Embedded Systems CSEE W4840

Prof. Stephen A. Edwards

Columbia University

Spot the Computer

Hidden Computers

Casio Camera Watch

Browser Phone

Sony Playstation 2

Philips DVD Player

Philips

TiVo Recorder

Technical Challenges

Real-time

Complexity

Legacy Languages

Software complexity growing

Size of Typical Embedded System

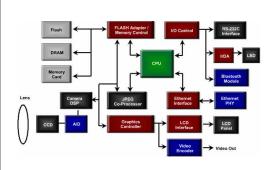
1985 13 kLOC

1989 21 kLOC ↓ 44 % per year

1 MLOC 1998 2 MLOC 2000

2008 16 MLOC ≈ Windows NT 4.0 2010 32 MLOC ≈ Windows 2000

Source: "ESP: A 10-Year Retrospective," Embedded Systems Programming, November 1998


Written in stone-age languages

"Which of the following programming languages have you used for embedded systems in the last 12 months?"

> 81% Assembly 70% C++ 39% Visual Basic 16% Java

Source: "ESP: A 10-Year Retrospective," Embedded Systems Programming, November 1998

Digital Camera Block Diagram

The Design Challenge

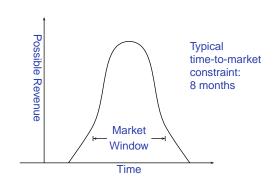
Design optimal device that meets constraints on

Functionality

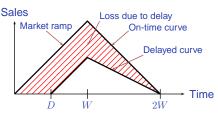
Performance

Size

Time-to-market



Maintainability



Safety

The Time-to-Market Challenge

Simplified Revenue Model

Assuming a constant market ramp, on-time revenue is $\frac{1}{2}bh=\frac{1}{2}\cdot 2W\cdot W=W^2$ and delayed revenue is $\frac{1}{2}(2W-D)(W-D)$ so fractional revenue loss is

$$\frac{D(3W - D)}{2W^2} = O(D^2)$$

Example: when W=26 and D=10, fraction lost is about 50%.

nbedded Systems - p. 10

Nonrecurring engineering cost: The cost of producing the first one. NRE cost dominates Production cost dominates Low NRE, high production costs High NRE, low production costs

Embedded System Technologies

Integrated Circuits

Processing elements

Design tools

mbedded Systems - p. 12/2

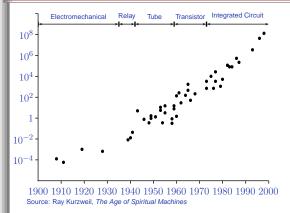
IC Technology

947: First transistor (Shockley, Bell Labs)

958: First integrated circuit (Kilby, TI)

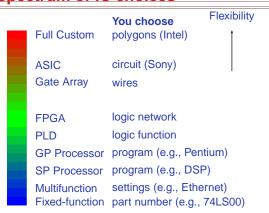
1971: First microprocessor (4004: Intel)

Today: six wire layers, 100 nm features


Moore's Law

Gordon Moore, 1965: Exponential growth in the number of transistors per IC Source: Intel

Embedded Systems


\$1000 buys you this many CPS

1918 Sears Roebuck Catalog

Spectrum of IC choices

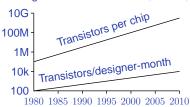
Hardware and Software

Hardware Software Parallel Sequential **Synchronous** Asynchronous Stored programs **Logic Gates** Wire-based Memory-based communication communication Fixed topology Highly programmable Low power High power Less detailed More detailed No NRE High NRE Faster Slower

Design Tools

HardwareSoftwareLogic SynthesisCompilersPlace-and-routeAssemblersDRC/ERC/LVSLinkersSimulatorsDebuggers

idded Systems - p. 19/2

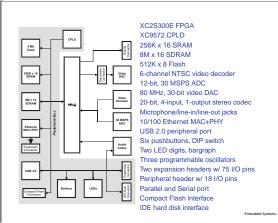

Cost of Designs is Rising

1981: 100 designer-months for leading-edge chip 10k transistors, 100 transistors/month

2002: 30 000 designer-months

150M transistors, 5000 transistors/month

Design cost increased from \$1M to \$300M



Embedded Systems

Your Nemesis: The XESS XSB-300E

Block Diagram

Class Structure

First half of course: Six Introductory Labs:

- 1. Count in C on the 7-segment display
- 2. TV Typewriter in C
- 3. VHDL system reverse-engineering
- 4. Sum the contents of a small memory in VHDL
- 5. Create a simple peripheral
- 6. Build an OPB interface to off-chip SRAM

Second half project: Design-your-own

Custom Project Ideas

Broadly: C + VHDL + peripheral(s)

Digital tone control

Digital sound effects processor

Real-time audio spectrum analyzer

Simple video effects processor

Speech synthesizer

Digital picture frame

Internet radio

Embedded Systems – p. 2

Embedded Systems - p. 2-

Projects from 2004

MIDI synthesizer

Line-following robot with video vision

SAE student vehicle telemetry system

Stereo video vision system

Pac-man-like video game

Internet video camera