
Syntax and Parsing
COMS W4115

Prof. Stephen A. Edwards
Spring 2003

Columbia University
Department of Computer Science

Lexical Analysis
(Scanning)

Lexical Analysis (Scanning)

Goal is to translate a stream of characters

i n t sp g c d (i n t sp

a , sp i n t sp b

into a stream of tokens

ID

int

ID

gcd

LPAREN

(

ID

int

ID

a

COMMA

,

ID

int

ID

b

Each token consists of a token type and its text.

Whitespace and comments are discarded.

Lexical Analysis

Goal: simplify the job of the parser.

Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g.,
whitespace, comments).

Parser does not care that the the identifer is
“supercalifragilisticexpialidocious.”

Parser rules are only concerned with token types.

The ANTLR Compiler Generator

Language and compiler for writing compilers

Running ANTLR on an ANTLR file produces Java source
files that can be compiled and run.

ANTLR can generate

• Scanners (lexical analyzers)

• Parsers

• Tree walkers

An ANTLR File for a Simple Scanner

class CalcLexer extends Lexer;

LPAREN : ’(’ ; // Rules for puctuation
RPAREN : ’)’ ;

STAR : ’*’ ;

PLUS : ’+’ ;

SEMI : ’;’ ;

protected // Can only be used as a sub-rule
DIGIT : ’0’..’9’ ; // Any character between 0 and 9
INT : (DIGIT)+ ; // One or more digits

WS : (’ ’ | ’\t’ | ’\n’| ’\r’) // Whitespace
{ $setType(Token.SKIP); } ; // Action: ignore

ANTLR Specifications for Scanners

Rules are names starting with a capital letter.

A character in single quotes matches that character.

LPAREN : ’(’ ;

A string in double quotes matches the string

IF : "if" ;

A vertical bar indicates a choice:

OP : ’+’ | ’-’ | ’*’ | ’/’ ;

ANTLR Specifications

Question mark makes a clause optional.

PERSON : ("wo")? ’m’ (’a’|’e’) ’n’ ;

(Matches man, men, woman, and women.)

Double dots indicate a range of characters:

DIGIT : ’0’..’9’;

Asterisk and plus match “zero or more,” “one or more.”

ID : LETTER (LETTER | DIGIT)* ;

NUMBER : (DIGIT)+ ;

Kleene Closure

The asterisk operator (*) is called the Kleene Closure
operator after the inventor of regular expressions, Stephen
Cole Kleene, who pronounced his last name “CLAY-nee.”

His son Ken writes “As far as I am aware this
pronunciation is incorrect in all known languages. I believe
that this novel pronunciation was invented by my father.”

Scanner Behavior

All rules (tokens) are considered simultaneously. The
longest one that matches wins:

1. Look at the next character in the file.

2. Can the next character be added to any of the tokens
under construction?

3. If so, add the character to the token being constructed
and go to step 1.

4. Otherwise, return the token.

How to keep track of multiple rules matching
simultaneously? Build an automata.

Implementing Scanners
Automatically

Regular Expressions (Rules)

Nondeterministic Finite Automata

Subset Construction

Deterministic Finite Automata

Tables

Regular Expressions and NFAs

We are describing tokens with regular expressions:

• The symbol ε always matches

• A symbol from an alphabet, e.g., a, matches itself

• A sequence of two regular expressions e.g., e1e2

Matches e1 followed by e2

• An “OR” of two regular expressions e.g., e1|e2

Matches e1 or e2

• The Kleene closure of a regular expression, e.g., (e)∗

Matches zero or more instances of e1 in sequence.

Deterministic Finite Automata

A state machine with an initial state

Arcs indicate “consumed” input symbols.

States with double lines are accepting.

If the next token has an arc, follow the arc.

If the next token has no arc and the state is accepting,
return the token.

If the next token has no arc and the state is not accepting,
syntax error.

Deterministic Finite Automata

ELSE: "else" ;

ELSEIF: "elseif" ;

e l s e

i

f

Deterministic Finite Automata

IF: "if" ;

ID: ’a’..’z’ (’a’..’z’ | ’0’..’9’)* ;

NUM: (’0’..’9’)+ ;

ID IF

ID ID

NUM NUM

i

f

a-z0-9

a-eg-z0-9

a-z90-9
a-hj-z a-z0-9

0-9

0-9
0-9

Nondeterminstic Finite Automata

DFAs with ε arcs.

Conceptually, ε arcs denote state equivalence.

ε arcs add the ability to make nondeterministic
(schizophrenic) choices.

When an NFA reaches a state with an ε arc, it moves into
every destination.

NFAs can be in multiple states at once.

Translating REs into NFAs

a
a

e1e2 e1 e2

ε

e1|e2

e1

e2

ε

ε

ε

ε

(e)∗ e
ε

ε

ε

ε

RE to NFAs

Building an NFA for the regular expression

(wo|ε)m(a|e)n

produces

w o

ε

m
a

e

n

after simplification. Most ε arcs disappear.

Subset Construction

How to compute a DFA from an NFA.

Basic idea: each state of the DFA is a marking of the NFA

w

o

m

m

a

e
n

Subset Construction

An DFA can be exponentially larger than the
corresponding NFA.

n states versus 2n

Tools often try to strike a balance between the two
representations.

ANTLR uses a different technique.

Free-Format Languages

Typical style arising from scanner/parser division

Program text is a series of tokens possibly separated by
whitespace and comments, which are both ignored.

• keywords (if while)

• punctuation (, (+)

• identifiers (foo bar)

• numbers (10 -3.14159e+32)

• strings ("A String")

Free-Format Languages

Java C C++ Algol Pascal

Some deviate a little (e.g., C and C++ have a separate
preprocessor)

But not all languages are free-format.

FORTRAN 77

FORTRAN 77 is not free-format. 72-character lines:

100 IF(IN .EQ. ’Y’ .OR. IN .EQ. ’y’ .OR.

$ IN .EQ. ’T’ .OR. IN .EQ. ’t’) THEN

1 · · · 5
︸ ︷︷ ︸

Statement label

6
︸︷︷︸

Continuation

7 · · · 72
︸ ︷︷ ︸

Normal

When column 6 is not a space, line is considered part of
the previous.

Fixed-length line works well with a one-line buffer.

Makes sense on punch cards.

Python

The Python scripting language groups with indentation

i = 0

while i < 10:

i = i + 1

print i # Prints 1, 2, ..., 10

i = 0

while i < 10:

i = i + 1

print i # Just prints 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

Syntax and Langauge Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.

The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.

Verbosity does matter: smaller is usually better.

Too small can be a problem: APL is a compact, cryptic
language with its own character set (!)

E←A TEST B;L

L←0.5

E←((A×A)+B×B)*L

Syntax and Language Design

Some syntax is error-prone. Classic FORTRAN example:

DO 5 I = 1,25 ! Loop header (for i = 1 to 25)

DO 5 I = 1.25 ! Assignment to variable DO5I

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;

vector<vector<int>> foo; // Syntax error

C distinguishes > and >> as different operators.

Keywords

Keywords look like identifiers in most languages.

Scanners do not know context, so keywords must take
precedence over identifiers.

Too many keywords leaves fewer options for identifiers.

Langauges such as C++ or Java strive for fewer keywords
to avoid “polluting” available identifiers.

Parsing

Parsing

Objective: build an abstract syntax tree (AST) for the
token sequence from the scanner.

2 * 3 + 4 ⇒

+

*

2 3

4

Goal: discard irrelevant information to make it easier for
the next stage.

Parentheses and most other forms of punctuation
removed.

Grammars

Most programming languages described using a
context-free grammar.

Compared to regular languages, context-free languages
add one important thing: recursion.

Recursion allows you to count, e.g., to match pairs of
nested parentheses.

Which languages do humans speak? I’d say it’s regular: I
do not not not not not not not not not not understand this
sentence.

Languages

Regular languages (t is a terminal):

A→ t1 . . . tnB

A→ t1 . . . tn

Context-free languages (P is terminal or a variable):

A→ P1 . . . Pn

Context-sensitive languages:

α1Aα2 → α1Bα2

“B → A only in the ‘context’ of α1 · · ·α2”

Issues

Ambiguous grammars

Precedence of operators

Left- versus right-recursive

Top-down vs. bottom-up parsers

Parse Tree vs. Abstract Syntax Tree

Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing

3 - 4 * 2 + 5

with the grammar

e→ e + e | e− e | e ∗ e | e / e

+

-

3 *

4 2

5

-

3 +

*

4 2

5

*

-

3 4

+

2 5

-

3 *

4 +

2 5

+

*

-

3 4

2

5

Operator Precedence and
Associativity

Usually resolve ambiguity in arithmetic expressions

Like you were taught in elementary school:

“My Dear Aunt Sally”

Mnemonic for multiplication and division before addition
and subtraction.

Operator Precedence

Defines how “sticky” an operator is.

1 * 2 + 3 * 4

* at higher precedence than +:
(1 * 2) + (3 * 4)

+

*

1 2

*

3 4

+ at higher precedence than *:
1 * (2 + 3) * 4

*

*

1 +

2 3

4

Associativity

Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1 - 2 - 3 - 4

-

-

-

1 2

3

4

-

1 -

2 -

3 4
((1 - 2) - 3) - 4 1 - (2 - (3 - 4))

left associative right associative

Fixing Ambiguous Grammars

Original ANTLR grammar specification

expr

: expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| NUMBER

;

Ambiguous: no precedence or associativity.

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr ’+’ expr

| expr ’-’ expr

| term ;

term : term ’*’ term

| term ’/’ term

| atom ;

atom : NUMBER ;

Still ambiguous: associativity not defined

Assigning Associativity

Make one side or the other the next level of precedence

expr : expr ’+’ term

| expr ’-’ term

| term ;

term : term ’*’ atom

| term ’/’ atom

| atom ;

atom : NUMBER ;

Parsing Context-Free Grammars

There are O(n3) algorithms for parsing arbitrary CFGs,
but most compilers demand O(n) algorithms.

Fortunately, the LL and LR subclasses of CFGs have
O(n) parsing algorithms. People use these in practice.

Parsing LL(k) Grammars

LL: Left-to-right, Left-most derivation

k: number of tokens to look ahead

Parsed by top-down, predictive, recursive parsers

Basic idea: look at the next token to predict which
production to use

ANTLR builds recursive LL(k) parsers

Almost a direct translation from the grammar.

A Top-Down Parser

stmt : ’if’ expr ’then’ expr

| ’while’ expr ’do’ expr

| expr ’:=’ expr ;

expr : NUMBER | ’(’ expr ’)’ ;

AST stmt() {
switch (next-token) {
case ”if” : match(”if”); expr(); match(”then”); expr();
case ”while” : match(”while”); expr(); match(”do”); expr();
case NUMBER or ”(” : expr(); match(”:=”); expr();
}

}

Writing LL(k) Grammars

Cannot have left-recursion

expr : expr ’+’ term | term ;

becomes

AST expr() –
switch (next-token) –
case NUMBER : expr(); /* Infinite Recursion */

Writing LL(1) Grammars

Cannot have common prefixes

expr : ID ’(’ expr ’)’

| ID ’=’ expr

becomes

AST expr() –
switch (next-token) –
case ID : match(ID); match(’(’); expr(); match(’)’);
case ID : match(ID); match(’=’); expr();

Eliminating Common Prefixes

Consolidate common prefixes:

expr

: expr ’+’ term

| expr ’-’ term

| term

;

becomes

expr

: expr (’+’ term | ’-’ term)

| term

;

Eliminating Left Recursion

Understand the recursion and add tail rules

expr

: expr (’+’ term | ’-’ term)

| term

;

becomes

expr : term exprt ;

exprt : ’+’ term exprt

| ’-’ term exprt

| /* nothing */

;

Using ANTLR’s EBNF

ANTLR makes this easier since it supports * and -:

expr : expr ’+’ term

| expr ’-’ term

| term ;

becomes

expr : term (’+’ term | ’-’ term)* ;

The Dangling Else Problem

Who owns the else?

if (a) if (b) c(); else d();

if

a if

b c() d()

or if

a if

b c()

d()

?

Grammars are usually ambiguous; manuals give
disambiguating rules such as C’s:

As usual the “else” is resolved by connecting an
else with the last encountered elseless if.

The Dangling Else Problem

stmt : "if" expr "then" stmt iftail

| other-statements ;

iftail

: "else" stmt

| /* nothing */

;

Problem comes when matching “iftail.”

Normally, an empty choice is taken if the next token is in
the “follow set” of the rule. But since “else” can follow an
iftail, the decision is ambiguous.

The Dangling Else Problem

ANTLR can resolve this problem by making certain rules
“greedy.” If a conditional is marked as greedy, it will take
that option even if the “nothing” option would also match:

stmt

: "if" expr "then" stmt

(options {greedy = true;}

: "else" stmt

)?

| other-statements

;

The Dangling Else Problem

Some languages resolve this problem by insisting on
nesting everything.

E.g., Algol 68:

if a < b then a else b fi;

“fi” is “if” spelled backwards. The language also uses
do–od and case–esac.

Statement separators/terminators

C uses ; as a statement terminator.

if (a<b) printf("a less");

else {

printf("b"); printf(" less");

}

Pascal uses ; as a statement separator.

if a < b then writeln(’a less’)

else begin

write(’a’); writeln(’ less’)

end

Pascal later made a final ; optional.

Bottom-up Parsing

Rightmost Derivation

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

A rightmost derivation for Id ∗ Id + Id:

e

t + e

t + t

t + Id
Id ∗ t + Id
Id ∗ Id + Id

Basic idea of bottom-up parsing:
construct this rightmost derivation
backward.

Handles

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

Id ∗ Id + Id

Id ∗ t + Id

t + Id

t + t

t + e

e e

t

Id * t

Id

+ e

t

Id

This is a reverse rightmost derivation for Id ∗ Id + Id.

Each highlighted section is a handle.

Taken in order, the handles build the tree from the leaves
to the root.

Shift-reduce Parsing

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

stack input action
Id ∗ Id + Id shift

Id ∗ Id + Id shift
Id∗ Id + Id shift
Id ∗ Id + Id reduce (4)
Id ∗ t + Id reduce (3)
t + Id shift
t+ Id shift
t + Id reduce (4)
t + t reduce (2)
t + e reduce (1)
e accept

Scan input left-to-right, looking for handles.

An oracle tells what to do

LR Parsing

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
action goto

Id + ∗ $ e t

0 s1 7 2
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 6 2
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

stack input action

0
Id * Id + Id $ shift, goto 1

1. Look at state on top of stack

2. and the next input token

3. to find the next action

4. In this case, shift the token
onto the stack and go to
state 1.

LR Parsing

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
action goto

Id + ∗ $ e t

0 s1 7 2
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 6 2
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

stack input action

0
Id * Id + Id $ shift, goto 1

0
Id
1

* Id + Id $ shift, goto 3

0
Id
1

*
3

Id + Id $ shift, goto 1

0
Id
1

*
3

Id
1

+ Id $ reduce w/ 4

Action is reduce with rule 4 (t →
Id). The right side is removed from
the stack to reveal state 3. The
goto table in state 3 tells us to go
to state 5 when we reduce a t:

stack input action

0
Id
1

*
3

t

5
+ Id $

LR Parsing

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id
action goto

Id + ∗ $ e t

0 s1 7 2
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 6 2
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

stack input action

0
Id * Id + Id $ shift, goto 1

0
Id
1

* Id + Id $ shift, goto 3

0
Id
1

*
3

Id + Id $ shift, goto 1

0
Id
1

*
3

Id
1

+ Id $ reduce w/ 4

0
Id
1

*
3

t

5
+ Id $ reduce w/ 3

0
t
2

+ Id $ shift, goto 4

0
t
2

+
4

Id $ shift, goto 1

0
t
2

+
4

Id
1

$ reduce w/ 4

0
t
2

+
4

t

2
$ reduce w/ 2

0
t
2

+
4

e

6
$ reduce w/ 1

0
e
7

$ accept

Constructing the SLR Parse Table

The states are places we could be in a reverse-rightmost
derivation. Let’s represent such a place with a dot.

1 : e→t + e

2 : e→t

3 : t→Id ∗ t

4 : t→Id

Say we were at the beginning (·e). This corresponds to

e′ → ·e
e→ ·t + e
e→ ·t
t→ ·Id ∗ t
t→ ·Id

The first is a placeholder. The
second are the two possibilities
when we’re just before e. The last
two are the two possibilities when
we’re just before t.

Constructing the SLR Parsing Table

S7: e
′
→ e·

S0:

e
′
→ ·e

e → ·t + e

e → ·t

t → ·Id ∗ t

t → ·Id

S2: e → t · +e

e → t ·
S4:

e → t + ·e

e → ·t + e

e → ·t

t → ·Id ∗ t

t → ·Id

S1: t → Id · ∗t

t → Id· S6: e → t + e·

S3:
t → Id ∗ ·t

t → ·Id ∗ t

t → ·Id
S5: t → Id ∗ t·

Id + ∗ $ et

0 s1 72
1 r4 r4 s3 r4
2 r2 s4 r2 r2
3 s1 5
4 s1 62
5 r3 r3 r3 r3
6 r1 r1 r1 r1
7 acc

Id

e

t

∗

+

Id
t

e

t

Id

The Punchline

This is a tricky, but mechanical procedure. The parser
generators YACC, Bison, Cup, and others (but not
ANTLR) use a modified version of this technique to
generate fast bottom-up parsers.

You need to understand it to comprehend error messages:

Shift/reduce conflicts are
caused by a state like

t→ Id · ∗t

t→ Id ∗ t·

Reduce/reduce conflicts are
caused by a state like

t→ Id ∗ t·

e→ t + e·

