

Embedded Systems Lab – CSEE 4840

Programmable Video Processor with Predictable Timing

Julio A. Rios jar2153
Sharmila Gupta sg2337

Emil Nuñez ern2101

Thursday, March 31, 2005

 2'

OVERVIEW

The main goal of this project is to design and implement a simple processor with predictable
timing that can be used for hard real-time tasks such as video generation. The implementation
will involve enhancing the MIPS [6] architecture, a RISC [8] microprocessor architecture, to
allow for the stalling of the execution. A modified version of the MIPS architecture will be
implemented on the FPGA. In addition, the standard MIPS assembly language will be enhanced
with a new wait instruction.

The system design will be illustrated with diagrams. Namely, modified versions of the MIPS
architecture schematic and state transition diagram will account for the new state in the FSM
controller. The processor will be implemented as a VHDL circuit. The assembly language will be
illustrated by our specific application program, NTSC signal generation of a text display. This
language is basically the standard MIPS language with the enhancement of the wait instruction
(which will be explained). A simple assembler will be provided, but there will be no high level
language compiler. However, the functionality of the assembly code will be described by an
equivalent C program.

BACKGROUND

For hard real-time tasks, predictable timing is essential. For example, in generating NTSC [7]
video signals, developers working with simple generic processors manually analyze the timing of
their programs and insert NOP instructions to fill in idle time demanded by the standard. This
approach yields software that is hardly robust. It is our goal to circumvent this problem by
providing direct hardware support for real-time tasks in a simple specialized CPU that is
programmable through software. We take the video generation problem as our specialized
application and focus our efforts on developing a solution to that specific problem. However, we
hope the design is simple enough to generalize to a wide array of real-time applications.

There have been other approaches to this problem. Namely, the problem of wasted cycles (NOP
instructions) in video generation has been attacked at the compiler level by software thread
integration (STI) in [2]. STI uses threads to provide real-time programming support for video
processing on a generic CPU. Our approach is different in that we are trying to implement direct
hardware support to make programmability simpler.

Xyron Semiconductor [9] is a commercial manufacturer of processors for real-time embedded
systems. They also provide custom systems to their customers. However, we are not able to use
their research as support, because it is not publicly available due to its commercial nature.

Another more general work has helped in the design of the architecture and organization of our
system. Colnari et al. [1] is a broad reaching summary on implementing a hard-real time system,
specifically for the embedded systems domain, from the hardware level to the operating system
level to the assembler level.

 3'

DESIGN

First, we read the relevant literature to prepare to design a solution to the project. In addition, we
studied the VHDL code for Professor Edwards’ video controller for the Lab 5 assignment in his
Embedded Systems Design [3]; this is the paradigm on which we base our design. Figure 1
shows an abstract view of the operation of the controller.

CHAR RAM

2.5 K

FONT RAM

1.5 K

CONTROLLER

SHIFT REGISTER

DataOut

DataIn

Address

VIDEO

VSYNC

HSYNC

VIDEO

Figure 1. NTSC video generation paradigm.

We converted the controller’s operation to a C-type program, and subsequently, to simple
assembly code. Whereas this video controller was implemented entirely in hardware described
by VHDL, our controller will be mostly based in software written in assembly code, with a few
hardware components. There will be special hardware support for a new wait instruction as part
of the multicycle MIPS architecture. This will allow the programmer to implement the real-time
behavior necessary for NTSC signal generation. There will also be a special shift register to feed
video signal bytes one bit at a time to the video peripheral. The processor will communicate
with the VGA port via an OPB (on-chip peripheral bus) controller. Figure 2 shows how the
different components in the NTSC application will communicate with each other.

CHAR RAM FONT RAM

ASSEMBLY Code

Software

Modified MIPS on FPGA

Hardware

SHIFT

REGISTER
VIDEO

DAC

OPB

VIDEO

CONTR-

OLLER

OPB

Figure 2. NTSC Application Block Diagram.

The problem is how to provide real-time support on a programmable processor. Our solution
involves the addition of a wait instruction to the MIPS assembly language. This new instruction

 4'

is designed to halt the execution of a program by a specified number of instruction cycles to
provide precise real-time capability. To achieve this, a special type of register with a built-in
down-counter will need to be added to the MIPS architecture. As a starting point, we shall
provide four such registers to allow multiple wait conditions. This will suffice for our specific
task of NTSC signal generation, but more may be added later to provide support for more
complex real-time applications (to be explored later). The collection of four wait registers we
will call the "Wait Register File".

Basically, the wait instruction will have the form:
 wait [wait-register], [value]

For example (as in the NTSC case):
 wait $w1, 8

First, the wait register file will check to see if the register being addressed is at its default value
(zero) by means of checking a ready flag. If it is ready, then it will simply load the counter with
the value provided, begin countdown, and continue with the next instruction. If, however, the
register is not ready (i.e. has a value other than zero), it will reload the old value of the PC (of the
wait instruction) and execute the same instruction again. This strategy may need to be changed
for power optimization.

We have developed an abstract design of the computer architecture to implement the new
enhanced instruction set. It also includes the special shift register and peripheral controller
mentioned above to implement the communication link between the processor and the video
converter. The shift register will be loaded with a value by issuing a store word (sw) instruction
on a special memory location. Figure 3 shows a modified top level schematic of the data path of
the MIPS processor. The control unit and control signals have been omitted for clarity.

Figure 3. Top Level MIPS architecture schematic of data path.

Video Shift Register

OPB Video

Controller

ALU Out

WAdr

WData

WLoad

Ready

Wait registers

Instruction

[25-21]

[15-0]

VIDEO

 5'

Figure 4 shows a modified state transition diagram for the FSM controller. The design is still
abstract and will likely be modified slightly during the implementation phase.

Figure 4. State transition diagram for MIPS finite state machine controller.

WRWrite

ALUSrcA =0

ALUSrcB = 01

ALUOp = 01

10
12

 6'

IMPLEMENTATION AND TESTING

This project is a collaboration of students of Stephen Edwards’ Embedded Systems class and
Luca Carloni’s Distributed Concurrent Systems course. Namely, Sharmila Gupta and Emil
Nunez of Professor Edwards’ class will help in the implementation. Development and
implementation of the hardware will be geared for the XESS XSB-300E FPGA board and we
will use Xilinx software to synthesize and simulate our design, all of which is available in the
workstations for the Embedded Systems class which run the latest version of Red Hat Linux. In
addition, some auxiliary development will be done on Xilinx’s Free ISE WebPACK 7.1i, which
runs on MicrosoftWindows XP machines.

The simple MIPS architecture will be used as a starting point for this effort. We will use
miniMIPS [5], a functional, open-source 32-bit implementation of MIPS. miniMIPS is written in
VHDL and provides an assembler, gasm, written in C. The gasm assembler will, in turn, be
modified to account for the new instruction. The VHDL code will be modified to provide
enhanced functionality. Specifically, the wait register file and the special shift register will be
implemented as VHDL modules. Also, an OPB controller will have to be implemented to serve
as the interface between the processor and the video converter. We will use the OPB
communication section of the video controller [5] as a starting point. Figure 5 shows the
connection diagram for the video digital-to-analog converter. The OPB controller will be
implemented accordingly.

Figure 5. Video DA Converter connection to the FPGA on the XSB-300E board

It is our expectation that we will not need to use off-chip memory, like SRAM, but rather to use
on-chip Block RAM. The standalone video controller used BRAMs to store the Character RAM
and Font RAM, so we should be able to do the same. The assembly source, once assembled into
bit code, should also fit on a few BRAMs.

The finished product should look like a multipurpose MIPS microprocessor programmed to
behave like the video controller used in the Lab 5 assignment, hence exhibiting real-time
capabilities. To test the implementation, it should be sufficient to write a subroutine to write to
the location where the Character RAM is stored, and watch the LCD display change.

 7'

REFERENCES

[1] M. Colnari, D. Verber, R. Gumzej, and W. A. Halang. Implementation of hard real-time

embedded control systems. Real-Time Syst., 14(3):293–310, 1998.
[2] A. Dean, S. Kanaujia, and B. Welch. Generate video using software thread integration. Circuit

Cellar, 161:10–18, dec 2003.
[3] S. Edwards. Text-mode vga controller for the xess-300e. Not publicly available, 2005.
[4] M. Jacomet. RISC Processor Design. Available from

http://www.microlab.ch/courses/risc/risc01.pdf, apr 1996
[5] H. Samuel, J. Sebastien, M. Louis-Marie, and S. Olivier. Minimips.

http://www.opencores.org/cvsweb.shtml/minimips/.
[6] Wikipedia contributors. MIPS architecture. Wikipedia: The Free Encyclopedia.

http://en.wikipedia.org/wiki/MIPS_architecture, Accessed 30 mar 2005.
[7] Wikipedia contributors. NTSC. Wikipedia: The Free Encyclopedia.

http://en.wikipedia.org/wiki/NTSC_standard, Accessed 30 mar 2005.
[8] Wikipedia contributors. RISC. Wikipedia: The Free Encyclopedia.

http://en.wikipedia.org/wiki/RISC, Accessed 30 mar 2005.
[9] Xyron Semiconductor. Freeing tomorrow from today’s past.
http://www.xyronsemi.com/.

