
Spaniel – Span-based Information Extraction Language
Adam Lally [apl2107@columbia.edu]
COMS W4115 Programming Languages and Translators
September 28, 2004

Introduction
Spaniel is a new programming language designed to support programming tasks related to
information extraction. In general terms, Information Extraction is the task of building structured
databases from unstructured, natural-language text. One example would be identifying named
entities such as persons, places, and organizations and determining relations between them, such
as which persons are employed by which organizations.

Spaniel is meant to allow average programmers to write simple information extraction programs
as well as be a useful tool for the experts who practice in that field.

Background
It is common for an Information Extraction application to begin by annotating its raw input
documents. That is, one or more components called annotators scan through the input document
and identify spans of text which are labeled and assigned attributes. A labeled span is reffered to
as an annotation. A simple annotator might take the input document:

John Smith works for IBM.

and annotate is as follows:

<Person gender="male">John Smith</Person> works for
<Organization type="corporation">IBM</Organization>.

Note that the use of XML syntax is just a convenient notation for representing annotations on
spans of text, and there is no fundamental requirement to use XML for this task.

Annotators often build on the results of other annotators. For example, a second annotator might
take the annotated text shown above and infer a WorksFor relation between John Smith and
IBM. This could be recorded as an annotation over the entire sentence.

Hence the annotation task can be defined as: Given a text document and some (possibly empty)
set of annotations over spans of that document, produce a new set of annotations that represent
additional information inferred from that document. A software component that performs this
task is called an annotator.

There are several approaches to tackling the annotation problem. Statistical annotators employ
machine learning algorithms trained on human-annotated text, while rule-based annotators allow
their users to declaratively specify rules for each type of annotation, which are then executed by a
rule engine against each input document. These are both very active areas of current research,
and have their merits. However, a currently underused approach is the procedural approach – that
is, just directly writing an annotator using a procedural programming language.

Implementing an annotator directly in code is certainly possible; however one often ends up
needing to write similar code in each annotator one writes, for example deciding how annotations
should be represented and efficiently accessed. These issues are not as much of an issue for
statistical and rule-based annotators since a single piece of software, once written, can be
reapplied in many situations by training it on new data or by supplying a new set of rules.

One way to assist in the development of procedural annotators is to build a software framework
that abstracts away some of these issues. In fact, this author is working on just such a project1.
However, the Java code one writes to implement an annotator can still be somewhat repetitive –
there are many patterns that reappear in each annotator one writes. This situation can be
improved by building these patterns directly into the language.

Goals
Spaniel is Domain-Specific, Integrated with Java, Intuitive, and Compact, yet Readable.

Domain Specific
Spaniel is specifically designed to support the annotation task described above. The concept of a
span, meaning a contiguous section of text, is central to the language, and spans can be
manipulated with ease. Arithmetic operators can be applied to compute unions and intersections
of spans. Spans can be assigned labels and attributes, and it is easy to get an iterator over spans
meeting certain criteria.

While Spaniel does provide a basic core of programming language capability, it is not intended to
be a general purpose programming language that supplants Java or C++. Developers are
expected to code annotation algorithms in Spaniel, and use Java for other aspects of their
program.

Integrated with Java
Spaniel is an interpreted language that runs within a Java Virtual Machine. As such, it is very
easy for a Java program to execute an annotation algorithm written in Spaniel as part of a larger
Java application.

What's more, the Spaniel language includes a way for a Spaniel program to make a call to a Java
method. This makes the power of Java and its extensive class libraries accessible to Spaniel
program, enabling the core annotation algorithm to be written in Spaniel while any complex
computations are done in Java, where they belong.

Intuitive
It was decided that Spaniel should be a procedural language, because that is what average
programmers know and can do well. While there are undoubtedly advantages to declarative and
functional languages, in this author's experience average programmers are not comfortable or
effective thinking in this way.

1 D. Ferrucci and A. Lally. “Building an example application with the Unstructured Information
Management Architecture.” IBM Systems Journal, August 2004.
http://www.research.ibm.com/journal/sj/433/ferrucci.pdf.

Anyone familiar with Java can easily learn to write programs in Spaniel. The Spaniel syntax is
very similar to Java and the new syntax is related only to the central concepts of spans and
iterators over spans, which are easy to learn.

Compact, Yet Readable
Part of the reason for creating the Spaniel language was to reduce some of the boilerplate code
that is necessary when implementing annotation algorithms in Java. The amount of code needed
to obtain iterators over spans matching certain criteria is greatly reduced. Indeed, since spans are
a built-in type in the language, the amount of code for many span-based operations is reduced.
This leads to more compact programs, and also contributes to readability, since a reader does not
have to sift through the repetitive boilerplate code to find the important parts.

If compactness is made an end in itself, however, this gain in readability is soon dramatically
reversed. Spaniel attempts to achieve compactness only where it increases readability. In
particular, it was decided not to introduce a large number of new operators into the language,
even for very common operations. Among the most common operations to perform on a span is
to get its begin or end position as a character offset into the document; the Spaniel syntax for this
is span.begin and span.end, not some operator form like &span and #span, which would
save characters at the expense of readability.

Language Features

Regular Expression Support
It is very common to perform regular expression matching in annotation algorithms. Therefore
Spaniel will contain built-in functions for this. As an example, the following code is all that is
necessary to build a simple Phone Number annotator in Spaniel:

forAll p : matching("\((\d\d\d\)|\d\d\d-)\d\d\d-\d\d\d\d", doc)
 annotate(p, "PhoneNumber");

Here, the built-in matching function returns an iterator over spans that match the given regular
expression. The forAll statement iterates through each match and executes annotate, which
assigns a label to a span.

Iterators over Spans
Spaniel makes it very easy to work with iterators over spans. An example of this was already
seen above, where the built-in function matching returns an iterator. There other built-in
functions, such as isa, which performs the common task of retrieving all spans that have been
annotated as a particular type. Functions that return iterators can also be composed to perform
more complex tasks. For example, the code:

forAll n1 : isa(PhoneNumber, subspans(sentence))
 //do something;

iterates over all annotations of type PhoneNumber that are subspans of the specified
sentence.

Span Manipulation Made Easy
Spans are a built-in data type in Spaniel and are easy to work with. For example, consider that
given we have already annotated phone numbers (using the regular expression match from
before), we now want to find phone calls between two numbers, perhaps in sentences like:

… phone call from 914-555-2168 to 914-555-9876 …

The following code does matches sentences with that pattern, given that n1 and n2 are the two
phone numbers and sentence is the enclosing sentence (perhaps assigned in enclosing
forAll loops):

if (matching("from",[sentence.begin, n1.begin]) &&
 matching("to'" [n1.end, n2.begin])
{

annotate([sentence.begin, n2.end], "PhoneCall");
}

The syntax [sentence.begin, n1.begin] defines the span from the beginning of the
sentence to the first phone number. Within this we search for the keyword "from." Similarly we
search for the keyword "to" from the end of the first phone number to the beginning of the second
phone number. If both these words are found, we annotate the span from the beginning of the
sentence to the end of the second phone number as a PhoneCall.

Java Integration
Spaniel is great for span processing but is quite limited otherwise. To overcome these limitations,
a Spaniel program is permitted to make an external call to a Java method. This is done through
the built-in javacall function, for example:

forAll p : javacall(com.foo.MyJavaClass, x, y)

This would make a call to a method in the Java Class com.foo.MyJavaClass, which must
implement a required interface defined by Spaniel, and pass it the arguments x and y. The Java
method can return a special object representing an iterator over spans, and this iterator can be
used in Spaniel in the same way as other iterators.

Conclusion
Spaniel is a domain-specific language for examining and annotating spans of text. It allows
developers to focus on their algorithm without having to implement the details that would be
necessary if implementing directly in Java; this makes code both more compact and more
readable. Spaniel is tightly-integrated with Java, so that the full power of Java is available if
needed. Finally, because it implements just a few new concepts on top of a base syntax similar to
that of Java, Spaniel is easy to learn.

