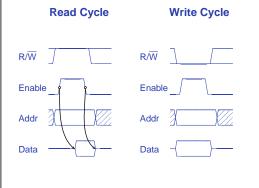
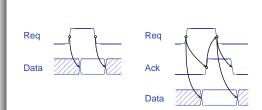

Hardware-Software Interfaces CSEE W4840

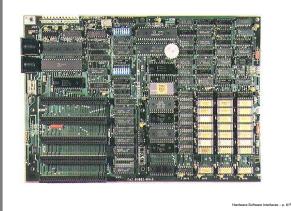

Prof. Stephen A. Edwards

Columbia University

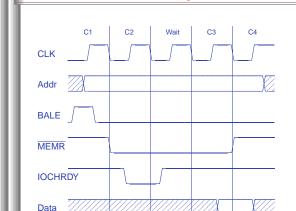
Basic Processor Architecture Controller LatchRead, Write Operation Latch Result Address Memory Registers **Shared Bus**



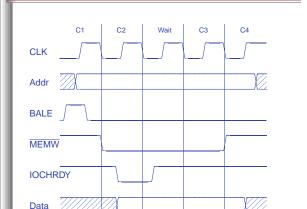
Simple Bus Timing

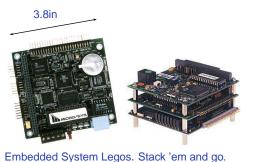

Strobe vs. Handshake

Strobe



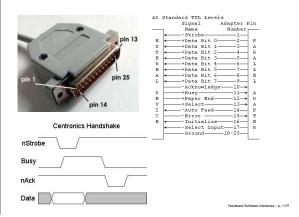
Handshake


1982: The IBM PC


The ISA Bus: Memory Read

The ISA Bus: Memory Write

The PC/104 Form Factor: ISA Lives



Memory-Mapped I/O

- To a processor, everything is memory.
- Peripherals appear as magical memory locations
- Status registers: when read, report state of peripheral
- Control registers: when written, change state of peripheral

ardware-Software Interfaces -

Typical Peripheral: PC Parallel Port

Parallel Port Registers

D7	D6	D5	D4	D3	D2	D1	D0	0x378
Busy	Ack	Paper	Sel	Err				0x379
				Sel	Init	Auto	Strobe	0x37A

1. Write Data

2. Assert Strobe

3. Wait for Busy to clear

4. Wait for Acknowledge

Hardware-Software Interfaces - p. 1

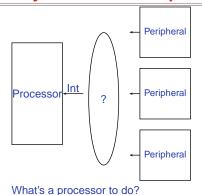
A Parallel Port Driver

```
#define DATA
#define STATUS 0x379
#define CONTROL 0x37A
#define NBSY 0x80
#define NACK 0x40
#define OUT 0x20
#define SEL 0x10
#define NERR 0x08
#define STROBE 0x01
#define INVERT (NBSY | NACK |
#define MASK (NBSY | NACK | OUT | SEL | NERR)
#define NOT_READY(x) ((inb(x)^INVERT)&MASK)
void write_single_character(char c) {
 while (NOT_READY(STATUS)) ;
 outb(DATA, c);
 outb(CONTROL, control | STROBE); /* Assert STROBE */
  outb(CONTROL, control ); /* Clear STROBE */
```

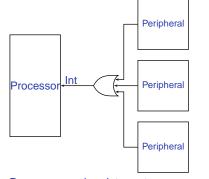
Interrupts and Polling

Two ways to get data from a peripheral:

- Polling: "Are we there yet?"
- Interrupts: Ringing Telephone

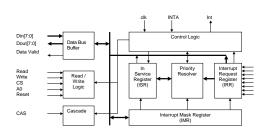

Interrupts

Basic idea:


- Peripheral asserts a processor's interrupt input
- 2. Processor temporarily transfers control to interrupt service routine
- 3. ISR gathers data from peripheral and acknowledges interrupt
- 4. ISR returns control to previously-executing program

Hardware-Software Interfaces – p.

Many Different Interrupts



Interrupt Polling

Processor receives interrupt
ISR reads 8-bit inter
IBM PC/AT: two 82
ISR polls all potential interrupt sources

Intel 8259 PIC

Prioritizes incoming requests & notifies processor ISR reads 8-bit interrupt vector number of winner IBM PC/AT: two 8259s; became standard