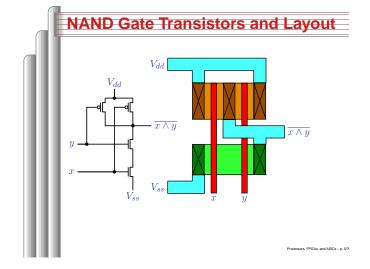
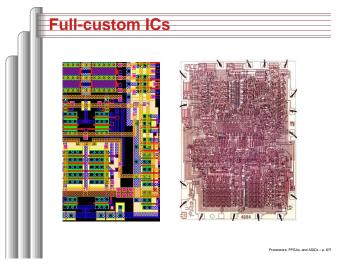
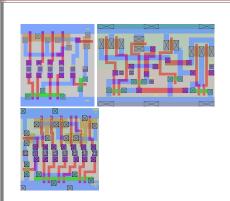
Processors, FPGAs, and ASICs CSEE W4840

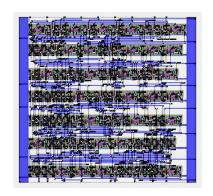

Prof. Stephen A. Edwards

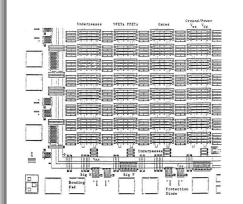

Columbia University

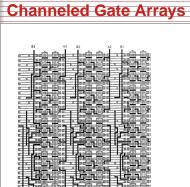
Spectrum of IC choices Flexibility You choose polygons (Intel) Full Custom circuit (Sony) **ASIC** Gate Array wires logic network **FPGA** logic function PLD GP Processor program (e.g., Pentium) SP Processor program (e.g., DSP) Multifunction settings (e.g., Ethernet) Fixed-function part number (e.g., 74LS00)


NMOS Transistor Cross Section

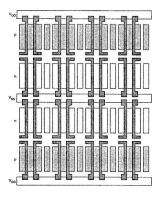
Inverter Transistors and Layout



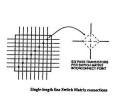

Standard Cell ASICs

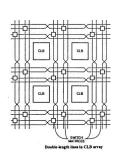


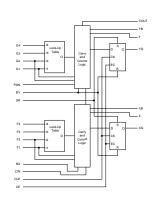
Standard Cell ASICs



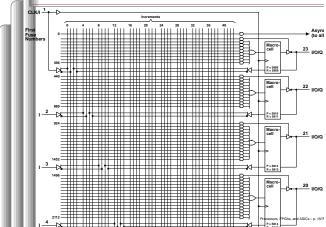
Channeled Gate Arrays



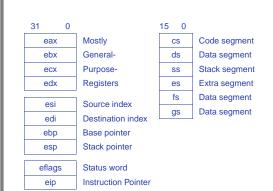

Sea-of-Gates Gate Arrays


FPGAs: Floorplan

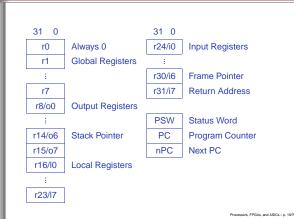
FPGAs: Routing



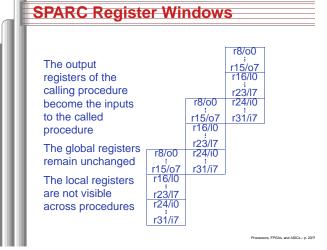
FPGAs: CLB

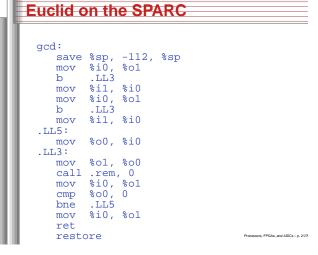

PLAs/CPLDs: The 22v10

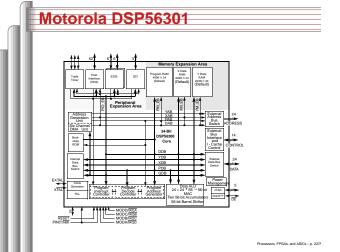
Example: Euclid's Algorithm

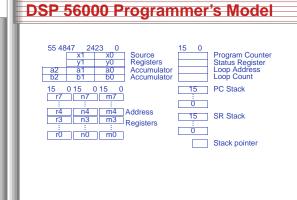

```
int gcd(int m, int n)
  int r;
  while ((r = m % n) != 0) {
   m = ni
   n = r_i
  return n;
```

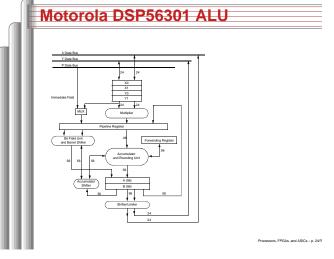
i386 Programmer's Model

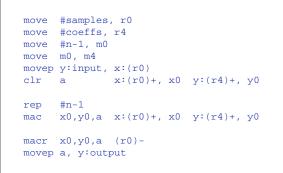


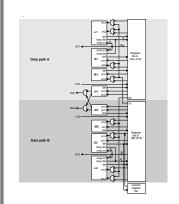

Euclid on the i386


```
gcd: pushl %ebp
     movl %esp,%ebp
     pushl %ebx
     movl 8(%ebp),%eax
     movl 12(%ebp),%ecx
            .L6
      jmp
           %ecx,%eax
.L4: movl
     movl %ebx,%ecx
.L6: cltd
      idivl %ecx
     movl %edx, %ebx
     test1 %edx, %edx
            .L4
      jne
     movl
           %ecx,%eax
           -4(%ebp),%ebx
     movl
      leave
     ret
```




SPARC Programmer's Model





FIR Filter in 56000

Motorola DSP56301 AGU Low Address ALU XAB YAB PAB Triple Multiplexer R0 R4 R1 R5 R2 R6 R3 R7 R3 R7 Address ALU M4 N4 M5 N5 M6 N6 N7 N7

FIR in One 'C6 Assembly Instruction

```
Load a halfword (16 bits)

Do this on unit D1

FIRLOOP:

LDH .D1 *A1++, A2 ; Fetch next sample

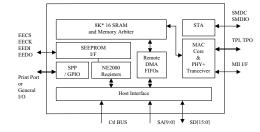
LDH .D2 *B1++, B2 ; Fetch next coeff.

[B0] SUB .L2 B0, 1, B0 ; Decrement count

[B0] B .S2 FIRLOOP ; Branch if non-zero

MPY .M1X A2, B2, A3 ; Sample × Coeff.

ADD .L1 A4, A3, A4 ; Accumulate result

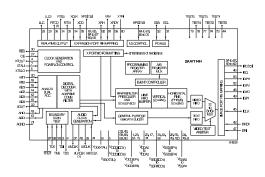

Use the cross path

Predicated instruction (only if B0 non-zero)

Run these instruction in parallel
```

Processors EDGAs and ASICs - p. 29

AX88796 Ethernet Controller

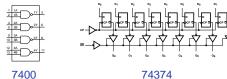


Processors EDGAs and ASICs

Ethernet Controller Registers

Command Register Command Register (CR) Page Start Register (PSTART) (PSTART) Page Stop Register Page Stop Register (PSTOP) (PSTOP) (BNRY) (BNRY) Transmit Page Start Address Transmit Status Register Transmit Byte Count Register 0 (TBCR0) (NCR) Current Page Register Fransmit Byte Count Register 1 (CPR) TBCR1) Interrupt Status Register Interrupt Status Register (CRDA0) RSAR0) Current Remote DMA Address Remote Start Address Register 1 (CRDA1) (RSAR1) Remote Byte Count 0 (RBCR0) 0AH (RBCR1) Receive Status Register Receive Configuration Register.

Philips SAA7114H Video Decoder


Processors. FPGAs, and ASICs = p. 31/7

SAA7114H Registers, page 1 of 7 (!)

REGISTERFUNCTION	ADDR. (HEX)	D7	D6	D5	D4	D3	D2	D1	D0
Chip version: register 00H						•			
Chip version (read only)	00	ID07	E006	ID05	ID04	-	-	-	-
Video decoder: registers 01H t	b 2FH		•		•	•			
FRONTIEND PART: REGISTERS 01H	то 05Н								
Horizontal increment delay	01	(9)	(0)	(0)	(1)	DE13	IDBL2	IDEL1	IDEL()
Analog input control 1	02	FUSE1	FUSEO	GUDL1	GUDLO	MCDE3	MODE2	MODE1	MODE0
Analog input control 2	03	(1)	HLNRS	VBSL	WPOFF	HOLDG	GAFIX	G4428	GAM8
Analog input control 3	04	GA117	GAM6	GAM5	GAI14	GAItt3	GN12	GAI11	GAN10
Analog input control 4	05	GA 1 27	GAL26	GA125	GA 1 24	GA123	GA122	GAI21	GA 12 0
DECCORR PART: REGISTERS 06H T	o2FH								
Horizontallsyncstart	06	HS87	HSB6	HSB5	HSB4	HSB3	HSB2	HSB1	HSBO
Horizontalisync stop	07	HSS7	HS96	HBS5	HSS4	HSS3	HSS2	HSS1	HSS0
Synccontrol	08	AUFD	FSEL.	FOET	HTC1	HTC0	HPLL	VNOH	VNOto
Luminance control	09	BYPS	YOOMB	LDEL	LUBW	LUFI3	LUFI2	ЩЯtt	LUFI0
Luminance brightness control	0A	DBRI7	DBR16	DBRIS	DBR#4	DBRIB	DBRM2	DERM	DBRID
Luminance contrast control	08	DCGN7	D000N6	DCON5	DCC0N4	DOONS	DOON2	DCONI	2020
Orrominance saturation control	OC.	DSAT7	DSAT6	DSAT6	DSAT4	DSAT3	DSAT2	DSAT1	DSATO
Chrominance hue control	00	HJEC7	HJE08	HLEC5	HJEC4	HUEC3	HUEC2	HJEC1	HJE00
Chrominance control 1	Œ	COTO	CSTD2	CSTD1	CSTDO	DCVF	FCTC	(0)	CCCMB
Chrominance gain control	0F	ACGC	CGAIN6	CGAIN5	CGAIN4	OGAINS	OGAIN2	CGAINI	CGAINO
Orrominance control 2	10	OFFU1	OFFU0	OFFV1	OFFV0	CHBW	LCBW2	LCBW1	LCBM0
Mode/dellay control	11	0000	RTP1	HDBL1	HDBL0	RTPO	YDEL2	YDEL1	YDBLO
RT signal control	12	RTSE13	RTSE12	RTSE11	RTSE10	RTSE03	RTSE02	RTSE01	RTSECO
RTX-portaulputaonitol	13	FITCE	XRHS	XFMS1	XFMS0	HLSEL.	OFTS2	OFTS1	OFTS0
Analog/AEC/compatibility control	14	CW69	UPTCV	AOBL1	AOSL0	XIOUTE	OLDSB	AP(K1	APOKO
VGATE start, FID change	15	VSTA7	VSTA6	VSTA5	VSTA4	VSTAG	VSTA2	VSTA1	VSTA0
VGATEstop	16	VST07	VSTO6	VST05	VSTO4	VSTC3	VSTO2	VSTO1	VSTCO
Miscellaneous/VGATE MSBs	17	LLCE	LLC2E	(10	(1)	(1)	VGPS	VSTO8	VSTA8

Processors, FPGAs, and ASICs - p. 32

Fixed-function: The 7400 series

(RCR)

Quad NAND Gate

Octal D Flip-Flop

ocessors, FPGAs, and ASICs - p. 33/?