif0 rtranif1 tran
tranif0 tranif1

Unsupported

User Defined
Primitives

Unsupported
XST User Guide www.xilinx.com 321
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

Verilog Reserved Keywords
The following table shows the Verilog reserved keywords.

* These keywords are reserved by Verilog, but not supported by XST.

Table 7-11: Verilog Reserved Keywords.

always end ifnone not rnmos tri

and endcase incdir* notif0 rpmos tri0

assign endconfig* include* notif1 rtran tri1

automatic endfunction initial or rtranif0 triand

begin endgenerate inout output rtranif1 trior

buf endmodule input parameter scalared trireg

bufif0 endprimitive instance* pmos show-
cancelled*

use*

bufif1 endspecify integer posedge signed vectored

case endtable join primitive small wait

casex endtask large pull0 specify wand

casez event liblist* pull1 specparam weak0

cell* for library* pullup strong0 weak1

cmos force localparam* pulldown strong1 while

config* forever macromodule pulsestyle-
_ondetect*

supply0 wire

deassign fork medium pulsestyle-
_onevent*

supply1 wor

default function module rcmos table xnor

defparam generate nand real task xor

design* genvar negedge realtime time

disable highz0 nmos reg tran

edge highz1 nor release tranif0

else if noshow-
cancelled*

repeat tranif1
322 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Verilog-2001 Support in XST
R

Verilog-2001 Support in XST
XST 6.1i supports the following Verilog-2001 features. For details on Verilog -2001, see
Verilog-2001: A Guide to the New Features by Stuart Sutherland, or IEEE Standard Verilog
Hardware Description Language manual, (IEEE Standard 1364-2001).

• Generate statements

• Combined port/data type declarations

• ANSI-style port lists

• Module parameter port lists

• ANSI C style task/function declarations

• Comma separated sensitivity list

• Combinatorial logic sensitivity

• Default nets with continuous assigns

• Disable default net declarations

• Indexed vector part selects

• Multi-dimensional arrays

• Arrays of net and real data types

• Array bit and part selects

• Signed reg, net, and port declarations

• Signed based integer numbers

• Signed arithmetic expressions

• Arithmetic shift operators

• Automatic width extension past 32 bits

• Power operator

• N sized parameters

• Explicit in-line parameter passing

• Fixed local parameters

• Enhanced conditional compilation

• File and line compiler directives
XST User Guide www.xilinx.com 323
 1-800-255-7778

http://www.xilinx.com

Chapter 7: Verilog Language Support
R

324 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 8

Mixed Language Support

This chapter contains the following sections:

• “Introduction”

• “Mixed Language Project File”

• “VHDL/Verilog Boundary Rules”

• “Port Mapping”

• “Generics Support in Mixed Language Projects”

• “Library Search Order File”

Introduction
XST supports mixed VHDL/Verilog projects. This chapter explains how to create mixed
language projects and what the current limitations are. The following are key features of
mixed language support:

• Mixing of VHDL and Verilog is restricted to design unit (cell) instantiation only. A
VHDL design can instantiate a Verilog module, and a Verilog design can instantiate a
VHDL entity. Any other kind of mixing between VHDL and Verilog is not supported.

• In a VHDL design, a restricted subset of VHDL types, generics and ports is allowed
on the boundary to a Verilog module. Similarly, in a Verilog design, a restricted subset
of Verilog types, parameters and ports is allowed on the boundary to a VHDL entity
or configuration.

• XST binds VHDL design units to a Verilog module during the Elaboration step.

• Component instantiation based on default binding is used for binding Verilog
modules to a VHDL design unit.

Note: Configuration specification, direct instantiation and component configurations are not
supported for a Verilog module instantiation in VHDL.

In supporting mixed projects:

• VHDL and Verilog project files are unified.

• VHDL and Verilog libraries are logically unified.

• Specification of work directory for compilation (xsthdpdir), previously available only
for VHDL, is also available for Verilog.

• The xhdp.ini mechanism for mapping a logical library name to a physical directory
name on the host file system, previously available only for VHDL, is also available for
Verilog.
XST User Guide www.xilinx.com 325
 1-800-255-7778

http://www.xilinx.com

Chapter 8: Mixed Language Support
R

• Mixed language projects accept a search order used for searching unified logical
libraries in design units (cells). During elaboration, XST follows this search order for
picking and binding a VHDL entity or a Verilog module to the mixed language
project.

Mixed Language Project File
XST uses a dedicated mixed language project file to support mixed VHDL/Verilog
designs. You can use this mixed language format not only for mixed projects, but also for
purely VHDL or Verilog projects. If you use Project Navigator to run XST, Project
Navigator creates the project file, and it is always a mixed language project file. If you run
XST from the command line, you must create a mixed language project file for your mixed
language projects.

To create a mixed language project file at the command line, use the –ifmt command line
switch set to mixed or with its value is omitted. Please note that you can still use the VHDL
and Verilog formats for existing designs. To use the VHDL format, set –ifmt to vhdl, and to
use the Verilog format, set –ifmt to verilog.

The syntax for invoking a library or any external file in a mixed language project is as
follows:

language library file_name.ext

The following is an example of how to invoke libraries in a mixed language project:

vhdl work my_vhdl1.vhd
verilog work my_vlg1.v
vhdl my_vhdl_lib my_vhdl2.vhd
verilog my_vlg_lib my_vlg2.v

Each line specifies a single HDL design file:

• The first column specifies whether the HDL file is VHDL or Verilog.

• The second column specifies the logic library, where the HDL is compiled. By default
the logic library is "work".

• The third column specifies the name of the HDL file.

VHDL/Verilog Boundary Rules
The boundary between VHDL and Verilog is enforced at the design unit level. A VHDL
design can instantiate a Verilog module. A Verilog design can instantiate a VHDL entity.

Instantiating a Verilog Module in a VHDL Design
To instantiate a Verilog module in your VHDL design, do the following.

1. Declare a VHDL component with the same name (respecting case sensitivity) as the
Verilog module you want to instantiate. If the Verilog module name is not all lower
case, use the Case property to preserve the case of your Verilog module. In Project
Navigator, select Maintain for the Case option under the Synthesis Options tab in the
Process Properties dialog box, or set the –case command line option to maintain at the
command line.

2. Instantiate your Verilog component as if you were instantiating a VHDL component.
326 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

VHDL/Verilog Boundary Rules
R

Note: Using a VHDL configuration declaration, one could attempt to bind this component to a
particular design unit from a particular library. Please note that such binding is not supported.
Only default Verilog module binding is supported.

The only Verilog construct that can be instantiated in a VHDL design is a Verilog module.
No other Verilog constructs are visible to VHDL code.

During elaboration, all components subject to default binding are regarded as design units
with the same name as the corresponding component name. In the binding process, XST
treats a component name as a VHDL design unit name and searches for it in the logical
library "work.” If a VHDL design unit is found, then XST binds it. If XST cannot find a
VHDL design unit, it treats the component name as a Verilog module name and searches
for it using a case sensitive search. XST searches for the Verilog module in the user
specified list of unified logical libraries in the user specified search order. See “Library
Search Order File” for search order details. XST selects the first Verilog module matching
the name, and binds it.

Note: Please remember that since libraries are unified, a Verilog cell by the same name as that of
a VHDL design unit cannot co-exist in the same logical library. A newly compiled cell/unit overrides a
previously compiled one.

Instantiating a VHDL Design Unit in a Verilog Design
To instantiate a VHDL entity, declare a module name with the same as name as the VHDL
entity (optionally followed by an architecture name) that you want to instantiate, and
perform a normal Verilog instantiation. The only VHDL construct that can be instantiated
in a Verilog design is a VHDL entity. No other VHDL constructs are visible to Verilog code.
When you do this, XST uses the entity/architecture pair as the Verilog/VHDL boundary.

XST performs the binding during elaboration. In the binding process, XST searches for a
Verilog module name (it ignores any architecture name specified in the module
instantiation) using the name of the instantiated module in the user specified list of unified
logical libraries in the user specified order. See “Library Search Order File” for search order
details. If found, XST binds the name. If XST cannot find a Verilog module, it treats the
name of the instantiated module as a VHDL entity, and searches for it using a case sensitive
search for a VHDL entity. XST searches for the VHDL entity in the user specified list of
unified logical libraries in the user specified order, assuming that a VHDL design unit was
stored with extended identifier. See “Library Search Order File” for search order details. If
found, XST binds the name. XST selects the first VHDL entity matching the name, and
binds it.

XST has the following limitations when instantiating a VHDL design unit from a Verilog
module:

• Explicit port association must be used. That is, formal and effective port names must
be specified in the port map.

• All parameters must be passed at instantiation, even if they are unchanged.

• The parameter override shall be named and not ordered. The parameter override
must be done though instantiation and not through defparams.

The following is an example of the correct use of parameter override.

ff #(.init(2’b01)) u1 (.sel(sel), .din(din), .dout(dout));

The following is an incorrect use of the of parameter override, and is not accepted by
XST.

ff u1 (.sel(sel), .din(din), .dout(dout));
defparam u1.init = 2’b01;
XST User Guide www.xilinx.com 327
 1-800-255-7778

http://www.xilinx.com

Chapter 8: Mixed Language Support
R

Port Mapping
XST uses the following rules and limitations for port mapping in mixed language projects.

• For VHDL entities instantiated in Verilog designs, XST supports the following port
types.

♦ in

♦ out

♦ inout

Note: XST does not support VHDL buffer and linkage ports.

• For Verilog modules instantiated in VHDL designs, XST supports the following port
types.

♦ input

♦ output

♦ inout

Note: XST does not support connection to bi-directional pass switches in Verilog.

• XST does not support unnamed Verilog ports for mixed language boundaries.

• Use an equivalent component declaration for connecting to a case sensitive port in a
Verilog module. By default, XST assumes Verilog ports are in all lower case.

• XST supports the following VHDL data types for mixed language designs.

♦ bit

♦ bit_vector

♦ std_logic

♦ std_ulogic

♦ std_logic_vector

♦ std_ulogic_vector

XST supports the following Verilog data types for mixed language designs.

♦ wire

♦ reg

Generics Support in Mixed Language Projects
XST supports the following VHDL generic types, and their Verilog equivalents for mixed
language designs.

• integer

• real

• string

• boolean
328 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Library Search Order File
R

Library Search Order File
The Library Search Order (LSO) file specifies the search order that XST uses to link the
libraries used in VHDL/Verilog mixed language designs. By default, XST searches the files
specified in the project file in the order in which they appear in that file. XST uses the
default search order when either the DEFAULT_SEARCH_ORDER keyword is used in the
LSO file or the LSO file is not specified.

Project Navigator
In Project Navigator, the default name for the LSO file is project_name.lso. If a
project_name.lso file does not already exist, Project Navigator automatically creates
one. If Project Navigator detects an existing project_name.lso file, this file is preserved
and used as it is. Please remember that in Project Navigator, the name of the project is the
name of the top-level block. In creating a default LSO file, Project Navigator places the
DEFAULT_SEARCH_ORDER keyword in the first line of the file.

Command Line
When using XST from the command line, specify the Library Search Order file by using the
–lso command line switch. If the –lso switch is omitted, XST automatically uses the default
library search order without using an LSO file.

Search Order Rules
XST follows the following search order rules when processing a mixed language project.

• When the LSO file contains only the DEFAULT_SEARCH_ORDER keyword, XST:

♦ searches the specified library files in the order in which they appear in the project
file.

♦ updates the LSO file by:

- removing the DEFAULT_SEARCH_ORDER keyword.

- adding the list of libraries to the LSO file in the order in which they appear in
the project file.

See “Example 1”.

• When the LSO file contains the DEFAULT_SEARCH_ORDER keyword, and a list of
the libraries, XST:

♦ searches the specified library files in the order in which they appear in the project
file.

♦ ignores the list of library files in the LSO file.

♦ leaves the LSO file unchanged.

See “Example 2”.

• When the LSO file contains a list of the libraries without the
DEFAULT_SEARCH_ORDER keyword, XST:

♦ searches the library files in the order in which they appear in the LSO file.

♦ leaves the LSO file unchanged.

See “Example 3”.
XST User Guide www.xilinx.com 329
 1-800-255-7778

http://www.xilinx.com

Chapter 8: Mixed Language Support
R

• When the LSO file is empty, XST:

♦ generates a warning message stating that the LSO file is empty.

♦ searches the files specified in the project file using the default library search order.

♦ updates the LSO file by adding the list of libraries in the order that they appear in
the project file.

• When the LSO file contains a library name that does not exist in the project or INI file,
and the LSO file does not contain the DEFAULT_SEARCH_ORDER keyword, XST
ignores the library.

See “Example 4”.

Examples

Example 1

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd

verilog rtfllib f1.v

vhdl vhlib2 f3.vhd

LSO file Created by ProjNav

and an LSO file, my_proj.lso, created by Project Navigator, with the following
contents:

DEFAULT_SEARCH_ORDER

XST uses the following search order.

vhlib1

rtfllib

vhlib2

After processing, the contents of my_proj.lso will be:

vhlib1

rtfllib

vhlib2

Example 2

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd

verilog rtfllib f1.v

vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created with the following contents:

rtfllib

vhlib2

vhlib1

DEFAULT_SEARCH_ORDER
330 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Library Search Order File
R

XST uses the following search order.

vhlib1

rtfllib

vhlib2

After processing, the contents of my_proj.lso will be:

rtfllib

vhlib2

vhlib1

DEFAULT_SEARCH_ORDER

Example 3

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd

verilog rtfllib f1.v

vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created with the following contents:

rtfllib

vhlib2

vhlib1

XST uses the following search order.

rtfllib

vhlib2

vhlib1

After processing, the contents of my_proj.lso will be:

rtfllib

vhlib2

vhlib1

Example 4

For a project file, my_proj.prj, with the following contents:

vhdl vhlib1 f1.vhd

verilog rtfllib f1.v

vhdl vhlib2 f3.vhd

and an LSO file, my_proj.lso, created with the following contents:

personal_lib

rtfllib

vhlib2

vhlib1
XST User Guide www.xilinx.com 331
 1-800-255-7778

http://www.xilinx.com

Chapter 8: Mixed Language Support
R

XST uses the following search order.

rtfllib

vhlib2

vhlib1

After processing, the contents of my_proj.lso will be:

rtfllib

vhlib2

vhlib1
332 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 9

Log File Analysis

This chapter contains the following sections:

• “Introduction”

• “Reducing the Size of the LOG File”

• “Timing Report”

• “FPGA Log File”

• “CPLD Log File”

Introduction
The XST log file related to FPGA optimization contains the following sections:

• Copyright Statement

• Table of Contents

Use this section to quickly navigate to different LOG file sections.

Note: These headings are not linked. Use the Find function in your text editor to navigate.

• Synthesis Options Summary

• HDL Compilation

See “HDL Analysis” below.

• HDL Analysis

During HDL Compilation and HDL Analysis, XST parses and analyzes
VHDL/Verilog files and gives the names of the libraries into which they are compiled.
During this step XST may report potential mismatches between synthesis and
simulation results, potential multi-sources, and other issues.

• HDL Synthesis (contains HDL Synthesis Report)

During this step, XST tries to recognize as many macros as possible to create a
technology specific implementation. This is done on a block by block basis. At the end
of this step XST gives an HDL Synthesis Report. This report contains a summary of
recognized macros in the overall design, sorted by macro type.

See Chapter 2, “HDL Coding Techniques” for more details about the processing of
each macro and the corresponding messages issued during the synthesis process.

• Advanced HDL Synthesis

During this step XST performs advanced macro recognition and inference. In this step,
XST recognizes dynamic shift registers, implements pipelined multipliers, codes state
machines, etc.
XST User Guide www.xilinx.com 333
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

• Low Level Synthesis

During this step XST reports the potential removal of equivalent flip-flops, register
replication, etc.

For more information, see “Log File Analysis” in Chapter 3.

• Final Report

The Final report is different for FPGA and CPLD flows as follows.

♦ FPGA and CPLD: includes the output file name, output format, target family and
cell usage.

♦ FPGA only: In addition to the above, the report includes the following
information for FPGAs.

- Device Utilization Summary: where XST estimates the number of slices, gives
the number of flip-flops, IOBs, BRAMS, etc. This report is very close to the
one produced by MAP.

- Clock Information: gives information about the number of clocks in the
design, how each clock is buffered and how many loads it has.

- Timing report: contains Timing Summary and Detailed Timing Report. For
more information, see “Log File Analysis” in Chapter 3.

- Encrypted Modules: if a design contains encrypted modules, XST hides the
information about these modules.

Reducing the Size of the LOG File
There are several ways to reduce the size of the LOG file, generated by XST. They are as
follows:

• Quiet Mode

• Silent Mode

• Hiding specific messages

Quiet Mode
Quiet mode allows you to limit the number of messages that are printed to the computer
screen (stdout).

This mode can be invoked by using the –intstyle command line switch with its value set to
either ise or xflow as appropriate. You can also use the old –quiet switch, but Xilinx®
strongly recommends that you not use this method because it will become obsolete in
coming releases.

Normally, XST prints the entire log to stdout. In quiet mode, XST does not print the
following portions of the log to stdout:

• Copyright Message

• Table Of Contents

• Synthesis Options Summary

• The following portions of the Final Report

♦ Final Results header for CPLDs

♦ Final Results section for FPGAs

♦ The following note in the Timing Report
334 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Reducing the Size of the LOG File
R

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE. FOR
ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-AND-ROUTE.

♦ Timing Detail

♦ CPU (XST run time)

♦ Memory usage

Note: Device Utilization Summary, Clock Information, and Timing Summary are still available
for FPGAs.

Silent mode
Silent mode allows you keep any messages from going to the computer screen (stdout),
while XST continues to generate the entire LOG file. Silent mode can be invoked using
–intstyle switch with value set to silent.

Hiding specific messages
You can hide specific messages generated by XST at the HDL or Low Level Synthesis steps
in specific situations by using the XIL_XST_HIDEMESSAGES environment variable. This
environment variable can have one of the following values.

• none — maximum verbosity. All messages are printed out. This is the default.

• hdl_level — reduce verbosity during VHDL/Verilog Analysis and HDL Basic and
Advanced Synthesis.

• low_level — reduce verbosity during Low-level Synthesis

• hdl_and_low_levels — reduce verbosity at all stages.

The following messages are hidden when hdl_level and hdl_and_low_levels values are
specified for the XIL_XST_HIDEMESSAGES environment variable.

• WARNING:HDLCompilers:38 - design.v line 5 Macro ’my_macro’
redefined

• Note: this message is issued by the Verilog compiler only.

• WARNING:Xst:916 - design.vhd line 5: Delay is ignored for
synthesis.

• WARNING:Xst:766 - design.vhd line 5: Generating a Black Box for
component comp.

• Instantiating component comp from Library lib.

• Set user-defined property "LOC = X1Y1" for instance inst in
unit block.

• Set user-defined property "RLOC = X1Y1" for instance inst in
unit block.

• Set user-defined property "INIT = 1" for instance inst in unit
block.

• Register reg1 equivalent to reg2 has been removed.
XST User Guide www.xilinx.com 335
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

The following messages are hidden when low_level and hdl_and_low_levels values are
specified for the XIL_XST_HIDEMESSAGES environment variable.

• WARNING:Xst:382 - Register reg1 is equivalent to reg2.

• Register reg1 equivalent to reg2 has been removed.

• WARNING:Xst:1710 - FF/Latch reg (without init value) is
constant in block block.

• WARNING:Xst 1293 - FF/Latch reg is constant in block block.

• WARNING:Xst:1291 - FF/Latch reg is unconnected in block block.

• WARNING:Xst:1426 - The value init of the FF/Latch reg hinders
the constant cleaning in the block block. You could achieve
better results by setting this init to value.

Timing Report
At the end of synthesis, XST reports the timing information for the design. The report
shows the information for all four possible domains of a netlist: "register to register", "input
to register", "register to outpad" and "inpad to outpad".

See the TIMING REPORT section of the example given in the “FPGA Log File” section for
an example of the timing report sections in the XST log.

FPGA Log File
The following is an example of an XST log file for FPGA synthesis.

Release 6.1i - xst G.23
Copyright (c) 1995-2003 Xilinx, Inc. All rights reserved.

-->
TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) HDL Analysis
4) HDL Synthesis

4.1) HDL Synthesis Report
5) Advanced HDL Synthesis
6) Low Level Synthesis
7) Final Report

7.1) Device utilization summary
7.2) TIMING REPORT
336 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

FPGA Log File
R

===
* Synthesis Options Summary *
===
---- Source Parameters
Input File Name : stopwatch.prj
Input Format : mixed
Ignore Synthesis Constraint File : NO
Verilog Search Path :
Verilog Include Directory :

---- Target Parameters
Output File Name : stopwatch
Output Format : NGC
Target Device : xc2v40-6cs144

---- Source Options
Top Module Name : stopwatch
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
FSM Style : lut
RAM Extraction : Yes
RAM Style : Auto
ROM Extraction : Yes
ROM Style : Auto
Mux Extraction : YES
Mux Style : Auto
Decoder Extraction : YES
Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES
Resource Sharing : YES
Multiplier Style : auto
Automatic Register Balancing : No

---- Target Options
Add IO Buffers : YES
Global Maximum Fanout : 500
Add Generic Clock Buffer(BUFG) : 16
Register Duplication : YES
Equivalent register Removal : YES
Slice Packing : YES
Pack IO Registers into IOBs : auto

---- General Options
Optimization Goal : Speed
Optimization Effort : 1
Keep Hierarchy : NO
Global Optimization : AllClockNets
RTL Output : Yes
Write Timing Constraints : NO
Hierarchy Separator : _
Bus Delimiter : <>
Case Specifier : maintain
Slice Utilization Ratio : 100
Slice Utilization Ratio Delta : 5
XST User Guide www.xilinx.com 337
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

---- Other Options
lso : stopwatch.lso
Read Cores : YES
cross_clock_analysis : NO
verilog2001 : YES
Optimize Instantiated Primitives : NO

===

===
* HDL Compilation *
===
Compiling vhdl file c:/users/doc/granite/timer/ise/smallcntr.vhd in Library work.
Architecture inside of Entity smallcntr is up to date.
Compiling vhdl file c:/users/doc/granite/timer/ise/statmach.vhd in Library work.
Architecture inside of Entity statmach is up to date.
Compiling vhdl file c:/users/doc/granite/timer/ise/decode.vhd in Library work.
Architecture behavioral of Entity decode is up to date.
Compiling vhdl file c:/users/doc/granite/timer/ise/cnt60.vhd in Library work.
Architecture inside of Entity cnt60 is up to date.
Compiling vhdl file c:/users/doc/granite/timer/ise/hex2led.vhd in Library work.
Architecture hex2led_arch of Entity HEX2LED is up to date.
Compiling vhdl file c:/users/doc/granite/timer/ise/stopwatch.vhd in Library work.
Architecture inside of Entity stopwatch is up to date.

===
* HDL Analysis *
===
Analyzing Entity <stopwatch> (Architecture <inside>).
WARNING:Xst:766 - c:/users/doc/granite/timer/ise/stopwatch.vhd line 68: Generating a Black
Box for component <tenths>.
Entity <stopwatch> analyzed. Unit <stopwatch> generated.

Analyzing Entity <statmach> (Architecture <inside>).
Entity <statmach> analyzed. Unit <statmach> generated.

Analyzing Entity <decode> (Architecture <behavioral>).
Entity <decode> analyzed. Unit <decode> generated.

Analyzing Entity <cnt60> (Architecture <inside>).
Entity <cnt60> analyzed. Unit <cnt60> generated.

Analyzing Entity <smallcntr> (Architecture <inside>).
Entity <smallcntr> analyzed. Unit <smallcntr> generated.

Analyzing Entity <hex2led> (Architecture <hex2led_arch>).
Entity <hex2led> analyzed. Unit <hex2led> generated.
338 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

FPGA Log File
R

===
* HDL Synthesis *
===

Synthesizing Unit <smallcntr>.
Related source file is c:/users/doc/granite/timer/ise/smallcntr.vhd.
Found 4-bit up counter for signal <qoutsig>.
Summary:

inferred 1 Counter(s).
Unit <smallcntr> synthesized.

Synthesizing Unit <hex2led>.
Related source file is c:/users/doc/granite/timer/ise/hex2led.vhd.
Found 16x7-bit ROM for signal <LED>.
Summary:

inferred 1 ROM(s).
Unit <hex2led> synthesized.

Synthesizing Unit <cnt60>.
Related source file is c:/users/doc/granite/timer/ise/cnt60.vhd.

Unit <cnt60> synthesized.

Synthesizing Unit <decode>.
Related source file is c:/users/doc/granite/timer/ise/decode.vhd.
Found 16x10-bit ROM for signal <one_hot>.
Summary:

inferred 1 ROM(s).
Unit <decode> synthesized.

Synthesizing Unit <statmach>.
Related source file is c:/users/doc/granite/timer/ise/statmach.vhd.
Found finite state machine <FSM_0> for signal <current_state>.

States	6
Transitions	11
Inputs	1
Outputs	6
Clock	CLK (rising_edge)
Reset	RESET (positive)
Reset type	asynchronous
Reset State	000001
Power Up State	000001
Encoding	automatic
Implementation	LUT

Summary:

inferred 1 Finite State Machine(s).
Unit <statmach> synthesized.
XST User Guide www.xilinx.com 339
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

Synthesizing Unit <stopwatch>.
Related source file is c:/users/doc/granite/timer/ise/stopwatch.vhd.

WARNING:Xst:646 - Signal <strtstopinv> is assigned but never used.
Unit <stopwatch> synthesized.

===
HDL Synthesis Report

Macro Statistics
FSMs : 1
ROMs : 3

16x7-bit ROM : 2
16x10-bit ROM : 1

Counters : 2
4-bit up counter : 2

===

===
* Advanced HDL Synthesis *
===

Selecting encoding for FSM_0 ...
Optimizing FSM <FSM_0> on signal <current_state> with one-hot encoding.

===
* Low Level Synthesis *
===

Optimizing unit <stopwatch> ...

Optimizing unit <cnt60> ...

Mapping all equations ...
Loading device for application Xst from file ’2v40.nph’ in environment c:\xilinx.
Building and optimizing final netlist ...
Found area constraint ratio of 100 (+ 5) on block stopwatch, actual ratio is 10.

===
* Final Report *
===
Final Results
RTL Top Level Output File Name : stopwatch.ngr
Top Level Output File Name : stopwatch
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design Statistics
IOs : 27

Macro Statistics :
ROMs : 3
16x10-bit ROM : 1
16x7-bit ROM : 2
Registers : 2
4-bit register : 2
Multiplexers : 2
340 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

FPGA Log File
R

2-to-1 multiplexer : 2

Cell Usage :
BELS : 43
GND : 1
LUT1 : 2
LUT2 : 1
LUT2_D : 1
LUT3 : 6
LUT3_L : 1
LUT4 : 31
FlipFlops/Latches : 14
FDC : 5
FDCE : 8
FDP : 1
Clock Buffers : 1
BUFGP : 1
IO Buffers : 26
IBUF : 2
OBUF : 24
Others : 1
tenths : 1
===

Device utilization summary:

Selected Device : 2v40cs144-6

Number of Slices: 23 out of 256 8%
Number of Slice Flip Flops: 14 out of 512 2%
Number of 4 input LUTs: 42 out of 512 8%
Number of bonded IOBs: 26 out of 88 29%
Number of GCLKs: 1 out of 16 6%

===
TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.
FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and-ROUTE.

Clock Information:

-----------------------------------+------------------------+-------+
Clock Signal | Clock buffer(FF name) | Load |
-----------------------------------+------------------------+-------+
CLK | BUFGP | 14 |
-----------------------------------+------------------------+-------+

Timing Summary:

Speed Grade: -6
XST User Guide www.xilinx.com 341
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

Minimum period: 2.657ns (Maximum Frequency: 376.364MHz)
Minimum input arrival time before clock: 2.055ns
Maximum output required time after clock: 6.697ns
Maximum combinational path delay: 6.214ns

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock ’CLK’
Delay: 2.657ns (Levels of Logic = 2)

Source: sixty_lsbcount_qoutsig_1 (FF)
Destination: sixty_msbcount_qoutsig_3 (FF)
Source Clock: CLK rising
Destination Clock: CLK rising

Data Path: sixty_lsbcount_qoutsig_1 to sixty_msbcount_qoutsig_3
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
FDCE:C->Q 11 0.449 0.671 sixty_lsbcount_qoutsig_1

(sixty_lsbcount_qoutsig_1)
LUT3_L:I0->LO 1 0.347 0.100 sixty_msbce_SW111_SW0 (N1437)
LUT4:I3->O 4 0.347 0.553 sixty_msbce_SW111 (sixty_msbce)
FDCE:CE 0.190 sixty_msbcount_qoutsig_0

--
Total 2.657ns (1.333ns logic, 1.324ns route)

(50.2% logic, 49.8% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’CLK’
Offset: 2.055ns (Levels of Logic = 2)

Source: xcounter:Q_THRESH0 (PAD)
Destination: sixty_msbcount_qoutsig_3 (FF)
Destination Clock: CLK rising

Data Path: xcounter:Q_THRESH0 to sixty_msbcount_qoutsig_3
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
tenths:Q_THRESH0 2 0.000 0.519 xcounter (xtermcnt)
LUT3_L:I2->LO 1 0.347 0.100 sixty_msbce_SW111_SW0 (N1437)
LUT4:I3->O 4 0.34 0.553 sixty_msbce_SW111 (sixty_msbce)
FDCE:CE 0.190 sixty_msbcount_qoutsig_0

--
Total 2.055ns (0.884ns logic, 1.171ns route)

(43.0% logic, 57.0% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’CLK’
Offset: 6.697ns (Levels of Logic = 2)

Source: sixty_lsbcount_qoutsig_0 (FF)
Destination: ONESOUT<6> (PAD)
Source Clock: CLK rising

Data Path: sixty_lsbcount_qoutsig_0 to ONESOUT<6>
342 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

CPLD Log File
R

Gate Net
Cell:in->out fanout Delay Delay Logical Name (Net Name
-- ------------
FDCE:C->Q 12 0.449 0.688 sixty_lsbcount_qoutsig_0

(sixty_lsbcount_qoutsig_0)
LUT4:I0->O 1 0.347 0.383 lsbled_Mrom_LED_inst_lut4_101 (ONESOUT_0_OBUF)
OBUF:I->O 4.830 ONESOUT_0_OBUF (ONESOUT<0>)
--
Total 6.697ns (5.626ns logic, 1.071ns route)

(84.0% logic, 16.0% route)

Timing constraint: Default path analysis
Delay: 6.214ns (Levels of Logic = 2)

Source: xcounter:Q<1> (PAD)
Destination: TENTHSOUT<9> (PAD)

Data Path: xcounter:Q<1> to TENTHSOUT<9>
Gate Net

Cell:in->out fanout Delay Delay Logical Name (Net Name)
-- ------------
tenths:Q<1> 10 0.000 0.655 xcounter (Q<1>)
LUT4:I1->O 1 0.347 0.383 TENTHSOUT<0>1 (TENTHSOUT_0_OBUF)
OBUF:I->O 4.830 TENTHSOUT_0_OBUF (TENTHSOUT<0>)

--
Total 6.214ns (5.177ns logic, 1.037ns route)

(83.3% logic, 16.7% route)

===
CPU : 22.28 / 26.48 s | Elapsed : 22.00 / 26.00 s

-->

Total memory usage is 73468 kilobytes

CPLD Log File
The following is an example of an XST log file for CPLD synthesis.

Release 6.1i - xst G.23
Copyright (c) 1995-2003 Xilinx, Inc. All rights reserved.

TABLE OF CONTENTS
1) Synthesis Options Summary
2) HDL Compilation
3) HDL Analysis
4) HDL Synthesis

4.1) HDL Synthesis Report
5) Advanced HDL Synthesis
6) Low Level Synthesis
7) Final Report
XST User Guide www.xilinx.com 343
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

===
* Synthesis Options Summary *
===
---- Source Parameters
Input File Name : stopwatch.prj
Input Format : mixed
Ignore Synthesis Constraint File : NO
Verilog Search Path :
Verilog Include Directory :

---- Target Parameters
Output File Name : stopwatch
Output Format : NGC
Target Device : xbr

---- Source Options
Top Module Name : stopwatch
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Mux Extraction : YES
Resource Sharing : YES

---- Target Options
Add IO Buffers : YES
Equivalent register Removal : YES
MACRO Preserve : YES
XOR Preserve : YES

---- General Options
Optimization Goal : Speed
Optimization Effort : 1
Keep Hierarchy : YES
RTL Output : Yes
Hierarchy Separator : _
Bus Delimiter : <>
Case Specifier : maintain

---- Other Options
lso : stopwatch.lso
verilog2001 : YES
Clock Enable : YES
wysiwyg : NO

===

===
* HDL Compilation *
===
Compiling vhdl file c:/users/doc/granite/timer/ise/smallcntr.vhd in Library work.
Entity <smallcntr> (Architecture <inside>) compiled.
Compiling vhdl file c:/users/doc/granite/timer/ise/statmach.vhd in Library work.
Entity <statmach> (Architecture <inside>) compiled.
Compiling vhdl file c:/users/doc/granite/timer/ise/decode.vhd in Library work.
Entity <decode> (Architecture <behavioral>) compiled.
Compiling vhdl file c:/users/doc/granite/timer/ise/cnt60.vhd in Library work.
Entity <cnt60> (Architecture <inside>) compiled.
Compiling vhdl file c:/users/doc/granite/timer/ise/hex2led.vhd in Library work.
Entity <HEX2LED> (Architecture <HEX2LED_arch>) compiled.
344 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

CPLD Log File
R

Compiling vhdl file c:/users/doc/granite/timer/ise/stopwatch.vhd in Library work.
Entity <stopwatch> (Architecture <inside>) compiled.

===
* HDL Analysis *
===
Analyzing Entity <stopwatch> (Architecture <inside>).
WARNING:Xst:766 - c:/users/doc/granite/timer/ise/stopwatch.vhd line 68: Generating a

Black Box for component <tenths>.
Entity <stopwatch> analyzed. Unit <stopwatch> generated.

Analyzing Entity <statmach> (Architecture <inside>).
Entity <statmach> analyzed. Unit <statmach> generated.

Analyzing Entity <decode> (Architecture <behavioral>).
Entity <decode> analyzed. Unit <decode> generated.

Analyzing Entity <cnt60> (Architecture <inside>).
Entity <cnt60> analyzed. Unit <cnt60> generated.

Analyzing Entity <smallcntr> (Architecture <inside>).
Entity <smallcntr> analyzed. Unit <smallcntr> generated.

Analyzing Entity <hex2led> (Architecture <hex2led_arch>).
Entity <hex2led> analyzed. Unit <hex2led> generated.

===
* HDL Synthesis *
===

Synthesizing Unit <smallcntr>.
Related source file is c:/users/doc/granite/timer/ise/smallcntr.vhd.
Found 4-bit up counter for signal <qoutsig>.
Summary:

inferred 1 Counter(s).
Unit <smallcntr> synthesized.

Synthesizing Unit <hex2led>.
Related source file is c:/users/doc/granite/timer/ise/hex2led.vhd.
Found 16x7-bit ROM for signal <LED>.
Summary:

inferred 1 ROM(s).
Unit <hex2led> synthesized.

Synthesizing Unit <cnt60>.
Related source file is c:/users/doc/granite/timer/ise/cnt60.vhd.

Unit <cnt60> synthesized.

Synthesizing Unit <decode>.
Related source file is c:/users/doc/granite/timer/ise/decode.vhd.
Found 16x10-bit ROM for signal <one_hot>.
Summary:

inferred 1 ROM(s).
Unit <decode> synthesized.
XST User Guide www.xilinx.com 345
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

Synthesizing Unit <statmach>.
Related source file is c:/users/doc/granite/timer/ise/statmach.vhd.
Found finite state machine <FSM_0> for signal <current_state>.

States	6
Transitions	11
Inputs	1
Outputs	2
Reset type	asynchronous
Encoding	automatic
State register	d flip-flops

Summary:

inferred 1 Finite State Machine(s).
Unit <statmach> synthesized.

Synthesizing Unit <stopwatch>.
Related source file is c:/users/doc/granite/timer/ise/stopwatch.vhd.

WARNING:Xst:646 - Signal <strtstopinv> is assigned but never used.
Unit <stopwatch> synthesized.

===
HDL Synthesis Report

Macro Statistics
FSMs : 1
ROMs : 3

16x7-bit ROM : 2
16x10-bit ROM : 1

Counters : 2
4-bit up counter : 2

===

===
* Advanced HDL Synthesis *
===

Selecting encoding for FSM_0 ...
Encoding for FSM_0 is Gray, flip-flop = D

===
* Low Level Synthesis *
===

Optimizing unit <stopwatch> ...

Optimizing unit <statmach> ...

Optimizing unit <decode> ...

Optimizing unit <hex2led> ...

Optimizing unit <smallcntr> ...

Optimizing unit <cnt60> ...
346 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

CPLD Log File
R

===
* Final Report *
===
Final Results
RTL Top Level Output File Name : stopwatch.ngr
Top Level Output File Name : stopwatch
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : YES
Target Technology : xbr
Macro Preserve : YES
XOR Preserve : YES
Clock Enable : YES
wysiwyg : NO

Design Statistics
IOs : 27

Macro Statistics :
Registers : 8
1-bit register : 8
Xors : 6
1-bit xor2 : 6

Cell Usage:
BELS : 361
AND2 : 135
AND3 : 25
INV : 143
OR2 : 52
XOR2 : 6
FlipFlops/Latches : 11
FDC : 3
FDCE : 8
IO Buffers : 27
IBUF : 3
OBUF : 24
Others : 1
tenths : 1
===
CPU : 7.50 / 9.66 s | Elapsed : 7.00 / 9.00 s

-->

Total memory usage is 62936 kilobytes
XST User Guide www.xilinx.com 347
 1-800-255-7778

http://www.xilinx.com

Chapter 9: Log File Analysis
R

348 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Chapter 10

Command Line Mode

This chapter describes how to run XST using the command line. The chapter contains the
following sections.

• “Introduction”

• “Launching XST”

• “Setting Up an XST Script”

• “Run Command”

• “Getting Help”

• “Set Command”

• “Elaborate Command”

• “Example 1: How to Synthesize VHDL Designs Using Command Line Mode”

• “Example 2: How to Synthesize Verilog Designs Using Command Line Mode”

• “Example 3: How to Synthesize Mixed VHDL/Verilog Designs Using Command Line
Mode”

Introduction
You can run synthesis with XST in command line mode instead of from the Process
window in Project Navigator. To run synthesis from the command line, you must use the
XST executable file. If you work on a workstation, the name of the executable is "xst". On a
PC, the name of the executable is "xst.exe".

XST generates the following types of files:

• Design output file, NGC (.ngc)

This file is generated in the current output directory (see the –ofn option). If run in
incremental synthesis mode, XST generates multiple NGC files.

• RTL netlist for RTL viewer (.ngr)

• Synthesis LOG file (.srp)

• Temporary files

Temporary files are generated in the XST temp directory. By default the XST temp
directory is /tmp on workstations and the directory specified by either the TEMP or
TMP environment variables under Windows. The XST temp directory can be changed
by using the set –tmpdir <directory> directive.
XST User Guide www.xilinx.com 349
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

• VHDL/Verilog compilation files

VHDL/Verilog compilation files are generated in the dump directory. The default
dump directory is the “xst” subdirectory of the current directory.

Note: Xilinx® strongly suggests that you clean the XST temp directory regularly. This directory
contains the files resulting from the compilation of all VHDL and Verilog files during all XST sessions.
Eventually, the number of files stored in the dump directory may severely impact CPU performances.
This directory is not automatically cleaned by XST.

Launching XST
You can run XST in two ways.

• XST Shell — Type xst to enter directly into an XST shell. Enter your commands and
execute them. To run synthesis, specify a complete command with all required
options before running. XST does not accept a mode where you can first enter set
option_1, then set option_2, and then enter run.

All of the options must be set up at once. Therefore, this method is very cumbersome
and Xilinx® suggests that you use the script file method.

• Script File — You can store your commands in a separate script file and run all of
them at once. To execute your script file, run the following workstation or PC
command:

xst –ifn in_file_name –ofn out_file_name –intstyle {silent|ise|xflow}

Note: The –ofn option is not mandatory. If you omit it, XST automatically generates a log file with the
file extension .srp, and all messages display on the screen. Use the –intstyle silent option and the
XIL_XST_HIDEMESSAGES environment variable to limit the number of messages printed to the
screen. See the “Reducing the Size of the LOG File” in Chapter 9 for more information.

For example, assume that the text below is contained in a file foo.scr.

run

–ifn tt1.prj

–ifmt MIXED

–opt_mode SPEED

–opt_level 1

–ofn tt1.ngc

–p <parttype>

This script file can be executed under XST using the following command:

xst –ifn foo.scr

You can also generate a log file with the following command:

xst –ifn foo.scr –ofn foo.log

A script file can be run either using xst –ifn script name, or executed under the XST prompt,
by using the script script_name command.

script foo.scr

If you make a mistake in an XST command, command option or its value, XST issues an
error message and stops execution. For example, if in the previous script example VHDL is
incorrectly spelled (VHDLL), XST gives the following error message:

–-> ERROR:Xst:1361 - Syntax error in command run for option "-ifmt" :
parameter "VHDLL" is not allowed.
350 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Setting Up an XST Script
R

Setting Up an XST Script
An XST script is a set of commands, each command having various options. XST
recognizes the following commands:

• run

• set

• elaborate

Run Command
Following is a description of the run command.

• The command begins with a keyword run, which is followed by a set of options and
its values.

run option_1 value option_2 value ...

• Each option name starts with dash (–). For instance: –ifn, –ifmt, –ofn.

• Each option has one value. There are no options without a value.

• The value for a given option can be one of the following:

♦ Predefined by XST (for instance, YES or NO).

♦ Any string (for instance, a file name or a name of the top level entity). There are
options like –vlgpath and –vlgincdir that accept several directories as values. The
directories must be separated by spaces, and enclosed altogether by double
quotes (““) as in the following example.

–vlgpath “c:\vlg1 c:\vlg2”

♦ An integer.

In the following tables, you can find the name of each option and its values.

• First column — the name of the options you can use in command line mode. If the
option is in bold, it must be present in the command line.

• Second column — the option description.

• Third column — the possible values of this option. The values in bold are the default
values.

Table 10-1: Global Options

Run Command Options Description Values

–ifn Input/Project File Name file_name

–ifmt Input Project Format VHDL, Verilog,
Mixed

–top Top Level Block Name block_name

–worklib Work Library —directory
where the top level block was
compiled

dir_name, work

–lso Library Search Order file_name.lso

–ofn Output File Name file_name

–ofmt Output File Format NGC
XST User Guide www.xilinx.com 351
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

–case Case Upper, Lower,
Maintain

–hierarchy_separator Hierarchy Separator _ , /

–opt_mode Optimization Goal Area, Speed

–opt_level Optimization Effort 1, 2

–p Target Technology part-package-speed
for example:
xcv50-fg456-5 :

xcv50-fg456-6

–rtlview Generate RTL Schematic Yes, No, Only

–iuc Ignore User Constraints Yes, No

–uc Synthesis Constraints File file_name.xcf

–bus_delimiter Bus Delimiter <>, [], {}, ()

Table 10-2: VHDL Source Options

Run Command
Options

Description Values

–ent Entity Name name

Note: Valid only when old VHDL project
format is used (–ifmt VHDL). Please use
project format (–ifmt mixed) and –top
switch to specify which top level block to
synthesize.

–arch Architecture name

Table 10-3: Verilog Source Options

Run Command
Options

Description Values

–top Top Module name name

Note: Not Valid when old VHDL Project
format is used (–ifmt VHDL).

–vlgcase Case Implementation Style Full, Parallel, Full-Parallel

–vlgpath Verilog Search Paths Any valid path to directories
separated by spaces, and enclosed in
double quotes (““)

Table 10-1: Global Options

Run Command Options Description Values
352 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Run Command
R

–vlgincdir Verilog Include Directories Any valid path to directories
separated by spaces, and enclosed in
double quotes (““)

–verilog2001 Verilog-2001 Yes, No

Table 10-4: HDL Synthesis Options (VHDL and Verilog)

Run Command
Options

Description Values

–fsm_extract Automatic FSM Extraction Yes, No

–fsm_style FSM Style lut, bram

–fsm_encoding Encoding Algorithm Auto, One-Hot, Compact,
Sequential, Gray, Johnson, User

–ram_extract RAM Extract Yes, No

–ram_style RAM Style Auto, Distributed, Block

–rom_extract ROM Extract Yes, No

–rom_style ROM Style Auto, Distributed, Block

–mult_style Multiplier Style Auto, Block, Lut, Pipe_lut

–mux_extract Mux Extraction Yes, No, Force

–mux_style Mux Style Auto, MUXF, MUXCY

–decoder_extract Decoder Extraction Yes, No

–priority_extract Priority Encoder Extraction Yes, No, Force

–shreg_extract Shift Register Extraction Yes, No

–shift_extract Logical Shift Extraction Yes, No

–xor_collapse XOR Collapsing Yes, No

–resource_sharing Resource Sharing Yes, No

Table 10-3: Verilog Source Options

Run Command
Options

Description Values
XST User Guide www.xilinx.com 353
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

Table 10-5: Target Options (9500, 9500XL, 9500XV, XPLA3, CoolRunner-II™,
CoolRunner-IIS™)

Run Command
Options

Description Values

–iobuf Add I/O Buffers Yes, No

–pld_mp Macro Preserve Yes, No

–pld_xp XOR Preserve Yes, No

–keep_hierarchy Keep Hierarchy Yes, Soft, No

–pld_ce Clock Enable Yes, No

–pld_ffopt Flip-Flop Optimization Yes, No

–wysiwyg What You See Is What You Get Yes, No

–equivalent_-
register_removal

Equivalent Register Removal Yes, No

Table 10-6: Target Options (Virtex™, Virtex-E™, Virtex-II™, Virtex-II Pro™,
Virtex-II Pro X™, Spartan-II™, Spartan-IIE™)

Run Command Options Description Values

–bufg Maximum Number of
BUFGs created by XST

integer

— Default 4: Virtex/E,
Spartan-II/E

— Default 8: Virtex/E,
Spartan-3

— Default 16: Virtex-II/
II Pro/II Pro X

–cross_clock_analysis Enable cross clock domain
optimization.

Yes, No

–equivalent_register_removal Equivalent Register
Removal

Yes, No

–glob_opt Global Optimization Goal allclocknets,
inpad_to_outpad,
offset_in_before,
offset_out_after,
max_delay

–iob Pack I/O Registers into
IOBs

True, False, Auto

–iobuf Add I/O Buffers Yes, No

–keep_hierarchy Keep Hierarchy Yes, Soft, No
354 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Run Command
R

The following options have become obsolete for the current version of XST.

–max_fanout Maximum Fanout integer

—Default 500 for
Virtex-II /-II Pro/
-II Pro X, Spartan-3

—Default 100 for Virtex,
Virtex E, Spartan-II
and Spartan-IIE

–optimize_primitives Optimize Instantiated
Primitives

Yes, No

–read_cores Read Cores Yes, No

–register_balancing Register Balancing Yes, No, Forward,
Backward

–move_first_stage Move First Flip-Flop Stage Yes, No

–move_last_stage Move Last Flip-Flop Stage Yes, No

–register_duplication Register Duplication Yes, No

–sd Cores Search Directories Any valid path to
directories separated by
spaces, and enclosed in
double quotes ("")

–slice_packing Slice Packing Yes, No

–slice_utilization_ratio Slice Utilization Ratio integer (Default 100)

–slice_utilization_ratio_-
maxmargin

Slice Utilization Ratio Delta integer (Default 5)

–write_timing_constraints Write Timing Constraints Yes, No

Table 10-7:

Run Command Options Description Values

–complex_clken Complex Clock Enable Yes, No

Table 10-6: Target Options (Virtex™, Virtex-E™, Virtex-II™, Virtex-II Pro™,
Virtex-II Pro X™, Spartan-II™, Spartan-IIE™)

Run Command Options Description Values
XST User Guide www.xilinx.com 355
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

Getting Help
If you are working from the command line on a Unix system, XST provides an online Help
function. The following information is available by typing help at the command line. XST’s
help function can give you a list of supported families, available commands, switches and
their values for each supported family.

• To get a detailed explanation of an XST command, use the following syntax.

help –arch family_name –command command_name

where:

♦ family_name is a list of supported Xilinx® families in the current version of XST.

♦ command_name is one of the following XST commands: run, set, elaborate, time.

• To get a list of supported families, type help at the command line prompt with no
argument. XST displays the following message.

––> help

ERROR:Xst:1356 – Help : Missing "–arch <family>". Please specify what
family you want to target

available families:

spartan3

spartan2

spartan2e

virtex

virtex2

virtex2p

virtexe

xbr

xc9500

xc9500xl

xpla3

cr2s

• To get a list of available commands for a specific family, type the following at the
command line prompt with no argument.

help –arch family_name.

For example:

help –arch virtex

Example

Use the following command to get a list of available options and values for the run
command for Virtex-II™.

––> help –arch virtex2 –command run
356 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Set Command
R

This command gives the following output.

-mult_style : Multiplier Style
block / lut / auto / pipe_lut

-bufg : Maximum Global Buffers
*

-bufgce : BUFGCE Extraction
YES / NO

-decoder_extract : Decoder Extraction
YES / NO

....

–ifn : *

–ifmt : Mixed / VHDL / Verilog

–ofn : *

–ofmt : NGC / NCD

–p : *

–ent : *

–top : *

–opt_mode : AREA / SPEED

–opt_level : 1 / 2

–keep_hierarchy : YES / NO

–vlgpath : *

–vlgincdir : *

–verilog2001 : YES / NO

–vlgcase : Full / Parallel / Full-Parallel

....

Set Command
In addition to the run command, XST also recognizes the set command. This command
accepts the options shown in the following table.

Table 10-8: Set Command Options

Set Command
Options

Description Values

–tmpdir Location of all temporary files
generated by XST during a
session

Any valid path to a directory

–dumpdir Location of all files resulting
from VHDL compilation

Any valid path to a directory

–xsthdpdir Work Directory — location of
all files resulting from
VHDL/Verilog compilation

Any valid path to a directory

–xsthdpini HDL Library Mapping File
(.INI File)

file_name
XST User Guide www.xilinx.com 357
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

Elaborate Command
The goal of this command is to pre-compile VHDL/Verilog files in a specific library or to
verify Verilog files without synthesizing the design. Taking into account that the
compilation process is included in the "run", this command remains optional.

The elaborate command accepts the options shown in the following table.

Example 1: How to Synthesize VHDL Designs Using Command
Line Mode

The goal of this example is to synthesize a hierarchical VHDL design for a Virtex™ FPGA
using Command Line Mode.

The example uses a VHDL design, called watchvhd. The files for watchvhd can be found in
the ISEexamples\watchvhd directory of the ISE installation directory.

This design contains 7 entities:

• stopwatch

• statmach

• tenths (a CORE Generator™ core)

• decode

• smallcntr

• cnt60

• hex2led

Table 10-9: Elaborate Command Options

Elaborate
Command Options

Description Values

–ifn Project File file_name

–ifmt Format vhdl, verilog, mixed

–lso Library Search Order file_name.lso

–work_lib Work Library for
Compilation—directory
where the top level block was
compiled Compilation

name, work

–verilog2001 Verilog-2001 Yes, No

–vlgpath Verilog Search Paths Any valid path to directories
separated by spaces, and
enclosed in double quotes ("")

–vlgincdir Verilog Include Directories Any valid path to directories
separated by spaces, and
enclosed in double quotes ("")
358 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Example 1: How to Synthesize VHDL Designs Using Command Line Mode
R

Example 1
1. Create a new directory, named vhdl_m.

2. Copy the following files from the ISEexamples\watchvhd directory of the ISE
installation directory to the newly created vhdl_m directory.

♦ stopwatch.vhd

♦ statmach.vhd

♦ decode.vhd

♦ cnt60.vhd

♦ smallcntr.vhd

♦ tenths.vhd

♦ hex2led.vhd

To synthesize the design, which is now represented by seven VHDL files, create a project.

Please note that starting from the 6.1i release, XST supports Mixed VHDL/Verilog projects
and therefore, Xilinx® strongly suggests that you use the new project format whether it is
a real mixed language project or not. In this example we use the new project format. To
create a project file containing only VHDL files place a list of VHDL files preceded by
keyword VHDL in a separate file. The order of the files is not important. XST can recognize
the hierarchy, and compile VHDL files in the correct order.

For the example, perform the following steps:

1. Open a new file, called watchvhd.prj

2. Enter the names of the VHDL files in any order into this file and save the file:

vhdl work statmach.vhd

vhdl work decode.vhd

vhdl work stopwatch.vhd

vhdl work cnt60.vhd

vhdl work smallcntr.vhd

vhdl work vhdl tenths.vhd

vhdl work hex2led.vhd

3. To synthesize the design, execute the following command from XST shell or via script
file:

run –ifn watchvhd.prj –ifmt mixed –ofn watchvhd.ngc –ofmt NGC
–p xcv50-bg256-6 –opt_mode Speed –opt_level 1

If you want to synthesize just "hex2led" and check its performance independently of
the other blocks, you can specify the top-level entity to synthesize in the command
line, using the –top option (please refer to Table 10-2, page 352 for more details):

run –ifn watchvhd.prj -ifmt mixed -ofn watchvhd.ngc -ofmt NGC
-p xcv50-bg256-6 -opt_mode Speed -opt_level 1 -top hex2led
XST User Guide www.xilinx.com 359
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

 During VHDL compilation, XST uses the library "work" as the default. If some VHDL files
must be compiled to different libraries, then you can add the name of the library just before
the file name. Suppose that "hexl2led" must be compiled into the library, called my_lib,
then the project file must be:

vhdl work statmach.vhd

vhdl work decode.vhd

vhdl work stopwatch.vhd

vhdl work cnt60.vhd

vhdl work smallcntr.vhd

vhdl work vhdl tenths.vhd

my_lib work hex2led.vhd

Sometimes, XST is not able to recognize the order and issues the following message.

WARNING:XST:3204. The sort of the vhdl files failed, they will be
compiled in the order of the project file.

In this case you must do the following:

• Put all VHDL files in the correct order.

• Add at the end of the list on a separate line the keyword nosort. XST then uses your
predefined order during the compilation step.

vhdl work statmach.vhd

vhdl work decode.vhd

vhdl work stopwatch.vhd

vhdl work cnt60.vhd

vhdl work smallcntr.vhd

vhdl work tenths.vhd

vhdl work hex2led.vhd

nosort

Script Mode
It can be very tedious work to enter XST commands directly in the XST shell, especially
when you have to specify several options and execute the same command several times.
You can run XST in a script mode as follows:

1. Open a new file named xst.txt in the current directory. Put the previously executed
XST shell command into this file and save it.

run -ifn watchvhd.prj -ifmt mixed -ofn watchvhd.ngc

-ofmt NGC -p xcv50-bg256-6 -opt_mode Speed -opt_level 1

2. From the tcsh or other shell, enter the following command to start synthesis.

xst -ifn stopwatch.xst

During this run, XST creates the following files.

♦ watchvhd.ngc: an NGC file ready for the implementation tools

♦ xst.srp: the xst log file

3. If you want to save XST messages in a different log file, for example, watchvhd.log,
execute the following command.

xst -ifn stopwatch.xst -ofn watchvhd.log
360 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Example 2: How to Synthesize Verilog Designs Using Command Line Mode
R

You can improve the readability of the xst.txt file, especially if you use many options to
run synthesis, by placing each option with its value on a separate line, respecting the
following rules:

• The first line must contain only the run command without any options.

• There must be no blank lines in the middle of the command.

• Each line (except the first one) must start with a dash (–).

For the previous command example, xst.scr should look like the following:

run

-ifn watchvhd.vhd

-ifmt mixed

-top stopwatch

-ofn watchvhd.ngc

-ofmt NGC

-p xcv50-bg256-6

-opt_mode Speed

-opt_level 1

Example 2: How to Synthesize Verilog Designs Using Command
Line Mode

The goal of this example is to synthesize a hierarchical Verilog design for a Virtex™ FPGA
using Command Line Mode.

Example 2 uses a Verilog design, called watchver. These files can be found in the
ISEexamples\watchver directory of the ISE installation directory.

• stopwatch.v

• statmach.v

• decode.v

• cnt60.v

• smallcntr.v

• tenths.v

• hex2led.v

This design contains seven modules:

• stopwatch

• statmach

• tenths (a CORE Generator™ core)

• decode

• cnt60

• smallcntr

• hex2led
XST User Guide www.xilinx.com 361
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

Example 2
1. Create a new directory named vlg_m.

2. Copy the watchver design files from the ISEexamples\watchver directory of the
ISE installation directory to the newly created vlg_m directory.

To synthesize the design, which is now represented by seven Verilog files, create a project.
Please note that starting from the 6.1i release XST supports Mixed VHDL/Verilog projects
and therefore, Xilinx® strongly suggest that you use the new project format whether it is a
real mixed language project or not. In this example, we use the new project format. To
create a project file containing only Verilog files place a list of Verilog files preceded by the
keyword verilog in a separate file. The order of the files is not important. XST can recognize
the hierarchy and compile VHDL files in the correct order. For our example:

1. Open a new file, called watchver.v.

2. Enter the names of the Verilog files into this file in any order and save it:

verilog work decode.v
verilog work statmach.v
verilog work stopwatch.v
verilog work cnt60.v
verilog work smallcntr.v
verilog work hex2led.v

3. To synthesize the design, execute the following command from the XST shell or via a
script file:

run –ifn watchver.v –ifmt mixed -top stopwatch –ofn watchver.ngc
–ofmt NGC –p xcv50-bg256-6 –opt_mode Speed –opt_level 1

If you want to synthesize just HEX2LED and check its performance independently of the
other blocks, you can specify the top-level module to synthesize in the command line,
using the –top option (please refer to Table 10-3, page 352 for more information):

run –ifn watchver.v –ifmt Verilog –ofn watchver.ngc –ofmt NGC
–p xcv50-bg256-6 –opt_mode Speed –opt_level 1 –top HEX2LED

Script Mode
It can be very tedious work entering XST commands directly into the XST shell, especially
when you have to specify several options and execute the same command several times.
You can run XST in a script mode as follows.

1. Open a new file called xst.txt in the current directory. Put the previously executed
XST shell command into this file and save it.

run -ifn watchver.prj -ifmt mixed -ofn watchver.ngc
-ofmt NGC -p xcv50-bg256-6 -opt_mode Speed -opt_level 1

2. From the tcsh or other shell, enter the following command to start synthesis.

xst -ifn xst.txt

During this run, XST creates the following files.

♦ watchvhd.ngc: an NGC file ready for the implementation tools

♦ xst.srp: the xst script log file

3. If you want to save XST messages in a different log file, for example, watchvhd.log,
you must execute the following command.

xst -ifn xst.txt -ofn watchver.log
362 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Example 3: How to Synthesize Mixed VHDL/Verilog Designs Using Command Line Mode
R

You can improve the readability of the xst.scr file, especially if you use many options to
run synthesis. You can place each option with its value on a separate line, respecting the
following rules:

• The first line must contain only the run command without any options.

• There must be no blank lines in the middle of the command.

• Each line (except the first one) must start with a dash (–).

For the previous command example, the stopwatch.xst file should look like the following:

run

-ifn watchver.prj

-ifmt mixed

-top stopwatch

-ofn watchver.ngc

-ofmt NGC

-p xcv50-bg256-6

-opt_mode Speed

-opt_level 1

Example 3: How to Synthesize Mixed VHDL/Verilog Designs Using
Command Line Mode

The goal of this example is to synthesize a hierarchical mixed VHDL/Verilog design for a
Virtex FPGA using Command Line Mode.

1. Create a new directory, named vhdl_verilog.

2. Copy the following files from the ISEexamples\watchvhd directory of the ISE
installation directory to the newly created vhdl_verilog directory.

♦ stopwatch.vhd

♦ statmach.vhd

♦ decode.vhd

♦ cnt60.vhd

♦ smallcntr.vhd

♦ tenths.vhd

Copy the following file from the ISEexamples\watchver directory of the ISE
installation directory to the newly created vhdl_verilog directory:

♦ hex2led.v

To synthesize the design, which is now represented by six VHDL files and one Verilog file,
create a project. To create a project file, place a list of VHDL files preceded by keyword vhdl,
and a list of Verilog files preceded by keyword verilog in a separate file. The order of the
files is not important. XST is able to recognize the hierarchy, and compile VHDL files in the
correct order.
XST User Guide www.xilinx.com 363
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

For our example:

1. Open a new file called watchver.prj.

2. Enter the names of the Verilog files into this file in any order and save it:

vhdl work decode.vhd

vhdl work statmach.vhd

vhdl work stopwatch.vhd

vhdl work cnt60.vhd

vhdl work smallcntr.vhd

vhdl work tenths.vhd

verilog work hex2led.v

3. To synthesize the design, execute the following command from the XST shell or via a
script file:

run -ifn watchver.prj -ifmt mixed -top stopwatch -ofn watchver.ngc
-ofmt NGC -p xcv50-bg256-6 -opt_mode Speed -opt_level 1

If you want to synthesize just HEX2LED and check its performance independently of
the other blocks, you can specify it as the top level module to synthesize on the
command line by using the –top option (please refer to Table 10-3, page 352 for more
information):

run -ifn watchver.prj -ifmt mixed -top hex2led -ofn watchver.ngc
-ofmt NGC -p xcv50-bg256-6 -opt_mode Speed -opt_level 1

Script Mode
It can be very tedious work entering XST commands directly into the XST shell, especially
when you have to specify several options and execute the same command several times.
You can run XST in a script mode as follows.

1. Open a new file called xst.txt in the current directory. Put the previously executed
XST shell command into this file and save it.

run -ifn watchver.prj -ifmt mixed -top stopwatch -ofn watchver.ngc
-ofmt NGC -p xcv50-bg256-6 -opt_mode Speed -opt_level 1

2. From the tcsh or other shell, enter the following command to start synthesis.

xst -ifn stopwatch.xst

During this run, XST creates the following files:

♦ watchvhd.ngc: an NGC file ready for the implementation tools

♦ xst.srp: the xst script log file

3. If you want to save XST messages in a different log file for example, watchvhd.log,
execute the following command.

xst -ifn stopwatch.xst -ofn watchver.log

You can improve the readability of the xst.scr file, especially if you use many options to
run synthesis. You can place each option with its value on a separate line, respecting the
following rules:

• The first line must contain only the run command without any options.

• There must be no blank lines in the middle of the command.

• Each line (except the first one) must start with a dash (–).
364 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

Example 3: How to Synthesize Mixed VHDL/Verilog Designs Using Command Line Mode
R

For the previous command example, the stopwatch.xst file should look like the following:

run

-ifn watchver.prj

-ifmt mixed

-ofn watchver.ngc

-ofmt NGC

-p xcv50-bg256-6

-opt_mode Speed

-opt_level 1
XST User Guide www.xilinx.com 365
 1-800-255-7778

http://www.xilinx.com

Chapter 10: Command Line Mode
R

366 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

R

Appendix A

XST Naming Conventions

This appendix discusses net naming and instance naming conventions.

Net Naming Conventions
These rules are listed in order of naming priority.

1. Maintain external pin names.

2. Keep hierarchy in signal names, using underscores as hierarchy designators.

3. Maintain output signal names of registers, including state bits. Use the hierarchical
name from the level where the register was inferred.

4. Ensure that output signals of clock buffers get _clockbuffertype (like _BUFGP or
_IBUFG) follow the clock signal name.

5. Maintain input nets to registers and tristates names.

6. Maintain names of signals connected to primitives and black boxes.

7. Name output net names of IBUFs using the form net_name_IBUF. For example, for an
IBUF with an output net name of DIN, the output IBUF net name is DIN_IBUF.

Name input net names to OBUFs using the form net_name_OBUF. For example, for an
OBUF with an input net name of DOUT, the input OBUF net name is DOUT_OBUF.

Instance Naming Conventions
 These rules are listed in order of naming priority.

1. Keep hierarchy in instance names, using underscores as hierarchy designators.

2. Name register instances, including state bits, for the output signal.

3. Name clock buffer instances _clockbuffertype (like _BUFGP or _IBUFG) after the output
signal.

4. Maintain instantiation instance names of black boxes.

5. Maintain instantiation instance names of library primitives.

6. Name input and output buffers using the form _IBUF or _OBUF after the pad name.

7. Name Output instance names of IBUFs using the form instance_name_IBUF.

Name input instance names to OBUFs using the form instance_name_OBUF.
XST User Guide www.xilinx.com 367
 1-800-255-7778

http://www.xilinx.com

Appendix A: XST Naming Conventions
R

368 www.xilinx.com XST User Guide
1-800-255-7778

http://www.xilinx.com

	Software Manuals
	XST User Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Introduction
	Architecture Support
	XST Flow
	What’s New
	HDL Language Support
	Macro Inference
	Design Constraints
	FPGA Flow
	Log File

	XST in Project Navigator

	2 HDL Coding Techniques
	Introduction
	Signed/Unsigned Support
	Registers
	Log File
	Related Constraints
	Flip-flop with Positive-Edge Clock
	Flip-flop with Negative-Edge Clock and Asynchronous Clear
	Flip-flop with Positive-Edge Clock and Synchronous Set
	Flip-flop with Positive-Edge Clock and Clock Enable
	4-bit Register with Positive-Edge Clock, Asynchronous Set and Clock Enable
	Latches
	4-bit Latch with Inverted Gate and Asynchronous Preset

	Tristates
	Log File
	Related Constraints
	Description Using Combinatorial Process and Always Block
	Description Using Concurrent Assignment

	Counters
	Log File
	Related Constraints
	4-bit Unsigned Up Counter with Asynchronous Clear
	4-bit Unsigned Down Counter with Synchronous Set
	4-bit Unsigned Up Counter with Asynchronous Load from Primary Input
	4-bit Unsigned Up Counter with Synchronous Load with a Constant
	4-bit Unsigned Up Counter with Asynchronous Clear and Clock Enable
	4-bit Unsigned Up/Down counter with Asynchronous Clear
	4-bit Signed Up Counter with Asynchronous Reset
	4-bit Signed Up Counter with Asynchronous Reset and Modulo Maximum

	Accumulators
	Log File
	Related Constraints
	4-bit Unsigned Up Accumulator with Asynchronous Clear

	Shift Registers
	Log File
	Related Constraints
	8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Serial Out
	8-bit Shift-Left Register with Negative-Edge Clock, Clock Enable, Serial In, and Serial Out
	8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Clear, Serial In, and Serial Out
	8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Set, Serial In, and Serial Out
	8-bit Shift-Left Register with Positive-Edge Clock, Serial In, and Parallel Out
	8-bit Shift-Left Register with Positive-Edge Clock, Asynchronous Parallel Load, Serial In, and Se...
	8-bit Shift-Left Register with Positive-Edge Clock, Synchronous Parallel Load, Serial In, and Ser...
	8-bit Shift-Left/Shift-Right Register with Positive-Edge Clock, Serial In, and Parallel Out

	Dynamic Shift Register
	16-bit Dynamic Shift Register with Positive-Edge Clock, Serial In and Serial Out
	LOG File
	Related Constraints
	VHDL Code
	Verilog Code

	Multiplexers
	Log File
	Related Constraints
	4-to-1 1-bit MUX using IF Statement
	4-to-1 MUX Using CASE Statement
	4-to-1 MUX Using Tristate Buffers
	No 4-to-1 MUX

	Decoders
	Log File
	Related Constraints
	VHDL (One-Hot)
	Verilog (One-Hot)
	VHDL (One-Cold)
	Verilog (One-Cold)
	Decoders with Unselected Outputs

	Priority Encoders
	Log File
	3-Bit 1-of-9 Priority Encoder
	Related Constraint
	VHDL
	Verilog

	Logical Shifters
	Log File
	Related Constraints
	Example 1
	Example 2
	Example 3

	Arithmetic Operations
	Adders, Subtractors, Adders/Subtractors
	Comparators (=, /=,<, <=, >, >=)
	Multipliers
	Dividers
	Resource Sharing

	RAMs/ROMs
	Log File
	Related Constraints
	Virtex-II™/Spartan-3™ RAM Read/Write Modes
	Single-Port RAM with Asynchronous Read
	Single-Port RAM with "False" Synchronous Read
	Single-Port RAM with Synchronous Read (Read Through)
	Single-Port RAM with Enable
	Dual-Port RAM with Asynchronous Read
	Dual-Port RAM with False Synchronous Read
	Dual-Port RAM with Synchronous Read (Read Through)
	Dual-Port RAM with One Enable Controlling Both Ports
	Dual-Port RAM with Enable on Each Port
	Dual-Port Block RAM with Different Clocks
	Multiple-Port RAM Descriptions
	Block RAM with Reset
	Initializing Block RAM
	ROMs Using Block RAM Resources

	State Machine
	FSM with 1 Process
	FSM with 2 Processes
	FSM with 3 Processes
	State Registers
	Next State Equations
	Unreachable States
	FSM Outputs
	FSM Inputs
	State Encoding Techniques
	Log File
	RAM-based FSM Synthesis

	Black Box Support
	Log File
	Related Constraints
	VHDL
	Verilog

	3 FPGA Optimization
	Introduction
	Virtex™ Specific Synthesis Options
	Macro Generation
	Arithmetic Functions
	Loadable Functions
	Multiplexers
	Priority Encoder
	Decoder
	Shift Register
	RAMs
	ROMs

	Mapping Logic onto Block RAM
	VHDL
	VERILOG
	LOG
	VHDL
	VERILOG
	LOG

	Flip-Flop Retiming
	Incremental Synthesis Flow
	INCREMENTAL_SYNTHESIS:
	RESYNTHESIZE

	Speed Optimization Under Area Constraint
	Log File Analysis
	Design Optimization
	Resource Usage
	Device Utilization summary
	Clock Information
	Timing Report

	Implementation Constraints
	Virtex™ Primitive Support
	VHDL
	Verilog
	Log File
	Related Constraints

	Cores Processing
	Specifying INITs and RLOCs in HDL Code
	PCI Flow

	4 CPLD Optimization
	CPLD Synthesis Options
	Introduction
	Global CPLD Synthesis Options

	Implementation Details for Macro Generation
	Log File Analysis
	Constraints
	Improving Results
	How to Obtain Better Frequency?
	How to Fit a Large Design?

	5 Design Constraints
	Introduction
	Setting Global Constraints and Options
	Synthesis Options
	HDL Options
	Xilinx® Specific Options
	Other Command Line Options
	Custom Compile File List

	VHDL Attribute Syntax
	Verilog Meta Comment Syntax
	XST Constraint File (XCF)
	XCF Syntax and Utilization

	Old XST Constraint Syntax
	General Constraints
	HDL Constraints
	FPGA Constraints (non-timing)
	CPLD Constraints (non-timing)
	Timing Constraints
	Global Timing Constraints Support
	XCF Timing Constraint Support
	Old Timing Constraint Support

	Constraints Summary
	Implementation Constraints
	Handling by XST
	Examples

	Third Party Constraints
	Constraints Precedence

	6 VHDL Language Support
	Introduction
	Data Types in VHDL
	Overloaded Data Types
	Multi-dimensional Array Types

	Record Types
	Initial Values
	Local Reset ¹ Global Reset

	Objects in VHDL
	Operators
	Entity and Architecture Descriptions
	Entity Declaration
	Architecture Declaration
	Component Instantiation
	Component Configuration
	Generic Parameter Declaration

	Combinatorial Circuits
	Concurrent Signal Assignments
	Simple Signal Assignment
	Selected Signal Assignment
	Conditional Signal Assignment
	Generate Statement
	Combinatorial Process
	If...Else Statement
	Case Statement
	For...Loop Statement

	Sequential Circuits
	Sequential Process with a Sensitivity List
	Sequential Process without a Sensitivity List
	Examples of Register and Counter Descriptions
	Multiple Wait Statements Descriptions

	Functions and Procedures
	Assert Statement
	Packages
	STANDARD Package
	IEEE Packages
	Synopsys Packages

	VHDL Language Support
	VHDL Reserved Words

	7 Verilog Language Support
	Introduction
	Behavioral Verilog Features
	Variable Declaration
	Data Types
	Legal Statements
	Expressions
	Blocks
	Modules
	Module Declaration
	Verilog Assignments
	Continuous Assignments
	Procedural Assignments
	Constants, Macros, Include Files and Comments
	Generate Statement

	Structural Verilog Features
	Parameters
	Verilog Limitations in XST
	Case Sensitivity
	Blocking and Nonblocking Assignments
	Integer Handling

	Verilog Meta Comments
	Verilog-2001 Attributes
	Syntax
	Limitations

	Language Support Tables
	Primitives
	Verilog Reserved Keywords
	Verilog-2001 Support in XST

	8 Mixed Language Support
	Introduction
	Mixed Language Project File
	VHDL/Verilog Boundary Rules
	Instantiating a Verilog Module in a VHDL Design
	Instantiating a VHDL Design Unit in a Verilog Design

	Port Mapping
	Generics Support in Mixed Language Projects
	Library Search Order File
	Project Navigator
	Command Line
	Search Order Rules
	Examples

	9 Log File Analysis
	Introduction
	Reducing the Size of the LOG File
	Quiet Mode
	Silent mode
	Hiding specific messages

	Timing Report
	FPGA Log File
	CPLD Log File

	10 Command Line Mode
	Introduction
	Launching XST
	Setting Up an XST Script
	Run Command
	Getting Help
	Set Command
	Elaborate Command
	Example 1: How to Synthesize VHDL Designs Using Command Line Mode
	Example 1
	Script Mode

	Example 2: How to Synthesize Verilog Designs Using Command Line Mode
	Example 2
	Script Mode

	Example 3: How to Synthesize Mixed VHDL/Verilog Designs Using Command Line Mode
	Script Mode

	A XST Naming Conventions
	Net Naming Conventions
	Instance Naming Conventions

