
Tam Yuen
Columbia University

Programming Languages and Translators

COMS-W4115

Project: ty

Abstract

The legacy of SQL has presented a need to improve its verbose syntax. By offering
simpler syntax, ty can reduce the amount of time in composing traditional SQL
statements.

1. Brief Introduction to DBMS and SQL

A database management system (DBMS) is a piece of software that is designed to assist
in maintaining and utilizing large collection of data stored in its database. To retrieve data
stored in a DBMS, a query language is needed to retrieve records from its database. The
structure query language, or SQL, was originally developed as the query language for
IBM’s System-R relational DBMS in the mid-1970s, and is now the de-facto standard
query language for creating, manipulating, and querying relational DBMSs. SQL was
standardized in the late 1980s, and the current standard, SQL 1999, was adopted by the
American National Standards Institute (ANSI) and International Organization for
Standardization (ISO).

Relational DBMSs store data in a table, which can be thought of as a set of records with
rows and columns. In order to interact with the database, users issue SQL commands
against the database. For example, commands such as “select empid from emp” and
“select lastname, firstname from person where empid=123” query the database to find all
the employee IDs from the emp table and find the last and first name of the person whose
employee ID is 123, respectively.

The SQL language is structured in several components, but the two components that deal
with creating, manipulating, and querying are the Data Definition Language (DDL) and
the Data Manipulation Language (DML). The DDL supports the creation, deletion, and
modification of definitions for tables; while the DML allows users to pose queries and to
insert, delete, and modify rows.

2. SQL Dilemmas

SQL was invented several decades ago and because of its early and rapid adaptation,
SQL was widely deployed to many DBMSs. Today, many enterprise DBMSs use SQL or
some variants of SQL as their query language. Although SQL has been in usage for many
years, its syntax has remained relatively unchanged since its inception.

Even though SQL is a powerful and versatile query language, however, it has several
undesirable attributes due to its inherited legacy from the early 1970s. The first of such
attribute is the verbosity of the SQL language; SQL queries can often be overwhelmingly
verbose or lengthy. Common queries such as “select empid from emp” and “select
lastname, firstname from person where empid=123” are often unnecessarily long or
wordy.

For example, one of the most frequently used SQL commands is joining of tables.
Presently, the join command in SQL is unnecessarily verbose. Because joining tables are
some of the most widely used query commands in SQL, therefore, it is important to
simplify the syntax of joins, particularly natural joins. Without simplification to SQL
users need to spend more time on typing SQL commands rather executing some other
activities.

SQL’s syntax is also very lengthy in arithmetic. Arithmetic between columns in one or
more tables can sometimes be unnecessarily verbose because names of columns need to
be specified. As a result, typing mathematic SQL commands can also be very a time-
consuming activity.

All of these undesirable attributes of the SQL query language can be mitigated by using
ty. ty can be used to simplify frequently used SQL commands with shorter and simpler
syntax.

3. Introduction to ty

ty, pronounced “tie” or just “t y”, is named after its creator, Tam Yuen. ty can address
some of SQL’s dilemmas by simplifying frequently used DML and DDL query
commands into shorter and easy-to-use commands. In contrast to SQL, ty’s syntax is
simpler, easy to remember and to use—yet also powerful and versatile. For example,
SQL commands such as “select empid from emp” and “select lastname, firstname from
person where empid=123” can be easily rewritten by more compact commands like “ty
emp” and “ty emp(1, 2, empid=123)”, respectively.

ty is not meant to replace traditional SQL, but rather compliment it by offering simplified
syntax for frequently used SQL commands; in fact, queries composed using ty can be
completely recomposed using SQL—but not vice versa. ty, in essence, can be thought of
as a special component of SQL that helps to simplify certain types of query. Therefore,
by using ty, users can experience less time on constructing traditional SQL commands
and more time on other higher value-adding activities.

4. Comparing ty to SQL

The following examples highlight some of ty’s syntax by comparing them to traditional
SQL statements.

A. ENTITY TABLE:

– return all rows from emp table
ty: ty emp

 SQL: select * from emp

 – return row 1,2,3 from emp table
 ty: ty emp(1,2,3)
 SQL: select empid, fname, lname from employee

 B. TWO ENTITY TABLES (Natural Join):

 – return all rows from naturally joined tables emp and person
 ty: ty emp, person
 SQL: select * from emp, person where emp.empid=person.empid

 – same as above, but with explicit primary key column number

ty: ty emp(1), person(1)
 SQL: select * from emp, person where emp.empid=person.empid

 C. RELATIONAL TABLES

 – return all rows from tables emp with empid as primary key

ty: ty emp(empid), person(empid), salary(empid)
SQL: select * from emp, person, salary where empid.empid=person.empid and
person.empid=salary.empid

– return column1 of emp table, column4 of person table, and column2 of salary
table with empid as the primary key
ty: ty emp(1), person(4), salary(2)
SQL: select emp.column1, person.column4, salary.column2 where
emp.empid=person.empid and person.empid=salary.empid

 D. CONCATENATION:

– returns two columns, with the first being the concatenation of column1 and
column2
ty: ty emp(1||2,3)
SQL: select column1 || column2, column3 from emp

 E. ADDITION

 – addition of 2 columns; default, formal decl with add command

ty: ty emp(1) + emp(4)
SQL: select emp.column1 + emp.column4 from emp

 – addition of 2 columns from 2 different tables
 ty: ty emp(1) + person(3)
 SQL: select emp.column1, person.column3 from emp, person

 F. SUBTRACTION

 ty: ty emp(1) - emp(4)

SQL: select emp.column1 - emp.column4 from emp

ty: ty emp(1) – person(3)
SQL: select emp.column1 – person.column2 from emp, person

 G. MULTIPLICAITON

 ty: ty emp(1) * emp(4)

SQL: select emp.column1 * emp.column4 from emp

 ty: ty emp(1) * person(3)
 SQL: select emp.column1 * person.column2 from emp, person

 H. DIVISION

 ty: ty emp(1) / emp(4)
 SQL: select emp.column1 / emp.column4 from emp

 ty: ty emp(1) / person(3)

SQL: select emp.column1 / person.column2 from emp, person

 I. AVERAGE

 ty: ty avg emp(1) -- average for column 1

SQL: select avg(emp.column1) from emp

5. Future Improvement and Upgrade
Due to time constraints, only some SQL commands have been simplified. These initial
improvements should serve as a springboard for future enhancement and upgrade.
Possible enhancements and upgrades would include extensive implementation of other
SQL DDL and DML commands.

6. Summary
Although SQL is a powerful and versatile query language, ty can compliment SQL by
offering simpler syntax for frequently used SQL DDL and DML commands.

